1	Revision 1
2 3	Calorimetric study of skutterudite (CoAs $_{2.92}$) and heazlewoodite (Ni $_3S_2$)
4 5 6	Juraj Majzlan ^{1,*} , Stefan Kiefer ¹ , Kristina Lilova ² , Tamilarasan Subramani ² , Alexandra Navrotsky ² , Marek Tuhý ^{3,4} , Anna Vymazalová ³ , Dmitriy A. Chareev ^{5,6,7} , Edgar Dachs ⁸ , Artur Benisek ⁸
7 8 9 10 11 12 13 14 15 16 17 18 19	 ¹ Institute of Geosciences, Friedrich-Schiller University, Burgweg 11, 07749 Jena, Germany *corresponding author, email: <u>Juraj.Majzlan@uni-jena.de;</u> ORCID: 0000-0002-9151-4394 ² School of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, USA ³ Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic ⁴ Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00 Prague ⁵ Institute of Experimental Mineralogy (IEM RAS), 142432 Chernogolovka, Moscow Region, Russia ⁶ Ural Federal University, Ekaterinburg 620002, Russia ⁷ Dubna State University, Dubna 141982 Russia ⁸ Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
20	ABSTRACT – Nickel and cobalt arsenides, sulfarsenides, and sulfides occur in many
21	hydrothermal ore deposits but the thermodynamic properties of these phases are not well known,
22	in some cases not known at all. In this work, we determined a full set of thermodynamic
23	properties for heazlewoodite and skutterudite. Both phases were synthesized in evacuated silica
24	tubes at elevated temperatures and electron microprobe analyses gave their composition as Ni_3S_2
25	and CoAs2.92, respectively. Enthalpies of formation were measured by high-temperature oxide-
26	melt solution calorimetry. The reference phases were pure elements, thus eliminating any
27	systematic errors related to such phases. The enthalpies of formation at $T = 298.15$ K and $P = 10^5$
28	Pa are $-216.0\pm8.4(2\sigma)$ and -88.2 ± 6.1 kJ·mol ⁻¹ for Ni ₃ S ₂ and CoAs _{2.92} , respectively. Entropies
29	were calculated from low-temperature heat capacity (C_P) data from relaxation (PPMS)
30	calorimetry and are 133.8 \pm 1.6 and 106.4 \pm 1.3 J·mol ⁻¹ ·K ⁻¹ , respectively. The calculated Gibbs
31	free energies of formation are -210.0 ± 8.4 and -79.9 ± 6.2 kJ·mol ⁻¹ for Ni ₃ S ₂ and CoAs _{2.92} ,
32	respectively. The PPMS C_p data, together with a set of differential scanning calorimetry

- measurements, were used to derive C_p polynomials up to 700 K with the Kieffer model based on previously published frequencies of acoustic and optic modes. Equilibrium constants for selected
- reactions with an aqueous phase were calculated up to 700 K. Geochemical modeling in these
- 36 systems, however, should await until more reliable data for other phases from the system Co-Ni-
- 37 As-S are available.
- **Keywords**: heazlewoodite; skutterudite; enthalpy; entropy; geochemical modeling
- 39 Submitted: American Mineralogist
- 40

41

INTRODUCTION

42 Nickel and cobalt arsenides, sulfarsenides, and sulfides occur in many hydrothermal ore deposits (Dolansky 2007, Belkin et al. 2008, Ahmed et al. 2009, Gervilla et al. 2012, Kreissl et al. 2018, 43 Scharrer et al. 2019, Tourneur et al. 2021, Horn et al. 2021). They are found especially in 44 orthomagmatic Cu-Ni-PGE ores (Naldrett 2004), hydrothermal ores, commonly of the "five-45 element association" (Burisch et al. 2017), or in stratiform Cu-Co ores (Dewaele et al. 2006). 46 47 They represent a large and complex group of minerals, with sulfides, disulfides, mono-, di- and triarsenides, and sulfarsenides (a list of the minerals with further references can be found in 48 Table 1 in Hem 2006). In addition to Co, Ni, and As, many of these minerals show also the As-49 50 Sb substitution, for example in the gersdorffite-ullmanite (NiAsS-NiSbS) series (Stevko a Sejkora 2020). Occasionally, minerals like gersdorffite may contain economically interesting 51 52 concentrations of gold or platinum-group elements (e.g., Pašava et al. 2013, Cabri et al. 2017). 53 The presence of reduced arsenic is likely to drive gold incorporation in the sulfarsenide minerals (Pokrovski et al. 2021). Arsenides also commonly form in serpentinization processes at high T-P 54 in subduction zones and may be important carriers of As and PGE in such settings (Gonzáles-55 Jiménez et al. 2021). Some of the compositions show polymorphism, for example, NiAs₂ is 56 57 known as the minerals rammelsbergite, pararammelsbergite, and krutovite. Structural variations are encountered even within one mineral species; gersdorffite, for example, can have an ordered 58 structure (space group $P2_{13}$) or two disordered structures (space groups Pa_{3} and P_{1}) (Bayliss 59 and Stephenson 1967, 1968, Steger et al. 1974, Bayliss, 1982). 60 61 Experimental work on dry systems (Klemm, 1965; Maurel and Picot, 1974, Hem and Makovicky 2004a, b, see also Table 2 in Hem 2006) showed that complete solid solutions can be 62

expected at temperatures above 500 °C but such high temperatures were rarely encountered 63 during the formation of the ores with Co-Ni arsenides and sulfarsenides (Scharrer et al. 2019). 64 Thermodynamic properties of the Co-Ni-As-S phases are mostly not well constrained or 65 unknown. For the obvious reason of their abundance, more attention was paid to the Fe-dominant 66 67 members of arsenides and sulfides. For example, thermodynamic properties of löllingite (FeAs₂) were determined early by Barton (1969) from high-temperature equilibria and extrapolation to 68 room temperature. A calorimetric measurement of heat capacity ($C_{\rm p}$) of a synthetic löllingite 69 70 sample and the resulting entropy by Panishkin et al. (1991) deviated much from the datum in Barton (1969). In their compilation, Robie and Hemingway (1995) adopted the S° from 71 Panishkin et al. (1991). They also selected $\Delta_f G^o$ which is numerically equal to $\Delta_f H^o$ in Barton 72 (1969) and adjusted their $\Delta_{\rm f} {\rm H}^{\rm o}$ accordingly. The reasons behind this adjustment are not clear. 73 Bessinger and Apps (2005) modified the $\Delta_f G^\circ$ from Barton (1969) slightly and took S^o from 74 Barton (1969), even though they referred to Pokrovski et al. (1996) as their data source. Perfetti 75 et al. (2008) accepted S^o from Panishkin et al. (1991) and recalculated $\Delta_f H^o$ and $\Delta_f G^o$, based on 76 their new solubility data and combustion calorimetry data of Stolyarova (1977). When reviewing 77 the available source of thermodynamic data for löllingite, one notes differences of 40 kJ·mol⁻¹ in 78 $\Delta_{\rm f}$ H° and 40 J·mol⁻¹·K⁻¹ in S° (see also Perfetti et al. 2008). Such differences are larger than 79 80 expected experimental uncertainties in thermodynamic measurements. This example shows the difficulties and gaps in our understanding of these minerals, even though the Fe-As-S system 81 received much more attention than the systems Co-As-S or Ni-As-S. 82 83 In this work, we have derived thermodynamic properties of skutterudite (nominally CoAs₃) and heazlewoodite (nominally Ni₃S₂). Enthalpies of formation were measured by high-84 temperature oxide-melt solution calorimetry. The reference phases were pure elements, thus 85

eliminating potential systematic errors from reference chemical compounds. This work was also 86 meant as another test of this type of calorimetry on samples with highly volatile components (As, 87 S). Flushing with oxygen maintains oxidative conditions and all elements are converted rapidly 88 89 and reproducibly to their highest oxidation state in the solvent (Majzlan 2017). The entropies were calculated from low-temperature heat capacities measured by relaxation calorimetry. 90 Differential scanning calorimetry was used to measure $C_{\rm p}$ above the ambient temperature and the 91 $C_{\rm p}$ data were extrapolated to higher temperatures using the appropriate treatment (Kieffer 1985). 92 The data were then used to derive log K's for selected chemical reactions. These equilibrium 93 constants can be used for geochemical modeling involving systems with Co-Ni sulfides and 94 95 arsenides.

96

MATERIALS

97 The samples used in this study were prepared in evacuated silica tubes. The protocols
98 described below are the results of many trials and errors, optimized to yield the desired products.
99 Many other syntheses were carried out but did not run to completion, were contaminated by
100 other minor sulfides/arsenides or oxygen.

A synthetic analog of heazlewoodite (Ni₃S₂) was prepared from a stoichiometric (3:2) mixture of pure elements (Ni 99.999 %, S 99.999 %) that were placed into a silica-glass tube. The tube with the charge was evacuated and sealed. The ampoule was placed into a preheated horizontal furnace, and the sample was tempered (200 °C for 32 days; 300 °C for 19 days). Afterwards, the sample was quenched in a cold-water bath, homogenized in an agate mortar, evacuated, sealed again, and heated (300 °C for two months). Finally, the sample was quenched, and the content purity and composition were checked using powder X-ray diffraction.

108	The synthetic analog of skutterudite was synthesized in evacuated silica-glass ampoules from
109	pure elements (Co 99.9%, As 99.5%). The elements were weighed in an atomic ratio of 1:4 and
110	placed in a silica-glass ampoule. The ampoule was evacuated, sealed and placed in a horizontal
111	tube furnace. The temperature of that part of the ampoule, in which the charge was located, was
112	500 °C. The temperature of the opposite part was 450 °C. The synthesis lasted 50 days. The
113	excess arsenic condensed in the colder part of the ampoule and was easily separated. After that
114	the reacted mixture was removed, ground in an agate mortar under acetone, placed in another
115	silica-glass ampoule, and heated at the same temperature for 30 days.
116	METHODS
117	Powder X-ray diffraction (PXRD) patterns of all compounds used in this work were collected
118	using a Bruker D8 Advance DaVinci diffractometer (Institute of Geoscience of the University of
119	Jena, Germany), employing Cu K α radiation ($\lambda = 1.54058$ Å). The patterns were collected at
120	room temperature between 5 and 90 °2 θ , with a step size of 0.02 °2 θ and a time per step of 1 s.
121	Lattice parameters and quantitative fractions of the studied phases were refined by a full-profile
122	fit using the software suite JANA2006 (Petříček et al., 2014).
123	The powdery synthetic phases were embedded in a resin and polished. They were briefly
124	examined for impurity phases or inhomogeneities by reflected-light microscopy. The phases
125	were investigated by energy- and wavelength-dispersive (WDX) electron microprobe (EMP)
126	analyses with the electron microprobe JEOL JXA-8230 Superprobe (Institute of Geoscience of
127	the University of Jena, Germany). All samples were carbon-coated and measured with an
128	accelerating voltage of 20 kV and 20 nA. The spot size was 1 μ m and the measurement time on
129	peak and on background 40 s. Peak overlap correction was used to avoid peak interference
130	between the lines of S and Co. The elements were analyzed on the following emission lines,

standards, with the estimated detection limits (in wt.%): Sb – L α , InSb, 0.07; S – K α , pyrite, 131 0.04; Fe – K α , pyrite, 0.04; As – K α , arsenopyrite, 0.07; Cu – K α , chalcopyrite, 0.05; Co – K α , 132 133 Co metal, 0.05; Ni – K α , Ni metal, 0.04. High-temperature oxide melt solution calorimetry has been described in detail by Navrotsky 134 (1997, 2014). The experiments were performed at the Arizona State University, USA. The 135 136 samples were dropped into a molten sodium molybdate $(3Na_2O \cdot 4MoO_3)$ solvent, maintained at 1073 K. Oxygen gas was flushed over the solvent at 90 mL min⁻¹ and bubbled through it at 5 137 $mL \cdot min^{-1}$. The choice of the calorimetric solvents is limited to a few compositions, namely 138 sodium molybdate, lead borate, or alkali borate (see Navrotsky 1997). In the recent work of 139 140 Abramchuk et al. (2020), sodium molybdate at 1073 K was used to dissolve a suite of elements, 141 thus enabling to close the thermochemical cycle without the need for reference phases. We used 142 this advantage that also dictated the choice of the solvent and operation temperature. 143 Low temperature heat capacity (C_p) was measured by relaxation calorimetry using a commercial Physical Properties Measurement System (PPMS, from Quantum Design, San 144 Diego, California) at the University of Salzburg, Austria. With due care, accuracy can be within 145 1 % at 5 K to 300 K, and 5 % at 0.7 K to 5 K (Dachs and Bertoldi, 2005; Kennedy et al., 2007). 146 The powdered samples were wrapped in a thin Al foil and compressed to produce a ≈ 0.5 mm 147 148 thick pellet, which was then placed onto the sample platform of the calorimeter for measurement. Differential scanning calorimetry (DSC) was used to measure heat capacities near and above 149 room temperature using a Perkin Elmer Diamond DSC. Samples were measured in a flow of dry 150 151 argon. Further details of the method are described by Benisek et al. (2012). The entropy was calculated by integration of the $C_{\rm p}/T$ function in the interval from 0 K to 298.15 K. 152

153

RESULTS

Characterization: Powder X-ray diffraction, chemical analysis 154

155	All samples used in this study were crystalline and consisted of a single phase. No indications
156	of an amorphous impurity were found. The peaks were sharp, with their width (measured as
157	FWHM) comparable to that of the LaB6 standard. Refined lattice parameters of all phases are
158	given in Table 1. The PXRD patterns are shown in Figs. S1 and S2.
159	Examination with the electron microprobe confirmed that the samples consist of the elements
160	of interest, either Ni-S or Co-As, with trace amount of other elements (Table 1). Images in back-
161	scattered electrons (BSE) showed that the heazlewoodite and skutterudite samples were
162	homogeneous. They were made of porous, angular aggregates, up to several hundreds of
163	micrometers large, and their shape reflects the shape of the starting material (metal filing).
164	Chemical composition of the synthetic heazlewoodite sample corresponds to the nominal
165	formula Ni ₃ S ₂ . For skutterudite, a slight deviation from the nominal formula was found. The
166	composition, determined by EMP analyses, is CoAs2.92. All thermodynamic data reported in this
167	work are normalized to the molecular masses of Ni_3S_2 (240.2102 g·mol ⁻¹) and CoAs _{2.92}
168	$(277.7043 \text{ g} \cdot \text{mol}^{-1}).$
169	Determination of enthalpies of formation

Determination of enthalples of formation 168

170 Enthalpies of formation were determined *via* appropriate thermochemical cycles (Tables 2, 3) 171 from the experimentally measured drop solution enthalpies. No difficulties or anomalies were encountered during calorimetric experiments. The samples dissolved rapidly and reproducibly. 172 173 The large drop solution enthalpies (Table 4) relate to the fact that the samples are oxidized and dissolved in the oxygen atmosphere in the active zone of the calorimeter. The large signals cause 174 also larger uncertainties attached to the data; these uncertainties are expressed in calorimetry as 175

two standard deviations of the mean. Relative to the magnitude of the signal, the uncertainties
are smaller than usually encountered. They are only 0.09 % and 0.24 % for the drop solution
enthalpies of Ni₃S₂ and CoAs_{2.92}, respectively, which is smaller than the usual precision of 1-2
%. The resulting enthalpies of formation are given in Table 5.

180 **Determination of low-temperature** C_p **and entropies**

181 Heat capacity at temperatures between 2 and 303 K was measured for the synthetic

heazlewoodite and skutterudite samples with the commercial PPMS system. The C_p data for both

synthetic phases show no anomalies. Attempts to fit the low-temperature portion of the data (T \leq

184 20 K) with a Debye function ($C_p = A_3T^3$) or an extended Debye function ($C_p = A_3T^3 + A_5T^5 + A_5T^5$)

185 A_7T^7) failed. Satisfactory fits required the inclusion of a linear (A₁T) or quadratic (A₂T²) term,

probably reflecting the semi-conducting nature of the phases studied (see Gopal 1966). The data

between 20 and 300 K were fitted by two orthogonal polynomials. The adjustable parameters of

these functions, together with the raw data and the results of integration, are available in the

supporting electronic information. The calculated standard entropies (S^o at T = 298.15 K) are

190 listed in Table 5.

191 **Determination of high-temperature** C_p

192 Heat capacity above 280 K was measured by differential scanning calorimetry (DSC). In the

region of overlap of the DSC and PPMS data, the agreement between the data sets was good.

194 The deviation was 1.3 % for heazlewoodite and 2.2 % for skutterudite. Upon increasing

- temperature, the data became unusually scattered. At $T \approx 366$ K (skutterudite) or ≈ 466 K
- 196 (heazlewoodite), the data were so erratic that the measurements were stopped. Even though the
- samples were measured in an inert atmosphere of purified argon, it has to be assumed that traces

198	of oxygen caused partial oxidation of the samples. Of particular problem is sulfur or arsenic that
199	co-exists in the gas phase with the studied phases (see Leegaard and Rosenqvist 1964). With
200	increasing temperature, more sulfur or arsenic is transferred into the gas phase and can rapidly
201	react with small amounts of oxygen.
202	Extrapolation of <i>C</i> _p up to 700 K
203	In order to be able to use the presented data for geochemical models of hydrothermal systems,
204	heat capacity must be determined up to higher temperatures than those that were reached
205	experimentally in this work. For this purpose, the available experimental C_p data were
206	augmented by heat capacities at constant volume (C_v) computed using a model proposed by
207	Kieffer (1985, her equation 60)
208 209	$C_{\rm v} \propto {\rm S}({\rm x_i}) + {\rm K}({\rm x_u},{\rm x_i}) + {\rm E}({\rm x_E})$ (7)
210	where $S(x_i)$ is the heat capacity function of a monatomic solid with a sine dispersion function,
211	$K(x_u,x_i)$ refers to heat capacity of a continuum between frequencies x_u and x_i , and $E(x_E)$ is the
212	heat capacity function of an Einstein oscillator. These functions and their prefactors are in detail
213	defined by the equations 57-60 in Kieffer (1985) and will not be repeated here.
214	The frequencies necessary to calculate C_v according to (7) can be determined experimentally
215	or by a lattice-dynamic calculation. We emphasize that the function (7) is not a fit to data but is
216	based purely on experimental or calculated frequencies of low- to high-frequency modes in a
217	structure. The function (7), as used in this work, contains no adjustable parameters.
218	For the calculation for skutterudite, frequencies of the Raman bands were taken from https://
219	rruff.info/Skutterudite/R050593 (accessed on September 10, 2021). The frequencies for the
220	acoustic branches were taken from Li and Mingo (2014) who performed first-principles
221	calculations for the lattice dynamics of CoSb3 skutterudite. For heazlewoodite, the Raman

frequencies were taken from https://rruff.info/Heazlewoodite (accessed on September 10, 2021).

223 The acoustic modes were characterized by first-principles calculations by Tian et al. (2021).

The isochoric heat capacity C_v can be used to calculate the isobaric heat capacity C_p as

225
$$C_{\rm p} = C_{\rm v} + {\rm VT}\alpha^2 {\rm B}\kappa \qquad (8)$$

where V is the molar volume, T is the thermodynamic temperature, α is thermal expansion

227 coefficient, and B is the bulk modulus. The variable κ is the only adjustable parameter that enters

the calculations. It is necessary, because the calculated C_p is slightly lower than the experimental

229 C_p data. Such situation can be encountered in these calculations and is corrected by κ that can be

regarded as an anharmonicity term in the equation (8).

For skutterudite, α was taken from Rogl et al. (2010) for CoSb₃ skutterudite, and B from

Zouablia et al. (2020) for CoP₃ skutterudite. The value of κ was set to 2.4. For heazlewoodite, α

was taken from Tian et al. (2021), B from Zhang et al. (2020), and κ was set to 2.4.

The fits are compared to the experimental data and the extrapolations are shown in Fig. 1. The

results in the range of 280-700 K were re-fitted with polynomials accepted by the program

236 SUPCRTBL (Johnson et al. 1992, Zimmer et al. 2016):

237
$$C_{p} = a + bT + cT^{-2} + dT^{-0.5}$$
 (9)

The coefficients *a*-*d* are listed in Table 6 in the format required by SUPCRTBL. Note that the values for the coefficients *a*, *c*, and *d* are to be used in SUPCRTBL as listed; the value of *b* should be multiplied by 10^{-5} before inserting into the equation (9). The resulting C_p is in kJ·mol⁻ $^{1}\cdot$ K⁻¹.

242

DISCUSSION

243 Comparison of the data for heazlewoodite with earlier data

The enthalpies of formation of the two phases studied here can be compared to some previous 244 results. The $\Delta_{\rm f} {\rm H}^{\rm o}$ value for heazlewoodite (Table 5) is in excellent agreement with the value 245 selected by Gamsjäger et al. (2005), based on the calorimetric work of Cemic and Kleppa (1986). 246 They used reaction calorimetry with Ni+NiS mixtures sealed in evacuated silica tubes. The 247 entropy of heazlewoodite, derived in this work, is also in excellent agreement with the selection 248 of Gamsjäger et al. (2005). Our value is essentially identical with that from Weller and Kelley 249 (1964) and only slightly higher than that from Stølen et al. (1991) (Table 5). 250 251 The perfect agreement for heazlewoodite confirms the accuracy of the data for the reference 252 compounds and the applicability of high-temperature oxide-melt solution calorimetry. It lends 253 support for the data for skutterudite where earlier data are missing.

254 Equilibria between nickel sulfides

The accuracy of the data for the nickel sulfides can be, to some extent, tested by comparison to known phase diagrams, as already presented in Gamsjäger et al. (2005). Sulfur pressure over nickel sulfide and the T-P(S₂,g) data were collected by Rosenqvist (1954) and Leegaard and Rosenqvist (1964). The pair heazlewoodite-millerite (β -NiS) is related by a simple reaction

259
$$2Ni_3S_2 + S_2(g) = 6\beta - NiS$$
 (10)

The data for millerite were taken from Gamsjäger et al. (2005). The log K_{10} values calculated with SUPCRTBL and the resulting sulfur gas fugacities are compared to the measured data in Fig. 2. The temperature ranges of the calculations and measurements do not overlap but linear extrapolation is possible. The difference between the log fS_2 values predicted with our data and

264	those from Rosenqvist (1954) (Fig. 2) at $T = 900$ K is ≈ 1.5 , corresponding to $RT\Delta \ln fS_2$ of ≈ 26
265	kJ·mol ⁻¹ . Optimization of the data to fit the high-temperature measurements of Rosenqvist
266	(1954) would be misleading because the nickel sulfides tend to non-stoichiometry at high
267	temperatures (as $Ni_3S_{2\pm x}$, NiS_{1+x} , see Leegaard and Rosenqvist 1964). The deviation from
268	stoichiometry is perhaps responsible for the mismatch seen in Fig. 2. Additionally, these phases
269	have high-temperature polymorphs with slightly different thermodynamic properties (see
270	Gamsjäger et al. 2005). All in all, the result of this test is encouraging for the accuracy of the
271	data for heazlewoodite and millerite. More detailed calculation of the sulfur pressures in nickel-
272	sulfide equilibria is provided by Gamsjäger et al. (2005) (their figure V-32) at high temperatures.
273	No attempt was made to incorporate the thermodynamic data for vaesite (NiS ₂) into these
274	calculations, even though Chase (1998) and Gamsjäger et al. (2005) list data for this phase.
275	These data, however, are associated with unusually large uncertainties. They indicate another,
276	underlying problem with these data. As a side note, we attempted to synthesize vaesite also for
277	this study. The sample turned out to be a mixture of NiS_2 and Ni_3S_4 . These two phases should
278	have pyrite-like and spinel-like structures, respectively. Powder XRD data for our sample show
279	only pyrite-like structure. This puzzling structural relationship will be more closely investigated
280	but could be potentially a reason (or one of the reasons) for the problems related to the
281	measurements on vaesite. Finally, the database Thermoddem (Blanc et al. 2012) contains
282	temperature-dependent log K values for a dissolution reaction involving values values. Yet, a closer
283	look at the values in this database (https://thermoddem.brgm.fr/species/nis2, accessed on
284	September 9, 2021) shows that C_p of vaesite was taken as a constant over 0-300 °C. Such
285	treatment of thermodynamic data is highly misleading and should be avoided.

286 Equilibrium constants for dissolution reactions

Geochemical software used for modeling of aqueous solutions, either around room temperature or at elevated temperatures, commonly requires tabulation of equilibrium constants for selected dissolution reactions involving the phase of interest. For this purpose, all data presented above were inserted into SUPCRTBL (Zimmer et al. 2016) and the equilibrium constants were calculated.

The calculations are slightly complicated by the fact that the nominal valences, calculated from the formulae, differ from the valences usually assigned to the participating elements (such as Ni^{2+} , S^{2-} , and so on). For heazlewoodite, the reactions to consider are

295
$$Ni_3S_2(cr) + 6H^+(aq) + 0.5O_2(aq) \rightarrow 3Ni^{2+}(aq) + 2H_2S^0(aq) + H_2O(l)$$
 (11)

296
$$Ni_3S_2(cr) + 4H^+(aq) + 0.5O_2(aq) \rightarrow 3Ni^{2+}(aq) + 2HS^-(aq) + H_2O(l)$$
 (12)

Under most hydrothermal conditions, the aqueous species H_2S^0 will predominate over HS^- . The aggregate state of O₂ and H₂O is important inasmuch the software packages usually do not explicitly specify it for the master O₂ and H₂O species. The values of log K_{11} and log K_{12} in the temperature range 0-350 °C are listed in Table S1.

301 For skutterudite, the oxidation reactions are

302
$$CoAs_{2.92}(cr) + 3.38H_2O(1) + 2.69O_2(aq) + 2H^+(aq) \rightarrow Co^{2+}(aq) + 2.92As(OH)_3(aq)$$
 (13)

303
$$CoAs_{2.92}(cr) + 3.38H_2O(l) + 2.69O_2(aq) \rightarrow Co^{2+}(aq) + 2.92H_2AsO_3(aq) + 0.92H^+(aq)$$
 (14)

For the arsenical species, $As(OH)_3^0$ is prevalent in hydrothermal fluids, and $AsO(OH)_2^-$ (this

species is listed as H₂AsO₃⁻ in GWB or AsO₂⁻ in SUPCRTBL) is subordinate, predominant only

at pH > 8 at T = 300 °C (Testemale et al. 2011). The values of log K_{13} and log K_{14} in the

temperature range 0-350 °C are listed in Table S1.

308 Some geochemical software accepts a function that expresses log *K* in terms of absolute

- temperature T in Kelvin instead of log *K* values at a pre-selected temperature grid. PHREEQC,
- for example, uses the function in its **-analytic** option

311
$$\log K = A_1 + A_2T + A_3/T + A_4 \log T + A_5/T^2$$
 (15)

GWB expresses the temperature dependence of $\log K$ as

313
$$\log K = a + b(T-T_r) + c(T^2-T_r^2) + d(1/T-1/T_r) + e(1/T^2-1/T_r^2) + f \ln(T/T_r)$$
(16)

where T is absolute temperature in Kelvin and $T_r = 298.15$ K.

The fit parameters A_1 - A_5 for equation (15) and the reactions (11) through (14) are listed in

Table S2. The fit parameters a-f for equation (16) and the reactions (11) through (14) are listed in

317 Table S3.

318 Relationship of skutterudite to other cobalt arsenides

The $\Delta_f H^o$ value for skutterudite (Table 5) can be only compared to an estimate which is

significantly different. We are not aware of thermodynamic measurements on skutterudite.

321 The GWB and LLNL databases contain log *K* values for reactions involving safflorite

322 (CoAs₂) and modderite (CoAs), even though no references are given. The log $K_{T=298.15}$ values

match those given in Charykova et al. (2011) who also gave no references. Wagman et al. (1982)

listed only $\Delta_{\rm f} {\rm H}^{\rm o}$ for these phases, also without references. For example, they gave $-61.5 \, {\rm kJ \cdot mol^{-1}}$

for CoAs₂, but Naumov et al. (1974) selected –83 kJ·mol⁻¹. These data, even though of uncertain

- 326 origin, allow the calculation of phase diagrams whose informative value should not be overrated.
- 327 Scharrer et al. (2019) constructed elaborate models with these phases and generated estimates for
- the missing data. Ironically, they themselves do not recommend the use of some of the data they

329	published (see their Table 3). We refrain from such practice and hold the opinion that
330	geochemical modeling should be based on sound data. As pointed out by Henke (2009, appendix
331	C) with respect to thermodynamics of arsenical phases, "once high-quality laboratory data are
332	available, they may be used in geochemical computer models".

333

IMPLICATIONS

334 This work enhances the capabilities of geochemical modeling of hydrothermal ores, especially those of the so-called 'five-element association' (e.g., Kreissl et al. 2018, Scharrer et al. 2019, 335 336 Horn et al. 2021, Tourner et al. 2021). Skutterudite is one of the major sources of cobalt in these 337 ores, being used for the construction of lithium-ion batteries (Li et al. 2018). Therefore, understanding of these ores, the ore-forming processes, and identification of new resources is an 338 important future task for the geosciences. This work also documented the capability of 339 340 calorimetric techniques to obtain highly accurate data for chalcogenides. Combination of the experimental data with the Kieffer model generated accurate representation of high-temperature 341 heat capacities and can be used to circumvent experimental difficulties associated with the 342 measurements at high temperatures. This approach can be used to resolve some long-standing 343 controversies in the thermodynamic data sets for common and less common chalcogenide 344 minerals. 345

346

ACKNOWLEDGEMENTS

347 We are thankful to Valentina L. Stolyarova and Gleb Pokrovski for their constructive criticism

- and comments. The work presented here was financially supported by a *Deutsche*
- 349 Forschungsgemeinschaft grant MA 3927/32-1. Oxide melt solution calorimetry was supported

- by the U.S. Department of Energy Office of Basic Energy Sciences, under grant DE-FG02-
- 351 97ER14749. The work of DACh is supported by RFBR, № 20-35-70049.

References

- Abramchuk, M., Lilova, K., Subramani, T., Yoo, R., and Navrotsky, A. (2020) Development of
 high-temperature oxide melt solution calorimetry for p-block element containing materials.
 Journal of Materials Research, 35, 2239.
- Ahmed, A.H., Arai, S., and Ikenne, M. (2009) Mineralogy and paragenesis of the Co-Ni arsenide
 ores of Bou Azzer, Anti-Atlas, Morocco. Economic Geology, 104, 249-266.
- Barton, P.B. Jr. (1969) Thermochemical study of the system Fe-As-S. Geochimica et
 Cosmochimica Acta 33, 841-867.

352

- Bayliss, P., and Stephenson, N.C. (1967) The crystal structure of gersdorffite. Mineralogical
 Magazine, 36, 38-42.
- Bayliss, P., and Stephenson, N.C. (1968) The crystal structure of gersdorffite (III), a distorted
 and disordered pyrite structure. Mineralogical Magazine, 36, 940-947.
- Bayliss, P. (1982) A further crystal structure refinement of gersdorffite. American Mineralogist,
 67, 1058-1064.
- Belkin, H.E., and Luo, K. (2008) Late-stage sulfides and sulfarsenides in Lower Cambrian black
 shale (stone coal) from the Huangjiawan mine, Guizhou Province, People's Republic of
 China. Mineralogy and Petrology, 92, 321-340.
- Benisek, A., Kroll, H., and Dachs, E. (2012) The heat capacity of fayalite at high temperatures.
 American Mineralogist, 97, 657-660.
- Bessinger, B., and Apps, J.A. (2005) The hydrothermal chemistry of gold, arsenic, antimony,
 mercury and silver. U.S. Department of Energy, Contract No. DE-AC03-76SF00098, 52 p.
- Blanc, P., Lassin, A., Piantone, P., Azaroual, M., Jacquemet, N., Fabbri, A., and Gaucher, E.C.,
 (2012) Thermoddem: A geochemical database focused on low temperature water/rock
 interactions and waste materials: Applied Geochemistry, 27, 2107-2116.
- Burisch, M., Gerdes, A., Walter, B.F., Neumann, U., Fettel, M., and Markl, G. (2017) Methane
 and the origin of five-element veins: Mineralogy, age, fluid inclusion chemistry and ore
 forming processes in the Odenwald, SW Germany. Ore Geology Reviews, 81, 42-61.
- Cabri, L.J., Kelvin, M., Yang, Z., Jackson, S.E., and Altun, O. (2017) Application of LA-ICP-
- MS trace element analysis for precious metal deportment: A case study of the Kevitsa mine, Finland. European Journal of Mineralogy, 29, 635-644.
- Cemic, L., and Kleppa, O.J. (1986) High temperature calorimetry of sulfide systems. I.
 Thermochemistry of liquid and solid phases of Ni+S. Geochimica et Cosmochimica Acta, 50, 1633-1641.
- Charykova, M.V., Krivovichev, V.G., Yakovenko, O.S., and Depmeier, W. (2011)
- Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores:
 Part III: Eh-pH diagrams of the Me-As-H₂O systems (Me = Co, Ni, Fe, Cu, Zn, Pb) at 25°C.
 Geology of Ore Deposits, 53, 501–513.
- Chase, M.W. (1998) NIST-JANAF Thermochemical Tables. National Institute of Standards and
 Technology, Gaithersburg (Maryland, USA).
- Dachs, E., and Bertoldi, C. (2005) Precision and accuracy of the heat-pulse calorimetric
 technique: low-temperature heat capacities of milligram-sized synthetic mineral samples.
 European Journal of Mineralogy, 17, 251-261.
- 394 Dewaele, S., Muchez, Ph., Vets, J., Fernandez-Alonzo, M., and Tack, L. (2006) Multiphase
- origin of the Cu–Co ore deposits in the western part of the Lufilian fold-and-thrust belt,
- Katanga (Democratic Republic of Congo). Journal of African Earth Sciences, 46, 455-469.

- 397 Dolansky, L.L. (2007) Controls on the genesis of hydrothermal cobalt mineralization: Insights
 398 from the mineralogy and geochemistry of the Bou Azzer deposits, Morocco. Master thesis,
 399 McGill Univ., 193 p.
- Gamsjäger, H., Bugajski, J., Gajda, T., Lemire, R., and Preis, W. (2005) Chemical
 Thermodynamics of Nickel. Volume 6, 1st Edition.
- Gervilla, F., Fanlo, I., Colás, V., and Subías, I. (2012) Mineral compositions and phase relations
 of Ni-Co-Fe arsenide ores from the Aghbar mine, Bou Azzer, Morocco. Canadian
 Mineralogist, 50, 447-470.
- 405 Gonzáles-Jiménez, J., Pina, R., Saunders, J.E., Plissart, G., Marchesi, C., Padrón-Navarta J.A.,
- Ramón-Fernandez, M., Garrido, L.N.F., and Gervilla, F. (2021) Trace element fingerprints of
 Ni–Fe–S–As minerals in subduction channel serpentinites. Lithos, 400-401, 106432,
 https://doi.org/10.1016/j.lithos.2021.106432
- 409 Gopal, E.S.R. (1966) Specific Heats at Low Temperatures. Plenum Press, New York.
- 410 Hayun, S., Lilova, K., Salhov, S., and Navrotsky, A. (2020) Enthalpies of formation of high
- entropy and multicomponent alloys using oxide melt solution calorimetry. Intermetallics, 125, 106897.
- Hem, S.R., and Makovicky, E. (2004a) The system Fe–Co–Ni–As–S: I. Phase relations in the
 (Fe, Co, Ni)As_{0.5}S_{1.5} section at 650 °C and 500 °C. Canadian Mineralogist, 42, 43-62.
- Hem, S.R., and Makovicky, E. (2004b) The system Fe–Co–Ni–As–S: II. Phase relations in the
 (Fe, Co, Ni)As_{1.5}S_{0.5} section at 650 °C and 500 °C. Canadian Mineralogist 42, 63-86.
- Hem, S. (2006) Solid solutions in the Fe–Co–Ni–As–S system. Chemical Geology, 225, 291303.
- Henke, K.R. (editor) (2009) Arsenic. Environmental Chemistry, Health Threats and Waste
 Treatment. Wiley, 588 p.
- Horn, S., Gunn, A.G., Petavratzi, E., Shaw, R.A., Eilu, P., Törmänen, T., Bjerkgård, T.,
- Sandstad, J.S., Jonsson, E., Kountourelis, S., and Wall, F. (2021) Cobalt resources in Europe
 and the potential for new discoveries. Ore Geology Reviews, 130, 103915.
- Johnson, J.W., Oelkers, E.H., and Helgeson, H.C. (1992) SUPCRT92 A software package for
 calculating the standard molal thermodynamic properties of minerals, gases, aqueous species,
 and reactions from 1-bar to 5000-bar and 0°C to 1000°C. Computer and Geosciences, 18,
 899-947.
- Kennedy, C.A., Stancescu, M., Marriott, R.A., and White, M.A. (2007) Recommendations for
 accurate heat capacity measurements using a Quantum Design physical property measurement
 system. Cryogenics, 47, 107-112.
- Kieffer, S.W. (1985) Heat capacity and entropy: systematic relations to lattice vibrations.
 Reviews of Mineralogy, 14, 65-126.
- 433 Klemm, D.D. (1965) Synthesen und analysen in den dreiecksdiagrammen FeAsS–CoAsS–NiAsS
- und FeS₂-CoS₂-NiS₂. Neues Jahrbuch für Mineralogie, Abhandlungen, 103, 205-255.
 Kreissl, S., Gerdes, A., Walter, B.F., Neumann, U., Wenzel, T., and Markl, G. (2018)
- 435 Reconstruction of a >200 Ma multi-stage "five element" Bi-Co-Ni-Fe-As-S system in the
 437 Penninic Alps, Switzerland. Ore Geology Reviews, 95, 746-788.
- 437 Penninic Alps, Switzerland. Ore Geology Reviews, 95, 740-788.
- Leegaard, T., and Rosenqvist, T. (1964) Der Zersetzungsdruck und die Phasengleichgewichte der
 höheren Sulfide von Kobalt und Nickel. Zeitschrift für anorganische und allgemeine Chemie,
- 440
 328, 294-298.

Li, W., and Mingo, N. (2014) Lattice dynamics and thermal conductivity of skutterudites CoSb₃
and IrSb₃ from first principles: Why IrSb₃ is a better thermal conductor than CoSb₃. Physical
Review B, 90, 094302.

Li, M., Lu, J., Chen, Z., and Amine, K. (2018) 30 years of lithium-ion batteries. Advanced Materials, 30, 1800561, DOI: 10.1002/adma.201800561

446 Majzlan, J. (2017) Solution calorimetry on minerals related to acid mine drainage –

447 methodology, checks, and balances. Acta Geologica Slovaca, 9, 171-183.

- 448 Maurel, C. and Picot, P. (1974) Stabilite de l'alloclasite et de la cobaltite dans le systeme Co–
- As–S et Co–Ni–As–S. Bulletin de la Societe Francaise de Minéralogie et de Cristallographie,
 97, 251–256.
- 451 Naldrett, A.J. (2004) Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration.
 452 Springer, 728 p.
- Navrotsky, A. (1997) Progress and new directions in high temperature calorimetry revisited.
 Physics and Chemistry of Minerals, 24, 222-241.
- Navrotsky, A. (2014) Progress and new directions in calorimetry: A 2014 perspective. Journal of
 the American Ceramic Society, 97, 3349-3359.
- 457 Naumov, G.B., Ryzhenko, B.N., and Khodakovsky, I.L. (1974) Handbook of Thermodynamic
 458 Data (English translation). USGS-WRD-74-001, U.S. Geological Survey.
- 459 Nordstrom, D.K., Königsberger, E., and Majzlan, J. (2014) Thermodynamic properties for
 460 arsenic minerals and aqueous species. Reviews in Mineralogy and Geochemistry 79, 217-255,
 461 doi.org/10.2138/rmg.2014.79.4
- Pašava, J., Zaccarini, F., Aiglsperger, T., and Vymazalová, A. (2013) Platinum-group elements
 (PGE) and their principal carriers in metal-rich black shales: an overview with a new data
 from Mo–Ni–PGE black shales (Zunyi region, Guizhou Province, south China). Journal of
 Geosciences, 58, 209-216.
- Pashinkin, A.C., Muratova, V.A., Moiseyev, N.V., and Bazhenov, J.V. (1991) Heat capacity and
 thermodynamic functions of iron diarsenide in the temperature range 5 K to 300 K. Journal of
 Chemical Thermodynamics, 23, 827-830.
- Perfetti, E., Pokrovski, G.S., Ballerat-Busserolles, K., Majer, V., and Gibert, F. (2008) Densities
 and heat capacities of aqueous arsenious and arsenic acid solutions to 350 °C and 300 bar, and
 revised thermodynamic properties of As(OH)₃° (aq), AsO(OH)₃° (aq) and iron sulfarsenide
 minerals. Geochimica et Cosmochimica, Acta, 72, 713-731.
- 473 Petříček, V., Dušek, M., and Palatinus, L. (2014) Crystallographic computing system
 474 JANA2006: general features. Zeitschrift für Kristallographie, 229, 345–352.
 475 https://doi.org/10.1515/zkri-2014-1737
- 476 Pokrovski, G.S., Gout, R., Zotov, A., Schott, J., and Harrichoury, J.C. (1996) Thermodynamic
 477 properties and stoichiometry of the arsenic(III) hydroxide complexes at hydrothermal
 478 conditions. Geochimica et Cosmochimica Acta, 60, 737-749.
- Pokrovski, G.S., Escoda, C., Blanchard, M., Testemale, D., Hazemann, J.-L., Gouy, S., Kokh,
 M.A., Boiron, M.-C., de Parseval, F., Aigouy, T., Menjot, L., de Parseval, P., Proux, O.,
- Rovezzi, M., Béziat, D., Salvi, S., Kouzmanov, K., Bartsch, T., Pöttgen, R., and Doert, T.
 (2021) An arsenic-driven pump for invisible gold in hydrothermal systems. Geochemical

483 Perspectives Letters, 17, 39–44, <u>https://doi.org/10.7185/geochemlet.2112</u>

- Robie, R.A., and Hemingway, B.S. (1995) Thermodynamic properties of minerals and related
- substances at 298.15 K and 1 bar (10^5 Pascals) pressure and at higher temperatures. U.S.
- 486 Geological Survey Bulletin, 2131, 461 p.

- Rogl, G., Zhang, L., Rogl, P., Grytsiv, A., Falmbigl, M., Rajs, D., Kriegisch, M., Müller, H.,
 Bauer, E., Koppensteiner, J., Schranz, W., Zehetbauer, M., Henkie, Z., and Maple, M.B.
- (2010) Thermal expansion of skutterudites. Journal of Applied Physics, 107, 043507.
- 490 Rosenqvist, T. (1954): A thermodynamic study of the iron, cobalt and nickel sulphides. Journal
 491 of Iron and Steel Institute, 176, 37-57.
- 492 Scharrer, M., Kreissl, S., and Markl, G. (2019) The mineralogical variability of hydrothermal
 493 native element-arsenide (five-element) associations and the role of physicochemical and
 494 kinetic factors concerning sulfur and arsenic. Ore Geology Reviews, 113, 103025.
 405 https://doi.org/10.1016/j.orggoorgy.2019.103025.
- 495 <u>https://doi.org/10.1016/j.oregeorev.2019.103025</u>
- 496 Steger, J., Nahigian, H., Arnott, R.J., and Wold, A. (1974) Preparation and characterisation of the
 497 solid solution series Co_{1-x}Ni_xAsS. Journal of Solid State Chemistry, 13, 53-59.
- Števko, M., and Sejkora, J. (2020) Sb-enriched association of Ni arsenides and sulfarsenides
 from the Zemberg-Terézia vein system near Dobšiná (Western Carpathians, Slovak
 Republic). Bulletin Mineralogie Petrologie, 28, 105-115.
- Stolyarova, T.A. (1977) Enthalpies of formation of iron arsenides. Geokhimia, 7, 1095-1098 (in
 Russian).
- Stølen, S., Grønvold, F., Westrum, Jr., E.F., and Kolonin, G.R. (1991) Heat capacity and
 thermodynamic properties of synthetic heazlewoodite, Ni₃S₂, and of the high-temperature
 phase Ni_{3±x}S₂. Journal of Chemical Thermodynamics, 23, 77-93.
- Takeno, N. (2005) Atlas of Eh-pH diagrams. Intercomparison of thermodynamic databases.
 Geological Survey of Japan Open File Report 419, 287 pp.
- Tian, H., Liu, S., Zhang, Q., Zhao, Y., Tan, S., and Li, Y. (2021) First-principles calculations of
 thermodynamic properties of Ni sulfides in the upper mantle. Physics and Chemistry of
 Minerals, 48, 30.
- Testemale, D., Pokrovski, G.S. and Hazemann, J-L. (2011) Speciation of As^{III} and As^V in
 hydrothermal fluids by *in situ* X-ray absorption spectroscopy. European Journal of
 Mineralogy, 23, 379-390.
- Tourneur, E., Chauvet, A., Kouzmanov, K., Tuduri, J., Paquez, C., Sizaret, S., Karfal, A.,
 Moundi, Y., and El Hassani, A. (2021) Co-Ni-arsenide mineralisation in the Bou Azzer
 district (Anti-Atlas, Morocco): Genetic model and tectonic implications. Ore Geology
 Reviews, 134, 104128.
- Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney,
 K.L., and Nuttall, R.L. (1982) The NBS tables of chemical thermodynamic properties.
- Selected values for inorganic and C1 and C2 organic substances in SI units. Journal of
 Physical and Chemical Reference Data, 11, supplement 2.
- Weller, W.W., and Kelley, K.K. (1964) Low-temperature heat capacities and entropies at 298.15
 ^oK of sulfides of arsenic, germanium and nickel. Report of Investigations 6511, Department
 of the Interior, U.S.A.
- Zhang, Q., Tian, Y., Liu, S., Yang, P., and Li, Y. (2020) First-principles study of the elastic
 properties of nickel sulfide minerals under high pressure. Minerals, 10, 737.
- Zimmer, K., Zhang, Y.L., Lu, P., Chen, Y.Y., Zhang, G.R., Dalkilic, M., and Zhu, C. (2016)
 SUPCRTBL: A revised and extended thermodynamic dataset and software package of
- 529 SUPCRT92. Computer and Geosciences, 90, 97-111.
 530 https://doi.org/10.1016/j.cageo.2016.02.013
- 531 Zouablia, R., Benabdellah, G., Mokhtari, M., and Hiadsi, S. (2020) Theoretical prediction of the
- 532 structural, elastic, electronic and thermodynamic properties of binary CoP₃ and ternary

533	FeCoP ₃ skutterudites materials. SPIN, 10, 2050011,
534	https://doi.org/10.1142/S2010324720500113
535	
536	

537

538 Table 1. Space groups, lattice parameters (a, c, unit-cell volume V), and chemical composition (wt.%) of 539 the synthetic phases used in this work. Chemical composition is recalculated to the molar ratio in the ant digits.

540	bottom part of the table. The numbers in parentheses are the un	incertainties on the	last significar
541	nominal		

composition actual	Ni_3S_2	CoAs ₃		
composition	Ni_3S_2	CoAs _{2.92}		
mineral name	heazlewoodite	skutterudite		
space group	R32	Im-3		
a (Å)	5.7476(1)	8.2050(2)		
c (Å)	7.1397(1)			
n	13	11		
Sb	< DL	< DL		
S	26.83(28)	0.06(1)		
As	0.04(6)	78.21(87)		
Co	< DL	21.07(27)		
Cu	< DL	< DL		
Ni	72.65(40)	< DL		
Fe	< DL	0.04(2)		
total	99.54(38)	99.41(102)		
	normalized to 1 N	i or Co atom		
S	0.676			
As		2.920		
Co		1		
Ni	1			
i = number of anal				
< DL = below dete	ection limit			
	1			_1
Table 2. Thermo	uynamic cycle used i	o calculate the enthalpies	of formation for nea	ziewoodi
Ni ₂ S ₂ (s. 298 K) ·	$+(2y+x/2)O_2$ (g, 107)	$(3 \text{ K}) \rightarrow$		
		K) + ySO ₄ ²⁻ (sol, 1073 K))	ΔH
$V_{i} = (301, 1075)$	$(50, (\sigma, 1073 \text{ K})) \rightarrow (30, 1073 \text{ K})$	Ni^{2+} (sol, 1073 K) + O^{2-} ((sol 1073 K)	ΔH
R(3, 290 K) + 0	D_2 (g, 1073 K) \rightarrow SO	(301, 1073 K) + O	(501, 1075 K)	ΔΗ
(S, 298 K) +	$yS(s, 298 \text{ K}) \rightarrow \text{Ni}_xS$	S _y (s, 298 K)	$\Delta_{\rm f} {\rm H}^{\rm o} = -\Delta {\rm H}_1 + x\Delta$	$\Delta H_2 + y\Delta F$
Table 3. Thermo	dynamic cycle used t	to calculate the enthalpy of	of formation for skutt	erudite.

0,0			
576	$CoAs_z$ (s, 298 K) + (2z+1/2)O ₂ (g, 1073 K) \rightarrow		
577	Co^{2+} (sol, 1073 K) + O^{2-} (sol, 1073 K) + $zAsO_4^{3-}$ (sol, 1073 K)	ΔH_4	
578	Co (s, 298 K) + 0.5O ₂ (g, 1073 K) → Co ²⁺ (sol, 1073 K) + O ^{2−} (sol, 1	ΔH ₅	
579	As $(s, 298 \text{ K}) + 2O_2 (g, 1073 \text{ K}) \rightarrow AsO_4^{3-} (sol, 1073 \text{ K})$	ΔH_6	
580	$Co (s, 298 \text{ K}) + zAs (s, 298 \text{ K}) \rightarrow CoAs_z (s, 298 \text{ K}) \qquad \Delta$	${}_{\rm f}{\rm H}^{\rm o} = -\Delta{\rm H}_4 + \Delta{\rm H}_5 + z\Delta{\rm H}_6$	
581			

582

Table 4. Dro samples					
Ni_3S_2	-1685.97 ^a ±1.56 ^b	$(10)^{c}$			
CoAs _{2.92}	-1424.46 ± 3.40 (
001102.)2	1.2	10)			
reference ph	ases				
Ni	-214.52±2.06 (H				
Co	-227.75±2.18 (H				
S	-629.18±2.73 (A				
As	-440.03±1.57 (A	bramchuk et a	al. 2020)		
^a mean ^b two standay	rd dominitions of the s	m 2011			
	rd deviations of the 1 measurements	nean			
	measurements				
					lite, obtained in this wor
Calculated e	nthalping of formati	n ara compara	ed to the pre	eviously publishe	ed literature values.
	1			paonone	
	for the C_p polynomi			producty production	
	for the C_p polynomi	als are listed in			
	for the C_p polynomi $\Delta_f H^o$	als are listed in	n Table 6.	$\Delta_{\rm f} {\rm G}^{\rm o}$	V°
Coefficients	for the C_p polynomi $\Delta_f H^\circ$ $kJ \cdot mol^{-1}$	als are listed in S ^o J·mol ⁻¹ ·K	n Table 6.	$\Delta_{\rm f} {\rm G}^{\rm o}$ kJ·mol ⁻¹	J·bar ⁻¹
Coefficients	for the C_p polynomi $\frac{\Delta_f H^o}{kJ \cdot mol^{-1}}$ -216.0 ± 8.4	als are listed in S° $J \cdot mol^{-1} \cdot K$ 133.8 ± 1.6	n Table 6.	$\Delta_{\rm f} {\rm G}^{\rm o}$ kJ·mol ⁻¹ -210.0±8.4	•
Coefficients	for the C_p polynomi $\Delta_f H^\circ$ $kJ \cdot mol^{-1}$	als are listed in S ^o J·mol ⁻¹ ·K 133.8±1.6 133.5±0.7	n Table 6.	$\Delta_{\rm f} {\rm G}^{\rm o}$ kJ·mol ⁻¹	J·bar ⁻¹
Coefficients	for the C_p polynomi $\frac{\Delta_f H^o}{kJ \cdot mol^{-1}}$ -216.0 ± 8.4	als are listed in S ^o J·mol ^{-1.} K 133.8±1.6 133.5±0.7 133.89±0.	n Table 6.	$\Delta_{\rm f} {\rm G}^{\rm o}$ kJ·mol ⁻¹ -210.0±8.4	J·bar ⁻¹
Coefficients Ni ₃ S ₂	for the C_p polynomi $\frac{\Delta_f H^o}{kJ \cdot mol^{-1}}$ -216.0 ± 8.4 -217.2 ± 1.6^a	als are listed in $ \frac{S^{\circ}}{J \cdot mol^{-1} \cdot K} $ 133.8±1.6 133.5±0.7 133.89±0. 133.2°	n Table 6.	$\begin{array}{c} \Delta_{\rm f} {\rm G}^{\rm o} \\ {\rm kJ} \cdot {\rm mol}^{-1} \\ -210.0 \pm 8.4 \\ -211.2 \pm 1.6^{\rm a} \end{array}$	J·bar ⁻¹ 4.095
	for the C_p polynomi $\Delta_f H^o$ $kJ \cdot mol^{-1}$ -216.0 ± 8.4 -217.2 ± 1.6^a -88.2 ± 6.1	als are listed in S ^o J·mol ^{-1.} K 133.8±1.6 133.5±0.7 133.89±0.	n Table 6.	$\Delta_{\rm f} {\rm G}^{\rm o}$ kJ·mol ⁻¹ -210.0±8.4	J·bar ⁻¹
Coefficients Ni ₃ S ₂ CoAs _{2.92}	for the C_p polynomi $\Delta_f H^o$ $kJ \cdot mol^{-1}$ -216.0 ± 8.4 -217.2 ± 1.6^a -88.2 ± 6.1 -104.6^d	als are listed in $ \frac{S^{\circ}}{J \cdot mol^{-1} \cdot K} $ 133.8±1.6 133.5±0.7 133.89±0. 133.2°	n Table 6.	$\begin{array}{c} \Delta_{\rm f} {\rm G}^{\rm o} \\ {\rm kJ} \cdot {\rm mol}^{-1} \\ -210.0 \pm 8.4 \\ -211.2 \pm 1.6^{\rm a} \end{array}$	J·bar ⁻¹ 4.095
Coefficients Ni ₃ S ₂ CoAs _{2.92}	for the C_p polynomi $\Delta_f H^o$ $kJ \cdot mol^{-1}$ -216.0 ± 8.4 -217.2 ± 1.6^a -88.2 ± 6.1 -104.6^d	als are listed in $ \frac{S^{\circ}}{J \cdot mol^{-1} \cdot K} $ 133.8±1.6 133.5±0.7 133.89±0. 133.2°	n Table 6.	$\begin{array}{c} \Delta_{\rm f} {\rm G}^{\rm o} \\ {\rm kJ} \cdot {\rm mol}^{-1} \\ -210.0 \pm 8.4 \\ -211.2 \pm 1.6^{\rm a} \end{array}$	J·bar ⁻¹ 4.095
Coefficients Ni ₃ S ₂ CoAs _{2.92}	for the C_p polynomi $\frac{\Delta_f H^o}{kJ \cdot mol^{-1}}$ -216.0±8.4 -217.2±1.6 ^a -88.2±6.1 -104.6 ^d et al. (2005) Kelley (1964)	als are listed in $ \frac{S^{\circ}}{J \cdot mol^{-1} \cdot K} $ 133.8±1.6 133.5±0.7 133.89±0. 133.2°	n Table 6.	$\begin{array}{c} \Delta_{\rm f} {\rm G}^{\rm o} \\ {\rm kJ} \cdot {\rm mol}^{-1} \\ -210.0 \pm 8.4 \\ -211.2 \pm 1.6^{\rm a} \end{array}$	J·bar ⁻¹ 4.095
Coefficients Ni ₃ S ₂ CoAs _{2.92} ^a Gamsjäger ^b Weller and ^c Stølen et al ^d theoreticall	for the C_p polynomi $\Delta_f H^\circ$ $kJ \cdot mol^{-1}$ -216.0 ± 8.4 -217.2 ± 1.6^a -88.2 ± 6.1 -104.6^d et al. (2005) Kelley (1964) . (1991) y calculated for CoA	als are listed in $ \frac{S^{\circ}}{J \cdot mol^{-1} \cdot K} $ 133.8±1.6 133.5±0.7 133.89±0. 133.2° 106.4±1.3	n Table 6.	$\Delta_{f}G^{o}$ kJ·mol ⁻¹ -210.0±8.4 -211.2±1.6 ^a -79.9±6.2	J·bar ⁻¹ 4.095
Coefficients Ni ₃ S ₂ CoAs _{2.92} ^a Gamsjäger ^b Weller and ^c Stølen et al ^d theoreticall	for the C_p polynomi $\frac{\Delta_f H^o}{kJ \cdot mol^{-1}}$ -216.0±8.4 -217.2±1.6 ^a -88.2±6.1 -104.6 ^d et al. (2005) Kelley (1964) . (1991)	als are listed in $ \frac{S^{\circ}}{J \cdot mol^{-1} \cdot K} $ 133.8±1.6 133.5±0.7 133.89±0. 133.2° 106.4±1.3	n Table 6.	$\Delta_{f}G^{o}$ kJ·mol ⁻¹ -210.0±8.4 -211.2±1.6 ^a -79.9±6.2	J·bar ⁻¹ 4.095 4.159
Coefficients Ni ₃ S ₂ CoAs _{2.92} ^a Gamsjäger ^b Weller and ^c Stølen et al ^d theoreticall accessed	for the C_p polynomi $\Delta_f H^o$ $kJ \cdot mol^{-1}$ -216.0 ± 8.4 -217.2 ± 1.6^a -88.2 ± 6.1 -104.6^d et al. (2005) Kelley (1964) . (1991) y calculated for CoA on July 21, 2021	als are listed in S ^o J·mol ⁻¹ ·K 133.8±1.6 133.5±0.7 133.89±0. 133.2° 106.4±1.3 As ₃ , <u>https://ww</u>	n Table 6.	$\Delta_{f}G^{o}$ kJ·mol ⁻¹ -210.0±8.4 -211.2±1.6 ^a -79.9±6.2	J·bar ⁻¹ 4.095 4.159
Coefficients Ni ₃ S ₂ CoAs _{2.92} ^a Gamsjäger ^b Weller and ^c Stølen et al ^d theoreticall accessed Table 6. Adj	for the C_p polynomi $\frac{\Delta_f H^o}{kJ \cdot mol^{-1}}$ -216.0 ± 8.4 -217.2 ± 1.6^a -88.2 ± 6.1 -104.6^d et al. (2005) Kelley (1964) . (1991) y calculated for CoA on July 21, 2021 ustable coefficients	als are listed in S° J·mol ⁻¹ ·K 133.8±1.6 133.5±0.7 133.89±0. 133.2° 106.4±1.3 As ₃ , <u>https://ww</u> for the C_p poly	n Table 6.	$\Delta_{f}G^{\circ}$ $kJ \cdot mol^{-1}$ -210.0 ± 8.4 -211.2 ± 1.6^{a} -79.9 ± 6.2 $st.gov/\sim knc6/jsm$ $= a + bT + cT^{-2}$	$\frac{J \cdot bar^{-1}}{4.095}$ 4.159 hol/JVASP-20306.html, + $d T^{-0.5}$, equation 9) fo
Coefficients Ni ₃ S ₂ CoAs _{2.92} ^a Gamsjäger ^b Weller and ^c Stølen et al ^d theoreticall accessed Table 6. Adj skutterudite	for the C_p polynomi $\frac{\Delta_f H^o}{kJ \cdot mol^{-1}}$ -216.0 ± 8.4 -217.2 ± 1.6^a -88.2 ± 6.1 -104.6^d et al. (2005) Kelley (1964) . (1991) y calculated for CoA on July 21, 2021 ustable coefficients	als are listed in S° J·mol ⁻¹ ·K 133.8±1.6 133.5±0.7 133.89±0. 133.2° 106.4±1.3 As ₃ , <u>https://ww</u> for the C_p poly	n Table 6.	$\Delta_{f}G^{\circ}$ $kJ \cdot mol^{-1}$ -210.0 ± 8.4 -211.2 ± 1.6^{a} -79.9 ± 6.2 $st.gov/\sim knc6/jsm$ $= a + bT + cT^{-2}$	J·bar ⁻¹ 4.095 4.159
Coefficients Ni ₃ S ₂ CoAs _{2.92} ^a Gamsjäger ^b Weller and ^c Stølen et al ^d theoreticall accessed Table 6. Adj skutterudite details.	for the C_p polynomi $\frac{\Delta_f H^o}{kJ \cdot mol^{-1}}$ -216.0 ± 8.4 -217.2 ± 1.6^a -88.2 ± 6.1 -104.6^d et al. (2005) Kelley (1964) . (1991) y calculated for CoA on July 21, 2021 ustable coefficients and heazlewoodite. T	als are listed in S ^o J·mol ^{-1.} K 133.8±1.6 133.5±0.7 133.89±0. 133.2° 106.4±1.3 As ₃ , <u>https://ww</u> for the C_p poly The numerical	n Table 6.	$\Delta_{f}G^{\circ}$ $kJ \cdot mol^{-1}$ -210.0 ± 8.4 -211.2 ± 1.6^{a} -79.9 ± 6.2 $st.gov/\sim knc6/jsm$ $= a + bT + cT^{-2}$ scaled as require	$\frac{J \cdot bar^{-1}}{4.095}$ 4.159 hol/JVASP-20306.html, + $d T^{-0.5}$, equation 9) fo
Coefficients Ni ₃ S ₂ CoAs _{2.92} ^a Gamsjäger ^b Weller and ^c Stølen et al ^d theoreticall accessed Table 6. Adj skutterudite details. phase	for the C_p polynomi $\frac{\Delta_f H^o}{kJ \cdot mol^{-1}}$ -216.0 ± 8.4 -217.2 ± 1.6^a -88.2 ± 6.1 -104.6^d et al. (2005) Kelley (1964) . (1991) y calculated for CoA on July 21, 2021 ustable coefficients and heazlewoodite. The second s	als are listed in $ \frac{S^{\circ}}{J \cdot mol^{-1} \cdot K} $ 133.8±1.6 133.5±0.7 133.89±0. 133.2° 106.4±1.3 As ₃ , <u>https://ww</u> for the C _p poly The numerical b	n Table 6. -1	$\Delta_{f}G^{\circ}$ $kJ \cdot mol^{-1}$ -210.0 ± 8.4 -211.2 ± 1.6^{a} -79.9 ± 6.2 $st.gov/\sim knc6/jsm$ $= a + bT + cT^{-2}$ scaled as require d	$\frac{J \cdot bar^{-1}}{4.095}$ 4.159 4.159 + $d T^{-0.5}$, equation 9) fo d by SUPCRTBL. See
Coefficients Ni ₃ S ₂ CoAs _{2.92} ^a Gamsjäger ^b Weller and ^c Stølen et al ^d theoreticall accessed Table 6. Adj skutterudite details.	for the C_p polynomi $\frac{\Delta_f H^o}{kJ \cdot mol^{-1}}$ -216.0 ± 8.4 -217.2 ± 1.6^a -88.2 ± 6.1 -104.6^d et al. (2005) Kelley (1964) . (1991) y calculated for CoA on July 21, 2021 ustable coefficients and heazlewoodite. The second s	als are listed in S ^o J·mol ^{-1.} K 133.8±1.6 133.5±0.7 133.89±0. 133.2° 106.4±1.3 As ₃ , <u>https://ww</u> for the C_p poly The numerical	n Table 6.	$\Delta_{f}G^{\circ}$ $kJ \cdot mol^{-1}$ -210.0 ± 8.4 -211.2 ± 1.6^{a} -79.9 ± 6.2 $st.gov/\sim knc6/jsm$ $= a + bT + cT^{-2}$ scaled as require	$\frac{J \cdot bar^{-1}}{4.095}$ 4.159 $hol/JVASP-20306.html,$ $+ dT^{-0.5}, equation 9) for d by SUPCRTBL. See the second sec$

625

FIGURE CAPTIONS

Fig. 1. Experimental heat capacities from PPMS (circles) and DSC (squares) with the Kieffer
model used to extrapolate C_p to higher temperatures. Note that this is not the fit used to
determine entropy at T = 298.15 K.
Fig. 2. Equilibrium sulfur pressure for the pair heazlewoodite-millerite (reaction 10) calculated
from the data presented and discussed in this work (diamonds) and experimentally measured
by Rosenqvist (1954, circles). The linear fit is extrapolated to higher temperatures to allow for

a visual judgment of the agreement between the two data sets.

