- 1 Revision 1
- 2 Mineralogy and geochemistry of hot spring deposits at Námafjall, Iceland: Analog for
- 3 sulfate soils at Gusev crater, Mars

4

5 Word count: 11,623

6

- 7 George L. Carson^{1,+}
- 8 Lindsay J. McHenry^{1,*}
- 9 Brian M. Hynek²
- 10 Barry I. Cameron¹
- 11 Chase T. Glenister¹
- 12
- 13 * corresponding author
- 14
- 15 1. Department of Geosciences, University of Wisconsin- Milwaukee. 3209 N. Maryland Ave.,
- 16 Milwaukee, WI 53211. <u>lmchenry@uwm.edu</u>. Phone: 414 229-3951. Fax: 414 229-5452.
- 17 2. Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, 1234
- 18 Innovation Drive, Boulder, CO 80303
- 19 + Present address: 610 Winona Ct APT 28, Denver, CO 80204
- 20
- 21 Key words: Hydrothermal alteration; Mars analog; sulfate mineralogy

22

25	
26	Abstract
27	
28	Iceland's Námafjall geothermal area exhibits a range of alteration environments. Geochemical
29	and mineralogical analyses of fumaroles and hot springs interacting with Holocene basaltic lav
30	at Hverir, and with Pleistocene hyaloclastites atop nearby Námaskar ∂ hill, reveal different
31	patterns of alteration depending on water-rock ratio, degree of oxidation, and substrate
32	composition and age. The focus of this study is on the mineral deposits at and near hot springs
22	Hyperic and Némoskard Surface complex and complex collected from shallow nits in the

29 e basaltic lavas 30 different 31 trate 32 r hot springs at 33 Hverir and Námaskar ∂ . Surface samples, and samples collected from shallow pits in the 34 alteration aprons adjacent to hot springs, were analyzed by X-ray Diffraction (XRD) and X-ray 35 Fluorescence (XRF) to constrain the differences in composition with both distance and depth. 36 Fluids were analyzed in the field for their environmental parameters and sampled for cation and 37 anion analysis. Fluid analyses revealed uniformly acidic conditions but with site-to-site variation 38 in other parameters such as temperature, salinity, and conductivity. Solid phases identified 39 include amorphous silica, pyrite, elemental sulfur, and kaolinite in the muds, surrounded by Fe²⁺sulfate and then Fe^{3+} - sulfate efflorescences, following a redox gradient pattern involving the 40 41 oxidation of sulfur and then iron with increasing distance. Shallow pits excavated near two 42 Námaskar∂ hot springs reveal a shallow oxidation front, with sulfide-rich materials below a thin 43 surface of sulfates and elemental sulfur. Silica phases include amorphous silica and quartz. 44 Quartz likely reflects diagenetic maturation of earlier-formed amorphous silica, under surface 45 hydrothermal conditions.

46

24

- 47 The high iron content of the substrate basalt and the prevalence of Fe-sulfates and Fe-oxides
- 48 among the alteration products makes this geothermal area an especially useful analog for
- 49 potential Martian hydrothermal environments. In particular, these sulfate-rich deposits adjacent
- 50 to volcanic, acidic hot springs could provide a helpful comparison for sulfur-rich soils in the
- 51 Columbia Hills on Mars, where some of the same minerals have been identified (e.g.
- 52 ferricopiapite) or inferred (e.g. rhomboclase).

53

55 Introduction 56 57 Volcanic hydrothermal deposits are key targets for astrobiological research, since they can 58 provide warm, wet environments on or below otherwise inhospitably cold planetary surfaces, and 59 since terrestrial examples provide a habitat for a variety of extremophile microorganisms. The 60 characterization of likely hydrothermal deposits in the Columbia Hills explored by the Mars 61 Exploration Rover (MER) Spirit (e.g., Yen et al., 2008), and the detection of likely hydrothermal 62 deposits from orbit by the Mars Reconnaissance Orbiter (MRO, e.g. Skok et al., 2010), have 63 made understanding the astrobiological potential of these environments a priority for NASA's 64 Mars exploration program. 65 Iceland provides an excellent analog for potential Martian hydrothermal sites, because of its wide 66 67 variety of hydrothermal environments coupled with their interaction with high-iron basalts 68 comparable to those found on Mars. This study describes an analog site in northeastern Iceland 69 (Námafjall), where acid-sulfate fumaroles and more reducing acidic mudpots and hot springs 70 interact with relatively young basaltic lavas and hyaloclastites, forming alteration and 71 precipitated products representing a range of temperature and redox conditions. The redox 72 gradients observed in these deposits could provide an energy source for iron or sulfur reducing or 73 oxidizing microbes. 74 75 The objectives of this work were to (1) characterize the mineral assemblages and major element 76 distribution for altered and precipitated samples at the surface and at shallow depth at increasing

77 distances from active hot springs at Námafjall, (2) conceptually model the processes of leaching

78	and mineral precipitation in terms of changing pH, oxidation, and temperature conditions, and
79	(3) consider these trends in the context of Mars hydrothermal deposits.
80	
81	Background
82	Mars Hydrothermal Activity
83	
84	Hydrothermal environments once occurred on the Martian surface, based on its long
85	history of volcanic activity and evidence for past water. Such environments could have been
86	habitable, providing heat, energy, and water for life even after the overall Martian surface
87	conditions would have been too cold and dry (Walter & Des Marais, 1993; Schulze-Makuch et
88	al., 2007; Hynek et al., 2013, 2018). Deposits from multiple landing sites have been interpreted
89	as potentially hydrothermal, including Jezero crater carbonates (based on orbital spectroscopy,
90	Tarnas et al., 2021), Gale crater tridymite (investigated by Curiosity, Yen et al., 2021), Meridiani
91	Planum sulfate and hematite rich deposits (investigated by the Mars Exploration Rover (MER)
92	Opportunity, McCollom and Hynek, 2005), and most notably multiple rocks and soils of the
93	Columbia Hills at Gusev crater studied by MER Spirit.
94	
95	Past hydrothermal activity in the Columbia Hills is indicated by evidence for hydrovolcanism
96	(Home Plate, Squyres et al., 2007) and various mineralogical and geochemical trends in both
97	outcrop and soil deposits. Silica-rich, opal-A bearing outcrops have been interpreted as near-
98	neutral hot spring deposited sinters (Ruff et al., 2011, 2020; Ruff and Farmer, 2016), while
99	silica-rich (e.g. Gertrude Weise class) and sulfate-rich (e.g. Paso Robles class) soils have been
100	interpreted as acid-sulfate leached deposits formed in a fumarolic or hot spring environment (e.g.

101	Squyres et al., 2008; Morris et al., 2008). The Paso Robles class soils are sulfate-rich, with Ca,
102	Mg, and ferric sulfates, along with amorphous silica and hematite; in the case of Paso Robles and
103	Arad these have been interpreted as likely fumarolic deposits with lower water/rock ratios, while
104	at the Tyrone locality conditions were likely wetter (Wang et al., 2008; Yen et al., 2008; Schmidt
105	et al., 2008; 2009; Hausrath et al., 2013). Peace class rocks in the Columbia Hills are composed
106	of mafic to ultramafic mineral grains cemented by sulfate salts, potentially derived from
107	hydrothermal processes as well (e.g. Ming et al., 2006). Properly assessing the potential
108	habitability of the altered soils will require reconciling these different interpretations.
109	
110	Iceland
111	
112	Iceland's Northern Volcanic Zone, a product of the Mid-Atlantic Ridge and the Icelandic
113	mantle plume, hosts the Krafla central volcano. Subglacial eruptions during the Pleistocene
114	produced basaltic hyaloclastites, while subsequent eruptions in the Holocene have emplaced
115	subaerial lavas at various intervals ranging from 250-1000 yrs. This work will focus on the
116	Namafjall area where intense surface hydrothermal alteration is currently affecting the subglacial
117	Pleistocene hyaloclastites and the postglacial Holocene lava flows.
118	
119	The Krafla volcano hosts the Namafjall geothermal field on its southern edge, where
120	hydrothermal fluids travel along fault planes to the surface (Figure 1). The basaltic hyaloclastite
121	atop and along the margins of the Námaskar ∂ hyaloclastite ridge interacts with rising
122	hydrothermal fluids, as do Holocene basaltic lava flows at Hverir at the base of the ridge.
123	Subvertical gypsum veins crosscut the hydrothermally-altered hyaloclastites, and are related to

124	the faulting and fissures of the Krafla fissure swarm (Figure 1a). Talus deposits on Námaskar ∂
125	are composed of clay blocks, clayey siltstones, and gravelly conglomerate lenses and beds
126	(Geptner et al., 2007). East of Námaskar∂ lies the Hverir geothermal field, which hosts a cluster
127	of fault-related fumaroles along with hot springs and mudpots (Saemundsson et al., 2012).
128	Surface materials transported from local drainages including the nearby Námaskar∂ ridge
129	interact with these hydrothermal features. The Late Holocene lava field immediately east of the
130	geothermal field contains large circular fumarolic aprons up to ~25 m wide that currently
131	produce little to no volcanic emissions; these are described in detail in Carson et al. (in review).
132	The current study focuses on the hot springs and mudpots of both Hverir and Námaskar ∂ .
133	
134	Methods
135	Site details
136	
137	Hverir: hot spring transect. In the central Hverir hot spring and mudpot field (Figure 2c), we
138	selected one hot spring (shown in Figure 2a) and collected muddy water, mud from the edge of
139	the pool, and surface mineral crusts within about two meters, targeting changes in color (from
140	white to orange). Temperature, distance from the pool's edge, and appearance are reported for
141	each sample. Samples and water measurements were collected in 2013, 2014, 2016, and 2017.
142	The "substrate" for this site is difficult to assess, as the area likely receives some sediment from
143	both the Holocene basaltic lava directly to the east (sample IV-13-15) and the Pleistocene
144	Námaskar ∂ hyaloclastite ridge to the west (sample IV-14-36).
145	

146	Námaskar ∂ : hot spring depth profile. At the top of Námaskar ∂ hill, we selected two hot
147	springs and their surrounding alteration aprons and collected fluid, mud from the edge of the
148	pool, surface mineral crusts, and excavated a shallow pit within the apron to collect samples
149	from depth (Figures 4 and 5). We targeted changes in color and appearance (darker grey at
150	depth). Temperature, distance from the pool edge, and depth (if appropriate) are reported for
151	each sample. Samples and water measurements were collected in 2014, 2016, and 2017.
152	
153	Sampling Protocols
154	
155	All samples analyzed in this study are summarized in Tables 1 (Hverir hot spring transect) and 2
156	(Námaskar∂ hot spring transects). Precipitate samples were collected by carefully scraping
157	surface materials over a small area into a plastic sample bag, and altered soils were scooped
158	using a spatula. Fluid samples were scooped using a plastic bottle that had been pre-
159	contaminated with the fluid being sampled, attached to the end of a Jacob's staff. Temperatures
160	were measured for each sample using a thermometer, and pH of fluid was estimated using
161	overlapping pH papers. Less altered "substrate" samples were collected away from the thermal
162	features along the Námaskar∂ hyaloclastite ridge (IV-14-36) and from the Holocene basaltic lava
163	flow at the eastern margin of Hverir (IV-13-15).
164	
165	For select fluid samples, an HL4 Hydrolab sonde was used in the field to measure pH,
166	temperature (T), conductivity, oxidation/reduction potential (ORP), dissolved oxygen, salinity,
167	and total dissolved solids (TDS). For fluids cooler than 50°C, the Hydrolab sonde was deployed

- directly, for hotter fluids, a sample was allowed to cool in a full, covered container until it was

169	below 50° C and then analyzed. Collected fluid samples were filtered into two 60 mL bottles
170	through a 0.2 micrometer cellulose filter. One bottle of sampled fluid (for cations) was acidified
171	(using 4N nitric acid) for samples with pH above 3, for more acidic samples, one sample was
172	collected for both cations and anions.
173	
174	
175	Laboratory Analyses
176	
177	Samples were air dried and ground using a Rocklabs Shatterbox for competent samples (basalts)
178	and an agate mortar and pestle without the addition of liquids. X-ray Diffraction (XRD) was
179	completed and analyzed at UW Milwaukee (UWM) using a Bruker D8 Focus XRD (Cu tube,
180	0.02° 2 Theta step size, 2–60° 2 Theta, 1 s/step, scintillation detector: see McHenry et al., 2017).
181	Phases were identified using Bruker's EVA software and the International Centre for Diffraction
182	Data Powder Diffraction Files (ICDD PDF) 2 database for comparison. Phases were
183	characterized as major, minor, or absent based on a qualitative assessment of relative peak
184	heights.
185	
186	Samples that were determined not to be dominated by sulfur-bearing phases based on XRD were
187	further prepared for X-ray Fluorescence (XRF) analysis. Powdered samples were dried overnight
188	at 105°C. A split of each dried sample was analyzed for loss on ignition (LOI) using a muffle
189	furnace. Another split (1.0000 g, \pm 0.0003 g) of the same dried powdered sample was then mixed
190	with 10.0000 g (\pm 0.0003 g) of a 50/50 Lithium Metaborate/ Lithium Tetraborate flux with an
191	integrated LiBr non-wetting agent and ~1 g of ammonium nitrate (oxidizer) in a platinum

192	crucible and fused into a glass bead using a Claisse M4 fluxer. Beads were then analyzed for
193	major and minor elements using a Bruker S4 Pioneer XRF, following methods of Byers et al.
194	(2016). Eleven USGS rock standards were used to construct a calibration curve from which
195	concentrations were calculated. Since sulfur is partially lost during the fusion process, select
196	samples for which sufficient material was available were also prepared as pressed pellets. 7.5
197	grams of dried, powdered sample was combined with three GeoQuant wax binder pellets (0.94 g
198	total) in a shatterbox, and then pressed at 25 tons for one minute in an Atlas T25 semiautomatic
199	press. Pellets were then analyzed by XRF with concentrations determined using a calibration
200	curve based on six USGS rock standards (methods described in Byers et al., 2016). Only sulfur is
201	reported from the pressed pellets, as the fused bead calibration is better for all other elements.
202	
203	Five fluid samples were analyzed for major cations using a Thermo iCE 3000 Series Atomic
204	Adsorption Spectrometer using SOLAAR Series software. Major anions were analyzed using a
205	single column Dionex ICS 1000 Ion Chromatograph with an AERS 500 Suppressor using a
206	4.5mM Na ₂ CO ₃ /1.4mM NaHCO ₃ buffer solution. Silica was analyzed using a SEAL Analytical
207	AA3 HR auto analyzer. Quantitative analysis was accomplished using a calibration curve from
208	stock standards of each element provided by the UWM School of Freshwater Sciences. For most
209	samples, dilution was needed to fit the calibration curve. An electrical balance was calculated to
210	determine the accuracy of analysis. Many samples had a significant electrical imbalance, which
211	is assumed to be attributed to high Al concentrations (not analyzed) based on published results
212	for another Icelandic hydrothermal system (Kaasalainen & Stefánsson, 2012). Aluminum is
213	difficult to calibrate in solution due to its relative insolubility under near-neutral pH conditions.

214	Inferred aqueous Al	concentrations were calculated by charge balancing fluid samples to <5 %.
215	Several samples were	e already charge balanced and thus do not include Al concentrations.
216		
217		Results
218	XRD results	
219		
220	XRD results (Tables	1-2) reveal diverse mineral assemblages that vary depending on the specific
221	environment. Sulfur-	bearing minerals are abundant and include sulfides (pyrite, marcasite),
222	elemental sulfur, and	a wide range of sulfates:
223	Ca:	gypsum
224	Al:	alunogen (Al ₂ (SO ₄) ₃ • 17H ₂ O))
225	Fe ³⁺ :	rhomboclase $((H_5O_2)^+Fe^{3+}(SO_4)_2 \bullet 2H_2O)$
226		ferricopiapite ($Fe^{3+}_{2/3}Fe^{3+}_{4}(SO_{4})_{6}(OH)_{2}\bullet 20H_{2}O$))
227	Fe ²⁺ :	rozenite ($Fe^{2+}SO_4 \cdot 4H_2O$)
228		szomolnokite (F e^{2+} SO ₄ •H ₂ O)
229	mixed cation:	: pickeringite (MgAl ₂ (SO ₄) ₄ •22H ₂ O)
230		halotrichite ($Fe^{2+}Al_2(SO_4)_4 \bullet 22H_2O$)
231		natroalunite (NaAl ₃ (SO ₄) ₂ (OH) ₆)
232		jarosite (KF e^{3+} (SO ₄) ₂ (OH) ₆),
233		voltaite ($K_2Fe^{2+}_5Fe^{3+}_3Al(SO_4)_{12}\bullet 18H_2O$)
234		coquimbite $(AlFe^{3+}_{3}(SO_{4})_{6}(H_{2}O)_{12}\bullet 6H_{2}O)$
235		tamarugite (NaAl(SO ₄) ₂ •6H ₂ O))

Other phases include silica phases (amorphous silica, cristobalite, and quartz), oxides (anatase
and goethite), and clay minerals (smectite and kaolinite). As the clay size fraction was not
separated for analysis, our characterization of the clay phases is limited to distinguishing
between "smectite" (clays with first-order basal spacing around 14 angstroms, based on XRD)
and kaolinite.

241

242 Figures 3-5 show representative XRD patterns for samples from the vicinity of hot springs at 243 Hverir (Figure 3) and Námaskar∂ hill (Figures 4 and 5). Hot spring acid-sulfate alteration 244 produced three distinct mineral assemblages: (i) gray sediment that includes pyrite/marcasite + 245 anatase \pm amorphous silica \pm kaolinite \pm elemental sulfur, (ii) white surface precipitates that include halotrichite group + gypsum \pm Fe²⁺ sulfates \pm Fe³⁺ sulfates, and (iii) orange precipitates 246 247 and underlying sediment that include smectite + Fe^{3+} sulfates + amorphous silica ± anatase ± 248 goethite. Differences between surface and deeper samples are visible in both the appearance and 249 mineral assemblages observed, with the pyrite-bearing grey mud observed both in the hot springs 250 and at depth in shallow pits. Pyrite is absent from surface and shallow samples at the site of the 251 pits away from the edge of the hot springs, which are instead dominated by elemental sulfur and 252 various sulfate minerals.

253

254 XRF results

255

Altered rocks and soils in the vicinity of hot springs show a range of elemental compositions (OM Tables 3-4), reflecting their formation environments and mineral assemblages. Heavily leached samples show elevated SiO₂ and TiO₂ concentrations (up to 76.4 and 10.7 wt%,

259	respectively), while pyrite-rich muds are elevated in Fe ₂ O ₃ (up to 28 wt%) (Figure 6). Less
260	altered hyaloclastite (sample IV-14-36, collected away from thermal features) reveals a basaltic
261	"substrate" composition with 49.3 wt% SiO ₂ and relatively high iron (14.1 wt% Fe ₂ O ₃ T). TiO ₂
262	for the substrate sample was 2.19 wt%, lower than the TiO_2 observed in most of the altered
263	samples from Námaskar∂ hill. The composition of the Hverir lava substrate sample (IV-13-15) is
264	similar, with 48.8 wt% SiO ₂ , 15.4 wt% Fe ₂ O ₃ T, and 1.82 wt% TiO ₂ . Sulfur was only analyzed
265	for a subset of samples, but where analyzed shows enrichment in altered samples (3.4-20 wt%
266	SO ₄) compared to the substrate (0.18 wt% SO ₄ for Námaskar∂ hyaloclastite, 0.11 wt% for Hverir
267	basalt). Most cations (Al, Na, K, Ca, Mg, Mn) are lower in the altered rocks and soils than in the
268	substrate. These trends are shown in spider plots, in which the compositions of altered samples
269	are plotted against the less altered substrate (Figure 7). Iron (reported at Fe ₂ O ₃ T) is variable
270	throughout the study area, as reflected by the colors observed during sampling.
271	
272	Fluid results
273	
274	Results of the field Hydrolab analyses are reported in Table 5. For fluids analyzed at Hverir and
275	Námaskar ∂ , pH varies over a narrow range (2.15-2.42). All sites are at least mildly reducing
276	(negative oxidation-reduction potential (ORP)), but salinity, conductivity, and total dissolved
277	solids (TDS) vary from site to site. While the highest salinity (3.41 ppt) and TDS (4.0 g/l) are
278	recorded in Hverir sample IV-14-1, Námaskar∂ sample IV-14-23 also has high values (2.32 ppt
279	and 2.7 g/l). The lowest salinity (0.77 ppt) and TDS (0.9 g/l) measured were for Námaskar ∂
280	sample IV-14-29, though Hverir sample IV-14-4 also has low values (1.13 ppt and 1.3 g/l).
281	Results of the chemical analysis of anions and cations are reported in Table 6. The samples with

282	the highest salinities (based on the Hydrolab results) also contain the highest concentrations of
283	SO_4^{2-} and Mg ⁺ (up to 3819 mg/l and 82.4 mg/l, respectively, for sample IV-14-01), while all
284	dissolved ions had low concentrations for the least saline sample (IV-14-29). Regardless of
285	salinity, the Námaskar ∂ samples have lower concentrations of Na ⁺ and K ⁺ than do samples from
286	the Hverir fluids.
287	
288	
289	Discussion
290	
291	Distribution of phases, based on environment
292	
293	In the vicinity of the hot springs, conditions were reducing near the source and at depth and more
294	oxidizing at the surface and further away, based on the mineral assemblages observed. The mud
295	at the margin of a hot spring in Hverir (sample IV-13-2) contained both elemental sulfur and
296	pyrite, along with kaolinite. Precipitates at increasing distance from this feature contain abundant
297	sulfates, including pickeringite or halotrichite and gypsum nearby (sample IV-13-3), with
298	rhomboclase further away (sample IV-13-4). This reveals a trend in redox conditions, with
299	reduced sulfur and iron at the source, more oxidized sulfur (as sulfate) and reduced iron (Fe ²⁺)
300	nearby, and sulfate and oxidized iron (Fe ^{$3+$}) at greater distances.
301	
302	The two sampling sites at and near hot springs on the top of Námaskar∂ hill demonstrate a range
303	of reducing and oxidizing conditions. At the first spring, amorphous silica and anatase are
304	present in all samples (IV-14-30, 31, and 32), a result of acid leaching and associated residual

305	enrichment of silica and titanium. The surface at the top of the pit (sample IV-14-31) reflects
306	oxidizing conditions, with the Fe^{3+} sulfate mineral rhomboclase and only minor elemental sulfur.
307	At shallow depth (sample IV-14-32), elemental sulfur is more abundant and ferricopiapite
308	appears. At depth (sample IV-14-30), pyrite and marcasite are the dominant sulfur-bearing
309	phases. This reflects a trend towards more reducing conditions at depth. Based on the position of
310	the color change between the lighter grey (elemental sulfur rich) and darker grey (sulfide rich)
311	layers, this oxidation front appears to occur at about 10 cm depth.
312	
313	A second pit near another hot spring on Námaskar∂ reveals a similar pattern, with Fe ³⁺ sulfate
314	minerals (ferricopiapite and jarosite) at the surface (sample IV-14-24), leached material slightly
315	below the surface (sample IV-14-25: anatase, minor amorphous silica, and quartz), and pyrite
316	together with Fe ²⁺ sulfate minerals (szomolnokite and rozenite) at shallow (8 cm) depth (sample
317	IV-14-26). The presence of quartz rather than amorphous silica at this site suggests a higher
318	degree of diagenetic maturation. Since the substrate is basaltic hyaloclastite and the site is on the
319	top of a ridge, the quartz must be related to the local hydrothermal environment (either past or
320	present). A white surface efflorescence at this site (sample IV-14-22) consists entirely of
321	precipitated sulfate minerals, almost entirely from the halotrichite/pickeringite group, with minor
322	gypsum and tamarugite identified. While halotrichite and pickeringite are difficult to distinguish
323	using XRD alone, all or most of this sample is likely halotrichite. This is because of the high
324	background when analyzed by XRD using a scintillation detector (consistent with Fe
325	fluorescence), a qualitatively better pattern match with halotrichite, and the overall abundance of
326	Fe-S phases in all samples from this locality.
327	

328	A study by Black et al. (in revision) explored a set of different (but complimentary) hot springs
329	at Námaskar ∂ , and applied VNIR analyses to collected samples. The VNIR analyses they report
330	help resolve some of the questions about specific minerals that are difficult to detect or
331	distinguish using XRD alone. In particular, their VNIR analyses confirm the presence of
332	pickeringite (rather than halotrichite) in a hot spring transect sample that also bears voltaite and
333	identifies the clay mineral nontronite in the apron of a fumarole.
334	
335	While the current study at Námaskar∂ focuses on deposits in the vicinity of hot springs, El
336	Maarry et al. (2017) examined two transects near Námaskar∂ fumaroles nearby. They report
337	mineral assemblages with elemental sulfur near the source (rather than sulfide minerals),
338	amorphous silica and anatase nearby, and alunite and hematite (along with amorphous silica)
339	further out. This indicates more oxidizing conditions associated with fumaroles compared to hot
340	springs in the same hydrothermal field. Carson et al. (in review) also found mineral assemblages
341	consistent with more oxidizing conditions (sulfates but no sulfides) surrounding a fumarole in
342	Hverir, to the east of the hot springs sampled for the current study.
343	
344	Element Mobility
345	
346	Comparing the elemental conditions of sediment samples near the hot springs to the less altered
347	hyaloclastite composition (IV-14-36) shows how these sediments differ from their substrate.
348	Figure 7 shows a spider plot of six altered samples, plotted against the hyaloclastite. All samples
349	show similar element enrichment and depletion patterns. Silica is enriched in three samples (IV-
350	14-25, IV-14-31, and IV-14-32), and elevated TiO_2 and Zr in most samples (Figure 6) indicate

351	significant residual enrichment via acid-sulfate leaching. Note that silica is not enriched in all
352	samples that contain elevated TiO_2 and Zr concentrations. Ti and Zr appear to be a stronger
353	indicator of leaching and resulting residual enrichment than silica and are concentrated in
354	samples that have undergone significant clay development as well as those dominated by
355	amorphous silica.
356	
357	Mg, Ca, Na, and K are depleted in all samples analyzed by XRF, and iron is significantly
358	depleted in some (Figure 7). Those with enriched iron (up to 28.09 wt% Fe ₂ O ₃ T) typically
359	contain abundant pyrite in their XRD patterns, and lower SiO ₂ and higher Al ₂ O ₃ concentrations
360	(Figure 6). The depletion of Ca, and lack of Ca-sulfate minerals, is unusual for this kind of
361	environment. Ca could have been locally mobilized and reprecipitated in the abundant veins of
362	gypsum observed cross-cutting Námaskar∂ hill.
363	
364	Aqueous Geochemistry
365	
366	The composition of selected geothermal surface waters at Námafjall are provided in Table 6, and
367	their associated environmental parameters are reported in Table 5. Five fluid samples (listed in
368	Tables 1 and 2, photographs of sample sites in Figures 2, 4, and 5) from geothermal features (e.g.
369	acid pools, hot springs, drainage channels, etc.) in the Hverir and Námaskar∂ area were analyzed.
370	The sampled fluids had temperatures between 11-71°C and pH within a narrow range (2.15-
371	2.42), consistent with their steam-derived acid-sulfate origin. Acidity is controlled by the
372	oxidation of H ₂ S to sulfate, resulting in a decrease in pH values. The oxidation of dissolved
373	sulfide proceeds slowly through SO_3^{2-} and $S_2O_3^{2-}$ and eventually to sulfate. Intermediate

oxidation states are unstable in acidic waters and rapidly oxidize in the presence of pyrite, which
is a common phase in acid pools and hot springs (Kaasalainen & Stefánsson, 2011) and which is
observed in our study in and near hot springs at Hverir and Námaskar∂. Additional acid is
generated by the oxidation of elemental sulfur in the following reaction:

378

379
$$S^0 + 1.5O_2 + H_2O \rightarrow 2H^+ + SO_4^{2-}$$

380

A floating film of pyrite and elemental sulfur was commonly associated with acid sulfate pools and hot springs, suggesting that dissolved sulfur was lost to the formation of sulfur-bearing minerals. H^+ concentrations are typically higher than transition metal cations in solution, and rock dissolution buffered the pH by consuming protons during water-rock interactions. This process is analogous to an acid-base titration, where H^+ ions are consumed by the basalt, which subsequently releases cations into solution. The pH is also buffered by the second dissociation constant of sulfuric acid (HSO₄^{-/}SO₄²⁻) (Kaasalainen & Stefánsson, 2012).

388

Geothermal fluid compositions exhibit significant variability but, in general, major cations showed a decrease in abundance in the following order: SiO₂, Fe²⁺, Al³⁺, Ca²⁺ or Mg²⁺, Na⁺, K⁺, although the inferred Al³⁺ concentration varied substantially between water samples. The inferred elevated Al³⁺ concentrations correspond to the highest sulfate concentrations in hot springs (up to 450 mg/l) and are reasonable based on results of previous and similar studies (up to ~1100 mg/l) (Kaasalainen & Stefánsson, 2012).

395

396	Acid-sulfate waters are dominated by sulfate anions, ranging from 398 to 3819 mg/l. The highest
397	sulfate concentrations (~3800 mg/l) were found in the Hverir hot springs, though concentrations
398	of 2150 mg/l were observed for one sample from the top of Námaskar ∂ hill. Differences in
399	dissolved sulfate concentrations may be the result of the differences in gas chemistry between the
400	two geothermal areas (e.g. Ármannsson, 1993). Additionally, it may be a function of the
401	discharge intensity, where higher discharge rates transport more dissolved species in solution to
402	the surface, rather than diffusing out into the altered deposits. Chlorine is depleted (<2 mg/l)
403	compared to local source water due to its high mobility during the alteration process and steam
404	condensate dilution (Arnórsson and Andrésdóttir, 1995, Kaasalainen and Stefánsson, 2012).
405	Nitrate is found in minor concentrations (<9 mg/l).
406	
407	Iron-Sulfide Formation and Oxidation
408	
409	The Fe-sulfide minerals pyrite and marcasite were observed near hot springs at Hverir and atop
410	Námaskar ∂ hill. A high supply of H ₂ S gas produced a locally reducing environment with high
411	water-rock ratios, where the oxidation front extends all the way to the surface. In areas with
412	lower temperature and H ₂ S supply, pyrite is found at depth below the oxidation front.
413	
414	The oxidation of pyrite is a complex biogeochemical process involving hydration, hydrolysis,
415	redox reactions, and microbial catalysis in the reaction below:
416	
417	$\operatorname{FeS}_{2}(\operatorname{aq}) + 3.75O_{2}(\operatorname{g}) + 3.5H_{2}O(\operatorname{l}) \operatorname{Fe}(\operatorname{OH})_{3}(\operatorname{s}) + 2H_{2}SO_{4}(\operatorname{aq})$
418	

419	The rate of pyrite oxidation depends on a variety of factors that include T, pH, Eh, relative
420	humidity, surface area, and microbial action. Ultimately, the driving force for the breakdown of
421	pyrite and marcasite is interaction with H ₂ O and atmospheric O ₂ . This results in the oxidation of
422	more soluble Fe^{2+} to insoluble Fe^{3+} , often in the form of goethite or eventually hematite, and the
423	formation of sulfuric acid (Markússon and Stefánsson, 2011). Acidic hydrothermal solutions
424	precipitate efflorescences of soluble and insoluble sulfate-salts. The former, although ephemeral,
425	provide direct evidence for the pathways of sulfide oxidation and the alteration of associated
426	mineral assemblages. Adjacent to the Námaskar ∂ and Hverir hot springs, a shallow oxidation
427	front (with sulfides below and sulfates above) forms where the hydrothermally-precipitated
428	pyrite and marcasite alters in contact with surface conditions. Thermophilic Fe- and S-
429	chemoautotrophs can also play an important role during the oxidation of pyrite, though Ende and
430	Szynkiewicz (2022) found little evidence for microbial activity in these kinds of acidic hot
431	springs, likely due to the elevated temperature.
432	

433 Efflorescence of Soluble Sulfate-Salts

434

Bulbous and fibrous aggregates formed white surface efflorescences around the hot springs. Hot and acidic conditions dissolve primary igneous phases and mobilize Fe^{2+} , Al^{3+} and other mobile cations out of the system. Previous studies (e.g. Zolotov and Shock, 2005) indicate that sulfide reacts more quickly than Fe during pyrite oxidation, giving rise to aqueous solutions enriched in SO_4^{2-} , H⁺, and Fe²⁺.

441 The oxidation of Fe-sulfides and supply of mobile cations allowed for the precipitation of a variety of Fe²⁺-, Fe³⁺-, Al-, Ca-, and Mg-insoluble and soluble sulfate-salts. Acidic hot springs 442 443 had high SO₄, Fe, and Al aqueous concentrations, and at both Hverir (IV-13-3) and Námaskar∂ (IV-17-7) a widespread zone of halotrichite and/or pickeringite ($(Fe^{2+},Mg)Al_2(SO_4)_4 \cdot 22H_2O$) 444 445 surface precipitation is observed. Extensive solid solution occurs in these minerals, where Fe>Mg the mineral is classified as halotrichite, and pickeringite is more magnesium-rich. Their 446 447 XRD patterns are very difficult to distinguish and, therefore, a positive identification of either 448 mineral is labeled as halotrichite/pickeringite. Bilinite $(Fe^{2+}Fe^{3+}_2(SO_4)_4 \cdot 22H_2O)$ also forms a 449 solid solution series with halotrichite (identified by Geptner et al., 2007), indicating additional solid solution between mixed valence states of Fe, and apjohnite $(Mn^{2+}Al_2(SO_4)_4 \cdot 22H_2O)$ is 450 451 also very similar in its XRD pattern. For sample IV-13-3 (Hverir hot spring transect) some of the 452 halotrichite/pickeringite is likely pickeringite, as the sample has 2.15 wt% MgO as measured by 453 XRF and pickeringite is the only Mg-bearing phase identified by XRD. For sample IV-14-22 454 (Námaskar∂ hill), halotrichite is more likely, given elevated XRD background and a qualitatively 455 better pattern match with halotrichite. Black et al. (in revision) confirmed the presence of 456 pickeringite (rather than halotrichite) in a sample from the margins of a different Námafjall-area 457 hot spring using VNIR (along with voltaite in the same sample, identified using XRD), though 458 they also observed abundant halotrichite/apjohnite in a sample from a fumarole transect. A 459 variety of minerals from the halotrichite group thus appear to be present at Námafjall. 460 461 Ferrous iron sulfates (rozenite, halotrichite, and szomolnokite) were found in the white to orange 462 surface precipitate samples IV-13-3 (Hverir hot spring transect) and IV-17-7 (Námaskar∂),

though IV-13-3 also contained minor mixed valence (voltaite) and ferric iron sulfate

464	(coquimbite, rhomboclase) as well. Previous investigations of sulfate-salts in volcanic and acid-
465	mine drainage environments reveal that the formation of rozenite comes first and through a slow
466	recrystallization process forms szomolnokite (Reardon & Beckie, 1987).
467	
468	Alunite-jarosite group minerals are observed in both field areas, though only as minor phases.
469	Natroalunite is found in sediment samples from the upper cm of the first Námaskar∂ sample pit,
470	in samples otherwise dominated by amorphous silica, anatase, and elemental sulfur. It is
471	identified as a minor phase in the mud at the edge of the sampled Hverir hot spring, along with
472	pyrite, elemental sulfur, and other sulfate phases (including jarosite), showing a range of redox
473	conditions in the same sample.
474	
475	Phyllosilicates
476	
477	Kaolin and smectite group minerals are the main phyllosilicates at Námafjall. The two mud
478	samples collected from the edge of hot springs (IV-13-2 from Hverir, IV-17-05 from the second
479	sampled hot spring at Námaskar∂) both yielded kaolinite, as did the sediment at the base of the
480	pit excavated near the first Námaskar∂ hot spring (IV-14-30). All three kaolinite-bearing samples
481	also contained pyrite and anatase. Kaolinite crystallinity improves in low pH environments,
482	though kaolin group minerals are more stable in mildly acidic to neutral environments (Fialips et
483	al., 2000).
484	
485	Smectite is a major phase in two samples analyzed, both from orange surface sediment samples
486	(at Hverir: IV-13-4; at Námaskar∂: IV-14-24). Both samples also contain amorphous silica and

487 abundant sulfate minerals. In general, smectite is more abundant in areas with lower 488 temperatures and lower gas emissions, where the neutralization of acidic fluids 489 thermodynamically favors smectite formation. Mínguez et al. (2011) observed a range of 490 smectite compositions that reflected the composition of the Holocene basalts and Pleistocene 491 hyaloclastites at Námafjall. For example, Al-rich smectite (beidellite and montmorillonite) was more abundant in the hyaloclastite, while nontronite (Fe^{3+} -bearing smectite) was more abundant 492 493 associated with altered basalt. However, Black et al. (in revision), in a study of the mineralogy 494 surrounding a Námaskar∂ hill fumarole, identified nontronite (using VNIR) at the outskirts of an 495 alteration apron, where the substrate was hyaloclastite. The varying compositions may also 496 reflect changes in the acidity of the fluids, where the extent of alteration affects the amount of 497 cations released into solution. Additionally, increased distance from the pathway of 498 hydrothermal fluids will raise the pH and neutralize the acidity within the system and, thereby, 499 precipitate out minerals containing more mobile elements (e.g. Ca, Mg). The composition of 500 smectite depends on a combination of several factors including the pH of the fluid, element 501 mobility, and the pathway of the fluids. 502 503 It is important to remember that the genesis of poorly crystalline smectite clays comes from the 504 hydration of sideromelane fragments, i.e. palagonite. Through continued alteration, palagonite 505 transforms into smectite, hence, smectite is an abundant mineral phase in areas of lower surface 506 activity (in terms of temperature and gas emissions) along hyaloclastite ridges. 507

508 Thermodynamic models indicate that phyllosilicate formation is favored by moderate to alkaline
509 pH conditions (e.g. Velde, 1995). However, kaolinite can precipitate under lower pH conditions

510	(Fialips et al., 2000). The stability of phyllosilicates in low pH systems with high ionic strength
511	is not well constrained. For example, Al-phyllosilicates are less susceptible to alteration under
512	acidic conditions than Mg-smectites such as saponite. However, Story et al. (2010) indicate that
513	Al- and Fe/Mg-phyllosilicates can persist in sediments submerged in acid-saline lakes in Western
514	Australia. In addition, Peretyazhko et al. (2014) was able to artificially form saponite and
515	nontronite from reactions with basaltic glass under moderately acidic (pH 4) conditions. Also,
516	Hynek et al. (2013) documented kaolinite in altered basalts in and around acid-sulfate fumaroles
517	and hot springs with pH as low as 2 and montmorillonite at pH 4 at Cerro Negro volcano,
518	Nicaragua. One important observation is the co-occurrence of smectite and jarosite in medium to
519	low activity areas (sample IV-14-24), suggesting that smectite may be able to form <i>in-situ</i> under
520	mildly acidic conditions in the presence of high ionic strength solutions. This observation
521	indicates that smectite can persist and remain stable near low pH local discharge areas.
522	
523	Silica and anatase
524	
525	Many samples collected near the hot springs display a significant amorphous silica "hump" in
526	their XRD patterns. One sample (IV-13-4 from the Hverir hot spring apron) contains minor
527	cristobalite as well. Quartz was observed in two samples collected at depth from the second pit at
528	Námaskar ∂ (samples IV-14-25 and 26).
529	
530	Samples with abundant amorphous silica are almost always also associated with anatase and
531	elevated concentrations of both SiO_2 and TiO_2 measured by XRF, consistent with acid-sulfate
532	leaching of the surrounding rocks and soils at low to moderate temperatures. Other elements are

- 533 leached away, leaving a residual concentration of these less mobile elements. SiO_2 is initially 534 housed in amorphous silica, while TiO_2 is housed within anatase.
- 535

536 Quartz and cristobalite are inferred to be secondary in nature, as the original substrate is 537 Pleistocene basaltic subglacial hyaloclastite, and neither was identified (or expected) in the less 538 altered hyaloclastite samples. While cristobalite and tridymite often occur as a high-temperature 539 silica polymorph (if quenched rapidly from high temperatures, they can exist metastably at the 540 surface), they can also form from the devitrification of volcanic glass (Heaney, 1994) and have 541 also been identified as a likely fumarolic precipitate at Kilauea (Morris et al., 2000). The quartz 542 in the Námaskar∂ samples most likely formed as the result of alteration or diagenesis either 543 under the current hydrothermal regime, or at some earlier time since the Pleistocene 544 emplacement of the hyaloclastite ridge. The formation of quartz due to the "maturation" of opal-545 A following hydrothermal sinter precipitation or acid-sulfate precipitation or leaching has been 546 estimated to take thousands to tens of thousands of years (Herdianita et al., 2000; Rodgers et al., 547 2002, 2004), or as little as hundreds of years (Taupo volcanic area: Lynne et al., 2007) or even 548 months (Lynne et al., 2006), depending on the specific conditions. Higher temperatures like 549 those found in long-lived acid sulfate fumarolic systems help accelerate the process. 550

Anatase is observed in the XRD patterns of almost all amorphous silica or kaolinite-bearing samples and is a product of residual enrichment of immobile TiO_2 during leaching. While it is observed even for a sample in which TiO_2 is not significantly concentrated compared to the hyaloclastite substrate (substrate sample IV-13-15: 1.82 wt% TiO_2 , minor anatase bearing Hverir sample IV-13-2: 2.56 wt% TiO_2), it is particularly abundant in samples from the vicinity of the

- 556 Námaskar ∂ hot springs, which have higher TiO₂ concentrations (up to 10.7 wt% in sample IV-
- 557 14-25).
- 558

559 Overall Water-Rock Interaction, Secondary Mineralogy, and Fluid Chemistry at the

560 Surface

561

562 Hydrothermal surface alteration of Pleistocene hyaloclastites generates a mosaic distribution of 563 varying surface colors and compositions along the margins of surface activity as the result of 564 aggressive and changing geothermal conditions associated with the appearance and renewal of 565 faults and fissures. The combination of element mobility and the formation and precipitation of 566 hydrothermal assemblages has resulted in distinct mineralogical and geochemical trends in the 567 alteration approx around the hot springs. The supply of acid and volcanic gases (such as H_2S), the 568 extent of the reaction, the pH of the water, and the position of the oxidation front (and related 569 redox conditions) are the dominant processes within a volcanic geothermal system (Markússon 570 and Stefánsson, 2011).

571

Acid-sulfate waters are produced when rising volcanic vapors are enriched in H_2S and CO_2 , condensing into oxygenated ground- and surface-waters where the H_2S is oxidized into sulfuric acid and the CO_2 is mostly degassed (Kaasalainen & Stefánsson, 2012). This process produces acidic waters with pH <4 and reducing conditions that will alter the basaltic hyaloclastite and basalt lava flows in gas- (low water-rock ratios, fumaroles) and fluid- (high water-rock ratios, hydrothermal pools) dominated settings. Dissolved ion concentrations correspond well to bulk hyaloclastite and basalt compositions, indicating that the substrate dissolves nearly

579	stoichiometrically (at pH <2.5) with respect to most major rock-forming elements. In acid-sulfate
580	hydrothermal experiments on Central American basalts described by Marcucci and Hynek
581	(2014), plagioclase dissolved first, followed by pyroxene and then olivine, with glass being the
582	most resistant to dissolution (kinetically inhibited). Overall, dissolved ion concentrations are
583	related to pH, with higher acidity associated with greater cation abundances.
584	
585	These high-temperature and localized fluids become supersaturated with respect to pyrite,
586	kaolinite, amorphous silica, and native sulfur (Markússon and Stefánsson, 2011). While
587	amorphous silica, anatase, and kaolinite are insensitive to redox conditions, pyrite and native
588	sulfur oxidize through interactions with atmospheric O ₂ and H ₂ O, introducing more sulfuric acid
589	into the system. Phase segregation and sulfur oxidation are the main controls on the pH of the
590	fluid. In gas-dominated settings, secondary minerals can precipitate directly from the volcanic
591	vapors or during alteration of primary igneous phases. In contrast, alteration products in fluid-
592	dominated settings are controlled largely by the oxidation of iron sulfide deposits.
593	
594	Hot Springs Alteration Model
595	
596	A conceptual model of alteration for the hot springs is shown in Figure 8. The influx of H_2S gas
597	results in extensive pyrite and native sulfur deposits, enriching alteration products in S (5.31-7.86
598	wt%). Acid leaching dominates closest to the hot spring, resulting in significant depletion of
599	most major elements. This area also features a residual enrichment in SiO_2 , TiO_2 , and Zr, due to
600	the removal of other components (as illustrated in X_2 , Figure 9). In the orange sediments and
601	precipitates along the margins, most elements are still depleted with the exception of

phosphorous and iron (X_1 , Figure 8). Fe and Al mobility are lower in these sediments as these elements are incorporated into clay minerals and Fe-bearing sulfates and sulfides. Iron and sulfur mineral assemblages depend largely on the position of the oxidation front, defined by the transition from reduced to oxidized mineral phases.

606

607 Pyrite oxidation generates a secondary mineral series associated with increasing distance from 608 the hot spring in the following order: pyrite \rightarrow rozenite \rightarrow szomolnokite/ halotrichite group \rightarrow 609 jarosite \rightarrow hematite/goethite (e.g. Nordstrom & Alpers, 1999). Fluid compositions near hot 610 springs have enriched ferrous Fe concentrations (122-196 mg/l) that become supersaturated with 611 respect to iron-sulfide minerals (Markússon and Stefánsson, 2011). Pyrite oxidation forms a 612 series of soluble sulfate-salts, which likely reflects the lower mobility of Fe and S in the fluid 613 phase due to increasing oxidation. Here, Fe- and S- redox gradients develop, and can be seen in 614 the formation of sulfides under reducing conditions and the formation of sulfate-salts and oxides 615 as they undergo varying degrees of oxidation.

616

Ultimately, the further from the discharge source the more control atmospheric O_2 exerts on the secondary mineral phases and element mobility. The predominance of Fe- and Al-sulfates reflects the dominance of these dissolved species in the fluids, while Ca^{2+} and Mg^{2+} are minor components in both the aqueous and mineral phases. Fe^{2+} -sulfates (e.g. white precipitates) are only observed in areas of high to medium surface activity (e.g., moderate to high temperatures and gas emissions). This suggests that these minerals may also be temperature dependent, or can be dissolved and transported during precipitation events in areas of lower activity.

624

625	At the surface, iron and sulfur oxidation occurs over several meters, while below the surface the
626	oxidation front exhibits a sharp boundary over several centimeters (Figure 4). In two depth
627	profiles, a thin laterally-continuous transitional layer (<5 cm) separates the oxidized from the
628	reduced layer, but mineralogically is more similar to the oxidized surface layer. In low activity
629	areas, pyrite appears to alter directly into goethite and/or hematite, rather than through a series of
630	soluble sulfate-salts (Nordstrom & Alpers, 1999). Markússon and Stefánsson (2011) observed a
631	similar trend at Krysuv k, Iceland, where Cu-sulfide (covellite) was present below the oxidation
632	front and Cu-sulfates at the surface. At Námafjall, Fe- sulfates (both Fe ²⁺ and Fe ³⁺) dominate the
633	sulfate mineralogy at the surface away from neighboring hot springs, and along the margins of
634	activity, Fe ³⁺ sulfates and even goethite indicate more oxidizing conditions. At Hverir, smectites
635	are found along the distal margins of surface activity, where the neutralization of the acid-sulfate
636	fluids favors smectite formation.
637	

Ende and Szynkiewicz (2022), in their studies of fluid chemistry of varied terrestrial hot spring

environments (including Námafjall), concluded that the oxidation of Fe^{2+} to Fe^{3+} is more

640 efficient during drier (fumarolic) intervals compared to wetter (hot spring) intervals in the same

hydrothermal H₂S-emitting settings. This is consistent with our observation of Fe^{2+} sulfides and

sulfates in hot spring muds and directly adjacent altered sediments and Fe^{3+} sulfates in surface

643 deposits further from the fluid source.

644

645

646 Relevance to Martian Hydrothermal Systems

648 While Iceland in general and the Námafjall geothermal area in particular are well suited as 649 analogs to potential Martian hydrothermal environments, certain key differences must be 650 considered. Icelandic basalts are generally high in iron by terrestrial standards but still lower than 651 many Martian basalts, including those from Gusev crater, and their Al concentrations tend to be 652 higher than on Mars. Since the composition of the rock affects alteration pathways, basalt 653 composition can affect the relative abundances and compositions of secondary minerals. Also, 654 meteoric water plays a much larger role in Icelandic systems, and soluble salts and more mobile 655 cations (e.g. Na, Ca, Mg) are more easily leached and removed from the system. However, while 656 current conditions on Mars are drastically different from Earth, the atmospheric conditions on 657 early Mars are far less constrained. The abundance of ferric minerals and phyllosilicates in 658 Noachian terrains may indicate at least locally oxidizing conditions and/or abundant surface 659 water that altered basaltic substrate. The gas chemistry is wholly unconstrained, but given the 660 high levels of sulfur in Martian basalts, volcanism likely produced abundant volatiles in the form 661 of SO₂ and/or H₂S gas (Gaillard et al., 2009). 662

663 Home Plate, Gusev Crater: Sulfate-rich Paso Robles class soils. Paso Robles class soils are 664 among the most altered materials examined by the Spirit rover in Gusev crater, as demonstrated 665 by high SO₃ concentrations (>31%) and abundant ferric sulfate minerals. Other phases identified 666 were amorphous silica, Mg-sulfates, Ca-sulfates, Ca-phosphates, hematite, halite, and allophane 667 (Ming et al., 2006; Yen et al., 2008). Yen et al. (2008) favored an alteration process in an acid-668 sulfate leaching environment (e.g. fumaroles or steam condensed into caustic pools) derived 669 from magma degassing and/or oxidation alteration of crustal iron sulfide deposits. Hynek et al. 670 (2013) argued that a fumarole origin was a good fit based on research on Cerro Negro

671 (Nicaragua) fumaroles. Home Plate, a remnant volcanic structure, indicates that high-

- temperature volcanic gases and fluids were once common in the area (Squyres et al., 2007;
- 673 Schmidt et al., 2008). The localized nature of the Paso Robles soils at various elevations,
- 674 including depressions and on slopes, accompanied by high S concentrations, further supports a
- fumarole origin (Schmidt et al., 2008, 2009). The presence of hydrated ferric sulfates indicates
- oxidizing, low pH conditions and, therefore, that these soils formed in a highly acidic
- 677 environment (Bigham and Nordstrom, 2000).
- 678

679 Námafjall hot spring related deposits exhibit a diversity of sulfate minerals (see Table 1), along 680 with sulfide minerals at depth, silica phases (both amorphous and crystalline), and clays. Most of 681 the sulfates identified at Námafjall are iron-bearing, with some Ca-, Na-, Al-, and mixed cation 682 varieties. Yen et al. (2008) noted greater abundances of Mg-sulfates in the Paso Robles soils, 683 which constitute only a minor component of the soluble sulfate-salts at Námafjall, and could be 684 absent entirely if halotrichite, rather than pickeringite, is the dominant member of the halotrichite 685 group present. These differences may be attributed to variation in the major cations available in 686 the parent rocks. Higher Mg contents in Martian basalts compared to Hverir and Námaskar∂ may 687 have produced more Mg-sulfates during acid-sulfate alteration. Mg is also a highly mobile 688 element under acid-sulfate conditions and the high solubility of Mg-sulfates is likely responsible 689 for their low abundance, as they would be easily washed away during interaction with ground 690 and surface water. Acid-sulfate alteration of Martian basalts may have been more akin to a 691 closed-system, lacking abundant precipitation after formation, where Mg and other mobile 692 elements would be retained in the products of alteration. Marcucci et al. (2013) discuss the high 693 solubility of Mg-sulfates (and thus their low abundance) in terrestrial hydrothermal

694 environments, suggesting that the presence and preservation of Mg-sulfates is an indicator of695 limited water interactions.

696

697 Paso Robles class soils also contain a mixture of poorly constrained ferric sulfates (Lane et al.,

698 2008). In target Arad Samara, a Fe:S ratio of approximately 2:3 was obtained by the removal of

hematite, silica, and Mg-sulfate from the bulk using elemental abundances. Ferrous sulfates are

700 excluded from consideration because they are not consistent with the Spirit Mössbauer results.

Parente et al. (2009) and Wang and Ling (2011) identified the ferric sulfate mineral

702 ferricopiapite, based on a visible-near infrared (VIS-NIR) spectral variation (derived from

Pancam spectra), attributed to dehydration after exposure to the Martian atmosphere.

Ferricopiapite forms in low pH environments (pH <2.5) and under highly oxidizing conditions,

705 typical of fumarolic settings (Wang and Ling, 2011). Other ferric sulfates are likely present, but

cannot be easily constrained using available spectroscopic data. Other candidates include

rhomboclase, paracoquimbite ($Fe^{3+}_2(SO_4)_3 \cdot 9H_2O$), kornelite ($Fe^{3+}_2(SO_4)_3 \cdot 7H_2O$), and yavapaiite

708 ($KFe^{3+}(SO_4)_2$). Parente et al. (2009) also identified paracoquimbite in Paso Robles and Tyrone

soils. Fe³⁺-sulfates identified in the Námafjall area are ferricopiapite, rhomboclase,

710 (natro)jarosite, and coquimbite, which is structurally homeotypic with paracoquimbite but

711 contains some Al (AlFe₃(SO₄)₆(H₂O)₁₂ \cdot 6H₂O). Pancam spectra eliminate jarosite as a viable

option in the Paso Robles soils primarily because it lacks a convex upward shape at ~480 nm in

713 VNIR spectra (Lane et al., 2008). The VNIR patterns of other ferric sulfates like ferricopiapite

- and rhomboclase exhibit this unusual spectral feature. At Námafjall, these minerals were
- 715 identified in sulfur-rich fumarolic soils in low pH (~2) environments, similar to those interpreted
- for the salty sulfate soils at Tyrone and other sites in the Columbia Hills. The presence of these

minerals in the sulfur-rich hot spring associated deposits of Námafjall supports the acid-sulfate
fumarole model proposed by Yen et al. (2008). Alternatively, ferricopiapite may have formed
from other sulfate phases through a combination of dehydration, neutralization, and oxidation
(e.g. King & McSween, 2005; Lane et al. 2008), similar to pyrite oxidation and/or volcanic
vapors observed at Námafjall.

722

723 Figure 8 presents a conceptual model for hot spring related alteration, with a focus on iron and 724 sulfur bearing minerals. The parts of this system that are most mineralogically similar to the Paso 725 Robles soils are the surface efflorescences most distant from the hot springs, and the surface and 726 shallow sediments along the margin. This is because these areas show the highest degree of oxidation, in keeping with the Fe^{3+} sulfate phases observed in the Martian deposits. Ende and 727 Szynkiewicz (2022) interpreted the absence of less oxidized phases like sulfides, elemental 728 sulfur, and Fe²⁺ sulfates in the Gusev hydrothermal deposits compared to modern terrestrial hot 729 730 spring environments (including at Námafjall) as evidence that they were oxidized later, likely 731 after hydrothermal processes ceased.

732

733 Gale crater: hydrothermally-altered sedimentary rocks of Aeolis Mons. Hydrothermal

processes have also been inferred for the formation of specific features at Gale crater. In

particular, Yen et al. (2021) interpreted the observed occurrence of tridymite in the Murray

736 Formation of Gale crater as being consistent with hydrothermal fluid interaction with sediments

- rather than volcanic deposition. The identification of cristobalite in hydrothermally-altered
- volcanic sediments in this study (and tridymite in other hot spring/fumarole environments, such

739	as at Lassen, McHenry et al., 2017), could provide a terrestrial example of a hydrothermal, rather
740	than high-temperature volcanic, origin for the Murray tridymite.
741	
742	Implications
743	The alteration mineral assemblages and patterns of element enrichment and depletion are
744	relevant to the interpretation of likely hydrothermal deposits on Mars, especially those observed
745	by the Mars Exploration Rover (MER) Spirit in the Columbia Hills. Several key observations:
746	
747	1) The presence of smectitic clays formed under acidic conditions in the vicinity of hot
748	springs. Neutral to alkaline fluids are often invoked in models for early Mars to help
749	explain widespread clay formation (in contrast to sulfate-rich deposits, attributed to later
750	acidic conditions, e.g. Bibring et al., 2005). However, more recent geochemical modeling
751	by Peretyazhko et al. (2018) is consistent with clay formation and stability under more
752	acidic conditions.
753	
754	2) The range of Fe^{3+} sulfate phases observed in the soils surrounding this acid-sulfate hot
755	spring environment. Ferricopiapite, rhomboclase, and coquimbite are observed here and
756	are candidates for the inferred Fe ³⁺ sulfate phases in the Paso Robles soils investigated by
757	MER Spirit at Gusev crater. The similarity in mineral assemblage suggests a common
758	origin, though the presence of sulfides at Námafjall but not Paso Robles indicates more
759	oxidizing conditions on Mars, either during formation or due to later alteration.
760	

7613) Most major cations are highly mobile in steam-derived acid-sulfate waters (pH <2.5) and</th>762were leached from the system, affecting bulk compositions and leading to a paucity of763sulfate precipitates with Mg^{2+} , K⁺, or Na⁺. This contrasts with Martian sulfates, where764Mg-sulfates are common. The wetter conditions in Iceland compared to early Mars likely765contribute to this difference.

766

767	4)	Pyrite oxidation and volcanic vapor condensation produce a series of Fe-and Al-sulfate-
768		salts. Fe ²⁺ sulfates are present closer to the acid fluid source, while Fe ³⁺ sulfates dominate
769		at greater distances and in surface samples, consistent with a redox gradient for both Fe
770		and S. The redox gradients developed in the vicinity of the hot springs would provide the
771		necessary redox couples and aqueous environment to support microbial metabolisms.
772		Similar environments could have been present, and habitable, on early Mars (e.g.
773		Grotzinger et al., 2014).

774

Together, these observations inform our interpretations of the environments under which fluidrock interactions occurred on the surface of ancient Mars. Acid-sulfate fumarole or hot spring
alteration is a plausible mechanism for the formation of some sulfate-rich soils on Mars (e.g.,
Paso Robles soils in the Columbia Hills), and smectitic clays can also form and be preserved in
acid-sulfate environments (typically at the margins of activity).

781

Acknowledgments

783	The authors would like to thank Teri Gerard, Thomas McCollom, Ramy El-Maarry, and Sarah
784	Black for their assistance in the field and Jordan Ludyan and Christopher Vickery for their help
785	in the lab. This research was funded by grants from the UW-Milwaukee Research Growth
786	Initiative (to McHenry) and NASA's Habitable Worlds (award NNX15AP15G to McHenry).
787	Permission to export samples from Iceland was granted by the Icelandic Institute of Natural
788	History.
789	Figures
790	
791	Figure 1: Maps of (a) Iceland and the Krafla area, adapted from Gudmundsson and Arnorsson
792	(2005), and (b and c) Námafjall geothermal field, with sampling sites from this study. Geologic
793	map in (b) adapted from Saemundsson et al. (2012), satellite imagery in (c) from Google Earth.
794	
795	Figure 2: Field photos of (a) the hot spring transect sampled at Hverir, (b) the runoff pool from a
796	steam vent at Hverir from which fluid sample IV-14-4 was collected, and (c) the muddy hot
797	spring at Hverir from which fluid sample IV-14-5 was collected.
798	
799	Figure 3: Photos of the Hverir hot spring transect and XRD patterns for nearby surface samples.
800	IV-14-1 indicates the position where the associated hot spring fluid sample was collected. IV-13-
801	2 is a sample of the grey mud from the rim of the hot spring (71.5°C), and contains amorphous
802	silica, anatase, sulfur, pyrite, and minor amounts of various sulfates (ferricopiapite, alunogen,
803	jarosite, and natroalunite), indicating a range of oxidation states for both iron and sulfur. IV-13-3
804	is a white surface precipitate from the apron surrounding the mud pot (94.3°), and consists
805	entirely of sulfates, including mostly halotrichite/pickeringite, with minor amounts of other Fe ²⁺

and Fe^{3+} sulfate phases. Sample IV-13-4, from orange surface sediment beyond the margins of the visible sulfate precipitate apron (43.7°C), contains mostly smectitic clay, rhomboclase, and amorphous silica, with minor phases including goethite, anatase, and kaolinite.

809

810	Figure 4	Photos	of the	site of	the fir	st Náma	iskar∂∶	hot spi	ring ai	nd adi	iacent s	oil pit	with	XRD
												p	,	

811 patterns for select samples. Fluid sample IV-14-29 was collected from the murky hot spring

812 indicated. Sample IV-17-7 is a white surface precipitate collected nearby, and consists entirely of

813 sulfates (halotrichite/pickeringite, gypsum, and rozenite). Sample IV-14-31 is yellow-tan

sediment from 6 cm depth in the pit (36.2°C), and contains mostly amorphous silica, anatase, and

815 rhomboclase, with minor sulfur and natroalunite. Sample IV-14-30 is grey mud collected from

the same pit at 10 cm depth (51.1°C), and contains amorphous silica, pyrite, and anatase with

817 minor marcasite and kaolinite. The high background of this XRD pattern is attributable to iron

818 fluorescence (this sample contains $11.69 \text{ wt\% Fe}_2O_3T$).

819

820 Figure 5: Photos of the site of the second Námaskar∂ hot spring and adjacent soil pit, with XRD

patterns for select samples. Fluid sample IV-14-23 was collected from the mud pot indicated.

822 Sample IV-17-5 is grey mud from the rim of this hot spring, and consists of abundant kaolinite,

anatase, sulfur, and pyrite with minor smectite. Sample IV-14-22 is a surface precipitate

824 collected nearby, and consists almost exclusively of halotrichite/pickeringite (with trace gypsum

and potentially tamarugite). Sample IV-14-24 is orange surface sediment from the top of the 2^{nd}

826 Námaskar∂ pit (34.1°C), and contains abundant smectitic clay and ferricopiapite, with minor

amorphous silica, jarosite, and gypsum. Sample IV-14-26 is dark grey mud sampled at 8 cm

depth in the pit (61.3°C), and contains abundant quartz and pyrite, with minor anatase, marcasite,

829	szomolnokite, and rhomboclase. High background in the XRD patterns from this site results
830	from iron fluorescence, based on the abundance of Fe-bearing minerals and a 14.99 wt% Fe_2O_3T
831	for sample IV-14-24.
832	
833	Figure 6: x-y plots of element abundances for Hverir and Námaskar ∂ hot spring-adjacent
834	samples analyzed by XRF. The composition of the less altered hyaloclastite and lava samples are
835	plotted in green in each plot for comparison. Plots A-D show concentrations of SiO ₂ , Fe ₂ O ₃ T,
836	MgO, and Zr vs. TiO ₂ , respectively; plots E-G show concentrations of SiO ₂ , Al ₂ O ₃ , and K ₂ O vs.
837	Fe ₂ O ₃ T, respectively. TiO ₂ serves as a proxy for the degree of leaching and residual enrichment
838	and shows a linear relationship with Zr (another relatively immobile element). SiO ₂ is enriched
839	in many samples, in general showing an inverse relationship to Fe_2O_3T . MgO and K_2O are lower
840	in all samples compared to the substrate, consistent with their mobility during leaching.
841	
842	Figure 7: Spider plot for the Námaskar∂ hill samples normalized against the least altered
843	hyaloclastite substrate sample (IV-14-36). Missing data points indicate concentrations below the
844	limits of detection. TiO_2 and Zr are concentrated in all samples, consistent with residual
845	enrichment through leaching. SiO_2 is higher in most samples, also consistent with leaching.
846	
847	Figure 8: Conceptual model for hot spring related alteration. Alteration apron is \sim 2 meters in
848	diameter. Vertical blue bars represent oxidation-reduction boundaries between Fe^{2+}/Fe^{3+} , S^{2-}
849	$/\mathrm{SO_4^{2-}}$, and $\mathrm{S_0}/\mathrm{SO_4^{2-}}$ determined by surface mineralogy. X1 and X2 correspond to samples used
850	for isocon plots in Figure 9. The oxidation front at depth is also indicated, with reducing
851	conditions (and related mineral assemblages) below and more oxidizing conditions and

852	assemblages above, as observed in samples collected from pits. Sulfate minerals observed or
853	inferred for the Paso Robles soils at Gusev crater are listed in bold. They are concentrated in the
854	surface deposits and precipitates at greater distances from the hot spring, above the oxidation
855	front, indicating more oxidizing conditions.
856	
857	Figure 9: Isocon plots for two samples from the vicinity of a Hverir hot spring. Sample locations
858	are marked as X1 and X2 on Figure 8. Enrichment and depletion of elements are assessed by
859	their relation to the 1:1 ratio line. For these graphs, any element that plots above the line is
860	enriched, below is depleted, and on the 1:1 ratio line is immobile relative to the fresher basalt
861	(IV-13-15). (X1) In the orange precipitate/sediment, phosphorous, Fe, and siderophile elements
862	(e.g. V and Cr) are enriched, while most major cations are depleted (IV-13-2). (X2) In the gray
863	mud, all major cations are depleted with residually enriched Si, Ti, and Zr (IV-13-4). S is
864	enriched in both samples.
865	Tables
866	Table 1: Hverir hot spring transect samples and XRD phases
867	Table 2: Námaskar ∂ hot spring area samples and XRD phases
868	Online Materials Table 3: Hverir hot spring transect XRF major and trace elements
869	Online Materials Table 4: Námaskar∂ hot spring area XRF major and trace elements
870	Table 5: Hydrolab results (environmental parameters for sampled fluids)
871	Table 6: Ion concentrations for sampled fluids
872	
873	References
874	

875 Å	Armannsson,	Н. ((1993).	The geothermal	system in	Námafjall-	Chemical	compilation.
-------	-------------	------	---------	----------------	-----------	------------	----------	--------------

- 876 Collaboration Project of Landsvikjunar and Orkustofnunar, OS-93053/JHD-29 B, 30p (in
- 877 Icelandic).
- 878
- 879 Arnórsson, S. and Andrésdóttir, A. (1995) Processes controlling the distribution of boron and
- 880 chlorine in natural waters in Iceland. *Geochimica et Cosmochimica Acta* 59:4125-4146.
- 881
- 882 Bibring, J.-P. et al. (2005), Mars surface diversity as revealed by the OMEGA/Mars Express
- 883 observations. Science 307: 1576–1581.
- 884
- 885 Bigham, J.M., and Nordstrom, D.K. (2000). Iron and aluminum hydroxysulfates from acid
- sulfate waters. In: Alpers, C.N. et al., Eds. Sulfate Minerals. Reviews in Mineralogy and
- 887 Geochemistry, V. 40, Mineralogical Society of America, Washington, D.C. pp. 351-403.
- 888
- 889 Black, S.R., Hynek, B.M., McHenry, L.J., McCollom, T.M., Cameron, B.I., Glenister, C. (in
- 890 revision). Bulk mineralogy of surficial hydrothermal acid-sulfate deposits at Námafjall,
- 891 Þeistareykir 1 Geothermal Field, and Hengill Volcano, Iceland: Implications for the
- 892 identification and 2 interpretation of hydrothermal deposits on Mars. Journal of Geophysical
- 893 Research Planets.
- 894
- 895 Byers, H., McHenry, L.J., and Grundl, T.J. (2016) Forty-nine major and trace element
- sol concentrations measured in Soil Reference Materials NIST SRM 2586, 2587, 2709a, 2710a and

897	2711a using ICP-MS and	Wavelength Dispersive-XRF.	Geostandards and Geoanalytical
-----	------------------------	----------------------------	--------------------------------

898 Research 40:433-445.

899

- 900 Carson, G.L., McHenry, L.J., Hynek, B.M., Cameron, B.I., Glenister, C., revised, in review.
- 901 Mineralogy and bulk geochemistry of a fumarole at Hverir, Iceland: Analog for acid-sulfate
- 902 leaching on Mars. Submitted to American Mineralogist.

903

- 904 El-Maarry M. R., Black S. R., Hynek B. M. and McHenry L. J. (2017) Mineralogy of Fumarolic
- 905 Deposits from Iceland as Analogs for Ancient Hydrothermal Systems on Mars: Role of
- 906 Temperature. In *Lunar and Planetary Science Conference*: 2870–2871.

907

- 908 Ende, J.J. and Szynkiewicz, A., 2021. Mechanisms of sulfate formation in acidic hydrothermal
- 909 sites of Iceland, Lassen, Valles Caldera, and Yellowstone: Implications for possible oxidation
- 910 pathways in martian volcanic settings. *Icarus*, *368*, p.114608.
- 911
- 912 Fernández-Remolar, D., Morris, R.V., Gruener, J.E., Amils, R., and Knoll, A.H. (2005) The
- 913 Rio Tinto Basin, Spain: Mineralogy, sedimentary geobiology, and implications for
- 914 interpretation of outcrop rocks at Meridiani Planum, Mars. Earth and Planetary
- 915 Science Letters 240:149-167.
- 916
- 917 Fialips, C-I., Petit, S., Decarreau, A., and Beaufort, D. (2000) Influence of synthesis pH on
- 818 kaolinite "crystallinity" and surface properties. *Clays and Clay Minerals* 48:173-184.

- 920 Gaillard, F., and Scaillet, B. (2009) The sulfur content of volcanic gases on Mars. *Earth and*
- 921 Planetary Science Letters 279:34-43.
- 922
- 923 Geptner, A.R., Ivanovskaya, T.A., Pokrovskaya, E.V., Lyapunov, S.M., Savichev, A.T.,
- 924 Gorbunov, A.V., and Gor'kova, N.V. (2007) Hydrothermally altered hyaloclastites at the earth's
- 925 surface in the rift zone of iceland; problem of the biochemogenic accumulation of trace elements.
- 926 Lithology and Mineral Resources 42:453-476.
- 927
- 928 Grotzinger, J. P., Arvidson, R.E., Bell, J.F.III, Calvin, W., Clark, B.C., Fike, D.A., Golombek,
- 929 M., Greeley, R., Haldemann, A., Herkenhoff, K.E., Jolliff, B.L., Knoll, A.H., Malin, M.,
- 930 McLennan, S.M., Parker, T., Soderblom, L., Sohl-Dickstein, J.N., Squyres, S.W., Sullivan, R.,
- 931 Tosca, N.J., and Watters, W.A. (2005) Stratigraphy and sedimentology of a dry to wet eolian
- 932 depositional system, Burns formation, Meridiani Planum, Mars. Earth and Planetary Science
- 933 *Letters* 240:11-72.
- 934
- 935 Gudmundsson, B.T., and Arnórsson, S. (2005) Secondary mineral-fluid equilibria in the Krafla
- and Námafjall geothermal systems, Iceland. Applied Geochemistry 20:1607-1625.
- 937
- Hausrath, E.M., Golden, D.C., Morris, R.V., Agresti, D.G., and Ming, D.W. (2013) Acid sulfate
- 939 alteration of fluorapatite, basaltic glass and olivine by hydrothermal vapors and fluids:
- 940 Implications for fumarolic activity and secondary phosphate phases in sulfate-rich Paso Robles
- soil at Gusev Crater, Mars. Journal of Geophysical Research 118:1-13.
- 942

943	Heaney, P.J. (1994). Structure and chemistry of the low-pressure silica polymorphs. In: Heaney,
944	P.J., Prewitt, C.T., Ginnes, G.V., Eds. Silica: Physical behavior, geochemistry, and materials
945	applications. Reviews in Mineralogy V. 29. Mineralogical Society of America, Washington,
946	D.C., 1-40.
947	
948	Herdianita, N.R., Browne, P.R.L., Rodgers, K.A., and Campbell, K.A. (2000) Mineralogical and
949	textural changes accompanying ageing of silica sinter. <i>Mineralium Deposita</i> 35:48-62.
950	
951	Hynek, B.M., McCollom, T.M., Marcucci, E.C., Brugman, K., and Rogers, K.L. (2013).
952	Assessment of environmental controls on acid-sulfate alteration at active volcanoes in
953	Nicaragua: Applications to relic hydrothermal systems on Mars. Journal of Geophysical
954	Research: Planets 118:2083-2104.
955	
956	Hynek, B.M., Rogers, K.L., Antunovich, M., Avard, G., Alvarado, G.E. (2018). Lack of
957	microbial diversity in extreme Mars analog settings: Poás volcano, Costa Rica, Astrobiology 18,
958	DOI: 10.1089/ast.2017.1719.
959	
960	Kaasalainen, H., & Stefansson, A. (2011). Sulfur speciation in natural hydrothermal waters,
961	Iceland. Geochimica et Cosmochimica Acta, 75, 2777-2791.
962	
963	Kaasalainen, H., and Stefánsson, A. (2012) The chemistry of trace elements in surface
964	geothermal waters and steam, Iceland. Chemical Geology 330-331:60-85.
965	

966	Kandori, K., Sakai, J., Ishikawa, T. (2000) Definitive effects of chloride ions on the formation of
967	spherical hematite particles in a forced hydrolysis reaction. Physical Chemistry Chemical
968	Physics 2:3293-3299.
969	
970	King, P.L. and McSween, H.Y.Jr. (2005) Effects of H (sub 2) O, pH, and oxidation state on
971	the stability of Fe minerals on Mars. Journal of Geophysical Research 110:E12S10.
972	
973	Lane, M.D., Bishop, J.L., Dyar, M.D., King, P.L., Parente, M., and Hyde, B.C. (2008)
974	Mineralogy of the Paso Robles soils on Mars. American Mineralogist 93:728-739.
975	
976	Lynne, B.Y., Campbell, K.A., Perry, R.S., Browne, P.R.L., and Moore, J.N. (2006) Acceleration
977	of sinter diagenesis in an active fumarole, Taupo volcanic zone, New Zealand. Geology 34:749-
978	752.
979	
980	Lynne, B.Y., Campbell, K.A., James, B.J., Browne, P.R.L., and Moore, J. (2007) Tracking
981	crystallinity in siliceous hot-spring deposits. American Journal of Science 307:612-641.
982	
983	Marcucci, E. C., B. M. Hynek, K. S. Kierein-Young, and K. L. Rogers, Visible to near-infrared
984	spectroscopy of volcanic acid-sulfate weathering systems in Nicaragua: Analogs for early Mars
985	alteration, Journal of Geophysical Research - Planets, 118, 2213-2233, doi:10.1002/jgre.20159,
986	2013.
987	

988	Marcucci, E.C.	, Hynek, B.M.	(2014). Laborator	y simulations o	f acid-sulfate	weathering under
-----	----------------	---------------	-------------------	-----------------	----------------	------------------

- volcanic hydrothermal conditions: Implications for early Mars. *Journal of Geophysical Research Planets* 119:679-703.
- 991
- 992 Markússon, S.H., and Stefánsson, A. (2011) Geothermal surface alteration of basalts, Krýsuv k
- 993 Iceland; alteration mineralogy, water chemistry and the effects of acid supply on the alteration
- 994 process. Journal of Volcanology and Geothermal Research 206:46-59.
- 995
- 996 McCollom, T.M., and Hynek, B.M. (2005) A volcanic environment for bedrock diagenesis at
- 997 Meridiani Planum on Mars. *Nature* 438:1129-1131.
- 998
- 999 McHenry, L.J., Carson, G.L., Dixon, D. T., Vickery, C.L. (2017). Secondary minerals associated
- 1000 with Lassen fumaroles and hot springs: Implications for martian hydrothermal deposits.
- 1001 American Mineralogist 102: 1418-1434. DOI: 10.2138/am-2017-5839
- 1002
- 1003 Ming, D.W., Mittlefehldt, D.W., Morris, R.V., Golden, D.C., Gellert, R., Yen, A., Clark, B.C.,
- 1004 Squyres, S.W., Farrand, W.H., Ruff, S.W., Arvidson, R.E., Klingelhöfer, G., McSween, H.Y.,
- 1005 Rodionov, D.S., Schröder, X., de Souza, P.A.Jr., and Want, A. (2006) Geochemical and
- 1006 mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, mars.
- 1007 Journal of Geophysical Research 111:E02S12.
- 1008
- 1009 Mínguez, H.A., Ortega, L., Lunar, R., Martínez-Frías, J., and Piña, R. (2011) Mineralogy of
- 1010 the Hydrothermal Alteration in the Námafjall Geothermal Field (Iceland). MACLA. Revista

1011 Española de la Sociedad de Mineralogia 15:25-26.

- 1013 Morris, R.V., Golden, D.C., Bell III, J.F., Shelfer, T.D., Scheinost, A.C., Hinman, N.W., Furniss,
- 1014 G., Mertzman, S.A., Bishop, J.L., Ming, D.W. and Allen, C.C., 2000. Mineralogy, composition,
- 1015 and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and
- 1016 magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples. Journal of
- 1017 Geophysical Research: Planets, 105(E1): 1757-1817.
- 1018
- 1019 Morris, R.V., Klingelhöfer, G., Schröder, C., Fleischer, I., Ming, D.W., Yen, A.S., Gellert, R.,
- 1020 Arvidson, R.E., Rodionov, D.S., Crumpler, L.S., Clark, B.C., Cohen, B.A., McCoy, T.J.,
- 1021 Mittlefehldt, D.W., Schmidt, M.E., de Souza, P.A.Jr., and Squyres, S.W. (2008) Iron mineralogy
- 1022 and aqueous alteration from Husband Hill through Home Plate at Gusev crater, Mars: Results
- 1023 from the Mös bauer instrument on the Spirit Mars Exploration Rover. Journal of Geophysical
- 1024 Research 113:E12S42.
- 1025
- 1026 Nordstrom, D.K., and Alpers, C.N. (1999) Geochemistry of acid mine waters. Reviews in
- 1027 Economic Geology 6A:133-160.
- 1028
- 1029 Peretyazhko, T., Sutter, B., and Ming, D.W. (2014) Alteration of basaltic glass to Mg/Fe
- 1030 smectite under acidic conditions: A potential smectite formation mechanisms on Mars. 51st Clay
- 1031 Minerals Society Meeting; 17-21 May 2014; College Station, TX; United States.
- 1032

- 1033 Peretyazhko, T.S., Niles, P.B., Sutter, B., Morris, R.V., Agresti, D.G., Le, L., and Ming, D.W.
- 1034 (2018). Smectite formation in the presence of sulfuric acid: Implications for acidic smectite
- 1035 formation on early Mars. *Geochimica et Cosmochimica Acta* 220: 248-260.
- 1036
- 1037 Reardon, E.J., and Beckie, R.D. (1987) Modelling chemical-equilibria of acid-mine drainage -
- 1038 the FeSO4-H2SO4-H2O system. *Geochimica et Cosmochimica Acta* 51:2355-2368.
- 1039
- 1040 Rodgers, K.A., Cook, K.L., Browne, P.R.L., and Campbell, K.A. (2002). The mineralogy,
- 1041 texture and significance of silica derived from alteration by steam condensate in three New
- 1042 Zealand geothermal fields. *Clay Minerals* 37:299–322.
- 1043
- 1044 Rodgers, K.A., Browne, P.R.L., Buddle, T.F., Cook, K.L., Greatrex, R.A., Hampton, W.A.,
- 1045 Herdianita, N.R., Holland, G.R., Lynne, B.Y., Martin, R., Newton, Z., Pastars, D., Sannazarro,
- 1046 K.L., and Teece, C.I.A. (2004) Silica phases in sinters and residues from geothermal fields of
- 1047 New Zealand. *Earth Science Reviews* 66:1-61.
- 1048
- 1049 Ruff, S.W., Farmer, J.D., Calvin, W.M., Herkenhoff, K.E., Johnson, J.R., Morris, R.V., Rice,
- 1050 M.S., Arvidson, R.E., Bell, J.F. III, Christensen, P.R., and Squyres, S.W. (2011). Characteristics,
- 1051 distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev
- 1052 crater, Mars. Journal of Geophysical Research 116:E00F23.
- 1053
- 1054 Ruff, S.W., Campbell, K.A., Van Kranendonk, M., Rice, M.S., Farmer, J.D. (2020). The case for
- ancient hot springs in Gusev Crater, Mars. Astrobiology 20: 475-499.

1056

- 1057 Ruff, S.W., and Farmer, J.D. (2016). Silica deposits on Mars with features resembling hot spring
- 1058 biosignatures at El Tatio in Chile. *Nature Communications* 7:13554.

1059

- 1060 Saemundsson, K. (1991). The geology of the Krafla system. In: Nattura Myvatns, ed. Arnpor
- 1061 Gardarsson and Arni Einarsson. HIN, 24-95.

1062

- 1063 Saemundsson, K., Hjartarson, A., Kaldal, I., Sigurgeirsson, M.A., Kristinsson, S.G., and
- 1064 Vikingsson, S. (2012) Geological Map of the northern Volcanic Zone, Iceland. Northern Part.
- 1065 1:100,000. Reykjavik: Iceland GeoSurvey and Landsvierkjun.

- 1067 Schmidt, M.E., Ruff, S.W., McCoy, T.J., Farrand, W.H., Johnson, J.R., Gellert, R., ... and
- 1068 Schroeder, C. (2008). Hydrothermal origin of halogens at Home Plate, Gusev crater. Journal of
- 1069 Geophysical Research: Planets, 113(E6).
- 1070
- 1071 Schmidt, M.E., Farrand, W.H., Johnson, J.R., Schröder, C., Hurowitz, J.A., McCoy, T.J., ... and
- 1072 Ming, D.W. (2009). Spectral, mineralogical, and geochemical variations across Home Plate,
- 1073 Gusev Crater, Mars indicate high and low temperature alteration. Earth and Planetary Science
- 1074 *Letters* 281(3-4), 258-266.
- 1075
- 1076 Schulze-Makuch, D., Dohm, J.M., Fan, C., Fairén, A.G., Rodriguez, J.A.P., Baker, V.R., and
- 1077 Fink, W. (2007) Exploration of hydrothermal targets on Mars. *Icarus* 189:308-324.
- 1078

- 1079 Skok, J. R., Mustard, J. F., Ehlmann, B. L., Milliken, R. E., & Murchie, S. L. (2010). Silica
- 1080 deposits in the Nili Patera caldera on the Syrtis Major volcanic complex on Mars. *Nature*
- 1081 *Geoscience*, *3*(12), 838.
- 1082
- 1083 Squyres, S.W., Arvidson, R.E., Ruff, S., Gellert, R., Morris, R.V., Ming, D.W., Crumpler, L.,
- 1084 Farmer, J.D., Des Marais, D.J., and Yen, A. (2008) Detection of silica-rich deposits on Mars.
- 1085 Science 320:1063–1067.
- 1086
- 1087 Squyres, S.W., Aharonson, O., Clark, B.C., Cohen, B.A., Crumpler, L., de Souza, P.A.J.,
- 1088 Farrand, W.H., Gellert, R., Grant, J., Grotzinger, J.P., Haldemann, A.F.C., Johnson, J.R.,
- 1089 Klingelhöfer, G., Lewis, K.W., Li, R., McCoy, T., McEwen, A.S., McSween, H.Y., Ming, D.W.,
- 1090 Moore, J.M., Morris, R.V., Parker, T.J., Rice, J.W.Jr., Ruff, S.W., Schmidt, M., Schröder, C.,
- 1091 Soderblom, L.A., and Yen, A. (2007). Pyroclastic activity at Home Plate in Gusev Crater, Mars.
- 1092 Science 316:738-742.
- 1093
- 1094 Stoiber, R.E., and Rose, W.I. (1974) Fumarole incrustations at active Central American
- 1095 volcanoes. Geochimica et Cosmochimica Acta 38:495-516.
- 1096
- 1097 Story, S., Bowen, B.B., Benison, K.C., and Schulze, D.G. (2010) Authigenic phyllosilicates in
- 1098 modern acid saline lake sediments and implications for Mars. Journal of Geophysical Research
- 1099 115:E12012.
- 1100

- 1101 Tarnas, J.D., Mustard, J.F., Lin, H., Goudge, T.A., Amador, E.S., Bramble, M.S., Kremer, C.H.,
- 1102 Zhang, X., Itoh, Y. and Parente, M., 2019. Orbital identification of hydrated silica in Jezero
- 1103 crater, Mars. Geophysical Research Letters, 46(22), pp.12771-12782.
- 1104
- 1105 Velde, B. (Ed.) (1995). Origin and Mineralogy of Clays, Springs, New York.
- 1106
- 1107 Walter, M.R., and Des Marais, D.J. (1993). Preservation of biological information in thermal
- spring deposits: developing a strategy for the search for fossil life on Mars. *Icarus* 101:129-143.
- 1109
- 1110 Wang, A., Bell, J.F. III, Li, R., Johnson, J.R., Farrand, W.H., Cloutis, E.A., Arvidson, R.E.,
- 1111 Crumpler, L., Squyres, S.W., and McLennan, S.M. (2008) Light-toned salty soils and coexisting
- 1112 Si-rich species discovered by the Mars Exploration Rover Spirit in Columbia Hills. *Journal of*
- 1113 Geophysical Research 113:E12S40.
- 1114
- 1115 Yen, A.S., Morris, R.V., Clark, B.C., Gellert, R., Knudson, A.T., Squyres, S., Mittlefehldt, D.W.,
- 1116 Ming, D.W., Arvidson, R., McCoy, T., Schmidt, M., Hurowitz, J., Li, R., and Johnson, J.R.
- 1117 (2008) Hydrothermal processes at Gusev Crater: An evaluation of Paso Robles class soils.
- 1118 Journal of Geophysical Research 113:E06S10.
- 1119
- 1120 Yen, A.S., Morris, R.V., Ming, D.W., Schwenzer, S.P., Sutter, B., Vaniman, D.T., Treiman,
- 1121 A.H., Gellert, R., Achilles, C.N., Berger, J.A. and Blake, D.F., 2021. Formation of tridymite and
- 1122 evidence for a hydrothermal history at gale crater, Mars. Journal of Geophysical Research:
- 1123 Planets, 126(3), p.e2020JE006569.

- 1124
- 1125 Zolotov, M.Y. and Shock, E.L. (2005). Formation of jarosite-bearing deposits through aqueous
- 1126 oxidation of pyrite at Meridiani Planum, Mars. Geophysical Research Letters 32:L21203.

Table 1: Hverir mudpot transect						Non-sulfu	bearing	Sulfur-bearing		
Sample	Туре	Distance (cm)	Temp (°C)	рН	Description	Abundant	Minor	Abundant	Minor	
IV-14-5	fluid	0	80.2	2.00	Bubbling muddy water on upthrown side of fault					
IV-13-2 IV-13-3	sed precip.	0 60	71.5 94.3		Dark mud at edge of mud pot White/orange popcorn-like precipitate	Si	Ka, At	S, Py HP, Gyp	Fc, Ag, J, Na Sz, Rh, V, Co, Rz	
IV-13-4	sed	100	43.7		Red/orange sand	Sm, Gt	Si, Ka, At, Ct	Rh		
Other Hv	erir flui	d samples								
IV-14-1	fluid	NA	40.9	2.12	Bubbling murky water on downthrown side of fault					
IV-14-4	fluid	NA	11.0	2.40	Pool of condensed steam from steam spout on upthrown side					
Hverir Holocene basalt substrate IV-13-15 rock			Unaltered substrate basalt	Pl, Aug						

Phases: Aug = augite, Ag = alunogen, At= anatase, Co= coquimbite, Ct = cristobalite, Fc = ferricopiapite, Gt = goethite, Gyp = gypsum, HP = halotrichite/pickeringite, J = jarosite, Ka = kaolinite, Na = natroalunite, Pl = plagioclase, Py = pyrite, Rh = rhomboclase, Rz = rozenite, S = sulfur, Si = amorphous silica, Sm = smectite, Sz = szomolnokite, V = voltaite.

Table 2: Námaskard hill sample details and XRD res						sults	Non-sulfur bearing		Sulfur-bearing	
		Distance	Depth	Temp						
Sample	Туре	(cm)	(cm)	(°C)	рН	Description	Abundant	Minor	Abundant	Minor
Námaska	rd hot sp	oring #1								
IV-14-29	Fluid	0		70.5	2.3	Vigorous, more clear mud pot				
IV-17-07	precip.	nearby	0			White/light green fluffy precipitated minerals			Rz, HP, Gyp	
IV-14-31	sed	pit	6	36.2		Yellow/beige sed beneath surface crust	Si, At		Rh	S, Na
IV-14-32	sed	pit	10	51.1		Creamy, light grey sed	Si, At		S	Na, Fc
IV-14-30	sed	pit	28	75.2		Darker grey, softer sed	Si, At	Ка	Ру	Mr
Námaska	rd hot sp	oring #2								
IV-14-23	Fluid	0		56.4	2-2.3	Least muddy small mud pot				
IV-17-05	sed	0	0			Mud from rim of mud pot	Ka, At	Sm	S, Py	
IV-14-22	precip.	nearby	0			White, bulbous crystal precipitate			HP	Gyp, Та
IV-14-24	sed	pit	0	34.1		Orange surface coating	Sm	Si	Fc	Gyp, J
IV-14-25	sed	pit	3	33.4		Light grey/beige sed	Q, At	Si		
IV-14-26	sed	pit	8	61.3		Dark grey sed	Q	At	Ру	Mr, Sz, Rz

Phases: At= anatase, Fc = ferricopiapite, Gyp = gypsum, HP = halotrichite/pickeringite, J = jarosite, Ka = kaolinite, Mr = marcasite, Na = natroalunite, Py = pyrite, Q = quartz, Rh = rhomboclase, Rz = rozenite, S = sulfur, Si = amorphous silica, Sm = smectite, Sz = szomolnokite, Ta = tamarugite.

Table 5: *In-situ* Environmental parameters

			0	SpCond	Sal	ORP	TDS
Site	Sample	Т°С	pH (us/cm)	(ppt)	(mV)	(g/l)
Hverir							
	IV-14-1	40	2.15	6163	3.41	-56	4.0
	IV-14-4	59	2.42	2109	1.13	-136	1.3
	IV-14-5	66	2.20	4024	2.19	-343	2.7
Náma	skar∂						
	IV-14-23	56	2.24	4241	2.32	-269	2.7
	IV-14-29	71	2.36	1456	0.77	-302	0.9

Bolded samples are for pools adjacent to reported transects.

SpCond: Specific conductivity. Sal: Salinity.

ORP: Oxidation/Reduction Potential. TDS: Total Dissolved Solids.

			0, ,								
Site	Sample	SiO ₂	Na^+	K ⁺	Ca ²⁺	Mg ²⁺	Fe	Al*	Cl	SO4 ²⁻	NO ₃ ⁻
Hver	ir										
	IV-14-01	246	24.27	2.24	107.9	82.4	122	425	0.3	3819	8.7
	IV-14-04	197	63.37	6.23	90.9	19.4	14.6	28	1.82	872	3.69
	IV-14-05	228	15.45	3.36	65.1	53.6	196	450	1.52	3801	8.83
Nám	Námaskarð										
	IV-14-23	232	6.92	0.33	85.3	40.1	149	194	0.28	2150	5.78
	IV-14-29	253	3.05	0.19	13.9	9.5	9.7	x	0.14	398	1.35

Table 6: Dissolved ions (mg/l)

*Al concentrations inferred based on charge balance.

Bolded samples are for pools adjacent to reported transects.

Figure 2

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 7

Hot spring/mudpot transect model

Figure 9