1

2 3

4

5 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Revision 1 Word count: 6887 Stability of Fe₅O₆ and its relation to other Fe-Mg-oxides at high pressures and temperatures Alan B. Woodland¹ (Woodland@em.uni-frankfurt.de) Laura Uenver-Thiele¹ (Uenver-Thiele@em.uni-frankfurt.de) Tiziana Boffa Ballaran² (Tiziana.Boffa-Ballaran@Uni-Bayreuth.de) Nobuyoshi Miyajima² (Nobuyoshi.Miyajima@uni-bayreuth.de) Kevin Rosbach¹ (rosbach@stud.uni-frankfurt.de) Takayuki Ishii^{2,3} (takayuki.ishii@hpstar.ac.cn) ¹Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, D – 60438 Frankfurt am Main, Germany ²Bayerisches Geoinstitut, Universität Bayreuth, D – 95440 Bayreuth, Germany ³Now at Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China Abstract

- ²⁸ The stability of Fe₅O₆ has been experimentally determined under pressure-
- temperature conditions relevant for the Earth's deeper upper mantle down to the

1

2

30	upper portion of the lower mantle (to 28 GPa). In addition, we investigated the
31	incorporation of Mg into Fe_5O_6 and its systematics, which allows us to discuss the
32	relevance of this phase for the mantle. Experiments were performed from 8-28 GPa
33	and 900-1600°C. Additional oxide phases may appear if the bulk composition does
34	not maintain the $Fe^{2+}_{3}Fe^{3+}_{2}O_{6}$ stoichiometry during the experiment, including
35	coexisting Fe_4O_5 or Fe_9O_{11} . Unfortunately, the similarities in Raman spectra between
36	a number of high-pressure Fe-oxide phases make this method unsuitable for
37	distinguishing which phase is present in a given sample. The stability field for Fe_5O_6
38	extends from ~9 to at least 28 GPa, but is truncated at lower temperatures by the
39	assemblage Fe_4O_5 + wüstite. Refined thermodynamic properties for Fe_5O_6 are
40	presented. The range of redox stability of Fe_5O_6 appears to be more limited than that
41	of Fe ₄ O ₅ .

42

Solid solution along the Fe₅O₆-Mg₃Fe₂O₆ binary is quite limited, reaching a maximum 43 Mg content of ~0.82 cations per formula unit (i.e. $X_{Mg3Fe2O6} \approx 0.27$) at 1400°C and 10 44 GPa. The observed sharp decrease in molar volume of the O₆-phase with Mg content 45 could be a possible explanation for the limited range of solid solution. A phase 46 47 diagram has been constructed for a composition of approximately Mg_{0.5}Fe²⁺_{2.5}Fe³⁺₂O₆ stoichiometry. This small amount of Mg causes a significant 48 change in the relations between the O₆-structured phase and the assemblage O₅-49 structured phase + (Mg,Fe)O. Several experiments were performed to test whether 50 51 the O₆-phase can coexist with mantle silicates like wadsleyite and ringwoodite. In all 52 cases, the run products contained $(Mg,Fe)_2Fe_2O_5$ rather than the O₆-phase, further underlining the limited ability of Fe₅O₆ to accommodate enough Mg to be stable in a 53 mantle assemblage. 54

3

The large stability field of Fe_5O_6 implies that this phase could likely occur in locally 56 Fe-rich environments, like those sampled by some "deep" diamonds. However, the 57 limited solubility of Mg in the O₆-phase leads us to conclude that the O₅-phase should 58 be of much more relevance as an accessory phase in a peridotitic mantle 59 assemblage. 60 61 62 Key words: Fe-oxide, Fe-Mg-oxide, Fe_5O_6 , Fe_4O_5 , high pressure, high temperature, 63 phase stability, inclusion in diamond, wüstite, magnetite 64 65 Introduction 66 67 68 The recent high-pressure synthesis of a number of new mixed-valence Fe-oxide phases with different stoichiometries indicates that phase relations in the Fe–O system at 69 70 conditions corresponding to the deeper mantle can be guite complicated. Along with the well-71 known minerals hematite, magnetite and wüstite, the orthorhombic-structured phases $Fe^{2+}{}_{2}Fe^{3+}{}_{2}O_{5}$ and $Fe^{2+}{}_{3}Fe^{3+}{}_{2}O_{6}$ (Lavina et al. 2011; Woodland et al. 2012; Woodland et al. 72 2015; Lavina and Meng, 2015) and the monoclinic-structured phases $Fe^{2+}_{3}Fe^{3+}_{4}O_{9}$ and 73 Fe²⁺₅Fe³⁺₄O₁₁ (Sinmyo et al. 2016; Ishii et al. 2018) have been synthesised at pressures in 74 75 excess of ~10 GPa. All four of these oxides lie compositionally between wüstite and magnetite, with each phase having its own $Fe^{3+}/\Sigma Fe$. Of course the $Fe^{3+}/\Sigma Fe$ of each phase 76 77 can be modified through the formation of solid solutions with other cations like Mg, Cr and Al 78 (e.g. Uenver-Thiele et al. 2018). 79 The relevance of these Fe-oxides for the mineralogy of the Earth's interior rests upon 80 the extent of their stability in terms of pressure, temperature and oxidation state. Nearly pure 81 magnetite has been reported as a rare inclusion in diamond (e.g. Stachel et al. 1998; Jacob 82 et al. 2016), but a precursor phase may have originally formed at depth rather than magnetite

itself (Uenver-Thiele et al. 2017b). Currently, very little information is available on the phase 83 relations involving these four Fe-oxides. The maximum pressure stability of magnetite and its 84 85 breakdown to Fe_4O_5 + hematite was described by Woodland et al. (2012). Myhill et al. (2016) reported on the minimum pressure stability of Fe_4O_5 and provided a thermodynamic 86 framework for estimating the stabilities of Fe_4O_5 and Fe_5O_6 . A recent in situ diamond-anvil 87 88 study by Hikosaka et al. (2019) indicates that both Fe_4O_5 and Fe_5O_6 remain stable up to nearly 40 GPa, but the actual extent of their respective phase fields and their relative redox 89 90 relations remain poorly constrained. We have undertaken an experimental study focussed on the stability of Fe_5O_6 under 91 92 pressure-temperature conditions relevant for the Earth's deeper upper mantle down to the 93 upper portion of the lower mantle. Our results allow us to better constrain the thermodynamic 94 properties for this phase compared to the initial estimates provided by Myhill et al. (2016, 95 2018). We go on to describe the incorporation of Mg into Fe_5O_6 and discuss the conditions necessary for this phase to be present in the Earth's mantle. 96

97

98 Experimental and analytical methods

99

Several different starting materials were employed for the high-pressure experiments. 100 101 For Fe_5O_6 , Fe_6O_7 and Fe_9O_{11} bulk compositions, stoichiometric mixtures of metallic Fe and 102 pre-synthesized magnetite were used. The magnetite was produced by reducing Fe_2O_3 in a gas-mixing furnace at 1300°C and 1 bar in a 1:99 mixture of CO:CO₂, yielding an oxygen 103 104 fugacity of $\log IO_2$ = -5.5, which corresponds to the condition where magnetite is stoichiometric (Dieckmann, 1982). The resulting magnetite had a unit-cell parameter of $a_o = 8.3966(6)$ Å. 105 For the Mg-bearing experiments, a mixture of magnetite, Fe metal and either high-purity 106 107 (99.99%) MgO or a pre-synthesized spinel with composition MgFe₂O₄ was employed as 108 starting materials. Several experiments were conducted with a mixture of pre-synthesized 109 forsterite (Mg_2SiO_4) and a ($Mg_{0.5}$, $Fe_{2.5}$) Fe_2O_6 stoichiometry comprised of magnesioferrite,

4

5

110 magnetite and Fe metal to verify the stability of oxide phases in a silicate-bearing

111 assemblage.

The starting materials were packed into Ag-, Au- or Pt-foil capsules, depending on starting material and whether the experimental conditions were above the melting point of Ag. All but four experiments with Mg-free compositions employed Ag as capsule material (Table 1). Most Mg-bearing experiments employed Pt capsules since the relatively high oxygen fugacities (fO_2) imposed by the high Fe³⁺/Fe²⁺ in the starting materials act to minimize any Fe-loss to the Pt. Several repeat experiments using Ag foil yielded the same results as the initial experiments employing Pt foil.

The high-pressure and high-temperature experiments were carried out at the Goethe-119 Universität Frankfurt and the Bayerisches Geoinstitut, Bayreuth. A 800 t Walker type multi-120 121 anvil press was employed in Frankfurt with an experimental setup and pressure calibration 122 as described by Brey et al. (2008). For several experiments performed at 18 GPa, the 123 pressure was calibrated using the wadsleyite to ringwoodite transformation in Mg₂SiO₄ (1200°C, 18 GPa; Inoue et al. 2006). Tungsten carbide anvils with truncated edge lengths of 124 4 mm or 8 mm were used along with 10 mm- or 14 mm-edged Cr_2O_3 -doped MgO octahedra, 125 126 respectively (the smaller being used for the 18 GPa experiments).

At the Bayerisches Geoinstitut three multi-anvil presses were employed up to 23 GPa: HYMAG MA-6/8 1000 t split-sphere-type press, Zwick 5000 t press and a Voggenreiter Walker-type press. These presses have been cross-calibrated over a wide range in temperature (at least 800-1800°C, see Keppler and Frost 2005). In addition, two experiments were performed at 28 GPa using a 1500 t Kawai-type multi-anvil press with the Osugi-type guide block system, IRIS-15 (Ishii et al. 2016; 2019).

The high-pressure assembly in Frankfurt includes a Re-foil furnace, whereas a LaCrO₃ heater is employed in Bayreuth. A $W_5/Re_{95}-W_{26}/Re_{74}$ thermocouple with the electromotive force uncorrected for pressure was used to monitor the temperature. After compression, a heating rate of ~50 °C/min was used. The experiments were terminated by turning off the power and followed by decompression. Uncertainties in pressure and

6

temperature are \pm 0.5 GPa and \pm 30-50 °C, respectively (Keppler and Frost 2005). For the experiments at 28 GPa, uncertainties are \pm 0.5 GPa and \pm 50°C (Liu et al. 2017).

The run products were analyzed by electron microprobe (EPMA) and X-ray powder 140 141 diffraction. Microprobe analyses were carried out with a five-spectrometer JEOL JXA-8900 142 Superprobe or a JEOL JXA-8530F plus Hyperprobe using pure MgO Fe_2O_3 and CaSiO₃ as primary standards. The EPMA was operated in wavelength-dispersive mode with an 143 acceleration voltage of 15 kV, probe current of 20 nA and a spot size of 1 µm. Integration 144 time for Fe and Mg was 40 sec on the peak while an integration time of 20 sec and 40 sec on 145 146 the background was set for Fe and Mg, respectively. For Si, counting times of 30 sec on the peak and 15 sec on background were chosen. To verify phase homogeneity, up to four spot 147 148 analyses were performed on a single grain. A CITZAF algorithm was employed for matrix 149 correction (Armstrong 1993). Backscattered electron (BSE) images were used to study the 150 sample texture.

Raman spectra were obtained on a number of samples using a Witec confocal micro-151 Raman spectrometer (Alpha300R) equipped with a 532nm Nd:YAG laser and a diffraction 152 grating with 1800 grooves mm⁻¹ at the Goethe Universität Frankfurt. Spectrometer calibration 153 154 was performed with a Hg-Ar lamp. Unpolarized Raman spectra were collected over five accumulations with a 50x microscope objective and a laser power of ~2-3 mW. These 155 conditions were chosen to minimize laser-induced oxidation of the sample, which otherwise 156 was observed to produce hematite during the measurement. The wavenumber accuracy is \pm 157 158 $1-2 \text{ cm}^{-1}$ and the focused laser spot on the sample was approximately $\sim 2 \mu \text{m}$ in diameter. Powder X-ray diffraction patterns were obtained using a STOE Stadi P diffractometer 159 operating at 45 kV and 35 mA and using monochromatic Mo K α (λ = 0.70926 Å) radiation, 160 161 equipped with a linear PSD or a Mythen detector at the Goethe-Universität Frankfurt. The 162 samples were mounted in a 0.5 mm diameter capillary together with a small amount of silicon 163 that served as an internal standard. Diffraction patterns were collected in transmission mode 164 between 1° -100° 2 θ . For a couple of samples, powder diffraction patterns were measured

with a Philips X'Pert PRO diffractometer employing monochromatic Co K α (λ = 1.78897 Å)

7

166	radiation selected with a focusing monochromator, a symmetrically cut curved Johansson Ge
167	(111) crystal and a Philips X'celerator detector at the Bayerisches Geoinstitut. These
168	samples were ground together with Si and dispersed on a Si wafer using ethanol. Data were
169	collected between 10° and 120° 2 θ at 40 kV and 40 mA. Preliminary phase identification
170	was routinely carried out using CrystalDiffract software from Crystalmaker Software Ltd.
171	(U.K.). All patterns were analysed with the General Structure Analysis System (GSAS,
172	Larson and van Dreele 1994) software package with the EXPGUI interface of Toby (2001) for
173	phase identification and to determine unit-cell parameters.
174	Transmission electron microscopic (TEM) investigations were carried out with a
175	Philips CM20FEG TEM, operated at 200 kV, at the Bayerisches Geoinstitut. Dark field TEM
176	images with target diffraction spots and selected area electron diffraction (SAED) patterns of
177	Fe_4O_5 , Fe_5O_6 and the hp-MgFe ₂ O ₄ phase were obtained from powdered fragments deposited
178	on Lacey carbon-coated copper grids and conventional Ar-milled thin-foils after separation
179	from petrographic thin sections.
180	

181 Stability and phase relations of Fe₅O₆

182

Synthesised crystals of Fe_5O_6 are jet black with a metallic luster (Fig. 1) and not 183 visibly different from Fe₄O₅. Unfortunately, Raman spectroscopy is unsuitable for 184 185 distinguishing between Fe₅O₆, Fe₄O₅ and Fe₉O₁₁ since spectra from these three phases are all very similar with one large peak at ~660 cm^{-1} and two subsidiary peaks at ~300 cm^{-1} and 186 530 cm⁻¹ (Fig. 2). The only differences between the phases are slight shifts in the positions of 187 188 the three peaks. These spectra are also similar to that of magnetite, whose peaks are shifted to higher wave numbers by ~ 10 cm⁻¹ (Fig. 2). It must also be noted that the Fe-oxide phases 189 190 are all susceptible to oxidiation to hematite during a Raman measurement, necessitating the 191 use of low laser energies. This situation leaves powder X-ray diffraction as the primary 192 method for identifying the phase or phases present in the experimental run products. The 193 experimental conditions and duration, along with the resulting run products are summarised

8

194	in Table 1. It is clear that the stability field of Fe_5O_6 is quite large, beginning near 9.0 GPa
195	and extending to at least 28 GPa (Fig. 3). At 8 GPa, the assemblage magnetite + wüstite is
196	stable. Two experiments at 9.0 GPa (M651, M785) produced the three-phase assemblage
197	wüstite + Fe_3O_4 + Fe_5O_6 , which along with several other experiments (Table 1) allows us to
198	constrain the position of the equilibrium:
199	
200	$Fe_{3}O_{4} + 2 \text{ wüstite} = Fe_{5}O_{6} $ (1)
201	
202	to be described by
203	
204	$P(\text{GPa}) = 1.86 \times 10^{-3} T(\text{K}) + 6.107$
205	
206	This boundary has only a small temperature dependence, with a slight positive slope (Fig. 3).
207	It essentially coincides with the low-pressure boundary for Fe_4O_5 reported by Myhill et al.
208	(2016), indicating that it is the instability of magnetite that is driving reaction (1) and the
209	analogous reaction involving Fe_4O_5 ; which high-pressure phase appears depends on the
210	bulk $Fe^{3+}/\Sigma Fe$ of the starting material. At higher pressures and relatively low temperatures,
211	the stability of Fe_5O_6 is limited by the equilibrium:
212	
213	$Fe_5O_6 = Fe_4O_5 + wüstite$ (2)
214	
215	Together with an experiment at 14 GPa and 900°C (M736) that yielded all three phases and
216	several bracketing experiments at higher pressures up to 28 GPa (Fig. 3), the position of
217	equilibrium (2) can be approximated by
218	
219	P(GPa) = 27.7 x 10 ⁻³ T(K) - 18.48
220	

A phase field for Fe_4O_5 + wüstite instead of Fe_5O_6 at relatively low temperatures was also reported by Hikosaka et al. (2019), confirming the existence of equilibrium (2). However, we find a significantly larger stability field for Fe_5O_6 than their study indicates (Fig. 3). This discrepancy is no doubt related to the large uncertainties in their in situ temperature and pressure determinations, particularly at low temperatures when using laser-heating.

226 The positions of equilibria (1) and (2) in P-T space are not consistent with the thermodynamic data of Myhill et al. (2016, 2018) for high-pressure Fe-oxide phases as they 227 yield negative P-T slopes, when they should both be positive. This most likely lies with the 228 229 limited constraints that Myhill et al. had at the time for the properties of Fe₅O₆. Using our new phase diagram (Fig. 3), we can now improve on the Fe_5O_6 properties. Together with data for 230 magnetite taken from Holland & Powell (2011) and for "FeO" and Fe₄O₅ from Myhill et al. 231 232 (2016, 2018), we begin by adopting the heat capacity function of Myhill et al. (2016, 2018) for 233 Fe_5O_6 , which is based on the summation of heat capacities of magnetite and two times that for stoichiometric "FeO" from Holland and Powell (2011) (i.e. $Fe_3O_4 + 2FeO$). The room 234 temperature equation of state was likewise taken from Myhill et al. (2016, 2018), including 235 the bulk modulus reported by Lavina & Meng (2015). We then refined the standard H°, S° 236 237 and thermal expansion coefficient for Fe_5O_6 by simultaneously considering constraints from the positions of both equilibria (1) and (2). The non-stoichiometry of coexisting wüstite (Table 238 1) was accounted for with the model presented by Myhill et al. (2016) and using the 239 240 compositions from our experiments derived from the relationship between cell parameter and 241 composition given by McCammon and Liu (1984). Our refined thermodynamic properties for 242 Fe_5O_6 are given in Table 2. The new thermal expansion coefficient for Fe_5O_6 is now closer to that of Fe₄O₅ (Myhill et al. 2018), which is consistent with the similarities in their respective 243 244 crystal structures.

245

246 Stability of related Fe-oxides with Fe₅O₆

247

9

10

Even when Fe_5O_6 is stable, an additional phase may appear in the experiments when 248 the bulk composition did not have exactly a $Fe^{2+}{}_{3}Fe^{3+}{}_{2}O_{6}$ stoichiometry. This can be 249 understood by considering a simple chemographic diagram for the FeO–FeO_{1.5} binary 250 251 system (Fig. 4). In several cases, starting materials with a Fe₆O₇ or Fe₉O₁₁ bulk composition 252 were deliberately employed to investigate the phase relations in more detail and test whether additional phase stoichiometries could be stable (Table 1). However, the same effect may 253 254 occur to a lesser degree due to the difficulty in producing a completely homogeneous starting material involving rather small amounts of metallic Fe powder mixed together with magnetite. 255 256 In addition, there is the potential for small degrees of oxidation or reduction occurring during 257 the experiment, which can shift the bulk composition of the sample off of its nominal stoichiometry (Woodland et al. 2013). When an excess of Fe²⁺ is present, wüstite appears as 258 an additional phase together with Fe_5O_6 (Table 1). This means that under the pressure-259 260 temperature conditions explored so far, no additional phase with a composition lying between wüstite and Fe_5O_6 , such as Fe_6O_7 , was found to be stable (Fig. 4). 261

When the sample has a slight excess of Fe^{3+} , Fe_5O_6 usually coexists with Fe_4O_5 . 262 However, in a number of experiments Fe_9O_{11} was present (Table 1). This latter phase has a 263 264 monoclinic structure (Ishii et al. 2018) and a composition intermediate between Fe_5O_6 and Fe_4O_5 (Fig. 4). Based upon its occurrence in our experiments, the stability of Fe_9O_{11} appears 265 to be limited to pressures of 9-14 GPa (Fig. 3), which is much more restricted than observed 266 for either Fe_5O_6 or Fe_4O_5 (Table 1; Myhill et al. 2016). In one experiment, both Fe_4O_5 and 267 268 Fe_9O_{11} occurred together with Fe_5O_6 (M733, Table 1). This is probably due to a small variation in Fe³⁺/Fe²⁺ across the sample, which was subsequently homogenised for the 269 powder diffraction measurement. However, in two other cases (at 10 and 12 GPa, 270 respectively) Fe_4O_5 rather than Fe_9O_{11} appeared to coexist with Fe_5O_6 (Table 1). Although 271 272 this might suggest that Fe_9O_{11} is metastable, its large abundance in several other 273 experiments, along with being well crystallised as judged by the sharp reflections in the X-ray 274 diffraction diagrams argues against this interpretation. In addition, this phase has also been 275 synthesised in Mg-bearing compositions (Ishii et al. 2018 and see below).

11

The coexistence of Fe₅O₆ and Fe₄O₅ at least at P
$$\ge$$
 14 GPa defines a redox
equilibrium according to
5 Fe₄O₅ = 4 Fe₅O₆ + 0.5 O₂ (3)
Combining thermodynamic data for Fe₅O₆ from Table 2, along with data for Fe₄O₅ and O₂
from Myhill et al. (2018) and Stagno & Frost (2010), respectively, we can compute the
oxygen fugacity of this equilibrium as a function of pressure and temperature. The result is
illustrated in Figure 5 as a function of pressure at 1200°C, along with several other oxygen
buffer equilibria for reference. The upper redox limit for Fe₄O₅ is defined by its equilibrium
with hematite (i.e. 2 Fe₂O₃ = Fe₄O₅ + 0.5 O₂), indicating that this phase has a redox stability
that extends over 4-5 log units in *f*O₂. In the process of calculating the *f*O₂ of equilibria
involving wüstite, it became evident that the solid solution model of Myhill et al. (2016, 2018)
is not consistent with the wüstite compositions observed in our experiments. As a result, we
are currently unable to map out the P-T-*f*O₂ relations of wüstite-bearing equilibria with either
Fe₅O₆ or Fe₄O₅. Nevertheless, from Figure 5 it is apparent that the redox stability of Fe₅O₆
must be much more limited than that of Fe₄O₅ particularly at higher pressures since the
redox stability fields for both Fe₅O₆ and wüstite must lie between equilibrium (3) and the Fe-
wüstite buffer (Holland & Powell 2011) and there is only a difference of 3-4 log units in *f*O₂
between these equilibria.

296 For a Fe_3O_4 bulk composition, Woodland et al. (2012) observed the high-pressure assemblage of Fe₄O₅ + hematite to extensively back react to magnetite. However, the more 297 reduced bulk compositions of this study (i.e. Fe₄O₅, Fe₅O₆, Fe₉O₁₁, Fe₆O₇) allowed the high-298 pressure oxide phase(s) to be recovered. This suggests that it is the reactivity of Fe₄O₅ in the 299 300 presence of hematite that drives the back reaction. Even when the high-pressure oxide 301 phases are recovered, care needs to be taken during sample characterisation. For example, although no deleterius effects were observed during microprobe analysis, the higher energy 302 electron beam and small volume of analysis during TEM investigation can cause local 303

12

304	reversion to magnetite during a measurement if precautions are not taken. Thermal cycling
305	even at low temperatures < 300 K during measurements of magnetic properties can also
306	induce magnetite formation (C. Krellner, pers. comm.). Anecdotal evidence suggests that
307	Fe_4O_5 may be more inclined to reversion to magnetite \pm wüstite during and after the quench
308	compared to Fe_5O_6 or Fe_9O_{11} . For example, the run products from experiments at ≥ 18 GPa
309	that produced the assemblage Fe_4O_5 + wüstite contained variable amounts of secondary
310	magnetite that had an anomalously large cell parameter $a_o \approx 8.42$ Å (Table 1). Although
311	more detailed analysis is still warranted, we consider this indicative of a defect spinel
312	structure, where a normally unoccupied crystallographic site is occupied by Fe ²⁺ , allowing its
313	composition to approach that of the initial Fe_4O_5 stoichiometry. TEM investigation of sample
314	Z1585u revealed very extensive {113} polysynthetic twinning in magnetite (Fig. 6) and such
315	twinning has been reported to occur by back reaction from Fe_4O_5 (Schollenbruch et al. 2011;
316	Myhill et al. 2016). Electron diffraction measurements of this magnetite also yielded an
317	abnormally large cell parameter of $a_o \approx 8.42$ Å, consistent with that observed by XRD. That
318	this defect magnetite formed at the expense of Fe_4O_5 can also be demonstrated from two
319	XRD patterns of sample M639 obtained 6 months apart. The relative intensities of diffraction
320	peaks for Fe_4O_5 were markedly higher compared to those of defect magnetite and wüstite in
321	the earlier pattern obtained just after the experiment. Apparently the Fe_4O_5 in the finely
322	ground powdered sample (mixed with Si powder) continued to react to magnetite \pm
323	metastable wüstite even at room temperature on the time scale of months.

324

325 Incorporation of Mg in Fe₅O₆

326

A further series of experiments were undertaken to investigate the incorporation of Mg in Fe₅O₆ (Table 3). Experiments with Mg-rich bulk compositions $(Mg_2Fe^{2+}Fe^{3+}_2O_6 \text{ or}$ MgFe²⁺₂Fe³⁺₂O₆) did not produce a Fe₅O₆-structured phase. Instead, the run products contained either (i) O₅-phase + unquenchable phase or (ii) O₅-phase + (Mg,Fe)O. For example, experiment M760, with a bulk composition Mg₂Fe²⁺Fe³⁺₂O₆, revealed an O₅-solid

332 solution coexisting with another phase that had broken down at the end of the experiment to a very fine mixture of ferropericlase and a magnesioferrite-rich spinel, as detected by X-ray 333 diffraction. Unfortunately the very fine grain size precluded chemical analysis of the individual 334 335 phases. However, the bulk composition of this unquenchable phase could be determined 336 from repeated large-diameter microprobe analyses to have a Mg/(Mg+ Σ Fe) = 0.51 (isopleth indicated in Fig. 7). This composition is consistent with a $(Mg,Fe^{2+})_4Fe^{3+}_2O_7$ phase, which 337 would be collinear with the compositions of the starting material and the O₅-phase present 338 339 (Fig. 7; Table 4). Such an unquenchable phase is consistent with the observations of 340 Uenver-Thiele et al. (2017a), who investigated the high-pressure breakdown of 341 magnesioferrite.

An O_6 -structured phase was only obtained in bulk compositions with lower Mg 342 contents where a $(Mg_{0.5}Fe^{2+}_{2.5})Fe^{3+}_{2.5}O_6$ or $(Mg_{0.6}Fe^{2+}_{3.4})Fe^{3+}_{2.5}O_7$ starting composition with 343 Mg# = 0.167 or 0.15 was employed (Table 3). Use of the slightly more reduced O₇ bulk 344 345 composition was intended to compensate for potential oxidation that might occur during the experiment. Our results demonstrate not only that the $Mg_3Fe_2O_6$ endmember is unstable, but 346 347 that solid solution along the $Fe_5O_6-Mg_3Fe_2O_6$ binary is quite limited. We obtained a maximum 348 Mg content of ~0.82 cations per formula unit (i.e. X_{Mq3Fe2O6} ≈ 0.27) at 1400°C and 10 GPa (Table 4). Unlike for the Mg-rich composition just described, there was no textural evidence 349 350 for an unquenchable phase with O_7 stoichiometry having been present during these experiments. This is also consistent with our observations in the Mg-free system that no 351 352 further phases are stable with compositions lying between Fe_5O_6 and wüstite.

A series of experiments with a Mg_{0.5}Fe²⁺_{2.5}Fe³⁺₂O₆ starting composition allowed us to construct the phase relations at high P and T (Fig. 8). Like for Fe₅O₆, the minimum P stability of the Mg-bearing O₆-phase lies at \approx 9 GPa. On the other hand, comparison with Figure 3 reveals that the addition of only ~0.5 cations Mg to the bulk composition significantly changes the slope of the phase boundary between the O₆-phase and the assemblage O₅ + magnesiowüstite. This change in slope is likely related to differences in the thermodynamic properties (Mg,Fe)O solid solutions in comparison to wüstite. For example, the unit cell

13

parameters obtained in this study exhibit strong deviations from those reported by O'Neill et 360 al. (2003), indicating a significant presence of Fe^{3+} in ferropericlase at high pressures (Table 361 3). Unfortunately, the Fe³⁺ contents could not be quantified by Mössbauer spectroscopy due 362 to the multiphase nature of our run products. 363 364 As described for the Mg-free experiments, additional phases may appear in an experiment due to either local heterogeneities in the starting material or from small degrees 365 of oxidation or reduction occuring during the experiment. This is illustrated in Figure 9 where 366 the phase assemblages for experiments at 12 GPa are depicted. In addition, traces of 367 368 carbonate were detected in some experiments, presumably due to reaction between adsorbed CO_2 and the starting material (Table 3). In several experiments at 12 and 14 GPa, 369 a phase with Fe_9O_{11} stoichiometry appeared that also contained Mg (Table 3, Fig. 9), 370 indicating some oxidation had occurred, increasing the bulk Fe³⁺ content from the 371 372 stoichometric value for the O_6 -phase. The effect of Mg incorporation on the crystal structure of Fe₉O₁₁ has been detailed by Ishii et al. (2018). In other experiments at conditions where 373

the O_{11} -phase was not stable, $(Mg,Fe)_2Fe_2O_5$ and/or magnesiowüstite appeared in the

375 assemblage (Table 3).

376

377 Coexistence with silicates?

378

379 To explicitly test if the O_6 -phase could also coexist with mantle silicates, several 380 experiments were performed over a pressure range of 14-20 GPa using a starting bulk 381 compositon of 70 % Mg_{0.5}Fe_{2.5}Fe₂O₆ and 30 % forsterite (Tables 3, 4). In all cases, the run products contained (Mg,Fe)₂Fe₂O₅ coexisting with magnesiowüstite and either wadsleyite or 382 ringwoodite. This is consistent with the results of Sinmyo et al. (2019), who found Mg-bearing 383 384 Fe_4O_5 coexisting with bridgmanite at 26 GPa and 1400°C. In our experiments, the silicate phase reacted to incorporate a significant Fe-component of 0.35-0.40 mol % Fe₂SiO₄ (Table 385 4). Wadsleyite or ringwoodite is still the phase richest in Mg in the assemblage and the O_{5^-} 386 387 phase contains the least Mg. This agrees with the results described by Uenver-Thiele et al.

15

(2018) for experiments with higher bulk Fe³⁺ contents. The Mg-Fe partitioning systematics 388 between ringwoodite and the coexisting magnesiowüstite yield a $K_D = 0.22-0.24$ ($X_{Ma}^{Si} X_{Fe}^{mw}$ / 389 $X_{Fe}^{Si} X_{Ma}^{mw}$), which agrees with earlier experiments performed under oxidising conditions (Ito 390 & Takahashi 1989; Frost et al. 2001) and suggests that Mg-Fe exchange in our experiments 391 had reached equilibrium. The Mg-bearing Fe₄O₅ was also found to incorporate only very 392 small amounts of Si, consistent with that found by Woodland et al. (2013) for Mg-free 393 394 compositions. We observe a slight increase in Si content with increasing pressure from 0.16 wt % to 0.33 wt % SiO₂ going from 14 to 20 GPa (Table 4), which corresponds to 0.008 and 395 396 0.15 cations per formula unit. This is much less than reported by Sinmyo et al. (2019), who found up to 1.6-2.4 wt % SiO₂ in their Mg-bearing Fe₄O₅ coexisting with bridgmanite and 397 398 stishovite at 26 GPa. However, we note that our experiments did not contain stishovite and 399 thus had a lower silica activity.

These three experiments further document the relative instability of the Fe_5O_6 crystal structure compared to Fe_4O_5 in Mg-bearing bulk compositions. Apparently the Mg- Fe^{2+} partitioning with a Mg-rich wadsleyite or ringwoodite would require the O_6 -phase to have a Mg content that exceeds its stability range (e.g. see Uenver-Thiele et al. 2018).

404

405 Structural systematics of (Fe,Mg)₃Fe³⁺₂O₆

406

The Fe₅O₆ endmeber. In spite of repeated attempts, the crystal quality of samples of Fe₅O₆ 407 proved insufficient for a full single-crystal structural analysis. This was due either to internal 408 409 stress in the crystals, the occurrence of subgrain boundaries, or the partial back 410 transformation to a defect magnetite structure. In any case, the qualitative results from 411 single-crystal X-ray diffraction at least confirm that Fe_5O_6 belongs to the *Cmcm* space group, 412 making it a member of the CaFe_{2+n}O_{4+n} series (with n=2; Evrard et al. 1980), like Fe₄O₅. At ambient conditions, the cell paramters are *a* = 2.88 Å, *b* = 9.94 Å, *c* = 15.37 Å, with small 413 variations between samples (Table 5). In some cases, differences in cell parameters can be 414 attributed to the influence of peak overlap with coexisting phases in the diffraction pattern. No 415

obvious correlations between the measured molar volume or individual cell parameters and synthesis conditions are observable (Table 5). This is also the case for samples coexisting with either Fe_4O_5 or wüstite, suggesting that this Fe_5O_6 is essentially stoichiometric. We obtain an average room temperature molar volume of 66.35(4) cm³ (n=18) for the Fe_5O_6 endmember, which agrees perfectly with the earlier values reported by Lavina and Meng (2015) and Woodland et al. (2015).

422

Mg-bearing compositions. As described previously, solid solution along the $Fe_5O_{6^-}$ 423 424 Mg₃Fe₂O₆ binary is very limited to a maximum of $X_{Mg3Fe2O6} \approx 0.27$. Compared with Fe₅O₆, incorporation of Mg causes the greatest change in shortening the *b*-cell parameter. As 425 expected, the molar volume of the recovered $(MgFe^{2+})_3Fe^{3+}_2O_6$ solid solutions decreases 426 systematically with increasing Mg content (Table 4; Fig. 10). It is notable that the relative 427 428 change in molar volume on a per Mq-cation basis is significantly greater than for analogous $(Mg,Fe^{2+})_2Fe^{3+}_2O_5$ solid solutions (compare Fig. 10 with Fig. 8 in Uenver-Thiele et al. 2018). 429 Although not conclusive, this sharp reduction in molar volume could provide an explanation 430 for why the O₆-structure becomes destabilised with the addition of Mg. 431

432

433 Implications of Fe₅O₆ for the Earth's mantle

434

The stability field for Fe_5O_6 defined in this study suggests that it could be an accessory phase 435 436 from the deep upper mantle (~300 km), through the transition zone and into the lower mantle at least down to ~925 km (Fig.1). In fact, Hikosaka et al. (2019) indicate that both Fe₅O₆ and 437 Fe_4O_5 remain stable up to ~38 GPa (> 1200 km depth) where they both become destabilized 438 by the appearance of orthorhombic-structured hp-Fe₃O₄. This stability range makes both 439 440 phases candidates for becoming incorporated as inclusions in diamond. On the one hand, considering the rather reduced redox conditions expected in the mantle, assemblages 441 442 involving Fe_5O_6 should have the most relevance for the Earth, following the suggestion of Myhill et al. (2016). On the other hand, the position of equilibrium (3) reveals that Fe_4O_5 has 443

16

444 a redox stability that extends over 4-5 log units in fO_2 and stradles the transition where 445 diamond and carbonate (magnesite) are stable in a peridotitic bulk composition. Thus, if 446 diamond were to form through coupled reduction of carbonate and oxidation of Fe (e.g. 447 Palyanov et al. 2002), then Fe₄O₅ would potentially be the more likely phase to be trapped 448 during diamond growth.

In the process of transporting materials containing Fe₅O₆ or Fe₄O₅ to the surface, it is 449 very likely that the high-pressure phase will not be preserved, even if it is encapsulated in a 450 451 diamond. In fact, back-reaction to magnetite is often observed on the short time scale of 452 quenching and decompressing an experiment in the laboratory (this study, Schollenbruch et 453 al. 2011; Woodland et al. 2012; Myhill et al. 2016). Aside from texural evidence, several features may be used to interpret whether a given phase was stable at the conditions of the 454 455 experiment or whether a precursor phase was originally present. For example, polysynthetic 456 twins parallel to {113} have been reported in magnetite that formed by back reaction from Fe_4O_5 (Schollenbruch et al. 2011; Myhill et al. 2016). In this study, we have observed the 457 same twinning in magnetite that had transformed from Fe_5O_6 in sample M758 (Fig. 6). 458 Considering the similarity in the crystal structures of Fe_4O_5 and Fe_5O_6 , it is perhaps not 459 460 surprising {113}-parallel twinning can form in magnetite during transformation from either of these phases at low pressures. Thus, the twinned magnetite corona observed by Jacob et al. 461 462 (2016) growing on a pyrrhotite inclusion in a diamond from the Orapa Mine could have had 463 either Fe₄O₅ or Fe₅O₆ as a high-pressure precursor. Further features indicative of a high-464 pressure precursor phase to magnetite are the presence of antiphase domains and mottling in dark field TEM images (Fig. 11a, 11b). Although antiphase domains have not been 465 466 reported in natural magnetite up to now, this may be more due to such structures not being 467 looked for in the past. Considering the potential for subsequent annealing of such structures, 468 they are more likely to be preserved in shocked meteorites than in samples from the deep 469 Earth, the later potentially remaining at high temperatures for long periods of time. 470 As a number of studies have identified nearly pure magnetite as an inclusion in

diamond (e.g. Stachel et al. 1998; Jacob et al. 2016), it is clear that local environments

17

472 anomalously Fe-rich must exist in the deep mantle, at least where diamond forms. But the 473 'normal' mantle assemblage is dominated by Mg-rich bulk compositions. However, our study 474 indicates that the extent of Mg-incorporation in Fe_5O_6 is quite limited. In fact, our experiments with Si-bearing bulk compositions produced assemblages with the O₅-phase rather than the 475 O_6 -phase. Even in these experiments, ringwoodite and wadsleyite had $X_{Ma} \approx 0.60-0.65$, 476 which is still significantly richer in Fe than expected for a peridotitic bulk composition (i.e. X_{Ma} 477 \approx 0.9). Thus, we conclude that in the peridotitic mantle assemblage the O₅-phase should be 478 479 of much more relevance as an accessory phase than the O_6 -phase. 480 481 Acknowledgements 482 This study was supported by the Deutsche Forschungsgemeinschaft through grants Wo 483 484 652/20-2 and BO 2550/7-2 to A.B.W. and T.B.B., respectively. E. Alig was very helpful in

obtaining the X-ray powder diffraction pattern and C. Heckel aided with the microprobe 486 measurements. We are grateful to Thomas Kautz and Svyatoslav Shcheka for their help with 487 the multi-anvil experiments in Frankfurt and Bayreuth. Fruitful discussions with Dan Frost and 488 Gerhard Brey are gratefully acknowledged. The comments of two anonymous reviewers 489 improved the manuscript.

490

485

References 491

492

Brey, G.P., Bulatov, V., and Girnis, A. (2008) Geobarometry for peridotites: experiments in 493 494 simple and natural systems from 6 to 10 GPa. Journal of Petrology, 49, 3–24.

495 Dieckmann R. (1982) Defects and Cation Diffusion in Magnetite (IV): Nonstoichiometry and

Point Defect Structure of Magnetite (Fe_{3- δ}O₄). Bericht der Bunsenges. Journal of 496

497 Physical Chemistry, 86, 112-118.

Evrard, O., Malaman, B., Jeannot, F., Courtois, A., Alebouyeh, H., and Gerardin, R. (1980). 498

Mise en évidence de CaFe₄O₆ et détermination des structures cristallines des ferrites de 499

500	calcium CaFe _{2+n} O _{4+n} (n =1, 2, 3): nouvel exemple d'intercroissance. Journal of Solid
501	State Chemistry, 35, 112-119.

- 502 Frost, D.J., Langenhorst, F., and van Aken, P.A. (2001) Mg–Fe partitioning between
- ⁵⁰³ ringwoodite and magnesiowüstite and the effect of pressure temperature and oxygen
- fugacity. Physics and Chemistry of Minerals, 28, 455-470.
- 505 Hikosaka, K., Sinmyo, R., Hirose, K., Ishii, T., and Ohishi, Y. (2019) The stability of Fe₅O₆
- and Fe_4O_5 at high pressure and temperature. American Mineralogist, 104, 1356-1359.
- 507 Holland, T.J.B., and Powell, R. (2011) An improved and extended internally consistent
- thermodynamic dataset for phases of petrological interest, involving a new equation of
 state for solids. Journal of Metamorphic Geology, 29, 333–383.
- Inoue, T., Irfune, T., Higo, Y., Sanehira, T., Sueda, Y., Yamada, A., Shinmei, T., Yamazaki,
- 511 D., Ando, J., Funakoshi, K., and Utsumi, W. (2006) The phase boundary between
- 512 wadsleyite and ringwoodite in Mg2SiO4 determined by in situ X-ray diffraction. Physics
- and Chemistry of Minerals, 33, 106–114.
- Ishii, T., Liu, Z., and Katsura, T. (2019). A breakthrough in pressure generation by a Kawai-
- 515 type multi-anvil apparatus with tungsten carbide anvils. Engineering, 5(3), 434-440.
- Ishii, T., Shi, L., Huang, R., Tsujino, N., Druzhbin, D., Myhill, R., Li, Y., Wang, L., Yamamoto,
- 517 T., Miyajima, N., Kawazoe, T., Nishiyama, N., Higo, Y., Tange, Y., and Katsura, T.
- 518 (2016). Generation of pressures over 40 GPa using Kawai-type multi-anvil press with
- 519 tungsten carbide anvils. Review of Scientific Instruments, 87(2), 024501
- Ishii, T., Uenver-Thiele, L., Woodland, A., Alig, E., and Boffa Ballaran, T. (2018) Synthesis
- and crystal structure of Mg-bearing Fe₉O₁₁: New insight in the complexity of Fe-Mg
- 522 oxides at conditions of the deep upper mantle. American Mineralogist, 103, 1873-1876.
- 523 Ito, E., and Takahashi, E. (1989) Postspinel transformations in the system Mg2SiO4–
- 524 Fe2SiO4 and some geophysical implications. Journal of Geophysical Research, 94,
- 525 10637-10646.

526	Jacob.	D. E.	. Piazolo.	. S.	Schreiber.	Α.	. and	Trimby	. P.	(2016)). Redox	-freezing	and
040	00000		,				,			<u>, = 0 : 0</u>			1 0110

- 527 nucleation of diamond via magnetite formation in the Earth's mantle. Nature
- 528 Communications, 7, 11891.
- 529 Keppler, H., and Frost, D.J. (2005) Introduction to minerals under extreme conditions. In R.
- 530 Miletich, Ed., Mineral Behaviour at Extreme Conditions, 7, 1–30. EMU Notes in
- 531 Mineralogy.
- Larson, A.C., and Von Dreele, R.B. (2000) General structure analysis system (GSAS). Los
- 533 Alamos National Laboratory Report, LAUR, 86–748.
- Lavina, B., Dera, P., Kim, E., Meng, Y., Downs, R.T., Weck, P.F., Sutton, S.R., and Zhao, Y.
- (2011) Discovery of the recoverable high-pressure iron oxide Fe₄O₅. Proceedings of the
 National Academy of Science, 108, 17281-17285.
- Lavina, B., and Meng, Y. (2015) Unraveling the complexity of iron oxides at high pressure and temperature: Synthesis of Fe_5O_6 . Science Advances 1, no.5, e1400260.
- Liu, Z., Nishi, M., Ishii, T., Fei, H., Miyajima, N., Ballaran, T. B., Ohfuji, H., Sakai, T., Wang,
- 540 L., Shcheka, S., Arimoto, T., Tange, Y., Higo, Y., Irifune, T., and Katsura, T. (2017)
- 541 Phase relations in the system MgSiO₃-Al₂O₃ up to 2300 K at lower mantle
- 542 pressures. Journal of Geophysical Research: Solid Earth, 122(10), 7775-7788.
- 543 McCammon, C.A., and Liu, L. (1984) The effects of pressure and temperature on non-

stoichiometric wüstite, FexO: The iron-rich phase boundary. Physics and Chemistry of
Minerals, 10, 106-113.

- 546 Myhill, B., Ojwang, D.O., Ziberna, L., Frost, D., Boffa Ballaran, T., and Miyajima, N. (2016)
- 547 On the P-T-fO₂ stability of Fe_4O_5 and Fe_5O_6 -rich phases: a thermodynamic and
- 548 experimental study. Contributions to Mineralogy and Petrology, 171, 1-11.
- 549 Myhill, B., Ojwang, D.O., Ziberna, L., Frost, D., Boffa Ballaran, T., and Miyajima, N. (2018)
- 550 Correction to: On the P-T-fO₂ stability of Fe_4O_5 and Fe_5O_6 -rich phases: a thermodynamic
- and experimental study. Contributions to Mineralogy and Petrology, 173, 3.

0'Neill, H.St.C., Pownceby, M.I., and McCammon, C.A. (2003) The magnesiowüstite: iron

553 equilibrium and its implications for the activity-composition relations of (Mg,Fe)₂SiO₄

olivine solid solutions. Contributions to Mineralogy and Petrology, 146, 308-325.

- 555 Palyanov, Y.U., Sokol, A.G., Borzdov, Y.M., and Khokhryakov, A.F. (2002) Fluid-bearing
- alkaline carbonate melts as the medium for the formation of diamonds in the earth's
- 557 mantle: an experimental study. Lithos, 60, 145-159.
- 558 Schollenbruch, K., Woodland, A.B., Frost, D.J., Wang, Y., Sanehira, T., and Langenhorst, F.
- 559 (2011) In situ determination of the spinel post-spinel transition in Fe_3O_4 at high
- 560 temperature and pressure by synchrotron X-ray diffraction. American Mineralogist, 96,
- 561 820-827, DOI: 10.2138/am.2011.3642
- 562 Sinmyo, R., Bykova, E., Ovsyannikov, S.V., McCammon, C., Kupenko, I., Ismailova, L., and
- 563 Dubrovinsky, L. (2016) Discovery of Fe_7O_9 : a new iron oxide with a complex monoclinic 564 structure. Nature Scientific Reports, 6, 32852.
- 565 Sinmyo, R., Nakajima, Y., McCammon, C.A., Miyajima, N., Petitgirard, S., Myhill, R.,
- 566 Dubrovinsky, L., and Frost, D.J. (2019). Effect of Fe^{3+} on phase relations in the lower
- 567 mantle: Implications for redox melting in stagnant slabs. Journal of Geophysical
- 568 Research: Solid Earth, 124, 12484-12497.
- Stachel, T., Harris, J.W., and Brey, G.P. (1998) Rare and unusual mineral inclusions in
 diamonds from Mwadui, Tanzania. Contributions to Mineralogy and Petrology, 132, 34–
 47.
- 572 Stagno, V., and Frost, D.J. (2010) carbon speciation in the asthenosphere: Experimental
- 573 measurements of the redox conditions at which carbonate-bearing melts coexist with
- 574 graphite or diamond in peridotite assemblages. Earth and Planetary Science Letters,
- 575 **300**, **72-84**.
- 576 Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied
- 577 Crystallography, 34, 210-213.

578	Uenver-Thiele L, Woodland AB, Boffa Ballaran T, Miyajima N, and Frost DJ (2017a) Phase
579	relations of MgFe ₂ O ₄ at conditions of the deep upper mantle and transition zone.
580	American Mineralogist, 102, 632-642.
581	Uenver-Thiele, L., Woodland, A.B., Boffa Ballaran, T., Miyajima, N., and Frost, D.J. (2017b)
582	Phase relations of Fe-Mg spinels including new high-pressure post-spinel phases and
583	implications for natural samples. American Mineralogist, 102, 2054-2064.
584	Uenver-Thiele, L., Woodland, A.B., Miyajima, N., Boffa Ballaran, T., and Frost, D.J. (2018)
585	Behavior of Fe_4O_5 -Mg ₂ Fe ₂ O ₅ solid solutions and their relation to coexisting Mg-Fe
586	silicates and oxide phases. Contributions to Mineralogy and Petrology, 173, 20
587	Woodland, A.B., Frost, D.J., Trots, D.M., Klimm, K., and Mezouar, M. (2012) In situ
588	observation of the breakdown of magnetite (Fe $_3O_4$) to Fe $_4O_5$ and hematite at high
589	pressures and temperatures. American Mineralogist, 97, 1808-1811.
590	Woodland, A.B., Schollenbruch, K., Koch, M., Boffa Ballaran, T., Angel, R.J., and Frost, D.J.
591	(2013) Fe ₄ O ₅ and its solid solutions in several simple systems. Contributions to
592	Mineralogy and Petrology, 166, 1677-1686. (DOI) 10.1007/s00410-013-0948-4.
593	Woodland, A. B., Uenver-Thiele, L., and Boffa Ballaran, T. (2015) Synthesis of Fe_5O_6 and the
594	High-Pressure Stability of Fe ²⁺ -Fe ³⁺ -oxides related to Fe₄O₅. Goldschmidt Abstracts
595	2015, 3446.
596	
597	Tables
598	
599	Table 1 Conditions and run products of experiments in the Fe–O system along with refined
600	cell parameters of magnetite and wüstite and derived wüstite composition
601	Table 2 Revised thermodynamic properties of the Fe_5O_6 endmember composition
602	Table 3 Summary of experiments in the system MgO–FeO–FeO $_{1.5} \pm SiO_2$ along with the
603	composition and volume of coexisting (Mg,Fe)O

- Table 4 Composition, unit cell parameters and volumes of run products from experiments in
- 605 the system MgO–FeO–FeO_{1.5} ± SiO₂

23

606 Table 5 Cell parameters of Fe₅O₆, Fe₄O₅ and Fe₉O₁₁ 607 **Figure captions** 608 609 610 Fig. 1 Photomicrograph of Fe₅O₆ crystals. 611 Fig 2. Raman spectra of the high-pressure Fe-oxides and magnetite. The small peaks 612 marked by * are from a trace of hematite produced during the measurement. 613 614 Fig 3. Phase diagram for Fe₅O₆. The points marked with "O5" indicate that Fe₅O₆ coexists 615 with Fe_4O_5 in these experiments, just like the square symbols indicating the coexistence 616 617 of Fe_9O_{11} with Fe_5O_6 . This coexistence indicates small deviations from the ideal sample 618 stoichiometry (see text). The diamond marked by "L&M" denotes the synthesis conditions of Fe_5O_6 reported by Lavina and Meng (2015). The dashed line is the phase 619 boundary for equilibrium (2) (Fe₅O₆ = Fe₄O₅ + wüstite) reported by Hikosaka et al. 620 (2019) with the stability field for Fe_5O_6 lying on the higher temperature side of the 621 622 boundary. 623 Fig. 4 Chemographic diagram for the binary system FeO-FeO₁₅ illustrating different phases 624 found to be stable at different pressures and temperatures. 625 626 Fig. 5 Plot of fO_2 versus pressure at 1200°C for several equilibria involving Fe₄O₅ and Fe₅O₆. 627 628 Several other redox buffers are also shown for reference, calculated using data from Myhill et al. (2016, 208) for Fe_5O_6 and from Holland & Powell (2011): IW = iron-wüstite; 629 630 EMOD = enstatite-magnesite-olivine-diamond; EMWD = enstatite-magnesite-wadsleyite-631 diamond; EMRD = enstatite-magnesite-ringwoodite-diamond. The EMOD, EMWD and 632 EMRD curves merge into each other where the phase transitions occur in Mg_2SiO_4 . 633

24

634 Fig. 6 Dark field TEM image and the corresponding selected area electron diffraction pattern

- of sample Z1585u revealing extensive polysynthetic twinning parallel to the (131) plane
- 636 in magnetite that had back reacted from Fe_5O_6 .
- 637

638	Fig. 7 Chemographic analysis of the run products in sample M760 with a bulk composition
639	$Mg_2Fe^{2+}Fe^{3+}_2O_6$ (star). The orange cross indicates the composition of the coexisting O_5 -
640	phase, as determined by EPMA. The isopleth at Mg/(Mg+Fe _{tot}) = 0.51 represents the
641	composition of the unquenchable phase originally present at the pressure and
642	temperature of the experiment, as obtained from microprobe analyses employing a large
643	beam diameter to obtain an "average" composition. The yellow cross represents the
644	interpreted composition of the unquenchable $(Mg,Fe^{2+})_4Fe^{3+}_2O_7$ phase.
645	
646	Fig. 8. P-T phase diagram for the $(Mg_{0.5}, Fe_{2.5})Fe_2O_6$ bulk composition
647	
648	Fig. 9. Diagram of the MgO-FeO-FeO $_{1.5}$ system illustrating phase relations in four
649	experiments performed at 12 GPa. Small and variable degrees of oxidation or reduction
650	are indicated by arrows. The star denotes the starting composition.
651	
652	Fig. 10. Variation in cell parameters of $(Mg,Fe)_3Fe_2O_6$ solid solutions as a function of the
653	mole fraction of $Mg_3Fe_2O_6$.
654	
655	Fig. 11. Dark field TEM images of a) antiphase domains in magnetite that formed by
656	backreaction from Mg-bearing Fe_5O_6 in sample M697. RS = rock salt structure (i.e.
657	wüstite) and b) mottled contrast in iron oxide back-transformed from Fe_5O_6 in sample
658	V888 (view with g = 311). The lower left and upper right insets are SAED patterns of the
659	nearest zone axis and the corresponding diffraction pattern to the dark field image,
660	respectively, which indicate the presence of back-reacted magnetite.

Table 1. Con	ditions and run	products	of experimen	ts in the F	e–O system along with r	efined cell pa	rameters of r
experiment	starting	pressure	temperature	duration	run products ¹	cell paramet	er
	stoichiometry	[GPa]	[°C]	[hr]		wüstite [Å]	FexO ²
H4346	Fe_5O_6	8	1000	4.5	mt+wü	4.2825(1)	0.892
H43480 ⁴	Fe_5O_6	8	1350	1	mt+wü	4.2912(1)	0.91
M786	Fe ₆ O ₇	9	800	5.5	Fe ₅ O ₆ +Fe ₉ O ₁₁ +wü	4.2768(1)	0.88
M774	Fe ₉ O ₁₁	9	1000	4	$Fe_4O_5 + (Fe_9O_{11})$		
M651	Fe ₆ O ₇	9	1200	4.5	Fe ₅ O ₆ +wü+mt	4.2842(1)	0.896
M785	Fe ₆ O ₇	9	1310	3	Fe₅O ₆ +wü+mt	4.2844(1)	0.896
M777 ⁵	Fe ₉ O ₁₁	9	1350	2.5	$Fe_4O_5+mt+(w\ddot{u})+(Fe_9O_1)$	4.2969(6)	0.922
M756 [°]	Fe_9O_{11}	9	1500	1	mt+wü+(Fe ₄ O ₅)	4.2888(3)	0.905
M728	Fe_5O_6	10	900	5	Fe ₅ O ₆		
M653	Fe ₆ O ₇	10	1000	6	Fe ₅ O ₆		
V838	Fe ₄ O ₅	10	1100	4	Fe_4O_5 + Fe_5O_6		
V888	Fe_5O_6	10	1200	4.5	Fe ₅ O ₆ (+wü)		
M587	Fe_5O_6	10	1200	3.75	Fe ₅ O ₆ (+wü)		
Z1505⁴	Fe_5O_6	11	1500	2.67	Fe_5O_6 + Fe_9O_{11}		
V889	Fe_5O_6	12	1200	4	Fe_5O_6 + Fe_4O_5		
V891	Fe ₆ O ₇	12	1200	2.67	Fe₅O ₆ +wü	4.2980(2)	0.925
M614	Fe_5O_6	12	1200	3	Fe_5O_6 + Fe_9O_{11}		
M733	Fe_5O_6	13	1000	4	Fe_5O_6 + Fe_4O_5		
M736	Fe_5O_6	14	900	4.5	Fe₅O ₆ +Fe₄O₅+wü	4.3032(2)	0.936
M755	Fe ₉ O ₁₁	14	1500	1	$Fe_9O_{11}+Fe_4O_5$		
H4269	Fe_5O_6	15	1200	3.5	Fe_5O_6 + Fe_4O_5		
H4270	Fe ₆ O ₇	16	1400	3.25	Fe ₅ O ₆ +wü	4.2810(1)	0.889
M639	Fe_5O_6	18	1000	4	Fe₄O₅+wü+dmt	4.3019(5)	0.933
M652	Fe ₅ O ₆	18	1000	6	Fe ₄ O ₅ +wü+dmt	4.3055(4)	0.94
H4853	Fe ₅ O ₆	18	1100	4.25	Fe_5O_6 +(Fe_4O_5)		
Z1430u	Fe_5O_6	18	1300	2.5	Fe ₅ O ₆		
Z1585u	Fe_5O_6	20	1100	3.5	wü+dmt+Fe₄O₅	4.3147(1)	0.96
H4855	Fe ₆ O ₇	20	1150	3	Fe_5O_6 + Fe_4O_5		
Z1464u	Fe_5O_6	20	1300	0.67	Fe_5O_6 + Fe_4O_5		
Z1507	Fe ₆ O ₇	20	1600	2	Fe ₅ O ₆		

H4347	Fe_5O_6	23	1300	$3.67 \text{ Fe}_5 \text{O}_6 + \text{Fe}_4 \text{O}_5$		
IRIS 697 IRIS 702	Fe ₅ O ₆ Fe ₅ O ₆	28 28	1200 1500	3 Fe₄O₅+wü+dmt 1 Fe₅O ₆ +?	4.3188(3)	0.968

¹ wü = wüstite, mt = magnetite, dmt = defect-bearing magnetite.

² calculated following formulation of McCammon and Liu (1984).
 ³ mole fraction of FeO in FeO-FeO_{1.5} solid solution following approach of Myhill et al. (2016).

⁴ employed Au capsule

⁵ employed Pt capsule

nagnetite and wüstite and derived wüstite composition

cell parameter XFeO³ magnetite [Å] 0.683 8.3966(1) 0.73 8.3945(1) 0.647 0.695 8.4011(6) 0.694 8.3988(3) 0.77 8.3934(3)

0.72 8.3942(1)

0.779

0.811

0.674

0.803 8.4209(5) 0.82 8.4255(13)

0.88 8.4172(7)

0.906 8.421(2)

Table 2 Thermodynamic data for Fe $_5O_6$. Heat capacity terms have the form: a+bT+cT^2+dT^{-0.5}.

	Fe₅O ₆	source
H° _{1bar,298} (kJ mol ⁻¹)	-1920.3	this study
S° ₂₉₈ (J K ⁻¹ mol ⁻¹)	279.93	this study
V° ₂₉₈ (cm ³ mol ⁻¹)	66.33	this study
K₀ (GPa)	173	Lavina & Meng (2015)
K'	4	Myhill et al. (2018))
K'' (GPa⁻¹)	-2.312 e-2	Myhill te al. (2018)
a _o (K ⁻¹)	2.02 e-5	this study
Cp (J K⁻¹ mol⁻¹) a	351.3	Holland & Powell (2011)
b	9.355 e-3	from molar sum of terms
с	-4.3546 e6	for "FeO" and
d	-1.2853 e3	magnetite

experiment	Р	Т	duration	phase assemblage ¹	(Mg,Fe)O					
	[GPa]	[C°]	[h]		nMg	nFe				
(Mg ₂ Fe)Fe ₂ O	4									
M686	12	1300	1	$O_5 + [sp + (Mg,Fe)O]$						
M760	12	1500	1	O ₅ + [sp + (Mg,Fe)O]						
(Mg₁Fe₂)Fe₂C	D ₆									
M764	12	1300	3	O_5 + (Mg,Fe)O + (mgs)	0.31(1)	0.69(1)				
M833	14	1300	1	O ₅ + (Mg,Fe)O	0.29(1)	0.71(1)				
(Mg _{0.5} Fe _{2.5})Fe ₂ O ₆										
M719	8	1100	4	O_4 + (Mg,Fe)O						
M737	8	1200	3	O_4 + (Mg,Fe)O + (mgs)	0.121(3)	0.879(3)				
M749 ²	8	~1200-1300	1	O_4 + (Mg,Fe)O						
M723	10	1000	5	O_5 + (Mg,Fe)O + (mgs)	0.24(1)	0.76(1)				
M729 ²	10	1000	5	O ₅ + (Mg,Fe)O	0.207(3)	0.793(3)				
M718	10	1200	3	O_5 + (Fe,Mg)O	0.20(1)	0.80(1)				
M758	10	1400	1	$O_5 + O_6 + MgO$						
M706	12	1000	5	O_5 + (Fe,Mg)O	0.23(1)	0.77(1)				
M725	12	1200	3	O ₅ +(Mg,Fe)O	0.244(2)	0.756(2)				
M697	12	1300	3	O ₆ + (Mg,Fe)O	0.143(1)	0.857(1)				
M702	12	1300	4	O ₁₁						
M724	14	1000	5	O ₅ +(Mg,Fe)O	0.286(8)	0.714(8)				
M705	14	1300	3	$O_5 + O_6 + ((Fe,Mg)O)$	0.18(2)	0.82(2)				
M754	14	1500	1	$O_6 + (O_{11}) + ((Fe,Mg)O)$						
M738	14	1600	2	O ₁₁ + (O ₅)						
Z1804o	16	~1130	2	$O_5 + O_6 + ((Mg,Fe)O)$	0.23(1)	0.77(1)				
Z1806u	20	1300	3	O_5 + O_6 + (Mg,Fe)O	0.284(2)	0.716(2)				
(Mg _{0.6} Fe _{3.4})Fe	€2 0 7									
M836	10	1100	1	O ₅ + (Mg,Fe)O	0.13(1)	0.87(1)				
M837	10	1200	1	O_5 + (Mg,Fe)O + (mgs)	0.12(1)	0.88(1)				
M834	10	1500	0.67	O_6 + (MgFe)O + sp	0.13(1)	0.87(1)				
M835	12	1200	1	O_6 + (MgFe)O + (O ₅) + (m	ng 0.15(1)	0.85(1)				

Table 3. Summary of experiments in the system MgO–FeO–FeO_{1.5} \pm SiO₂ along with the co

M838	14	1100	1.5	O_6 + (MgFe)O + (mgs)	0.16(1)	0.84(1)		
M839	18	900	3	O ₅ + (Mg,Fe)O + [sp]				
0.3 Mg ₂ SiO ₄ + 0.7 (Mg _{0.5} Fe _{2.5})Fe ₂ O ₆								
M761	14	1300	3	O ₅ + wads + (Mg,Fe)O	0.198(2)	0.802(1)		
Z1954o	17	1300	1.5	O ₅ + ring + (Mg,Fe)O	0.264(1)	0.736(1)		
Z1955o	20	1300	1.5	O ₅ + ring + (Mg,Fe)O	0.31(1)	069(1)		
1 .								

¹ sp = spinel, mgs = magnesite, wads = wadsleyite, ring = ringwoodite,

square brackets indicate quench phases, curved brackets indicate occurence in trace amounts.

² Experiment carried out with silver capsule.

mposition and volume of coexisting (Mg,Fe)O

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{cccc} 4.2309(1) & 75.735(7) \\ 4.2304(2) & 75.706(8) \\ \end{array}$ $\begin{array}{c} 4.2481(1) & 11.542(1) \\ 4.2472(1) & 11.534(1) \\ \end{array}$ $\begin{array}{c} 4.2678(1) & 11.703(1) \\ 4.2692(1) & 11.714(1) \\ 4.2701(2) & 11.722(1) \\ 4.2565(4) & 11.610(3) \\ 4.2665(1) & 11.692(1) \\ 4.2538(3) & 11.588(2) \\ 4.2522(1) & 11.575(1) \\ 4.2722(2) & 11.739(1) \\ \end{array}$
4.2304(2) 75.706(8) 4.2481(1) 11.542(1) 4.2472(1) 11.534(1) 4.2678(1) 11.703(1) 4.2692(1) 11.714(1) 4.2701(2) 11.722(1) 4.2565(4) 11.610(3) 4.2665(1) 11.692(1) 4.2538(3) 11.588(2) 4.2522(1) 11.575(1) 4.2722(2) 11.739(1)
 4.2481(1) 11.542(1) 4.2472(1) 11.534(1) 4.2678(1) 11.703(1) 4.2692(1) 11.714(1) 4.2701(2) 11.722(1) 4.2565(4) 11.610(3) 4.2665(1) 11.692(1) 4.2538(3) 11.588(2) 4.2522(1) 11.575(1) 4.2722(2) 11.739(1)
4.2481(1) 11.542(1) 4.2472(1) 11.534(1) 4.2678(1) 11.703(1) 4.2692(1) 11.714(1) 4.2701(2) 11.722(1) 4.2565(4) 11.610(3) 4.2665(1) 11.692(1) 4.2538(3) 11.588(2) 4.2522(1) 11.575(1) 4.2722(2) 11.739(1)
4.2481(1) 11.542(1) 4.2472(1) 11.534(1) 4.2678(1) 11.703(1) 4.2692(1) 11.714(1) 4.2701(2) 11.722(1) 4.2565(4) 11.610(3) 4.2665(1) 11.692(1) 4.2538(3) 11.588(2) 4.2522(1) 11.739(1)
4.2472(1) 11.534(1) 4.2678(1) 11.703(1) 4.2692(1) 11.714(1) 4.2701(2) 11.722(1) 4.2565(4) 11.610(3) 4.2665(1) 11.692(1) 4.2538(3) 11.588(2) 4.2522(1) 11.739(1)
4.2678(1)11.703(1)4.2692(1)11.714(1)4.2701(2)11.722(1)4.2565(4)11.610(3)4.2665(1)11.692(1)4.2538(3)11.588(2)4.2522(1)11.575(1)4.2722(2)11.739(1)
4.2678(1)11.703(1)4.2692(1)11.714(1)4.2701(2)11.722(1)4.2565(4)11.610(3)4.2665(1)11.692(1)4.2538(3)11.588(2)4.2522(1)11.575(1)4.2722(2)11.739(1)
4.2692(1)11.714(1)4.2701(2)11.722(1)4.2565(4)11.610(3)4.2665(1)11.692(1)4.2538(3)11.588(2)4.2522(1)11.575(1)4.2722(2)11.739(1)
4.2701(2)11.722(1)4.2565(4)11.610(3)4.2665(1)11.692(1)4.2538(3)11.588(2)4.2522(1)11.575(1)4.2722(2)11.739(1)
4.2565(4)11.610(3)4.2665(1)11.692(1)4.2538(3)11.588(2)4.2522(1)11.575(1)4.2722(2)11.739(1)
4.2665(1)11.692(1)4.2538(3)11.588(2)4.2522(1)11.575(1)4.2722(2)11.739(1)
4.2538(3)11.588(2)4.2522(1)11.575(1)4.2722(2)11.739(1)
4.2522(1)11.575(1)4.2722(2)11.739(1)
4.2722(2) 11.739(1)
4.2504(5) 11.560(4)
4.2653(1) 11.682(1)
4.2786(4) 11.792(3)
4.2510(3) 11.565(1)
4.2836(2) 11.847(1)
4.2668(1) 11.695(1)
4.2652(1) 11.682(1)
4.2637(1) 11.670(1)
4.2639(1) 11.671(1)

4.2674(1)	11.700(1)
4.2937(5)	11.917(4)
4.2485(1)	11.545(1)
4.2606(1)	11.644(1)
4.2706(1)	11.726(1)

experimer	n phase	nMg	nFe ²⁺	nFe3+	unit-cell paramters
-	-	c.p.f.u.	c.p.f.u.	c.p.f.u.	a [Å] b [Å] c [Å]
	(Mg,Fe)₃F	e ₂ O ₆			
M834		0.37(1)	2.63(1)	2	2.8904(2) 9.8981(7) 15.3551(9)
M838		0.39(2)	2.61(2)	2	2.8905(1) 9.8999(2) 15.3523(3)
M835		0.40(2)	2.60(2)	2	2.8905(1) 9.8992(3) 15.3514(4
M697		0.421(6)	2.579(6)	2	2.8909(1) 9.9000(2) 15.3545(3
M754		0.51(1)	2.49(1)	2	2.8923(1) 9.8877(4) 15.3470(5)
M705		0.53(2)	2.47(2)	2	2.8925(1) 9.8876(3) 15.3486(4
Z1804o		0.53(4)	2.47(4)	2	2.8977(2) 9.8711(6) 15.3372(8)
Z1806u		0.55(2)	2.45(2)	2	2.8855(6) 9.8972(25) 15.3522(2)
M758		0.82(1)	2.18(1)	2	2.8925(1) 9.8724(4) 15.3520(6)
	(Mg,Fe)₂F	e₂O₅			
M837		0.18(1)	1.82(1)	2	2.8923(1) 9.7960(4) 12.5690(4)
M836		0.19(1)	1.81(1)	2	2.8926(1) 9.7958(4) 12.5706(4)
M724		0.27(2)	1.73(2)	2	2.8937(2) 9.7858(6) 12.5720(7
M729		0.271(4)	1.729(4)	2	2.8925(1) 9.7939(4) 12.5714(4
M706		0.31(5)	1.69(5)	2	2.8920(1) 9.7884(4) 12.5703(5)
Z1804o		0.31(4)	1.69(4)	2	2.8930(2) 9.7805(6) 12.5676(6)
M723		0.32(3)	1.68(3)	2	2.8937(1) 9.7846(3) 12.5706(3)
Z1806u		0.33(1)	1.67(1)	2	2.8923(1) 9.7816(6) 12.5690(6)
M725		0.374(4)	1.626(4)	2	2.8932(1) 9.7852(3) 12.5690(4
M718		0.38(2)	1.62(2)	2	2.8927(1) 9.7874(4) 12.5667(4
M839		0.38(2)	1.62(2)	2	2.886(1) 9.777(4) 12.575(4)
M705		0.42(2)	1.58(2)	2	2.8900(5) 9.799(2) 12.563(2)
M758		0.42(1)	1.58(1)	2	2.8921(1) 9.7918(3) 12.5626(4)
M764		0.50(1)	1.50(1)	2	2.8934(1) 9.7773(3) 12.5629(3)
M833		0.52(1)	1.48(1)	2	2.8930(2) 9.7705(6) 12.5627(6)
M686		0.89(2)	1.11(2)	2	2.8922(3) 9.7623(13) 12.5586(1
M760		1.09(1)	0.91(1)	2	2.8922(2) 9.7539(6) 12.5538(6
	(Mg,Fe)F	e₂O₄			
M719		0.17(1)	0.83(1)	2	8.3928(1)
M737		0.171(2)	0.829(2)	2	8.3895(2)
M760			()		8.4060(6)
M749					8.3887(4)
	(Mg,Fe)₅F	[−] e₄O ₁₁			
M702		0 867(0)	1 133(0)	Л	0 8441(5) 2 8020(1) 14 1760(6
M75/		$1 \ 46(1)$	3 54(1)	ч Л	3.0771(3) 2.0320(1) 14.1700(0
111/04		1.40(1)	3.34(1)	4	

Table 4. Composition, unit cell parameters and volumes of run products from experiment

M738		1.02(3)	3.98(3)	4	9.8368(2) 2.8927(1) 14.1728(3
Si-bearin	g samples	5			
	(Mg,Fe) ₂	Fe₂O₅			
M761		0.32(1)	1.66(1)	1.96(1) ²	2.8925(2) 9.7792(9) 12.5638(8)
Z1954o		0.38(1)	1.63(1)	1.95(1) ²	2.8935(1) 9.7662(6) 12.5532(6)
Z1955o		0.36(1)	1.65(1)	1.94(1) ²	2.8926(4) 9.7683(16) 2.5482(13
	(Mg,Fe) ₂	SiO₄			
M761	wads	1.27(1)	0.68(1)	0.08(1)	5.7349(16)11.5696(348.3153(19)
Z1954o	ring	1.23(1)	0.75(1)	0.04(1)	8.1292(3)
Z19550	ring	1.30(2)	0.68(2)	0.03(1)	8.1208(7)

¹ sp = spinel, mgs = magnesite, wads = wadsleyite, ring = ringwoodite.

 2 contains traces of SiO₂ and Al₂O₃: M761 – 0.16 wt% SiO₂, 0.40 wt % Al₂O₃; Z1954o – 0.21 wt% Z1955o – 0.33 wt% SiO₂, 0.56 wt% Al₂O₃

ts in the system MgO–FeO–FeO $_{1.5}\pm SiO_2$

β [°]	V [Å ³]	Mol Vol [cm ⁻³]
)	439.30(3)	66.137(4)
)	439.316(10	66.139(2)
)	439.256(14	66.130(2)
)	439.445(9)	66.158(2)
)	438.89(2)	66.075(3)
)	438.959(15	66.085(3)
)	438.70(3)	66.046(4)
9)	438.44(9)	66.007(13)
)	438.39(2)	66.000(3)
`	050 404/44	50.044(0)
)	356.124(14	53.914(3)
)	356.189(15	53.624(3)
)	356.00(2)	53.596(3)
)	356.14(1)	53.617(2)
)	355.847(2)	53.573(1)
)	355.59(2)	53.543(3)
)	355.92(1)	53.584(2)
)	355.59(2)	53.543(3)
)	355.83(1)	53.570(2)
)	355.79(1)	53.654(2)
	354.86(15)	53.42(2)
	355.79(7)	53.564(10)
)	355.760(12	53.560(2)
)	355.406(10	53.506(2)
)	355.10(2)	53.461(3)
1)	354.58(4)	53.382(6)
)	354.14(2)	53.318(3)

591.17(2)	44.500(2)
590.48(3)	44.448(3)
593.96(11)	44.71(1)
590.32(8)	44.436(7)

99.956(4) 397.50(3) 119.687(9)

99.906(2) 397.27(1) 119.618(3)

1	355.38(3)	53.502(5)
I	354.73(2)	53.405(3)
)	354.55(4)	53.377(6)
1	551.7(1)	41.53(1)
	537.21(6)	40.385(8)
	535.5(1)	40.31(1)
		_

5 SiO₂, 0.49 wt% Al₂O₃;

						molar Volume
experiment	phase	a [Å]	b [Å]	c [Å]	V [Å ³]	[cm ³]
	Fe₅O ₆					
H4269		2.8845(1)	9.9442(5)	15.3632(7)	440.68(2)	66.344(3)
H4270		2.8838(1)	9.946384)	15.3642(5)	440.70(2)	66.347(3)
H4347		2.8830(1)	9.9437(5)	15.3600(7)	440.34(2)	66.293(3)
H4853		2.8842(1)	9.9412(3)	15.3643(4)	440.53(1)	66.322(2)
H4855		2.8840(1)	9.9417(3)	15.3634(4)	440.50(1)	66.317(2)
M651		2.8848(4)	9.946(2)	15.361(2)	440.75(8)	66.355(12)
M653		2.8851(1)	9.9475(4)	15.3751(6)	441.26(2)	66.432(3)
M728		2.8834(1)	9.9426(4)	15.3632(5)	440.44(2)	66.308(3)
M733		2.8840(1)	9.9424(5)	15.3646(7)	440.57(2)	66.328(3)
M736		2.8838(3)	9.9414(11)	15.3554(13)	440.23(4)	66.277(6)
M785		2.8880(8)	9.934(3)	15.357(3)	440.56(11)	66.34(2)
M786		2.8848(5)	9.934(2)	15.390(3)	441.04(8)	66.399(12)
V888		2.8855(1)	9.9399(2)	15.3666(2)	440.74(2)	66.353(3)
V889		2.8851(2)	9.9429(6)	15.3678(11)	440.85(3)	66.370(4)
V891		2.8846(1)	9.9448(6)	15.3679(8)	440.90(3)	66.377(4)
Z1430u		2.8842(1)	9.9408(5)	15.3606(6)	440.40(2)	66.302(3)
Z1464u		2.8837(1)	9.9397(5)	15.3602(7)	440.27(2)	66.283(3)
Z1507u		2.8840(1)	9.9457(3)	15.3678(4)	440.81(2)	66.364(3)
	Fe ₄ O ₅					
H4269	10405	2 8917(12)	9 8006(56)	12 5762(51)	356 41(15)	53 66(2)
H4347		2.8938(3)	9 8036(14)	12.0702(01) 125721(14)	356 66(5)	53 695(7)
H4853		2.8930(5)	9 8053(23)	12.6721(14) 12 5813(24)	356 89(8)	53730(12)
H4855		2.8926(1)	9 8032(6)	12.5783(7)	356 68(2)	53 698(3)
IRIS 697		2.8020(1)	9 8002(7)	12.5696(7)	356 49(2)	53 670(3)
M639		2.0000(2)	9 7747(27)	12.5558(26)	357 10(9)	53 761(14)
M652		2.8942(3)	9 7975(11)	12.5626(11)	356 23(4)	53 630(6)
M733		2.8036(7)	9 7988(32)	12.5520(11)	356 6(1)	53 69(2)
M736		2.0000(7)	9.8053(4)	12.57 02(50)	356 63(2)	53 691(3)
M755		2.0017(1)	9.0000(4)	12.5777(0)	356 76(3)	53 710(5)
M756		2.0004(2)	0.805(3)	12.579(3)	356 5(1)	53 67(2)
M774		2.0900(3) 2.8014(1)	9.000(0)	12.579(5)	356 365(14)	53 651(2)
M777		2.0014(1)	9.8025(4)	12.5000(4)	356 675(13)	53 697(2)
1/838		2.0020(1)	0.8054(2)	12.5770(4) 12.5820(21)	357 028(12)	53.007(2)
V000		2.0959(1)	9.0004(2)	12.5020(21)	357 1(1)	53.76(2)
71/6/11		2.0909(0)	9.0004(97)	12.57.59(40)	356 40(3)	53 670(5)
Z1404u	Fe₀O₁₁	2.0923(2)	9.0040(0)	12.57 10(9)	550.49(5)	33.070(3)
	• 11	a [Å]	b [Å]	c [Å]	β (°)	V [ų]
M755		9.8804(2)	2.8857(1)	14,189(7)	99,920(6)	398.50(2)
M774		9.8500(51)	2.8950(15)	14,182(5)	99.95(7)	398.3(2)
M786		9 8666(32)	2 8901(7)	14 185(3)	100 08(3)	398 26(12)
Z1505		9.8841(6)	2.8843(1)	14,1920(7)	99,923(6)	398.54(2)
		5.00.1(0)				

Table 5. Unit-cell parameters and volumes of high-P Fe-oxide phases

Figure 2

Figure 3

pressure [GPa]

Figure 5

Figure 8

Fig. 11a. Antiphase domains in magnetite from sample M697 that formed by decomposition of the high-pressure Fe_5O_6 phase. rs = rock salt structure (i.e. wüstite), mt = magnetite.

Fig. 11b. Dark-field TEM image with g = 311 displaying a mottled contrast in the iron oxide compound that back-transformed from Fe₅O₆ (sample V888). The lower left and upper right insets are SAED patterns of the nearest zone axis and the corresponding diffraction pattern to the DF image, respectively, indicating the presence of magnetite.