A shallow salt pond analog for aqueous alteration on ancient Mars: Spectroscopy, mineralogy, and geochemistry of sediments from Antarctica’s Dry Valleys

ZACHARY F. M. BURTON1,2,*, JANICE L. BISHOP2,3, PETER A. J. ENGLERT4, ANNA SZYNKIEWICZ5, CHRISTIAN KOEBERL6, PRZEMYSLAW DERA4, WARREN MCKENZIE4, AND EVERETT K. GIBSON7

1Department of Geological Sciences, Stanford University, Stanford, California 94305, U.S.A.
2Carl Sagan Center, The SETI Institute, Mountain View, California 94043, U.S.A.
3NASA Ames Research Center, Moffett Field, California 94035, U.S.A.
4Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, Hawaii 96822, U.S.A.
5Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996, U.S.A.
6Department of Lithospheric Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
7NASA Johnson Space Center, Houston, Texas 77058, U.S.A.

* E-mail: zburton@stanford.edu
ABSTRACT

Understanding past and present aqueous activity on Mars is critical to constraining martian aqueous geochemistry and habitability, and to searching for life on Mars. Assemblages of minerals observed at or near the martian surface include phyllosilicates, sulfates, iron oxides/hydroxides, and chlorides, all of which are indicative of a complex history of aqueous activity and alteration in the martian past. Furthermore, features observed on parts of the martian surface suggest present-day activity of subsurface brines and at least transient liquid water. Terrestrial analogs for younger and colder (Hesperian–Amazonian) martian geologic and climatic conditions are available in the McMurdo Dry Valleys (MDV) of Antarctica and provide opportunities for improved understanding of more recent aqueous activity on Mars. Here, we study the VXE-6 intermittent brine pond site from Wright Valley in the MDV region, and use coordinated spectroscopy, X-ray diffraction, and elemental analyses to characterize the mineralogy and chemistry of surface sediments that have evolved in response to aqueous activity at this site. We find that brine pond activity results in mineral assemblages akin to aqueous alteration products associated with younger sites on Mars. In particular, surficial chlorides, a transition layer of poorly crystalline aluminosilicates and iron oxides/hydroxides, and a deeper gypsum-rich interval within the upper 10 cm of sediment are closely related at this Antarctic brine pond site. Activity of the Antarctic brine pond and associated mineral formation presents a process analog for chemical alteration on the martian surface during episodes of transient liquid water activity during the late Hesperian and/or more recently. Our results provide a relevant example of how aqueous activity in a cold and dry Mars-like climate may explain the co-occurrence of chlorides, clays, iron oxides/hydroxides, and sulfates observed on Mars.
Keywords: Mars; McMurdo Dry Valleys, Antarctica; sulfates; chlorides; clays; brine pond; aqueous alteration; geochemistry; spectroscopy; Earth Analogs for Martian Geological Materials and Processes

INTRODUCTION

Understanding the history of liquid water on Mars is central to constraining that planet’s geochemical and possible biological evolution. Liquid water appears to have been present in the martian past, based on both mineralogical evidence (e.g., Carr, 1987, 1996; Squyres et al., 2004; Mustard et al., 2008; Murchie et al., 2009, 2019; Ehlmann and Edwards, 2014; Carter et al. 2015) and geomorphological features such as valley networks, dendritic channels, and deltas that indicate frequent flowing water and fluvial erosion on early Mars (e.g., Craddock and Howard, 2002; Ansan et al., 2008; Fassett and Head, 2011), but liquid water is not currently stable on the surface (Haberle et al., 2001; Wordsworth, 2016).

Evidence for past aqueous activity on Mars includes the identification of sulfates (including gypsum, kieserite, and polyhydrated Fe and Mg sulfates, e.g., Langevin et al., 2005; Murchie et al., 2009), hydrated phyllosilicates (including smectite, mica, chlorite, and kaolinite, e.g., Bibring et al., 2005; Poulet et al., 2005; Bishop et al., 2008; Ehlmann et al., 2009), and chlorides (Osterloo et al., 2008). Phyllosilicates indicate a complex history of aqueous alteration on early Mars (e.g., Murchie et al., 2009; Carter et al., 2015), with associations of phyllosilicates, sulfates, and other minerals suggesting variable aqueous environments on the martian surface (Bishop, 2018). In particular, colder environments support formation of poorly crystalline aluminosilicates rather than crystalline phyllosilicates (Bishop et al., 2018). These poorly crystalline materials are...
abundant across the surface of Mars (Rampe et al., 2012), at the top of the clay profile in areas with abundant phyllosilicates (Bishop and Rampe, 2016) and in all of the samples investigated by the *Curiosity* rover’s CheMin instrument at Gale crater (e.g., Blake et al., 2013; Bristow et al., 2018, 2021). Inferred formational processes for both sulfates and chlorides include evaporation from saline bodies of water (Langevin et al., 2005; Osterloo et al., 2008), which originated from ponding of surface runoff or groundwater upwelling (Osterloo et al., 2010; Hynek et al., 2015). Chlorides on Mars appear bright in color, and occur predominantly within topographic lows, further supporting an evaporitic origin (Osterloo et al., 2008). Some locations exhibit morphological evidence for mobilization and deposition of salts by near-surface waters (Glotch et al., 2010).

The study of terrestrial analogs provides a key tool in interpreting and constraining the mineralogical, aqueous, and geochemical history of Mars, and the McMurdo Dry Valley (MDV) region of Antarctica explored here has long served as a compelling analog for such processes (Anderson et al., 1972; Morris et al., 1972; Gibson et al., 1983). In general, the cold and xeric conditions of the MDV region provide a close analog for recent conditions on Mars (Bull, 1965; Thompson et al., 1971). Similarly, the geological setting of the MDV region, and in particular, the Don Juan Pond area, could be analogous to martian sedimentary and evaporite settings in that the MDV’s Ferrar dolerite has a composition close to that of martian basalts, and in its weathered form can resemble martian regolith (McKelvey and Webb, 1962; Claridge and Campbell, 1984; Harvey, 2001). Although the high quartz content of much MDV sediment (McKelvey and Webb, 1962; Gibson et al., 1983; Nedell et al., 1987; Bishop et al., 1996) originating from other rock units (e.g., Beacon Supergroup, crystalline basement) is different from the chemistry of martian sediments (e.g., Clark, 1993; McSween, 2002; Velbel, 2012; McLennan et al., 2014; Vaniman et al., 2014;
Gellert and Yen, 2019), trends in the weathering of feldspar and pyroxene and precipitation of evaporites are similar to processes on Mars (e.g., Gibson et al., 1983; Wentworth et al., 2005; Phillips-Lander et al., 2019). Notably, chemical weathering of the local bedrock has been found to produce salts, sulfates, fine-grained ferric oxides/hydroxides, poorly crystalline aluminosilicates, and even minor amounts of phyllosilicates in some areas (Claridge, 1965; Ugolini and Anderson, 1973; Claridge and Campbell, 1984; Allen and Conca, 1991), and in general, chloride and sulfate salts are widespread in the surficial MDV sediments (Claridge, 1965; McCraw, 1967; Claridge and Campbell, 1977; Bockheim, 2002). Throughout the western region of Wright Valley, including its North and South forks, soils are characterized as Typic Haplorthels/Haploturbels (McLeod et al., 2009). Finally, though liquid water is scarce, unfrozen waters do occur in the form of brine ponds, lakes, and shallow groundwater in the MDV, providing a noteworthy example of the persistence of liquid water in harsh, Mars-like conditions (Harris, 1981; Harris and Cartwright, 1981; Dickson et al., 2013).

The observed mineral assemblages, brine geochemistry, cold and xeric conditions, and geological setting of the MDV region’s Wright Valley, as well as relatively high solar radiation and relatively low magnetic fields, all combine to form an excellent analog for more recent conditions on Mars (Anderson et al., 1972; Morris et al., 1972; Gibson et al., 1983; Samarkin et al., 2010).

Here, we conduct spectroscopic, mineralogical, and geochemical analyses of sediment samples from the VXE-6 transient salt pond site near the Don Juan Pond in Wright Valley of the MDV in order to characterize sediment horizons that developed in response to the intermittent activity of this brine water system. The results are used to determine how such activity on or near the ancient martian surface may have influenced and resulted in the formation of observed sulfates, poorly crystalline aluminosilicates, iron oxides/hydroxides, and chlorides.
CLIMATIC AND GEOLOGIC SETTING OF THE McMurdo Dry Valleys

Late Quaternary deglaciation has left the Wright Valley region ice-free (McKelvey and Webb, 1962; Hall et al., 1997), with much of the unconsolidated sediment on the basin floor likely of glacial origin (Harris and Cartwright, 1981). The brine pond site studied here was named VXE-6 after the Navy helicopter squadron (VXE-6) tasked with Antarctic flights at the time this pond was identified. The VXE-6 basin is bounded to the north and to the south by mountains made up of orthoquartzite sandstones of the Devonian–Triassic Beacon Supergroup (Figs. 1a and 1b) (Harrington, 1958; McKelvey and Webb, 1962; Shaw, 1962; Barrett et al., 1986). These mountains are pervasively intruded by dikes of igneous Ferrar dolerite (Harrington, 1958; McKelvey and Webb, 1962). The Jurassic Ferrar dolerite contains pyroxenes, plagioclase feldspar, variable amounts of quartz-alkali feldspar intergrowths, and accessory minerals, but little olivine (Clarkson, 1981; Elliot et al., 1985; Barrett et al., 1986; Bédard et al., 2007).

Chemical weathering of Antarctic dolerite yields micaceous phyllosilicates, including Fe-rich clay minerals and smectites such as authigenic montmorillonite, as well as amorphous material, chlorite, uralite, a “brown micaceous mineral” (Clarkson, 1981), and salts including gypsum (Claridge, 1965; Ugolini and Anderson, 1973; Claridge and Campbell, 1984; Elliot et al., 1985; Allen and Conca, 1991). In general, sulfates, chlorides, and nitrates are widespread in Antarctic sediments of the MDV, and their origins are inferred to include deposition of original marine salts or aerosols as well as chemical weathering of volcanic material (Claridge, 1965; McCraw, 1967; Claridge and Campbell, 1977; Bockheim, 2002; Szynkiewicz and Bishop, 2021; Szynkiewicz et al., 2021).
Although chemical properties of sediment within Antarctic endorheic basins often vary widely, these basins (with relatively abundant amounts of moisture) are often characterized by elevated clay and salt contents (Campbell and Claridge, 1982). Notably, salt accumulations tend to occur at or near the ground surface (rather than as a deeper horizon, as seen in most other Antarctic sediment profiles) and clays are inferred to have mostly formed via weathering processes enhanced by the presence of moisture (Claridge, 1965; Campbell and Claridge, 1982).

CLIMATE, HISTORY OF WATER, AND MINERALOGY OF MARS

Orbiter- and rover-based mineralogical observations of the martian surface over the past two decades, paired with studies of Mars analog material, support the conclusion that the Noachian (~4.1–3.5 Ga) period of early Mars was characterized by episodically warm and wet conditions, whereas the succeeding Hesperian (~3.5–3.0 Ga) and Amazonian (~3.0–0 Ga) periods have been characterized by colder and drier conditions (e.g., Warner et al., 2010; Wordsworth, 2016; Bishop et al., 2018; Kite, 2019). Liquid water is inferred to have been stable on the martian surface during parts of the Noachian, but was limited to transient surface occurrence during the Hesperian and Amazonian (Bibring et al., 2006; Fassett and Head, 2008a,b; Tosca and Knoll, 2009; Bishop, 2018). However, sufficient water was present at Gale crater during the Hesperian to form ample smectite clays (e.g., Bristow et al., 2018, 2021; Rampe et al., 2020).

Mafic and ultramafic material and volcanic landforms typify much martian surface geology, and volcanism is inferred to have been an important and potentially still-active process throughout martian history (e.g., Greeley and Spudis, 1981; Wilson and Head, 1994; Hartmann et al., 1999; Hauber et al., 2011). The surface mineralogy of Mars is dominated by the occurrence of Fe-bearing
pyroxene, plagioclase feldspar, and olivine, but also includes substantial areas that have undergone heavy alteration (physical and/or chemical) or are covered by altered dust (Christensen et al., 2001; Bandfield, 2002; Bibring et al., 2005, 2006; Ehlmann and Edwards, 2014).

Trends in the temporal (stratigraphic) and spatial distribution of these alteration products—which include clay minerals, iron oxides/hydroxides, sulfates, and chlorides—have been used to discern the paleoclimate and history of liquid water at and near the martian surface. Alteration assemblages differ significantly through time, with Fe/Mg smectites globally widespread in outcrops of the Noachian age, Al phyllosilicates in the later Noachian and earlier Hesperian, sulfates and chlorides through most of the Hesperian, and sulfate-silica diagenetic/weathering assemblages starting in the Hesperian and into the Amazonian (e.g., Bibring et al., 2006; Ehlmann and Edwards, 2014; Murchie et al., 2019). Widespread clay minerals in the Noachian have been interpreted as an indicator of weathering, hydrothermal activity, and diagenesis in aqueous environments (Ehlmann and Edwards, 2014). Localized clays, sulfates, iron oxides/hydroxides, chlorides, and carbonates from the Noachian and Hesperian occur in interpreted paleolake deposits (Ehlmann and Edwards, 2014; Rampe et al., 2020). More localized occurrences of sulfates and silica in the late Hesperian to Amazonian suggest that, though rare, ground and surface waters have also occurred in recent martian history (Weitz et al., 2013; Ehlmann and Edwards, 2014).

METHODS

Samples

The sediments studied here were collected from the then-dry VXE-6 pond site by Everett Gibson during a 1980 field season that resulted in a study (Gibson et al., 1983) on silty tills and gravels of
Wright Valley’s Prospect Mesa. The VXE-6 pond site (this study) is located ~15 km west of the Prospect Mesa site (the Gibson et al., 1983, study) and sits ~1 km east and upslope of hypersaline Don Juan Pond (Fig. 1). VXE-6 pond site sediments were collected both in the form of bulk ~200–500 g samples collected at various depths of a soil pit using a stainless steel spatula and in the form of a ~14-cm-deep, ~2-cm-wide core. Soil pit samples were collected at six depth intervals (0–1, 1–4, 4–7, 8–10, 12–15, and 20–24 cm) (Figs. 2a,b) down to the top of the permafrost, while the continuous core samples were available for one-cm intervals from 0–14 cm depth (Fig. 2c), as summarized in Table 1. Samples were shipped from Antarctica to the United States in a freezer and stored at NASA Johnson Space Center at −40 °C (as described for the Prospect Mesa samples examined by Gibson et al., 1983). Tubs containing the bulk soil pit samples were kept fully sealed and unopened until our 2018–2021 analytical work. Both sample sets were available for this study as sediment grains in their original form as collected in 1980 (Figs. 2a,c), while the soil pit samples were also available as finely-crushed particles prepared but not analyzed by Gibson following the 1980 field season (Fig. 2b) (note that these finely-crushed samples were only used for some of the spectroscopy work that we present herein).

X-ray diffraction

X-ray powder diffraction (XRD) analysis of soil pit samples was performed in 2021 at the University of Hawaiʻi at Mānoa. Bulk powders were prepared for analysis by grinding aliquots of the bulk, freshly opened soil pit samples in a McCrone micronizing XRD-mill for 1 hour at 10 Hz oscillating frequency. A thin layer of each sample was deposited on a silicon single crystal wafer zero-background holder, and XRD data were collected using a Bruker D8 Advance diffractometer (CuKα source operating at 40 mA and 40 kV in a parafocusing Bragg-Brentano mode) with a Lynxeye XE detector and 0.020 mm Ni filter inserted into the diffracted beam path. Phase
identification was performed using Bruker Diffrac.Eva software (version 4.2.0.14) with the ICDD PDF 4+ database (2021 edition) used as a reference for search-and-match. Rietveld refinement analysis was carried out using the Bruker data reduction program Diffrac.TOPAS (version 5).

Reflectance spectroscopy

Aliquots of the soil pit samples and core samples were freshly ground in 2018 and 2020, respectively, by carefully crushing the sediment grains and dry sieving the crushed product until all material passed through a <125 μm sieve (as described in Bishop et al., 2014a). To avoid over-grinding of the softer grains, crushed samples prepared in 2018 and 2020 were ground and sieved iteratively. Visible/near-infrared (VNIR) reflectance spectra of the coarse soil pit and core sediment grains in original form, of the finely-crushed soil pit particles prepared in 1983, and of the <125 μm soil pit sediment aliquots prepared in 2018 were measured under ambient conditions using an ASD FieldSpecPro spectrometer at the SETI Institute relative to Spectralon®. These spectra were obtained in order to compare the spectra of sample grains prepared at different times and ground in different ways.

Bidirectional reflectance spectra from 0.3–2.5 μm relative to Halon under ambient conditions and reflectance spectra from 1–50 μm relative to a rough gold standard were obtained under controlled dry conditions using a Nicolet FTIR instrument at the RELAB facility at Brown University (as detailed in previous work, e.g., Bishop et al., 2014a) for both finely-crushed soil pit particles prepared in 1983 and the <125 μm core sample aliquots prepared in 2020. The RELAB spectra were then spliced at ~1.2 μm and the longer wavelength Nicolet spectra were scaled to the shorter wavelength bidirectional spectra, enabling absolute reflectance values for spectra of samples without adsorbed water on grain surfaces.
Elemental analyses

Major element geochemical data were obtained via X-ray Fluorescence (XRF) at the Bureau Veritas in Vancouver, Canada, in 2019 for the freshly prepared soil pit samples. Additional elemental abundances, including those of the rare earth elements, were obtained using Instrumental Neutron Activation Analysis (INAA) of the soil pit samples. INAA was conducted at the University of Vienna. Further details on specific instrumentation, precision, and accuracy of INAA are detailed in previous work by Koeberl and others (e.g., Koeberl, 1993; Mader and Koeberl, 2009).

Sulfur analysis

The δ^{34}S of oxidized and reduced S species in ~10 g aliquots taken from the bulk soil pit samples was analyzed using a S sequential extraction (SSE) method in 2021. This technique allows for separation of various S species (acid-soluble SO_4^{2-}, elemental S, acid-volatile and chromium-reducible sulfides) for quantitative and δ^{34}S analyses (e.g., as detailed in Mayer and Krouse, 2004). The S isotope composition (δ^{34}S) of BaSO$_4$ and Ag$_2$S precipitated during the SSE process was measured using a Costech elemental analyzer (EA) coupled with a Delta Plus XL IRMS at the University of Tennessee, and the O isotope composition (δ^{18}O) of BaSO$_4$ was measured using a Thermo Finnigan TC/EA. The analytical precision for both δ^{34}S and δ^{18}O of BaSO$_4$ was <0.3‰.

RESULTS

X-ray diffraction
Results of XRD analysis indicate distinct changes in mineralogy with depth (Fig. 3; Table 2). At the 4–7 cm soil pit sample depth, abundances of albite, anorthite, quartz, and diopside are markedly lower than at all other sample depths (at least ~36% lower for albite, ~21% lower for anorthite, ~33% lower for quartz, and ~28% lower for diopside), with the exception of the albite abundance at the 20–24 cm depth (which is nonetheless 15% higher than the albite abundance at 4–7 cm) (Fig. 3; Table 2). Conversely, the abundance of phlogopite/muscovite and clinochlore is significantly higher at the 4–7 cm depth than at any other sample depth (Fig. 3; Table 2). The abundance of phlogopite/muscovite in the 4–7 cm depth soil pit sample is 30.7 wt%, while it is just 0.35 wt% at the 1–4 cm depth and absent at all other depths (Table 2). Clinochlore abundance is 8.68 wt% at the 4–7 cm depth, is at least ~57% lower in abundance in the 0–4 cm depth samples, and is absent from the 8–10, 12–15, and 20–24 cm depth samples (Table 2). Gypsum and bassanite are essentially found only in the 8–10 and 12–15 cm depth samples, and abundances are notably higher at the 8–10 cm depth than at the 12–15 cm depth, with gypsum abundances of 0.76 wt%, 11.20 wt%, and 5.19 wt% for the 0–1, 8–10, and 12–15 cm sample depths, respectively, and bassanite abundances of 3.74 wt% and 0.44 wt% at the 8–10 and 12–15 cm sample depths, respectively (Figs. 3 and 4, Table 2). Abundance of amphibole is somewhat lower (~17–45% lower) in the 0–7 cm depth samples than at the 8–10, 12–15, and 20–24 cm depth samples (Table 2).

Reflectance spectroscopy

General spectroscopic characteristics. Reflectance spectra in the region 0.3–5 μm for six soil pit sample aliquots and for ten core samples are shown in Figs. 5 and 6, respectively, while spectra of the core samples in the region 5–50 μm (plotted in wavenumber; 200–2000 cm\(^{-1}\)) are shown in Fig. 7. The spectroscopy data largely corroborate the data obtained via XRD analysis (Figs. 3 and 4, Table 2).
These spectra illustrate the presence of quartz, pyroxene, gypsum, and aluminosilicates observed in sediments from the MDV in previous studies (e.g., Bishop et al., 1996, 2001, 2003, 2014). The VNIR spectra from the soil pit and core samples include features due to pyroxene, gypsum, iron oxides/hydroxides, and additional hydrated phases. The dominant band near 1 µm is due to pyroxene, but shifts in the shape and band center near 0.9 µm are consistent with iron oxides and hydroxides. This is especially observed in spectra of soil pit sample JB1102 from 4–7 cm depth (Fig. 5) and core samples JB1309 from 6–7 cm depth and JB1310 from 7–8 cm depth (Fig. 6). Gypsum bands (e.g., Bishop et al., 2014b) near 1.45–1.53 (triplet), 1.75, 1.94, 2.22, 2.5, 4.75, and 4.85 µm appear strongest in spectra of soil pit sample JB1104 from 8–10 cm depth (Fig. 5) and core samples JB1311 from 8–9 cm depth and JB1312 from 9–10 cm depth (Fig 5). Spectra of other samples include bands near 4.75 and 4.85 µm with the stronger band near 4.85 µm, which is more consistent with anhydrite.

Strong water bands are also observed near 1.92 and 2.9–3.0 µm in most spectra. Variations in the shape and band position of these water bands are shown with core sample depth in Figure 6. The spectrum of the sample at 0–1 cm depth (JB1303) has the weakest hydration bands, consistent with exposure to the dry surface environment. The water band near 1.92 µm was quantified for the soil pit samples, indicating the highest normalized H₂O absorptions for the soil pit sample from 8–10 cm depth (JB1103), and lowest absorptions for the samples from 4–7 cm (JB1102) and 20–24 cm (JB1105) depths (Fig. 8).

Spectra of the soil pit sample from 4–7 cm depth (JB1102) and core samples from 3–6 cm depths (JB1306, JB1307, and JB1308) include stronger and narrower bands near 1.41, 1.93, and 2.20 µm that are not consistent with smectites (Bishop et al., 2008) or allophane (Bishop et al., 2013), but are attributed to poorly crystalline aluminosilicate materials and may be proto-clay phases. These
four spectra also have a similar band shape near 2.8–3 μm that is due to overlapping OH and H₂O stretching bands from Al-OH, Si-OH, and water bands in a hydrous component.

Spectra of samples JB1304 (1–2 cm), JB1309 (6–7 cm) and JB1310 (7–8 cm) have broader features near 1.41, 1.94, and 2.92–2.94 μm that are consistent with halite (Fig. 6) or related hydrated salts. The triplet feature near 1.45–1.53 μm and strong band at 1.94 μm in spectra of samples JB1311 (8–9 cm) and JB1312 (9–10 cm) are distinct from the others and remarkably characteristic of gypsum (Fig. 6).

The spectra of JB1303 (0–1 cm) and JB1305 (2–3 cm) also have a band at 2.36 μm (Fig. 6), characteristic of the OH combination (stretch plus bend) band for OH bound to Fe²⁺ and Mg cations that is consistent with Fe/Mg-rich mica or actinolite. These two spectra also have a narrower band centered near 2.9 μm due to the OH stretching vibration.

The mid-IR reflectance spectra are dominated by features characteristic of quartz (Fig. 7). The primary quartz Si-O stretching band at 1225 cm⁻¹ shifts towards lower wavenumbers for mixtures of quartz with gypsum (Fig. 7b). The primary gypsum S-O stretching band occurs near 1200 cm⁻¹ and additional gypsum bands occur near 680 and 610 cm⁻¹ (Bishop et al., 2014b). These features are observed in spectra of samples JB1311 (8–9 cm) and JB1312 (9–10 cm).

Differences due to sample preparation. Generally, reflectance spectra differ in absolute reflectance value according to particle size (Fig. 9) and differ in water band characteristics according to moisture conditions during analysis (Fig. 10), but overall display similar spectral signatures and yield consistent spectral results regardless of sample preparation or moisture environment.
Finer-grained material analyzed here, both from 1983 and 2018 preparations, show systematically higher reflectance values than spectra of the coarse original sediment grains (Fig. 9). Similarly, the finest-grained particles prepared in 1983 show systematically higher reflectance values than the fine-grained but slightly coarser <125 μm sediment aliquots prepared in 2018 (Fig. 9). Nonetheless, aside from these absolute reflectance values, the observed spectral features are consistent regardless of method of sample preparation.

Differences due to moisture environment. In a comparison of spectra obtained from the finely-crushed sediment samples prepared in 1983 under different moisture environments (ambient vs. dry), water bands near 1.4 and 1.9 μm are found to vary greatly (Fig. 10). Measurements made under ambient conditions yielded more pronounced, deeper water bands than measurements made under controlled dry conditions (Fig. 10) that is attributed to adsorbed water. This is characteristic of poorly crystalline aluminosilicates including allophane (e.g., Bishop et al., 2013) that readily adsorb water from the environment due to the fine particle size and high surface area. Notably, the sediment sample from 8–10 cm depth shows the least variation with changing moisture environment (Fig. 10). Aside from water band characteristics, observed spectral features are consistent regardless of the moisture environment present during spectral analysis.

Elemental analyses

INAA elemental abundance data reveal clear trends with depth (Fig. 11; Table 3). Abundances of the elements U, Cs, Fe, Th, Co, Zn, Rb, Zr, Ba, Sr, and Sc are effectively equal for most soil pit sample depths. However, the abundances of these elements are significantly elevated at the 4–7 cm soil pit sample depth (~62% higher than at any other depth for K, ~144% for U, ~260% for Cs,
Results from rare earth elemental abundance data reveal similar trends, whereby the soil pit sample from 4–7 cm depth contains systematically higher abundances of all rare earth elements in comparison with other sample depths (Fig. 12; Table 4). At the 4–7 cm depth, concentration of La is ~48% higher than at any other depth, Ce is ~36% higher, Nd is ~40% higher, Sm is ~47% higher, Eu is ~21% higher, Gd is ~26% higher, Tb is ~39% higher, Tm is ~15% higher, Yb is ~38% higher, and Lu is ~42% higher (Table 4).

XRF major element chemistry data similarly indicate that the 4–7 cm depth interval is a horizon of elevated chemical abundance of Al, Fe, Mg, and K (Fig. 13; Table 5). At the 4–7 cm soil pit sample depth, Al$_2$O$_3$, Fe$_2$O$_3$, MgO, and K$_2$O values are all markedly elevated above (~19–79% higher than) those values for other sample depths, while SiO$_2$ at the 4–7 cm depth is ~18–31% lower than at any other sample depths (Fig. 13; Table 5). Abundances of CaO and SO$_3$ are significantly elevated at the 8–10 cm soil pit sample interval (whereby CaO at 8–10 cm is at least ~98% higher than that at 0–4 cm and at least ~50% higher than at 4–7 or 20–24 cm depths, and whereby SO$_3$ at 8–10 cm is >1200% higher than at 0–7 cm and ~350% higher than at 20–24 cm), and are somewhat elevated at the 12–15 cm depth interval (Fig. 13; Table 5). Abundance of Na$_2$O at surficial depths (0–4 cm) is ~18–24% higher than at 4–10 cm depths (2.19 and 2.11 wt% at 0–1 and 1–4 cm depths versus 1.76 and 1.79 wt% at 4–7 and 8–10 cm depths), while Na$_2$O abundance at greater depth (2.05 wt% at 20–24 cm) is comparable to surficial levels.
Results of sulfur sequential extraction reveal traces of bedrock sulfides (<0.002 wt% S) in the South Fork catchment with a narrow range of $\delta^{34}\text{S}$ of +1.0 to +3.0 ‰ (Fig. 14) consistent with an igneous origin from detrital pyrite derived from the Ferrar dolerite (Hagen, 1988). There is little variation of $\delta^{34}\text{S}$ and $\delta^{18}\text{O}$ of sulfate with depth (+15.8 to +16.7 ‰ and -8.9 to -7.2 ‰, respectively; Table 6). Both the sulfate from the VXE-6 pond site investigated here and from other sediments of the MDV investigated by Bao and Marchant (2006) show a distinctive, positive linear relationship of $\delta^{34}\text{S}$ vs. $\delta^{18}\text{O}$, following the mixing line for seawater aerosol- and bedrock sulfide-derived sulfate (Fig. 14). Thus, quantitative contributions of the bedrock-sourced sulfate in VXE-6 sediments can be estimated via sulfur isotope mass balance using the equation:

$$\delta^{34}\text{S}_{\text{soil sulfate}} = x \cdot \delta^{34}\text{S}_{\text{sulfide-derived sulfate}} + (1-x) \cdot \delta^{34}\text{S}_{\text{marine sulfate}}$$

where x is an input from sulfide-derived sulfate.

Accordingly, up to ~20% of sulfate in the VXE-6 site sediments is derived from bedrock weathering of the Ferrar dolerite (and/or basement complex), while the remaining ~80% is of marine origin delivered via atmospheric deposition and/or from local sources (e.g., brines, dissolution of sedimentary rocks). Generally, our estimates fall within the range of sulfide-derived sulfate contributions suggested by Bao and Marchant (2006).

Microbial sulfate reduction has been observed in modern lakes of the MDV (Bishop et al., 2001, 2003) and Ace Lake of East Antarctica (Sun et al., 2015), and inferred for older lake deposits near the Lewis Cliff Ice Tongue (Sun et al., 2015). The relatively small, shallow VXE-6 pond was dry at the time of sampling, but could potentially have supported microbial sulfate reduction under past wet conditions. Notably, the $\delta^{34}\text{S}$ of VXE-6 sediments was shifted (increased) by ~3‰ from the mixing line (Fig. 14), potentially suggesting increases of $\delta^{34}\text{S}$ caused by microbial sulfate reduction.
reduction. If this is the case, the sulfide-derived sulfate contributions in these sediments would be higher (by up to ~35%). The regional context and interpretation of these sulfur results is discussed somewhat more broadly by Szynkiewicz and Bishop (2021).

DISCUSSION

Chemical and mineralogical stratigraphy

Combined spectroscopic, chemical, and mineralogical data from soil pit and core samples suggest distinct trends with depth at the VXE-6 brine pond site (Fig. 15). At 0–4 cm, our results suggest the presence of hydrated salts and/or poorly crystalline aluminosilicates. At 4–6 cm, spectral bands suggest a clay-like material, observation of the highest observed spectral reflectance among all samples analyzed suggests bright material such as clay, elevated Al$_2$O$_3$ suggests an aluminosilicate, and elevated major, minor, and trace elemental abundances (including rare earth elements) suggest a chemically active layer. The spectral properties and XRD results of the samples from this horizon are not consistent with montmorillonite or other common Al-rich secondary phyllosilicates, but they are consistent with poorly crystalline aluminosilicates similar to Al-rich phlogopite or mica. At 6–8 cm, spectral and chemical data are consistent with a mixed horizon containing both poorly crystalline aluminosilicates and gypsum. At 8–10 cm, spectral results are highly characteristic of gypsum, and significantly elevated CaO and SO$_3$ are consistent with the presence of gypsum.

Aqueous activity and mineral formation in the McMurdo Dry Valleys
The observed assemblages of chlorides, clays, iron oxides/hydroxides, and sulfates indicate a dynamic history of liquid water activity at the VXE-6 pond site in the Wright Valley’s South Fork. We suggest that intermittent activity of water within the ephemeral pond and in the shallow subsurface produced the observed mineral assemblages (Fig. 15). Most likely, chemical weathering, freezing, and evaporitic activity (e.g., intermittently present liquid water, changing pond depths and volumes, and attendant changes to solute concentrations/brine composition) drove formation of secondary chlorides and sulfates and aqueous alteration associated with clay formation. Observed chloride salts and gypsum may represent minerals deposited as evaporites at the surface (past and/or present). Alternatively, they could represent minerals accumulated and concentrated at variable depths in the subsurface due to the transient passage of liquid brine of the same origin through the sediments (i.e., shallow groundwater activity) at the pond site. The latter is inferred from negligible variations of δ^{34}S and δ^{18}O with depth (Table 6), which suggests a common sulfate ion origin for gypsum. Clays and proto-clays are mainly concentrated at the 4–6 cm depth, suggesting a horizon of elevated aqueous alteration and chemical activity. Precipitation of elemental components from liquid solution during activity of the pond could drive the formation of such clays and explain the notably elevated elemental abundances (e.g., elevated rare earth element abundances due to preferential precipitation from solution; Nesbitt, 1979) at this horizon.

The aqueous and evaporitic processes responsible for formation of the observed mineral assemblages are largely driven by the influence of the hyperarid, cold polar desert conditions prevailing in the McMurdo Dry Valleys. This includes the associated paucity of water stable in liquid form at the surface throughout the region. The relative scarcity of liquid water in the MDV region is controlled by a combination of low precipitation (only as snowfall, without rainfall), high sublimation rates, and subzero °C mean annual air temperatures (Fountain et al., 2010; Obryk et
al., 2020). Furthermore, the aqueous activity in the shallow subsurface (and at the surface) is dominated by the impact of permafrost—of an ice table formed due to the subzero °C air temperatures prevailing much of the year, instead of a water table—located at shallow (tens of cm) depths throughout the area (Head and Marchant, 2014). This pervasive, regional permafrost forms an impermeable layer between surface sediments and ephemeral bodies of liquid surface water and underlying deep groundwater systems, and therefore makes mobility of liquid water more difficult (Head and Marchant, 2014). The permafrost aquiclude could, for instance, serve as the lower bound to transient liquid water flow in the shallow sediments at the VXE-6 pond site, with longer-term ponding. Additionally, liquid water may be seasonally present in the sediment immediately overlying the permafrost (e.g., as described by Head and Marchant, 2014), enhancing the aqueous alteration and elemental precipitation responsible for the formation of the observed clay layer. This interstitial liquid water ponded or flowing at the top of the ice table eventually freezes or evaporates (Head and Marchant, 2014). The latter provides a plausible mechanism for the precipitation of salts, gypsum, and any elemental components previously suspended in aqueous solution (e.g., as inferred for the Victoria Valley region by Gibson, 1962). Generally, seasonal melting of sparse snow may provide some transient liquid to the surface and shallow subsurface systems (e.g., as described for parts of the Don Juan basin by Dickson et al., 2013), as may daily or seasonal freeze-thaw cycling in the uppermost (“active”) layer of the permafrost (Harris, 1981; Miller and Black, 2003).

IMPLICATIONS FOR MARS

Implications for aqueous activity on Mars
Intermittent aqueous activity and chemical weathering under the cold, xeric conditions prevailing at the VXE-6 pond site in the McMurdo Dry Valleys and the resultant assemblage of chlorides, poorly crystalline aluminosilicates and amorphous material, and gypsum provide a compelling geochemical analog for martian surface processes during the Hesperian period. The Hesperian is interpreted to have been markedly colder and drier than the preceding episodically warm and wet Noachian (namely, too cold for abundant phyllosilicate formation) as evinced by the transition from Noachian Fe/Mg smectites and Al phyllosilicates to poorly crystalline and amorphous phases related to allophane during the later Noachian and early Hesperian age (Bishop and Rampe, 2016; Lowe et al., 2020) to sulfates and chlorides through most of the Hesperian (Ehlmann and Edwards, 2014). For example, investigations of early Hesperian (~3.5 Ga) sedimentary strata during the traverse of the Curiosity rover at Gale crater revealed a marked shift from abundant smectites down-section to abundant Ca sulfates moving up-section (Vaniman et al., 2018; Rampe et al., 2020).

Amorphous material. Along the Gale crater transect, X-ray amorphous material has been detected in notable (15–73 wt%) and, as of yet, unexplained abundance (Rampe et al., 2020). A general comparison of these materials to amorphous materials present in modern subglacial sediments at the Three Sisters Volcanic Complex in Oregon suggest subglacial and periglacial weathering (Smith et al. 2018). The occurrence of poorly crystalline and/or amorphous material under largely analogous climatic conditions at the Antarctic VXE-6 pond site may therefore provide important further insight to the development of such amorphous materials in Hesperian-like conditions, and in association with assemblages of cold-weather evaporitic and clay-like minerals. As discussed by Rampe et al. (2020), it should be noted that amorphous materials on Mars must have persisted for up to billions of years without evolving into crystalline phases,
whereas surface sediment in the MDV’s Wright Valley was only exposed following Late Quaternary deglaciation, and is generally assumed to be of (younger) glacial origin (McKelvey and Webb, 1962; Calkin et al., 1970; Harris and Cartwright, 1981; Hall et al., 1997).

Chlorides. At Gale crater, chlorides appear infrequently and are inferred to be products of remobilization and reprecipitation, rather than distinctive evaporitic layers within the Murray formation (Thomas et al., 2019). Nonetheless, the surficial salts observed at the VXE-6 pond site are reminiscent of salt crusts observed elsewhere across much of Mars, where lighter colors have long been interpreted as evaporitic deposits (e.g., Clark and Van Hart, 1981). These martian chlorides, observed by the Mars Odyssey Thermal Emission Imaging System in hundreds of localities in southern Mars characterized as irregular depressions (i.e., topographic lows, such as, for instance, a local basin perhaps akin to the VXE-6 basin), have been interpreted as a product of ponding of surface runoff or groundwater upwelling (Osterloo et al., 2010). This is potentially similar in nature to the intermittent activity of water at the VXE-6 pond site, including previous observations of a surface runoff source.

Sulfates. Results from CheMin XRD analyses reveal that gypsum, bassanite, and anhydrite occur frequently at Gale crater (Vaniman et al., 2018). Occasional polyphase associations of these Ca sulfates imply a limited set of equilibrium conditions at the time of formation (Vaniman et al., 2018), thus, identification by XRD of co-occurring gypsum and bassanite (and possible anhydrite) within the Antarctic VXE-6 sediments studied here represents a chance to further constrain geochemical and environmental conditions associated with the formation and co-occurrence of these Ca sulfates, including at Gale crater on Mars.
It is worth noting that beyond Gale crater, Ca sulfate occurrence is widespread on the martian surface (Vaniman et al., 2018). Though anhydrite is not detectable by the spectral methods employed to map mineralogy of the martian surface, gypsum and bassanite have been identified. Expansive gypsum-rich dune fields occur at Olympia Undae (Langevin et al., 2005; Fishbaugh et al., 2007). Gypsum has also been identified at Meridiani Planum (e.g., Grotzinger et al., 2005) and in a trough of Noctis Labyrinthus indicative of Late Hesperian to Amazonian aqueous activity (Weitz et al., 2013). Bassanite has been mainly identified at Mawrth Vallis (Wray et al., 2010).

Clays. Amorphous aluminosilicates are inferred to make up little of the amorphous material identified at Gale crater (Rampe et al., 2020). Therefore, the thin horizon of poorly crystalline aluminosilicates at the VXE-6 pond site, and the ferric oxides/hydroxides produced via chemical weathering of the Ferrar dolerite, could be more analogous in composition (and origin) to poorly crystalline materials identified elsewhere on Mars, including Noctis Labyrinthis (Weitz et al., 2013) and chasma near Valles Marineris (e.g., Weitz et al., 2014).

As discussed above, the proto-clay layer at the VXE-6 site is inferred to have formed via precipitation of elemental components from liquid solution during cold-weather activity of the transient brine pond. This speculated process may provide, by analogy, a mechanism for the formation of amorphous aluminosilicates at ephemeral salt ponds or other sites of transient brine activity in cold, relatively dry environments on ancient Mars. The co-occurrence of aqueous alteration products (salts and clays) with pyroxene at the VXE-6 site may provide clues into the timeline and/or chemistry of this cold-weather alteration mechanism, as demonstrated via the Mars-analog experiments of Phillips-Lander et al. (2019).
Drawing a tentative parallel between the shallow (a few cm to tens of cm) permafrost present in the Antarctica’s MDV (Head and Marchant, 2014) and the near-surface (as shallow as a few cm) water ice table on Mars (Piqueux et al., 2019), one might speculate that the martian ice table represents an impermeable layer or aquiclude. Such an aquiclude could be similar to that described in the MDV, thus, the sediment immediately overlying this barrier may be a site of focused water activity whereby any transiently available liquid water (shallow groundwater) is localized. Accordingly, it may be possible that, were liquid water sufficiently available on Mars, development of a chemically altered proto-clay horizon such as that described at the VXE-6 pond site could be possible.

Implications for remote sensing of Mars

As with Mars analog studies at other sites on Earth (e.g., Hawaii’s Big Island; Minitti et al., 2007; Yant et al., 2018; Calvin et al., 2020; California’s Mojave Desert; Peters et al., 2008; Bonaccorsi et al., 2020; Spain’s Canary Islands; Burton et al., 2020; Wyoming’s Yellowstone National Park; Hinman et al., 2021), as well as previous analog studies in Antarctica (e.g., Gibson et al., 1983), the chemical and mineralogical results reported here for the VXE-6 pond site have implications for remote sensing applications on the martian surface. Changing spectral features that are seen with changing depths at the VXE-6 pond site could be applied to remote sensing data received from Mars. In particular, spectral patterns noted here could aid in identifying evidence of ancient salt ponds on the martian surface. These patterns could be applied in deconvolving spectral signals in regions with fine-scale associations of mineralogies, such as the thin outcrops of varying sulfates, opal, and poorly crystalline materials identified at sites such as Noctis Labyrinthus and Coprates Chasma (e.g., Weitz et al., 2013).
ACKNOWLEDGEMENTS AND FUNDING

Z.F.M.B. thanks the Clay Minerals Society (CMS Travel Award and CMS Research Grant) and the Geological Society of America (GSA Graduate Student Research Grant) for funding. Z.F.M.B. and J.L.B. thank the NASA Astrobiology Institute (NAI #NNX15BB01) for support. We thank Takahiro Hiroi at Brown University for assistance with RELAB spectral measurements, Shital Patel for assistance with spectral data processing, Dieter Mader for help with INAA data collection, and Henry Harris for insightful discussions of the VXE-6 site and surrounding region. This manuscript benefited from the comments and suggestions of two anonymous reviewers.

REFERENCES CITED

Bao H. and Marchant D. R. (2006) Quantifying sulfate components and their variations in soils of
the McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research: Atmospheres

and Ferrar Group (Jurassic) in the Beardmore Glacier Area, Antarctica. Antarctic Research
Series 36, 339-428.

mechanical redistribution of orthopyroxene and plagioclase in the Basement Sill, Ferrar
Dolerites, McMurdo Dry Valleys, Antarctica: petrological, mineral-chemical and field
evidence for channelized movement of crystals and melt. Journal of Petrology 48, 2289-
2326.

Bibring J. P., Langevin Y., Gendrin A., Gondet B., Poulet F., Berthé M., Soufflot A., Arvidson R.,
the OMEGA/Mars Express observations. Science 307, 1576-1581.

mineralogical and aqueous Mars history derived from OMEGA/Mars Express data.
Science 312, 400-404.

climate and habitability. In From Habitability to Life on Mars (eds. N. A. Cabrol and E. A.

chloride salts through ponding and evaporation. Geology 43, 787-790.

reflectance spectra of gypsum mixtures for comparison with White Sands National
Monument, New Mexico (WSNM) dune samples as an analog study of the Olympia Undae
region of Mars. American Geophysical Union Fall Meeting. San Francisco, CA. Abstract
#P23C-1800.

Kite E. S. (2019) Geologic constraints on early Mars climate. Space Science Reviews 215,

Koeberl C. (1993) Instrumental neutron activation analysis of geochemical and cosmochemical
samples: a fast and reliable method for small sample analysis. Journal of Radioanalytical
and Nuclear Chemistry 168, 47-60.

Langevin Y., Poulet F., Bibring J. P. and Gondet B. (2005) Sulfates in the north polar region of
Mars detected by OMEGA/Mars Express. Science 307, 1584-1586.

study of a meromictic lake ecosystem in Antarctica. The ISME Journal 5, 879-895.

clay-rich strata of the Mawrth Vallis Group, Mars, in lacustrine, alluvial, and aeolian

analyses of terrestrial impact structures: Current analytical procedures at the University of
Vienna Geochemistry Activation Analysis Laboratory. Applied Radiation and Isotopes 67, 2100-2103.

Weitz C. M., Bishop J. L. and Grant J. A. (2013) Gypsum, opal, and fluvial channels within a trough of Noctis Labyrinthus, Mars: Implications for aqueous activity during the Late Hesperian to Amazonian. Planetary and Space Science 87, 130-145.

FIGURE 1. (a) Study area in Wright Valley’s South Fork; white box indicates the VXE-6 pond site and sampling sites discussed herein; red box on inset map of Antarctica indicates general location of Wright Valley; DJP—Don Juan Pond, MDV—McMurdo Dry Valleys. Photo credit: NASA EO-1, 2014. (b) Representative photograph of the area surrounding the VXE-6 pond. Photo credit: Everett K. Gibson, NASA-JSC, 1980. (c) Photograph of the VXE-6 pond site (facing ~West) from which soil pit and core samples were collected in 1980. Photo credit: Everett K. Gibson, NASA-JSC, 1980.

FIGURE 2. (a) Soil pit samples in original form as collected in 1980; 5 cm scale applies to all panels. (b) Finely crushed soil pit sample aliquots prepared in 1983; 3 cm scale applies to all panels. Note that apparent differences in brightness between (a) and (b) at identical sample depths are primarily due to differences in lighting and, to some degree, moisture content. (c) Photograph of core collected in 1980.

FIGURE 3. Mineral abundances determined by XRD of soil pit samples from the VXE-6 pond site. Note that minerals are split between the top and bottom panels solely to aid in visualization of the data.

FIGURE 4. Example of the XRD diffraction patterns obtained for the VXE-6 pond site soil pit samples (black line indicates experimental data, red line indicates model fit). This diffraction
pattern for sample JB1103 illustrates the elevated abundance of gypsum at the 8–10 cm depth interval.

FIGURE 5. VNIR reflectance spectra of the six soil pit samples from the VXE-6 pond site compared to spectra of montmorillonite, allophane, gypsum, anhydrite, and halite. Mineral spectra are from previous work of Bishop and coauthors (e.g., Bishop et al., 2008, 2013, 2014b).

FIGURE 6. VNIR reflectance spectra of the ten core samples from the VXE-6 pond site. Spectra of the samples from 8–10 cm are consistent with gypsum, while the upper sediments contain other hydrated phases.

FIGURE 7. Mid-IR reflectance spectra. (a) Spectra of the ten core samples from the VXE-6 pond site. (b) Spectra of the deeper core samples compared with spectra of quartz, a quartz/gypsum mixture, gypsum, and bassanite. Quartz bands are marked by dashed grey lines, while gypsum and bassanite bands are marked by pink and purple vertical lines. Spectra of these minerals and mixtures are from King et al. (2013) and Bishop et al. (2014b).

FIGURE 8. Normalized H$_2$O band depths near 1.92 μm for the VXE-6 soil pit samples.
FIGURE 9. VNIR spectra of four different sample preparations for two soil pit samples: FA (finely-crushed particles prepared in 1983; Gibson et al., 1983), GA (ground, <125 µm fractions prepared in 2018), and CA (coarse original sediment grains) were measured under ambient conditions using the ASD spectrometer at the SETI Institute, while FD (finely-crushed particles prepared in 1983) was measured under controlled dry conditions at RELAB. (a) 0–1 sample depth. (b) 8–10 cm sample depth.

FIGURE 10. VNIR spectra of finely-crushed VXE-6 soil pit samples measured at RELAB under dry controlled (brown lines) and ambient (blue lines) conditions.

FIGURE 11. Elemental abundances from INAA for the VXE-6 soil pit samples; *denotes abundance in wt% rather than ppm.

FIGURE 12. Chondrite-normalized (using normalization values of McDonough and Sun, 1995) rare earth element abundances for all soil pit samples from the VXE-6 pond site.

FIGURE 13. XRF major element abundances by depth for soil pit samples from the VXE-6 pond site.
 FIGURE 14. Comparison of δ^{34}S and δ^{18}O of sulfates from VXE-6 soil pit (this study) and other areas of Antarctica (Bao and Marchant, 2006; Mikucki et al., 2009; Lauro et al., 2011; Sun et al., 2015). Mixing line is determined for the sulfide- and seawater-derived sulfate inputs into the soils of MDV. The δ^{34}S of sulfide-derived sulfate is based on SSE results (this study) and δ^{18}O is based on the isotope composition of surface water and groundwater (Harris, 1981; Mikucki et al., 2009; Sun et al., 2015).

 FIGURE 15. Schematic summary of the observed aqueous mineral assemblage at the VXE-6 pond site and of the aqueous processes interpreted to be responsible for the formation of these chemical and mineralogical trends.
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sample depth (cm)</th>
<th>Sample ID</th>
<th>Sample depth (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JB1100</td>
<td>0–1</td>
<td>JB1303</td>
<td>0–1</td>
</tr>
<tr>
<td>JB1101</td>
<td>1–4</td>
<td>JB1304</td>
<td>1–2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JB1305</td>
<td>2–3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JB1306</td>
<td>3–4</td>
</tr>
<tr>
<td>JB1102</td>
<td>4–7</td>
<td>JB1307</td>
<td>4–5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JB1308</td>
<td>5–6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JB1309</td>
<td>6–7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JB1310</td>
<td>7–8</td>
</tr>
<tr>
<td>JB1103</td>
<td>8–10</td>
<td>JB1311</td>
<td>8–9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JB1312</td>
<td>9–10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JB1313</td>
<td>10–11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JB1314</td>
<td>11–12</td>
</tr>
<tr>
<td>JB1104</td>
<td>12–15</td>
<td>JB1315</td>
<td>12–13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JB1316</td>
<td>13–14</td>
</tr>
</tbody>
</table>
TABLE 1. Sample identification numbers and corresponding depth intervals of the VXE-6 pond site soil pit and sediment core samples analyzed in this study.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Depth Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>JB1105</td>
<td>20–24</td>
</tr>
<tr>
<td>Mineral</td>
<td>Abundance (wt%)</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>0–1 cm</td>
</tr>
<tr>
<td>Quartz</td>
<td>35.6</td>
</tr>
<tr>
<td>Anorthite</td>
<td>30.6</td>
</tr>
<tr>
<td>Albite</td>
<td>7.57</td>
</tr>
<tr>
<td>Diopside</td>
<td>17.5</td>
</tr>
<tr>
<td>Phlogopite/muscovite</td>
<td>0.00</td>
</tr>
<tr>
<td>Gypsum</td>
<td>0.76</td>
</tr>
<tr>
<td>Bassanite</td>
<td>0.00</td>
</tr>
<tr>
<td>Amphibole</td>
<td>4.70</td>
</tr>
<tr>
<td>Clinochlore</td>
<td>3.34</td>
</tr>
</tbody>
</table>

TABLE 2. Mineral abundance data obtained via XRD of VX6E-6 pond site soil pit samples.
<table>
<thead>
<tr>
<th>Element</th>
<th>Concentration (ppm except as noted)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0–1 cm</td>
</tr>
<tr>
<td>Na (wt%)</td>
<td>1.68</td>
</tr>
<tr>
<td>K (wt%)</td>
<td>1.33</td>
</tr>
<tr>
<td>Sc</td>
<td>18.8</td>
</tr>
<tr>
<td>Cr</td>
<td>111</td>
</tr>
<tr>
<td>Fe (wt%)</td>
<td>3.17</td>
</tr>
<tr>
<td>Co</td>
<td>19.1</td>
</tr>
<tr>
<td>Ni</td>
<td>70</td>
</tr>
<tr>
<td>Zn</td>
<td>53</td>
</tr>
<tr>
<td>Ga</td>
<td>44</td>
</tr>
<tr>
<td>As</td>
<td><1.5</td>
</tr>
<tr>
<td>Se</td>
<td><2.0</td>
</tr>
<tr>
<td>Br</td>
<td><0.9</td>
</tr>
<tr>
<td>Rb</td>
<td>45.6</td>
</tr>
<tr>
<td>Sr</td>
<td>287</td>
</tr>
</tbody>
</table>
TABLE 3. INAA elemental abundance data for soil pit samples from the VXE-6 pond site.

<table>
<thead>
<tr>
<th>Element</th>
<th>117</th>
<th>124</th>
<th>193</th>
<th>148</th>
<th>167</th>
<th>157</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr</td>
<td>117</td>
<td>124</td>
<td>193</td>
<td>148</td>
<td>167</td>
<td>157</td>
</tr>
<tr>
<td>Sb</td>
<td><0.1</td>
<td><0.2</td>
<td>0.12</td>
<td><0.2</td>
<td><0.2</td>
<td><0.1</td>
</tr>
<tr>
<td>Cs</td>
<td>1.09</td>
<td>1.30</td>
<td>4.68</td>
<td>1.08</td>
<td>1.24</td>
<td>1.21</td>
</tr>
<tr>
<td>Ba</td>
<td>232</td>
<td>259</td>
<td>281</td>
<td>202</td>
<td>235</td>
<td>190</td>
</tr>
<tr>
<td>Hf</td>
<td>2.67</td>
<td>2.60</td>
<td>2.98</td>
<td>2.87</td>
<td>3.35</td>
<td>3.22</td>
</tr>
<tr>
<td>Ta</td>
<td>0.35</td>
<td>0.44</td>
<td>1.13</td>
<td>0.72</td>
<td>0.78</td>
<td>0.82</td>
</tr>
<tr>
<td>W</td>
<td><4.7</td>
<td><4.7</td>
<td>0.9</td>
<td><3.6</td>
<td><2.5</td>
<td><3.4</td>
</tr>
<tr>
<td>Ir (ppb)</td>
<td><2.2</td>
<td><2.3</td>
<td><1.8</td>
<td><1.5</td>
<td><1.5</td>
<td><1.6</td>
</tr>
<tr>
<td>Au (ppb)</td>
<td><1.8</td>
<td><2.9</td>
<td><1.9</td>
<td><1.5</td>
<td>0.6</td>
<td><1.4</td>
</tr>
<tr>
<td>Th</td>
<td>4.45</td>
<td>4.15</td>
<td>12.3</td>
<td>4.25</td>
<td>5.13</td>
<td>5.44</td>
</tr>
<tr>
<td>U</td>
<td>0.72</td>
<td>1.29</td>
<td>3.42</td>
<td>1.40</td>
<td>1.11</td>
<td>1.20</td>
</tr>
<tr>
<td>Depth (cm)</td>
<td>Concentration (ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>La</td>
<td>Ce</td>
<td>Nd</td>
<td>Sm</td>
<td>Eu</td>
<td>Gd</td>
</tr>
<tr>
<td>0–1</td>
<td>17.1</td>
<td>30.5</td>
<td>14.8</td>
<td>2.71</td>
<td>0.69</td>
<td>1.00</td>
</tr>
<tr>
<td>1–4</td>
<td>15.3</td>
<td>26.6</td>
<td>10.8</td>
<td>2.59</td>
<td>0.70</td>
<td>2.07</td>
</tr>
<tr>
<td>4–7</td>
<td>30.7</td>
<td>54.9</td>
<td>21.7</td>
<td>4.97</td>
<td>0.91</td>
<td>3.99</td>
</tr>
<tr>
<td>8–10</td>
<td>18.9</td>
<td>33.8</td>
<td>14.5</td>
<td>3.20</td>
<td>0.69</td>
<td>2.70</td>
</tr>
<tr>
<td>12–15</td>
<td>20.6</td>
<td>37.2</td>
<td>15.5</td>
<td>3.38</td>
<td>0.73</td>
<td>3.17</td>
</tr>
<tr>
<td>20–24</td>
<td>20.8</td>
<td>40.4</td>
<td>15.2</td>
<td>3.14</td>
<td>0.75</td>
<td>2.99</td>
</tr>
</tbody>
</table>

TABLE 4. Rare earth element data for all soil pit samples. Note: Pr, Dy, Ho, Er data not collected.
<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Major oxide (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SiO₂</td>
</tr>
<tr>
<td>0–1</td>
<td>70.8</td>
</tr>
<tr>
<td>1–4</td>
<td>68.3</td>
</tr>
<tr>
<td>4–7</td>
<td>48.5</td>
</tr>
<tr>
<td>8–10</td>
<td>59.1</td>
</tr>
<tr>
<td>12–15</td>
<td>64.3</td>
</tr>
<tr>
<td>20–24</td>
<td>65.7</td>
</tr>
</tbody>
</table>

TABLE 5. XRF major element chemistry data for soil pit samples from the VXE-6 pond site.
<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Acid-soluble SO$_4^{2-}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ^{34}S (‰)</td>
</tr>
<tr>
<td>0–1</td>
<td>16.7</td>
</tr>
<tr>
<td>1–4</td>
<td>16.4</td>
</tr>
<tr>
<td>4–7</td>
<td>15.8</td>
</tr>
<tr>
<td>8–10</td>
<td>16.6</td>
</tr>
<tr>
<td>12–15</td>
<td>16.2</td>
</tr>
<tr>
<td>20–24</td>
<td>15.9</td>
</tr>
</tbody>
</table>

Table 6. Stable isotope values of δ^{34}S and δ^{18}O in sulfate for VXE-6 soil pit samples.
FIGURE 2
FIGURE 3
FIGURE 4

Quartz, syn 24.93 %
Anorthite, ordered 30.00 %
Albite, ordered 6.78 %
Diopside 17.69 %
Gypsum, syn 11.20 %
Grunerite 5.67 %
Bassanite, syn 3.74 %
FIGURE 5
FIGURE 6

[Graph showing reflectance vs. wavelength for different sample depths. The x-axis represents wavelength in micrometers (µm), the y-axis represents reflectance offset for clarity, and the z-axis represents sample depth in centimeters (cm). Different lines represent data from various samples.]
FIGURE 7

A

Reflectance

B

Reflectance

Wavenumber (cm⁻¹)
FIGURE 8

![Bar chart showing normalized absorption versus depth (cm).]
FIGURE 10

[Graph showing reflectance against wavelength with various sample depths and environmental conditions]
FIGURE 12
FIGURE 15

Aqueous Minerals

Intermittently wet zone containing salts, clays, and gypsum. Clays horizon contains elevated concentrations of many elements (including Al, Fe, Mg, and K).

Aqueous Processes

Water cycling occurs via (1) sublimation of meltwater in hydrous materials near the surface, (2) subsurface ponding at a silty aquiclude, and (3) freeze-thaw cycling of permafrost meltwater.

Intermittent
Hydration Events:

1. surface meltwater
2. pond water
3. permafrost meltwater

Depth (cm)

1018

1019