1	Revision 2 Word Count: 11076
2	Fluid-rock interaction and fluid mixing in the large Furong tin deposit, South
3	China: New insights from tourmaline and apatite chemistry and in situ B–Nd–Sr
4	isotope composition
5	
6	Shao-Cong Chen ^{1, 2} , Jin-Jie Yu ^{1*} , Min-Feng Bi ¹ , Bernd Lehmann ³
7	
8	1. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral
9	Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
10	2. School of Earth Resources, China University of Geosciences, Wuhan 430074, China
11	3. Mineral Resources, Clausthal University of Technology, Adolph–Roemer–Strasse 2A,
12	Clausthal–Zellerfeld 38678, Germany
13	
14	*Corresponding authors: yjjchina@sina.com (J-J, Yu).
15	
16	Abstract
17	The Furong tin deposit (South China) is genetically associated with the multiphase
18	Qitianling batholith that consists of main-phase and minor but more fractionated
19	late-phase granites. Several tourmaline and apatite generations are distinguished.
20	Tourmaline (Tur) variants comprise pre-ore Tur-1 as disseminations and nodules in the
21	late-phase granite, pre- to syn-ore Tur-2 as replacements in nodules and as veins

2

crosscutting the late-phase granite and nodules, syn-ore Tur-3 in tin greisens, pre- to 22 23 syn-ore Tur-4 as veins in the altered main-phase granite, and syn-ore Tur-5 from tin skarns in a distinct Ca-rich environment. Apatite (Ap) generations include accessory 24 25 Ap-G in the main-phase granite, and Ap-I to Ap-III from three stages related to skarn-type mineralization (garnet-diopside stage-I, pargasite-phlogopite-cassiterite 26 27 stage-II, and sulfide-rich stage-III). Textural and compositional features suggest that all tourmaline variants are hydrothermal in origin with alkali and schorl to foitite 28 composition and minor extensions to calcic and X-site vacant tournaline groups, whereas 29 all apatite generations belong to fluorapatite with Ap-G crystallizing from the magma and 30 Ap-I to Ap-III being hydrothermal in origin. The narrow range of tourmaline δ^{11} B values 31 32 (-14.8 to -10.4 %) suggests a single magmatic boron source in the ore-forming fluids. The similar rare earth element patterns and $\varepsilon_{Nd(t)}$ values (-8.2 to -5.9 for Ap-G and -8.0 33 34 to -7.3 for Ap-I) between magmatic and hydrothermal apatite indicate that the skarn-forming fluids are dominantly derived from granites. The ⁸⁷Sr/⁸⁶Sr ratios of Ap-I to 35 Ap-III (0.70733–0.70795) are similar to the carbonate wall rocks, but distinctly different 36 from the more radiogenic granites, indicating Sr exchange with carbonate rocks. 37 Integrating previous H-O isotopic data, the tourmaline and apatite elemental and 38 B-Sr-Nd results suggest that the greisen-type ore formed by interaction of B-, Na-, Li-, 39 Zn-, and Sn-rich magmatic fluids with the late-phase granite in a closed and reduced 40 41 feldspar-destructive environment, whereas the tin skarns resulted from mixing of

42	magmatic fluids with meteoric water and interaction with the carbonate wall rocks in an
43	open system where oxygen fugacity changed from reduced to oxidized conditions.
44	During fluid-rock interactions and fluid mixing, considerable Ca, Mg, V, Ni, and Sr from
45	the host rocks were introduced into the ore system. Coupled hydrothermal minerals such
46	as tourmaline and apatite have great potential to fingerprint the nature, source, and
47	evolution of fluids in granite-related ore systems.
48	Key words: Tourmaline and apatite chemistry, B-Sr-Nd isotopes, fluid tracer;
49	fluid-rock interaction and fluid mixing; tin deposits
50	
51	Introduction
52	Constraining the nature, source, and evolution of ore-forming fluids remains
52 53	Constraining the nature, source, and evolution of ore-forming fluids remains challenging, due to the restriction of H–O isotopes to just a few favorable mineral species
53	challenging, due to the restriction of H–O isotopes to just a few favorable mineral species
53 54	challenging, due to the restriction of H–O isotopes to just a few favorable mineral species and difficulty in identifying primary fluid inclusions and their paragenesis (Legros et al.
53 54 55	challenging, due to the restriction of H–O isotopes to just a few favorable mineral species and difficulty in identifying primary fluid inclusions and their paragenesis (Legros et al. 2018; Andersson et al. 2019). The chemical and isotopic records in hydrothermal
53 54 55 56	challenging, due to the restriction of H–O isotopes to just a few favorable mineral species and difficulty in identifying primary fluid inclusions and their paragenesis (Legros et al. 2018; Andersson et al. 2019). The chemical and isotopic records in hydrothermal minerals thus provide an alternative way to resolve this issue (Jiang et al. 1999; Su et al.
53 54 55 56 57	challenging, due to the restriction of H–O isotopes to just a few favorable mineral species and difficulty in identifying primary fluid inclusions and their paragenesis (Legros et al. 2018; Andersson et al. 2019). The chemical and isotopic records in hydrothermal minerals thus provide an alternative way to resolve this issue (Jiang et al. 1999; Su et al. 2016; Legros et al. 2018; Codeço et al. 2021). Tourmaline and apatite have been
53 54 55 56 57 58	challenging, due to the restriction of H–O isotopes to just a few favorable mineral species and difficulty in identifying primary fluid inclusions and their paragenesis (Legros et al. 2018; Andersson et al. 2019). The chemical and isotopic records in hydrothermal minerals thus provide an alternative way to resolve this issue (Jiang et al. 1999; Su et al. 2016; Legros et al. 2018; Codeço et al. 2021). Tourmaline and apatite have been considered as two of the best minerals for this role, due to their broad range in elemental

62	LA-MC-ICP-MS (MC = multi-collector), and secondary ion mass spectrometry, also
63	permit high-precision in situ analyses of trace elements and B-Sr-Nd isotopes in
64	tourmaline and apatite, which can provide detailed information on the fluid environment
65	during crystal growth (Slack and Trumbull 2011; Zhao et al. 2015). However, an
66	important precondition to use them as aids in deciphering ore genesis is the clear
67	temporal-spatial link between tourmaline/apatite and ore minerals. Tourmaline in
68	granite-related Sn deposits is usually paragenetically early and partly formed prior to tin
69	ores (Trumbull et al. 2020). So far, there are still relatively few studies on syn-ore
70	tourmaline from Sn deposits (Jiang et al. 2004; Duchoslav et al. 2017; Harlaux et al.
71	2020). Apatite has been widely used to constrain the petrogenesis of igneous rocks (Sha
72	and Chappell 1999; Chu et al. 2009), discriminate mineralized from barren intrusions
73	(Belousova et al. 2002; Cao et al. 2011), and decipher the ore-forming processes of
74	iron-oxide apatite, iron-oxide copper gold, porphyry and skarn W-Cu deposits (Zeng et al.
75	2016; Adlakha et al. 2018; Cao et al. 2021). However, apatite chemistry as a potential
76	indicator for granite-related Sn mineralization has rarely been explored.
77	The large Furong Sn deposit (530,000 t Sn at 0.8 % Sn) in the Nanling Range, South
78	China, is associated with the Mid–Late Jurassic Qitianling granite batholith of A-type and
79	ilmenite-series affinity (Fig. 1; Mao et al. 2004; Yuan et al. 2011; Zhao et al. 2012; Chen
80	et al. 2021a). Tin greisens and skarns are dominant in this deposit, with cassiterite U-Pb
81	ages of ~158 Ma (Yuan et al. 2011; Wang et al. 2014), consistent with the zircon U-Pb

5

82	ages of 163–153 Ma for the Qitianling granites (Zhu et al. 2009; Chen et al. 2021a). At
83	Furong, tourmaline widely occurs as disseminated grains, nodules, vein fill, and
84	replacements in granites and tin ores, and apatite is observed in granites, skarns, and tin
85	ores, providing the opportunity to unravel the nature, source, and evolution of the
86	ore-forming fluids. Yang et al. (2015) proposed that the disseminated, nodular, to
87	veinlet/vein tourmaline in the Qitianling batholith, about 10 km to the north of the Furong
88	deposit, represented an idealized sequence from parental granite through
89	magmatic-hydrothermal transition and finally to hydrothermal stages. However,
90	tourmaline stability in granitic systems depends on the Al saturation of the melt, and
91	tourmaline is strongly unstable in granitic systems with $Al_2O_3/(CaO+Na_2O+K_2O)$
92	(A/CNK) < 1.2 at 700–750°C, regardless of the B content of the melt (Wolf and London
93	1997). The Qitianling granites have A/CNK values lower than 1.1 and zircon saturation
94	temperatures of 747-860°C (Chen et al. 2021a). Besides, the Qitianling granites have
95	whole-rock B contents of 14–37 ppm (Zhao et al. 2011), much lower than the minimum
96	B contents of 500-3000 ppm to achieve tourmaline saturation even for peraluminous
97	granitic melts (Pesquera et al. 2013). Thus, it is unlikely for the Qitianling magma to
98	reach tourmaline saturation, and the tourmaline origin should be reconsidered. Also, the
99	relationship between hydrothermal tourmaline in the samples by Yang et al. (2015) and
100	tin mineralization is unclear.

101

This work presents paragenetic information, micro-textures, in situ elemental, and

6

B–Sr–Nd isotopic compositions of tourmaline and apatite at the Furong deposit. These
data allow us to constrain the origin of the Furong deposit, and highlight the suitability of
coupled tourmaline and apatite as tracers of the nature, source, and evolution of
ore-forming fluids in granite-related ore systems.

- 106
- 107

Geologic setting

108 The Nanling Range is located in central South China, which is developed by amalgamation of the Yangtze and Cathaysia Blocks at ~900 Ma along the 109 110 Jiangshan–Shaoxing fault zone in the northeast and Chenzhou–Linwu fault zone in the 111 southwest (Fig. 1a; Li et al. 2009; Wang et al. 2013). The regional NNE-trending Chenzhou-Linwu fault runs across the Nanling Range (Fig. 1b). The basement of the 112 113 Nanling Range comprises Neoproterozoic to Silurian low-grade metamorphic clastic 114 sedimentary rocks, covered by Devonian to Cretaceous clastic, carbonate, and volcanic rocks (Fig. 1b; Yuan et al. 2019). Besides minor Devonian-Triassic granites, the 115 Mid–Late Jurassic (165–150 Ma) granites cover the largest map area (Fig. 1b; Gilder et al. 116 117 1996; Li et al. 2018) and are closely associated with Sn–W mineralization, such as the 118 world-class Shizhuyuan, Xianghualing, Xitian, Xihuashan, and Furong deposits, forming one of the world's most important Sn–W provinces (Fig. 1b; Mao et al. 2013; Yuan et al. 119 120 2019).

121

The Furong Sn deposit occurs at the southern margin of the Qitianling batholith

122	(Figs. 1b and 1c). The exposed strata mainly comprise Carboniferous to Permian clastic
123	and carbonate rocks with minor Triassic carbonate rocks, which are folded with
124	NNE-trending fold axes (Fig. 1c). Faults in the Furong deposit are mainly NNE- and
125	NE-trending (Fig. 1c). The Qitianling batholith with an exposed area of \sim 520 km ² (Figs.
126	1b and 1c) consists of porphyritic, main-phase, hornblende-biotite and biotite
127	monzogranite (main-phase granite) and minor fine-grained late-phase
128	biotite-siderophyllite alkali-feldspar granite (late-phase granite). The two granite phases
129	were coeval with U-Pb ages of 163-153 Ma (Zhu et al. 2009; Chen et al. 2021a), and
130	formed by incremental assembly of multiple magma pulses (Chen et al. 2021a).
131	Compared to the metaluminous main-phase granite with A/CNK values of 0.8-1.0, the
132	late-phase granite has a more evolved and metaluminous to weakly-peraluminous
133	composition with A/CNK values of 1.0–1.1 (Zhao et al. 2012; Chen et al. 2021a).
134	Tin orebodies at Furong are mainly distributed in the Bailashui-Anyuan (BA; largest
135	resource with 430,000 t Sn at 0.8 % Sn), Heishanli-Maziping (HM), and
136	Shanmenkou-Goutongling zones, from northwest to southeast (Fig. 1c; Mao et al. 2004).
137	Tin mineralization is dominated in greisen- and skarn-types, although some other types
138	are also recognized. Tin mineralization is directly related to the more fractionated
139	late-phase granite, as shown by the intimate spatiotemporal association (Yuan et al. 2011;
140	Chen et al. 2021a). Greisen-type mineralization occurs within the late-phase granite at the
141	HM zone (Fig. 1c). The paragenetic sequence can be subdivided into three main stages

142	(Appendix 1a (App. 1a)): pre-ore (quartz + albite + K-feldspar + tourmaline), syn-ore
143	(quartz + muscovite + tourmaline + fluorite + cassiterite ± sulfides), and post-ore (calcite
144	+ fluorite) stages. At the BA zone, the skarn-type No. 19 orebody is mainly overprinted
145	on an irregular Permian limestone 'raft' inside the main-phase granite, and bounded by
146	two NNE-trending faults (Fig. 2). The mineralization formed in four stages (App. 1b):
147	prograde stage-I (garnet + diopside), retrograde stage-II (vesuvianite + pargasite +
148	phlogopite + fluorite + sellaite + cassiterite + magnetite, the main ore-forming stage),
149	sulfide-rich stage-III (quartz + pyrite + arsenopyrite + chalcopyrite + sphalerite +
150	cassiterite; less important tin mineralization), and late stage-IV (fluorite + calcite).
151	
152	Tourmaline occurrence and paragenesis
152 153	Tourmaline occurrence and paragenesis Five types of tourmaline (Tur) were identified at Furong, including Tur-1, Tur-2, and
153	Five types of tourmaline (Tur) were identified at Furong, including Tur-1, Tur-2, and
153 154	Five types of tourmaline (Tur) were identified at Furong, including Tur-1, Tur-2, and Tur-3 at the HM zone, and Tur-4 and Tur-5 at the BA zone. Their characteristics and
153 154 155	Five types of tourmaline (Tur) were identified at Furong, including Tur-1, Tur-2, and Tur-3 at the HM zone, and Tur-4 and Tur-5 at the BA zone. Their characteristics and paragenesis are summarized as below.
153 154 155 156	Five types of tourmaline (Tur) were identified at Furong, including Tur-1, Tur-2, and Tur-3 at the HM zone, and Tur-4 and Tur-5 at the BA zone. Their characteristics and paragenesis are summarized as below. <i>Tur-1 to Tur-3:</i> Pre-ore Tur-1 occurs as disseminations and nodules in the late-phase
153 154 155 156 157	Five types of tourmaline (Tur) were identified at Furong, including Tur-1, Tur-2, and Tur-3 at the HM zone, and Tur-4 and Tur-5 at the BA zone. Their characteristics and paragenesis are summarized as below. <i>Tur-1 to Tur-3:</i> Pre-ore Tur-1 occurs as disseminations and nodules in the late-phase granite. The disseminated Tur-1 occurs interstitial to quartz, K-feldspar, and albite (Fig.
153 154 155 156 157 158	 Five types of tourmaline (Tur) were identified at Furong, including Tur-1, Tur-2, and Tur-3 at the HM zone, and Tur-4 and Tur-5 at the BA zone. Their characteristics and paragenesis are summarized as below. <i>Tur-1 to Tur-3:</i> Pre-ore Tur-1 occurs as disseminations and nodules in the late-phase granite. The disseminated Tur-1 occurs interstitial to quartz, K-feldspar, and albite (Fig. 3a). It is fine-grained and subhedral with tan to blue-green pleochroism (Fig. 3a), and

162	tourmaline with minor albite, muscovite, and fluorite (Figs. 3d-3g). They are rimmed by
163	a 0.5-2 cm wide leucocratic halo (Fig. 3c), which contains more K-feldspar, less albite,
164	and is devoid of tourmaline and mafic minerals like biotite and siderophyllite, compared
165	with the late-phase host granite. The nodular Tur-1 is brown in color and includes
166	euhedral quartz and albite grains (Fig. 3d), with a homogeneous BSE image (Fig. 3f).
167	Tur-2 replacements and veins are observed at the pre- to syn-ore stage. Within the
168	nodules, the brown Tur-1 is replaced by blue Tur-2, minor fluorite and muscovite (Fig.
169	3e), when muscovite replaces albite (Fig. 3g). The nodular Tur-2 is characterized by
170	pitted surfaces with visible voids and tiny fluorite inclusions (Figs. 3e and 3f). Locally, it
171	is included by or intergrown with arsenopyrite (Fig. 3h), indicating its formation at the
172	pre- to syn-ore stage. Quartz-Tur-2 veins with mafic mineral-absent, leucocratic halos
173	crosscut the late-phase granite and locally the Tur-1 nodules (Fig. 3i), indicating that the
174	vein-type Tur-2 postdates Tur-1. It also coexists with minor muscovite (Fig. 3j). It shows
175	pleochroism from orange to yellow-green and blue (Fig. 3j), and has weak patchy zoning
176	in BSE images (Fig. 3k). Syn-ore Tur-3 occurs in greisen-type ores. Anhedral to
177	subhedral and fine-grained Tur 3 co-exists with abundant cassiterite and muscovite (Figs.
178	31 and 3m). It is bluish to light brown in color (Fig. 31), and shows weak oscillatory
179	zoning in BSE images (Fig. 3m). Locally, Tur-3 co-exists with arsenopyrite (Fig. 3n) and
180	chalcopyrite (Fig. 30). It shows tan to blue-green pleochroism (Fig. 3n) with a
181	homogeneous BSE image (Fig. 30).

182	Tur-4 to Tur-5: A 30-60 cm wide quartz-Tur-4 vein crosscuts the main-phase
183	granite (Fig. 4a). Along the vein occur leucocratic halos (Fig. 4a), in which plagioclase is
184	intensively replaced by sericite. Tur-4 consists mainly of radiating, coarse-grained,
185	euhedral prismatic crystals (Fig. 4b), comprising dark bluish cores and dark tan rims (Fig.
186	4b). It shows oscillatory zoning in BSE images (Fig. 4c). Tur-4 is locally intergrown with
187	or replaced by muscovite (Fig. 4d) and sphalerite (Fig. 4e), implying that it formed at the
188	pre- to syn-ore stage. Tur-5 co-exists with pargasite, fluorite, and cassiterite, replacing
189	vesuvianite in the stage-II skarn-type ore (Fig. 4f). It is bluish to blue in color (Fig. 4f)
190	with patchy zoning in BSE images (Fig. 4g).
191	
192	Apatite occurrence and paragenesis
192 193	Apatite occurrence and paragenesis Four apatite (Ap) generations were distinguished at the BA zone, including Ap-G in
193	Four apatite (Ap) generations were distinguished at the BA zone, including Ap-G in
193 194	Four apatite (Ap) generations were distinguished at the BA zone, including Ap-G in the unaltered main-phase granite away from the quartz-Tur-4 veins, and Ap-I, Ap-II, and
193 194 195	Four apatite (Ap) generations were distinguished at the BA zone, including Ap-G in the unaltered main-phase granite away from the quartz-Tur-4 veins, and Ap-I, Ap-II, and Ap-III from stages-I to III related to the skarn-type mineralization. Apatite is not observed
193 194 195 196	Four apatite (Ap) generations were distinguished at the BA zone, including Ap-G in the unaltered main-phase granite away from the quartz-Tur-4 veins, and Ap-I, Ap-II, and Ap-III from stages-I to III related to the skarn-type mineralization. Apatite is not observed at the HM zone. The apatite characteristics and paragenesis are summarized as below.
193 194 195 196 197	Four apatite (Ap) generations were distinguished at the BA zone, including Ap-G in the unaltered main-phase granite away from the quartz-Tur-4 veins, and Ap-I, Ap-II, and Ap-III from stages-I to III related to the skarn-type mineralization. Apatite is not observed at the HM zone. The apatite characteristics and paragenesis are summarized as below. <i>Ap-G:</i> As an ubiquitous accessory mineral in the main-phase granite, Ap-G has
193 194 195 196 197 198	Four apatite (Ap) generations were distinguished at the BA zone, including Ap-G in the unaltered main-phase granite away from the quartz-Tur-4 veins, and Ap-I, Ap-II, and Ap-III from stages-I to III related to the skarn-type mineralization. Apatite is not observed at the HM zone. The apatite characteristics and paragenesis are summarized as below. <i>Ap-G:</i> As an ubiquitous accessory mineral in the main-phase granite, Ap-G has subhedral to euhedral, tabular, and locally hexagonal shape, with crystals up to 400 μm

11

202	images (Fig.	5b), and i	s relatively hor	nogeneous and	bright in BSE	images (Fig. 5c).
		,,		- 0	- 0 -	

203	Ap-I to Ap-III: Ap-I is observed in stage-I garnet skarn (Fig. 5d). It occurs as
204	subhedral to anhedral fine grains (up to 100 μm in diameter), and is mainly blue with
205	very narrow green rims in CL images (Fig. 5e), and homogeneous in BSE images (Fig.
206	5f). Apatite also occurs interstitial to diopside grains in the diopside-pargasite skarn, and
207	it is relatively large with diameter of up to 600 μ m (Fig. 5g). It displays zoning textures
208	with blue cores and green rims in CL images (Fig. 5h). In BSE images, the cores are
209	brighter than the rims (Fig. 5i). The co-existing diopside is replaced by pargasite (Figs. 5g
210	and 5i). Thus, the blue cores are considered to be Ap-I, whereas the green rims are
211	categorized as Ap-II. In addition, Ap-II disseminations and veinlets also occur in stage-II
212	skarn-type tin ores, and show an intimate association with pargasite, fluorite, and
213	cassiterite (Fig. 5j). In CL images, Ap-II dominantly shows green luminescence, and
214	locally has very small blue cores (Fig. 5k), which is very weak to indiscernible in
215	high-contrast BSE images (Fig. 51). Subhedral to anhedral fine-grained Ap-III co-exists
216	with sphalerite at the sulfide-rich stage-III (Fig. 5m). It displays green luminescence, or
217	color zonation with light bluish grey cores and green rims in CL images (Fig. 5n), but is
218	homogeneous in BSE images (Fig. 50).

219

220

Samples and analytical methods

221 Ten tourmaline-bearing samples (Fig. 1c) and eight apatite-bearing samples (Fig. 2)

222	were collected from the Furong deposit. After a detailed examination of tourmaline and
223	apatite micro-textures under BSE and optical CL images, in situ major- and
224	trace-elemental compositions of both minerals were measured by electron probe
225	microanalysis (EPMA) and LA-ICP-MS, respectively. In situ tourmaline B and apatite
226	Sr-Nd isotope spot analyses were then determined using LA-MC-ICP-MS. The
227	analytical methods are described in App. 2.
22 0	

- 228
- 229

Results

230 Major- and trace-elemental composition of tourmaline

Major- and trace-elemental compositions of the Furong tourmaline are given in App. 231 232 3, and the average elemental compositions of selected elements are summarized in Table 233 1. The analyzed tournaline mostly plots in the alkali group and has schorlitic 234 composition, with a minor subset belonging to the calcic and X-site vacant groups and foitite (Figs. 6a-6c; Henry and Guidotti 1985; Henry et al. 2011). At the HM zone, Tur-1 235 236 and Tur-2 have similar compositions, but Tur-2 from the nodules has slightly lower Mg 237 and F than the corresponding Tur-1 from individual crystals (Figs. 7a and 7b), and minor 238 Tur-2 shows Ca, Fe/(Fe+Mg), Mg, and F close to Tur-3 (Table 1; Figs. 6a-6f). Compared 239 to Tur-1, Tur-3 has higher Ca, X_{\Box} (vacancy in X-site), Mg, lower Fe/(Fe+Mg), Fe, F, and 240 similar Al contents (Table 1; Figs. 6a–6f). Relative to tourmaline variants at the HM zone,

13

241	Tur-4 at the BA zone exhibits high Ca, X_{\Box} , Mg, Al, and low Fe/(Fe+Mg), Fe, F contents,
242	while Tur-5 is characterized by the highest Ca, high but variable Fe, Mg, and low
243	Fe/(Fe+Mg), Al, X_{\Box} , F contents (Table 1; Figs. 6a-6f).
244	Tourmaline at Furong has relatively high concentrations (several to thousands of
245	ppm) of Li, Be, Sc, V, Cr, Co, Ni, Zn, Ga, Sr, and Sn, with concentrations of other trace
246	and rare earth elements (REE) analyzed generally low or below the detection limit (App.
247	3). At the HM zone, Tur-1 and Tur-2 have similar abundances in most trace elements, but
248	the latter shows slightly lower Li and higher Sn, close to Tur-3 (Table 1; Figs. 6g-6l).
249	Compared to the nodular Tur-1, the corresponding Tur-2 from individual crystals has
250	lower Li, Sc, Zn, and higher Sn (Figs. 7c-7f). Relative to Tur-1, Tur-3 has lower Li, Zn,
251	higher V, Sr, Sn, and similar Ni contents (Table 1; Figs. 6g-6l). At the BA zone, Tur-4
252	and Tur-5 have high V, Ni, Sr, and Sn concentrations, with the former showing the lowest
253	Li and Zn (Table 1; Figs. 6g–6l).

Boron isotope composition of tourmaline

The B isotope compositions of the Furong tourmaline are shown in Fig. 8a, and the full dataset is reported in App. 4. The measured δ^{11} B values of all tourmaline types vary narrowly from -14.8 to -10.4 ‰ (N=106) (Fig. 8a). Tur-2 in the nodules has higher δ^{11} B values than the corresponding Tur-1 from individual crystals (Fig. 8b).

14

259 Major- and trace-elemental composition of apatite

260	Major- and trace-elemental compositions of the Furong apatite are given in App. 5,
261	and the average compositions of selected elements are summarized in Table 2. Four
262	apatite types exhibit no systematic difference in CaO and P_2O_5 contents (Table 2), and all
263	of them belong to fluorapatite with high F concentrations of 2.4–4.3 wt% and low SiO_2 ,
264	SO ₃ , TiO ₂ , Al ₂ O ₃ , BaO, Na ₂ O, K ₂ O, and Cl concentrations (Table 2).
265	Trace elements like Na, Fe, Mn, V, Ga, Sr, Y, REE, Pb, Th and U in the Furong
266	apatite were always detected (Table 2), whereas other elements analyzed were mostly
267	below the detection limit. Ap-G has high Fe, Mn, Ga, Na, REE, Y, and low V, Sr, Th, U
268	contents, Sr/Y ratios (Fig. 9). It shows light REE (LREE)-enriched chondrite-normalized
269	REE patterns, with La_N/Yb_N ratios of 5.4–13.1 and extremely negative Eu anomaly (δEu
270	< 0.1; Table 2; Fig. 10a). In contrast, Ap-I to Ap-III from skarns generally have high V, Sr,
271	Th, U, and Sr/Y, and low Na, Fe, Mn, Ga, REE, and Y concentrations (Fig. 9). Their REE
272	patterns are also LREE-enriched but with higher $La_N\!/Yb_N$ ratios of 13.2–87.0 and δEu
273	mostly of 0.3-0.7 (Table 2; Figs. 10b and 10c). Besides, Ap-II has slightly lower REE
274	and Y than Ap-I (Table 2; Figs. 9c and 9e).

275 Sr–Nd isotope composition of apatite

A total of 51 Sr isotopic spot analyses were obtained from Ap-I to Ap-III, whereas Sr contents of Ap-G are too low for in-situ Sr isotopic analysis by the LA–MC–ICP–MS

278	technique. Thirty-six spots of Nd isotopic analyses were conducted on Ap-G and Ap-I,
279	but the Nd isotopic composition of the other Nd-poor apatite types is unmeasurable. The
280	apatite Sr-Nd isotopic results are listed in App. 6.
281	Ap-I to Ap-III have extremely low Rb/Sr ratios (<0.01; App. 6), so that their
282	present-day ⁸⁷ Sr/ ⁸⁶ Sr ratios are not significantly affected by ⁸⁷ Rb decay and provide a
283	record of the initial Sr isotopic signatures. Ap-I to Ap-III have mutually indistinguishable
284	$^{87}\text{Sr}/^{86}\text{Sr}$ ratios ranging from 0.70733 to 0.70795 (Fig. 11a). The $\epsilon_{Nd(t)}$ values of Ap-G and
285	Ap-I were calculated for 160 Ma (zircon U-Pb age for the main-phase granite; Zhu et al.
286	2009) and 158 Ma (cassiterite U-Pb age for tin mineralization; Yuan et al. 2011),
287	respectively. Ap-G and Ap-I have overlapping $\epsilon_{Nd(t)}$ values of –8.2 to –5.9 and two-stage
288	model ages (T _{DM2}) of 1428–1615 Ma (Fig. 11b).
289	
290	Discussion
291	Tourmaline and apatite origin
292	High-temperature hydrothermal overprint (i.e., subsolidus alteration) during the
293	magmatic-hydrothermal transition is seen in the Qitianling late-phase granite, as shown
294	by the occurrence of turbid albite and high-U, structure-damaged zircons (Haapala 1997;
295	Zhang et al. 2017), and the extremely low whole-rock Nb/Ta ratios (down to 2.9) and
296	REE tetrad effects (Chen et al. 2021a). Considering the instability of tourmaline in the

297	metaluminous to weakly peraluminous late-phase granite, we infer that the disseminated
298	Tur-1 at the HM zone (Fig. 3a) is formed during the subsolidus alteration process, similar
299	to siderophyllite from highly-evolved granites related to rare-metal mineralization
300	(Mohamed et al. 1999). The leucocratic halos surrounding Tur-1 nodules (Fig. 3c)
301	suggest crystallization of the nodular Tur-1 favored by decomposition of biotite and
302	siderophyllite, possibly at subsolidus conditions (Wolf and London 1997; Harlaux et al.
303	2020). The similar compositions between the disseminated and nodular Tur-1 subtypes
304	also suggest the same hydrothermal origin. Tur-2 occurs as replacements in tourmaline
305	nodules (Fig. 3e) and as veins crosscutting the late-phase granite and nodules (Fig. 3i). It
306	co-exists with muscovite (Figs. 3g and 3j) and fluorite (Figs. 3e and 3f). Tur-2
307	replacements particularly show systematic differences in elemental and B isotopic
308	compositions compared to the nodular Tur-1 (Figs. 7 and 8b), suggesting a hydrothermal
309	origin for Tur-2. Tur-3 in tin greisens was formed during interaction of hydrothermal
310	fluids with the late-phase granite, which was accompanied by precipitation of muscovite,
311	cassiterite, and/or sulfides (Figs. 31-30). At the BA zone, Tur-4 occurs as veins
312	crosscutting the main-phase granite (Fig. 4a), and Tur-5 replaces vesuvianite in the
313	stage-II skarn-type ore (Fig. 4f). Both of them show contrasting compositions compared
314	to Tur-1 to Tur-3 at the HM zone (Fig. 6), indicating a hydrothermal origin for Tur-4 and
315	Tur-5 in a different host-rock environment. The distinct and complex chemical
316	environment for the skarns explains the heterogeneous composition of Tur-5. Hence, all

17

317 five tourmaline variants are of hydrothermal origin.

318	In the main-phase granite, accessory Ap-G has high F, Fe, Mn, Ga, REE, and Y, and
319	low V and Sr contents (Table 2; Figs. 9a-9e), features typical of magmatic apatite from
320	granitoids (Sha and Chappell 1999; Chu et al. 2009). In the Mn-Sr, Y-Sr, and
321	LREE-Sr/Y diagrams (Figs. 9b, 9c and 9f; Belousova et al. 2002; O'Sullivan et al. 2020),
322	Ap-G plots mostly in the granite, granite pegmatite, and alkali-rich igneous rocks fields.
323	Based on the parent rock REE concentrations (Zhao et al. 2012; Chen et al. 2021a) and
324	D _{REE} ^{ap/melt} (Fujimaki 1986), the calculated REE abundances for ideal apatite equilibrated
325	with the main-phase granite show identical patterns to the measured results (Fig. 10a).
326	Besides, Ap-G shares similar Nd isotopic characteristics to the host granite (Fig. 11b;
327	Zhao et al. 2012). Thus, Ap-G is magmatic in origin. In contrast, the skarn-hosted Ap-I to
328	Ap-III (Figs. 5d-5o) have distinctly different elemental compositions from Ap-G (Fig. 9).
329	They plot out of the granite-related fields in the Mn-Sr and Y-Sr diagrams (Figs. 9b and
330	9c), and extend to the hydrothermal apatite field in the LREE-Sr/Y diagram (Fig. 9f).
331	They also show right-inclined REE patterns (Figs. 10b and 10c), comparable to
332	hydrothermal apatite from skarns elsewhere (Adlakha et al. 2018). These features
333	demonstrate they are of hydrothermal origin. In summary, Ap-G at Furong crystallized
334	directly from the magma, whereas skarn-hosted Ap-I to Ap-III are hydrothermal in origin.
225	

18

Source of the magma and ore-forming fluids

337	The magmatic Ap-G has $\epsilon_{Nd(t)}$ and T_{DM2} values similar to the whole-rock data for the
338	Qitianling granites (Fig. 11b; Zhao et al. 2012; Chen et al. 2021a), supporting the
339	previous conclusion that the magma derived from partial melting of an old crustal source
340	with minor involvement from a mafic magma (Zhao et al. 2012; Chen et al. 2021a).
341	All tourmaline variants at Furong have consistent $\delta^{11}B$ values (-14.8 to -10.4 ‰;
342	Fig. 9a), overlapping with the whole-rock data (-14.0 to -10.9 ‰, N=5) for the
343	Qitianling granites (Fig. 12a; Zhao et al. 2011), and those of tourmalines from
344	granite-related systems worldwide (Fig. 12a; Marschall and Jiang 2011). This suggests a
345	single magmatic boron source in the ore-forming fluids. The temperature-dependent
346	tourmaline-fluid B isotope fractionation (Meyer et al. 2008) is used to calculate the
347	$\delta^{11}B_{\text{fluid}}$ values. The quartz-tourmaline oxygen isotope thermometer has yielded
348	crystallization temperatures of ~650°C for disseminated and nodular tourmaline at the
349	magmatic-hydrothermal transition, and ~550°C for tourmaline as post-magmatic
350	replacements and veins in tin-bearing granites elsewhere (Harlaux et al. 2021). These
351	temperatures are adopted for Tur-1 and Tur-2/Tur-4 in this study, respectively (App.4).
352	Fluid inclusions in quartz have homogenization temperatures of ~350°C for the
353	Tur-3-bearing tin greisens, and $\sim 400^{\circ}$ C for the Tur-5-bearing tin skarns at Furong
354	(Shuang et al. 2009). These microthermometric data are used without pressure correction
355	because fluid boiling was observed (Shuang et al. 2009).

19

356	At the HM zone, the calculated $\delta^{11}B_{fluid}$ values increase from -13.7 to -11.6 ‰ (avg.
357	-12.7 ‰) for the pre-ore fluid, through -13.2 to -8.8 ‰ (avg. -11.6 ‰) for the pre- to
358	syn-ore fluid, to -11.3 to -9.6 ‰ (avg10.4 ‰) for the syn-ore fluid (App. 4; Fig. 12b).
359	This small increase in $\delta^{11}B_{\text{fluid}}$ values is likely influenced by Rayleigh fractionation in a
360	closed magmatic-hydrothermal system. The similarity in H-O isotopic composition
361	between quartz from tin greisens ($\delta D_{fluid} = -89$ to -62 ‰ and $\delta^{18}O_{fluid} = 5.5$ to 7.6 ‰;
362	Shuang et al. 2009) and typical magmatic fluids (Sheppard 1986) also precludes the
363	ingress of external fluids. Because of the progressive ¹¹ B enrichment in the residual fluid
364	during tourmaline precipitation (Jiang et al. 1999; Marschall et al. 2009), the lowest
365	$\delta^{11}B_{\text{fluid}}$ value (-13.7 ‰) of the pre-ore fluid is assumed to be the ¹¹ B value of the initial
366	magmatic fluid. Model calculations based on Rayleigh fractionation show that the
367	consumption of ~98 to ~73 % at 650–350 °C of the initial boron budgets would increase
368	the $\delta^{11}B$ values of the residual fluid to achieve the largest $\delta^{11}B_{fluid}$ value (-9.6 ‰) of the
369	syn-ore fluid (Fig. 12b).

At the BA zone, the $\delta^{11}B_{fluid}$ values calculated from Tur-4 and Tur-5 range from -12.7 to -9.8 ‰ (avg -11.0 ‰), similar to those at the HM zone (Fig. 12b), indicating the same magmatic origin for the ore-forming fluids with respect to boron. The skarn-hosted Ap-I to Ap-III show REE patterns similar to the magmatic Ap-G, but distinct from the carbonate wall rocks (Fig. 10), suggesting an intimate association between the magma and ore-forming fluids, as supported by the consistence in Nd isotopic

20

376	compositions of Ap-I with Ap-G and the Qitianling granites (Fig. 11b). However, Ap-I to
377	Ap-III have ⁸⁷ Sr/ ⁸⁶ Sr ratios (0.70733–0.70795) lower than the Qitianling granites
378	(0.70913-0.71315; Zhao et al. 2012), but similar to Permian carbonate rocks
379	(0.70698-0.70753; Yan and Wu 2004) (Fig. 11a), indicating the significant Sr
380	contribution of the carbonate wall rocks by fluid-rock interaction, and/or the addition of
381	meteoric water that equilibrated with limestone. This is consistent with the ⁸⁷ Sr/ ⁸⁶ Sr ratios
382	of 0.7083–0.7091 (N=11) and $\epsilon_{Nd(t)}$ of –9.4 to –0.7 (N=10) of separated fluorite from the
383	same orebody (Yuan et al. 2008), although these data vary dramatically. The H-O
384	isotopic compositions for quartz from the stage-III sulfide-rich ores ($\delta D_{fluid} = -67$ to
385	-62 ‰ and $\delta^{18}O_{\text{fluid}} = -5.1$ to -1.3 ‰; Shuang et al. 2009) lie between those for
386	magmatic and meteoric waters (Sheppard 1986), implying the involvement of meteoric
387	water at stage-III. Thus, the extremely B-poor carbonate wall rocks and meteoric water
388	(<4 ppm; Pennisi et al. 2000; Xu et al. 2021) have little influenced the magmatic B
389	isotopic system.

In summary, tin greisens at Furong formed in a closed magmatic-hydrothermal system, whereas tin skarns resulted from fluid-rock interaction and mixing between magmatic fluid and wall rock-derived meteoric water. The tourmaline and apatite data are indicative of B, Nd, and Sr contributions from distinct reservoirs.

21

395 Nature of the ore-forming fluids

Tourmaline is a robust indicator of its host rocks and fluid environment (van 396 Hinsberg 2011; Hong et al. 2017; Dutrow and Henry 2018). Mineral-fluid trace element 397 398 partition coefficients allow for the estimating of fluid compositions from the mineral composition (van Hinsberg et al. 2017; Dutrow and Henry 2018). Unfortunately, 399 tourmaline-fluid element partition coefficients (D^{tur/fluid}) have not been determined 400 401 experimentally. As an alternative, they can be calculated by combining experimental tourmaline-melt (van Hinsberg 2011) and fluid-melt (Zajacz et al. 2008; Iveson et al. 402 2019) D values, following the approach of Keppler (1996) (App. 2). The estimated 403 D^{tur/fluid} values are 0.2, 0.3, 0.1, and 1.9 for Na, Li, Zn, and Sr, respectively (App. 2). As a 404 405 result, the calculated Na, Li, Zn, and Sr concentrations in the fluids fall in the range of 2.8-7.1 wt%, 24-1224 ppm, 782-3619 ppm, and 0-229 ppm, respectively (App. 3; Table 406 1). They are comparable to the analytical results by LA-ICP-MS on single fluid 407 inclusions and estimations by mica compositions from granite-related tin deposits 408 elsewhere (Audétat et al. 2000a, 2000b; Müller et al. 2001; Codeço et al. 2021). Tin 409 contents in the fluids cannot be obtained due to lack of a $D_{Sn}^{tur/melt}$ value. However, all 410 411 tourmaline variants at Furong have much higher Sn contents (avg 107–435 ppm; Table 2) 412 than their host rocks (avg <25 ppm for bulk rock; Zhao et al. 2012; Wang et al. 2014; 413 Chen et al. 2021a), probably indicating a Sn-rich fluid that exsolved from granitic melts (Heinrich 1990; Lehmann 1990, 2021). Thus, the ore-forming fluids at Furong are rich in 414

22

415 B, Na, Li, Zn, and Sn, but relatively poor in Sr.

416	At the HM zone, the depletion of Li in Tur-2 and Tur-3 relative to Tur-1 (Table 1;
417	Fig. 6g) are accompanied by the presence of muscovite (Figs. 3g, 3j, 3l, and 3m), which
418	preferentially incorporates Li from the fluids due to the large partition coefficient
419	($D_{Li}^{muscovite/tur}$ of ~5.3; van Hinsberg et al. 2017). Similarly, the decreasing Fe, F, and Zn
420	from Tur-1 and Tur-2 to Tur-3 (Table 1; Figs. 6c, 6f and 6k) can be explained by their
421	preferential incorporation into co-existing Fe-rich cassiterite (our unpublished data),
422	fluorite and sulfides, respectively (App.1; Figs. 31-30), although the X-site charge may
423	also have an influence on F incorporation into tourmaline (Henry and Dutrow 2011). In
424	contrast, the Mg, Ca, V, and Sr rise from Tur-1 and Tur-2 to Tur-3 (Table 1; Figs. 6a, 6c,
425	6h and 6j) imply the depletion of these components in the pre-ore fluid and addition of
426	these components from the late-phase host granite by decomposition of mica and feldspar
427	during greisenization. Tin is more enriched in Tur-2 and Tur-3 than in Tur-1 (Table 1; Fig.
428	6l). Some Sn would be released during the alteration of granites, but could be transported
429	only over relatively short distances before precipitation as cassiterite (Schmidt et al.
430	2020). In a series of experiments, Zhao et al. (2021) determined fluid/melt partition
431	coefficients (1.9–35) for Sn and found that a fluid could efficiently extract Sn during fluid
432	exsolution especially during the late-stage of magmatic evolution. Given that rare or no
433	cassiterite coexists with the Sn-rich Tur-2, we ascribe the increasing Sn content with fluid
434	evolution to late Sn-rich magmatic fluid pulses.

435	At the BA zone, Ca enrichment in Tur-4 and Tur-5 relative to Tur-1 to Tur-3 (Fig.
436	6a), and the presence of abundant apatite and other Ca-rich skarn minerals (Figs. 5d–5o),
437	indicate a Ca-rich environment. Considering the Sn-poor main-phase granite (avg 16 ppm;
438	Zhao et al. 2012) and carbonate wall rocks (mostly <1 ppm; Wang et al. 2014), the strong
439	Sn enrichment in Tur-4 and Tur-5 (Fig. 6l) may reflect a strongly Sn-rich fluid, consistent
440	with the large tin reserve in this zone. Depletion of F, Li, and Zn in Tur-4 (Figs. 6f, 6g
441	and 6k) can be ascribed to the occurrences of fluorite, muscovite (Fig. 4d), and sphalerite
442	(Fig. 4e), respectively. Tur-4 is characterized by high Ca, Mg, V, Ni, and Sr contents
443	(Table 1; Figs. 6a, 6c, and 6h-i), consistent with the composition of its main-phase host
444	granite (Zhao et al. 2012). This probably demonstrates a derivation of these components
445	from the host rocks. The highest Ca and high Mg, V, Ni, and Sr concentrations in
446	skarn-hosted Tur-5 (Figs. 6a, 6c, and 6h-j) coincide with the composition of carbonate
447	wall rocks (Wang et al. 2014). This indicates the significant contribution of carbonate
448	rocks in these components to the skarn-forming fluids, as shown by the V and Sr
449	enrichment (Figs. 9a-c) and ⁸⁷ Sr/ ⁸⁶ Sr ratios (Fig. 11a) of the skarn-hosted Ap-I to Ap-III.
450	REE and Y are generally leached out of apatite by Cl-rich fluids to form REE mineral
451	inclusions like monazite (Harlov 2015; Andersson et al. 2019), but Na and Ca enrichment
452	in the fluids would suppress the growth of these minerals (Harlov 2015; Zeng et al. 2016).
453	The absence of coexisting REE minerals with Ap-II that replaces Ap-I is consistent with
454	the Na- and Ca-rich fluids at the BA zone.

24

455	In summary, the ore-forming fluids at Furong are rich in B, Na, Li, Zn, and Sn.
456	During fluid evolution, considerable Ca, Mg, V, Ni, and Sr from the host rocks were
457	added into the ore-forming system by fluid-rock exchange and/or fluid mixing.

458

459 **Oxygen fugacity and ore precipitation**

The abundances of redox-sensitive elements in apatite and elemental substitutions in 460 tourmaline have been widely used as oxygen fugacity proxies (Sha and Chappell 1999; 461 Henry and Dutrow 2012; Miles et al. 2014; Dutrow and Henry 2018). Under reduced 462 463 conditions, apatite is generally enriched in Ga, Mn, and depleted in V contents (Sha and Chappell 1999; Miles et al. 2014). Such features observed in Ap-G (Figs. 9a, 9b and 9d) 464 imply a relatively reduced condition for the Qitianling granites, consistent with their 465 general ilmenite-series affinity and previous estimations from biotite composition and 466 phase equilibrium experiments (~NNO buffer; Huang et al. 2019; Chen et al. 2021a). 467

Although Tur-5 displays scatter in Fig. 6c, compositional variabilities in all the tourmaline variants at Furong generally demonstrate combined substitutions of (AlO)[$R^{2+}(OH)$]-1, (AlO)($R^{2+}F$)-1, ($X_{\Box}Al$)(NaR²⁺)-1, and ($^{Y}Al^{T}Al$)($R^{2+}Si$)-1, where R represents Fe, Mg, and/or Mn, and ^{Y}Al and ^{T}Al are Al at the Y and T sites, respectively (Figs. 6c–6e). Tur-1 and Tur-2 exhibit a dominant substitution of AlFe³⁺-1 (Fig. 6c), which can be ascribed to the extremely low Mg abundances. Importantly, Tur-3 from the tin

474	greisen and Tur-4 from the quartz-Tur-4 vein show both substitutions of $MgFe^{2+}_{-1}$ and
475	AlFe ³⁺ - $_1$ (Figs. 6c–6e), whereas the skarn-hosted Tur-5 is dominated by AlFe ³⁺ - $_1$ (Fig. 6e).
476	This indicates a relatively low oxygen fugacity for the greisen-forming fluid at the HM
477	zone, and a transition to higher oxygen fugacity for the skarn-forming fluids at the BA
478	zone (Henry and Dutrow 2012; Dutrow and Henry 2018; Qiu et al. 2021). A relatively
479	reduced condition of the greisen-forming fluid is consistent with the causative Qitianling
480	magma. The skarn-hosted Ap-I to Ap-III has Mn contents (avg 111-149 ppm; Table 2)
481	much lower than apatite from reduced skarns at the Cantung W-Cu deposit in Canada
482	$(1590 \pm 930 \text{ ppm}; \text{Adlakha et al. 2018})$, and even lower than apatite from an oxidized
483	hydrothermal system at the Xindigou orogenic Au deposit in North China (216 ± 77 ppm;
484	Zhang et al. 2020). This confirms the oxidized skarn system at the BA zone, as evidenced
485	by abundant Fe ³⁺ -rich garnet (Chen et al. 2021b), diopside, magnetite, and epidote in the
486	skarns. Tin is dominantly transported as Sn ²⁺ -Cl complexes under reduced conditions,
487	and cassiterite precipitation is redox- and pH-dependent (Jackson and Helgeson 1985;
488	Lehmann 1990, 2021; Taylor and Wall 1993). At the HM zone, interaction of the reduced
489	and acid Sn-bearing magmatic fluid with the late-phase granite results in the greisen-style
490	mineralization, where destruction of feldspar leads to the increase in pH of the fluid
491	system (Heinrich 1990; Lehmann 1990, 2021). At the BA zone, on the contrary, both
492	interaction of the reduced magmatic fluid with carbonate wall rocks and mixing with
493	oxidized meteoric water can lead to an increase in oxygen fugacity, as well as acid

26

494 neutralization (Heinrich 1990; Lehmann 1990, 2021), which triggered formation of the495 tin skarns.

- 496
- 497

Implications

The consistent B isotopic compositions of Tur-5 from an open skarn system with 498 499 Tur-1 to Tur-3 from a closed magmatic-hydrothermal greisen environment (Fig. 8a) suggests that tourmaline B isotopes by themselves are ineffective in discriminating the 500 entrainment of the B-poor, wall rock-derived fluids in granite-related tin deposits. In this 501 case, combination with hydrothermal apatite Sr-Nd isotopes can provide further 502 503 constraints on fluid sources. The similarity in Sr isotopic compositions between the skarn-hosted Ap-I to Ap-III and carbonate wall rocks (Fig. 10a) indicates extensive 504 exchange between the magmatic fluid and wall rocks, and/or addition of wall 505 506 rock-derived meteoric water. In addition, the tourmaline and apatite compositions indicate that the ore-forming magmatic fluid had high B, Na, Li, Zn, and Sn, and low Sr 507 concentrations (Table 1), which are in good agreement with previous fluid-inclusion 508 analyses and estimations by mica chemistry. During the fluid-rock interaction and 509 510 incursion of meteoric water, the host rocks contributed considerable amounts of Ca, Mg, V, Ni, and Sr to the ore-forming system. This study also suggests that tourmaline and 511 apatite have great potential with respect to fingerprinting the oxygen fugacity conditions 512 513 of ore-forming fluids (Figs. 6d–6e). Thus, the textures, paragenesis, in situ elemental

27

514	compositions, and B-Sr-Nd isotopes of coupled tourmaline and apatite can provide more
515	accurate constraints on the nature of the fluids and associated ore-forming processes in
516	granite-related ore systems.
517	
518	Acknowledgements
519	We are grateful to Xu-Feng Tian for his help in sampling and field survey, to Xin-Fu
520	Zhao, Jian-Hui Su for their help in taking CL images, and to Zhen-Yu Chen, Xiao-Dan

521 Chen, Xiao-Hong Mao and Ke-Jun Hou, Qian Wang for their assistance in the 522 tourmaline/apatite major-, trace-elemental, and B–Nd–Sr isotopic analyses. Daniel 523 Harlov is thanked for editorial handling and polishment, and Shun-Da Yuan and Darrell 524 Henry are appreciated for their thought-provoking comments. This research was 525 supported financially by the National Key Research and Development Program of China 526 (2018YFC0603901).

527

533

528	References cited
529	Adlakha, E., Hanley, K., Falck, H., and Boucher, B. (2018) The origin of mineralizing
530	hydrothermal fluids recorded in apatite chemistry at the Cantung W-Cu deposit,
531	NWT, Canada. European Journal of Mineralogy, 30, 1095–1113.
532	Andersson, S.S., Wagner, T., Jonsson, E., Fusswinkel, T., and Whitehose, M.J. (2019)

Apatite as a tracer of the source, chemistry and evolution of ore-forming fluids: The

534	case of the Olserum-Djupedal REE-phosphate mineralization, SE Sweden.
535	Geochimica et Cosmochimica Acta, 255, 163–187.
536	Audétat, A., Günther, D., and Heinrich, C.A. (2000a) Causes for large-scale metal
537	zonation around mineralized plutons: Fluid inclusion LA-ICP-MS evidence from the
538	Mole granite, Australia. Economic Geology, 95, 1563–1581.
539	Audétat, A., Günther, D., and Heinrich, C.A. (2000b) Magmatic-hydrothermal evolution
540	in a fractionating granite: A microchemical study of the Sn-W-F-mineralized Mole
541	Granite (Australia). Geochemica et Cosmochimica Acta, 95, 1563–1581.
542	Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., and Fisher, N.I. (2002) Apatite as an
543	indicator mineral for mineral exploration: trace-element compositions and their
544	relationship to host rock type. Journal of Geochemical Exploration, 76, 45-69.
545	Cao, M.J., Li, G.M., Qin, K.Z., Seitmuratova, E.Y., and Liu, Y.S. (2011) Major and trace
546	element characteristics of apatites in granitoids from central Kazakhstan:
547	Implications for petrogenesis and mineralization. Resource Geology, 62, 63-83.
548	Cao, M.J., Evans, N.J., Hollings, P., Cooke, D.R., McInnes, B.I.A., and Qin, K.Z. (2021)
549	Apatite texture, composition, and O-Sr-Nd isotope signatures record magmatic and
550	hydrothermal fluid characteristics at the Black Mountain porphyry deposit,
551	Philippines. Economic Geology, 116, 1189–1207.
552	Chen, S.C., Yu, J.J., and Bi, M.F. (2021a) Extraction of fractionated interstitial melt from
553	a crystal mush system generating the Late Jurassic high-silica granites from the

- Qitianling composite pluton, South China: implications for greisen-type tin
 mineralization. Lithos, 382–383, 105952.
- 556 Chen, S.C., Yu, J.J., Bi, M.F., and Lehmann, B. (2021b) Tin-bearing minerals at the
- Furong tin deposit, South China: Implications for tin mineralization. Geochemistry,in press, 125856.
- 559 Chu, M.F., Wang, K.L., Griffin, W.L., Chung, S.L., O'Reilly, S.Y., Pearson, N.J., and
- 560 Iizuka, Y. (2009) Apatite compositions: tracing petrogenetic processes in
 561 Transhimalayan granitoids. Journal of Petrology, 50, 1829–1855.
- 562 Codeço, M.S., Weis, P., Trumbull, R.B., Hinsberg, V.V., Pinto, F., Lecumberri-Sanchez,
- and Schleicher, A.M. (2021) The imprint of hydrothermal fluids on trace-element
- 564 contents in white-mica and tourmaline from the Panasqueira W-Sn-Cu deposit,
- 565 Portugal. Mineralium Deposita, 56, 481–508.
- 566 Duchoslav, M., Marks, M.A.W., Drost, K., McCammon, C., Marschall, H.R., Wenzel, T.,
- and Markl, G. (2017) Changes in tourmaline composition during magmatic and
 hydrothermal processes leading to tin-ore deposition: the Cornubian Batholith, SW
 England. Ore Geology Reviews, 83, 215–234.
- 570 Dutrow, B.L., and Henry, D.J. (2018) Tourmaline compositions and textures: reflections
- 571 of the fluid phase. Journal of Geosciences, 63, 99–110.
- 572 Fujimaki, H. (1986) Partition-coefficients of Hf, Zr, and REE between zircon, apatite, and
- 573 liquid. Contributions to Mineralogy and Petrology, 94, 42–45.

574	Gilder, S.A., Gill, J., Coe, R.S., Zhao, X.X., Liu, Z.W., Wang, G.X., Yuan, K.R., Liu,
575	W.L., Kuang, G.D., and Wu, H.R. (1996) Isotopic and Paleomagnetic constraints on
576	Mesozoic tectonic evolution of south China. Journal of Geophysical Research, 101,
577	16137–16145.
578	Harlaux, M., Kouzmanov, K., Gialli, S., Laurent, O., Rielli, A., Dini, A., Chauvet, A.,
579	Menzies, A., Kalinaj, M., and Fontboté, L. (2020) Tourmaline as a tracer of
580	late-magmatic to hydrothermal fluid evolution: The world-class San Rafael tin
581	(-copper) deposit, Peru. Economic Geology, 115, 1665–1697.
582	Harlaux, M., Kouzmanov, K., Gialli, S., Marger, K., Bouvier, A., Baumgartner, L.P.,
583	Rielli, A., Dini, A., Chauvet, A., Kalinaj, M., and Fontboté, L. (2021) Fluid mixing
584	as primary trigger for cassiterite deposition: evidence from in situ $\delta^{18}O$ - $\delta^{11}B$ analysis
585	of tourmaline from the world-class San Rafael tin (-copper) deposit, Peru. Earth and
586	Planetary Science Letters, 563, 116889.
587	Harlov, D.E. (2015) Apatite: A fingerprint for metasomatic processes. Elements, 11,
588	171–176.
589	Heinrich, C.A. (1990) The chemistry of hydrothermal tin (-tungsten) ore deposition.
590	Economic Geology, 85, 457–481.
591	Henry, D.J., and Guidotti, C.V. (1985) Tourmaline as a petrogenetic indicator mineral: an
592	example from the staurolite-grade metapelites of NW Maine. American Mineralogist,
593	70, 1–15.

594	Henry, D.J., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B.L., Uher, P., and Pezzotta, F.
595	(2011) Nomenclature of the tourmaline-supergroup minerals. American Mineralogist,
596	96, 895–913.
597	Henry, D.J., and Dutrow, B.L. (2011) The incorporation of fluorine in tourmaline:
598	Internal crystallographic controls or external environmental influences? Canadian
599	Mineralogist, 49, 41–56.
600	Henry, D.J., and Dutrow, B.L. (2012) Tourmaline at diagenetic to low-grade metamorphic
601	conditions: its petrologic applicability. Lithos, 154, 16-32.
602	Hong, W., Cooke, D.R., Zhang, L.J., Fox, N., and Thompson, J. (2017) Tourmaline-rich
603	features in the Heemskirk and Pieman Heads granites from western Tasmania,
604	Australia: Characteristics, origins, and implications for tin mineralization. American
605	Mineralogist, 102, 876–899.
606	Huang, F.F., Scaillet, B., Wang, R.C., Erdmann, S., Chen, Y., Faure, M., Liu, H.S., Xie, L.,
607	Wang, B., and Zhu, J.C. (2019) Experimental constraints on intensive crystallization
608	parameters and fractionation in A-type granites: A case study on the Qitianling
609	pluton, South China. Journal of Geophysical Research: Solid Earth, 124,
610	10132–10152.
611	Iveson, A., Webster, J.D., Rowe, M.C., and Neill, O.K. (2019) Fluid-melt trace-element

612 partitioning behaviour between evolved melts and aqueous fluids: Experimental 613 constraints on the magmatic-hydrothermal transport of metals. Chemical Geology,

614 516, 18–41.

615	Jackson, K.J., and Helgeson, H.C. (1985) Chemical and thermodynamic constraints on
616	the hydrothermal transport and deposition of tin: II. Interpretation of phase relations
617	in the Southeast Asian tin belt. Economic Geology, 80, 1365–1378.
618	Jiang, S.Y., Palmer, M.R., Slack, J.F., and Shaw, D.R. (1999) Boron isotope systematics
619	of tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia,
620	Canada. Chemical Geology, 158, 131–144.
621	Jiang, S.Y., Yu, J.M., and Lu, J.J. (2004) Trace and rare-earth element geochemistry in
622	tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: implication
623	for migmatitic-hydrothermal fluid evolution and ore genesis. Chemical Geology,
624	209, 193–213
625	Keppler, H. (1996) Constraints from partitioning experiments on composition of
626	subduction-zone fluids. Nature, 380, 237–240.
627	Legros, H., Marignac, C., Tababy, T., Mercadier, J., Richard, A., Cuney, M., Wang, R.C.,
628	Charles, N., and Lespinasse, M.Y. (2018) The ore-forming magmat-ic-hydrothermal
629	system of the Piaotang W-Sn deposit (Jiangxi, China) as seen from Li-mica
630	geochemistry. American Mineralogist, 103, 39-54.
631	Lehmann, B. (1990) Metallogeny of Tin. Lecture Notes in Earth Sciences, 218 p.

- 632 Springer, Berlin.
- 633 Lehmann, B. (2021) Formation of tin ore deposits: A reassessment. Lithos, 402-403,

634 105756.

- Li, H., Palinkas, L., Watanabe, K., and Xi, X. (2018) Petrogenesis of Jurassic A-type
- 636 granites associated with Cu–Mo and W–Sn deposits in the central Nanling region,
- 637 South China: Relation to mantle upwelling and intra-continental extension. Ore
 638 Geology Reviews, 92, 449–462.
- 639 Li, X.H., Li, W.X., Li, Z.X., Lo, C.H., Wang, J., Ye, M.F., Yang, Y.H. (2009)
- 640 Amalgamation between the Yangtze and Cathaysia Blocks in South China:
- 641 Constraints from SHRIMP U–Pb zircon ages, geochemistry and Nd–Hf isotopes of
 642 the Shuangxiwu volcanic rocks. Precambrian Res., 174, 117–128.
- Mao, J.W., Li, X.F., Chen, W., Lan, X.M., and Wei, S.L. (2004) Geological characteristics
- of the Furong tin orefield, Hunan, ⁴⁰Ar-³⁹Ar dating of tin ores and related granite and
- its geodynamic significance for rock and ore formation. Acta Geologica Sinica English Edition, 78, 481–491.
- 647 Mao, J.W., Cheng, Y.B., Chen, M.H., and Pirajno, F. (2013) Major types and time-space

distribution of Mesozoic ore deposits in South China and their geodynamic settings.

- 649 Mineralium Deposita, 48, 267–294.
- Marschall, H.R., Meyer, C., Wunder, B., Ludwig, T., and Heinrich, W. (2009)
 Experimental boron isotope fractionation between tourmaline and fluid:
 confirmation from in situ analyses by secondary ion mass spectrometry and from
 Rayleigh fractionation modelling. Contributions to Mineralogy and Petrology, 158,

34

654	675–681
654	675-68

- Marschall, H.R., and Jiang, S.Y. (2011) Tourmaline isotopes: no element left behind.
- 656 Elements, 7, 313–319.
- 657 Meyer, C., Wunder, B., Meixner, A., Romer, and Heinrich, W. (2008) Boron-isotope
- 658 fractionation between tourmaline and fluid: an experimental re-investigation.

659 Contributions to Mineralogy and Petrology, 156, 259–267.

- 660 Miles, A., Graham, C., Hawkesworth, C., Gillespie, M., Hinton, R., and Bromiley, G.
- 661 (2014) Apatite: a new redox proxy for silicic magmas? Geochimica et
 662 Cosmochimica Acta, 132, 101–119.
- 663 Mohamed, F.H., Abdalla, H.M., and Helba, H. (1999) Chemistry of micas in rare-metal
- granitoids and associated rocks, Eastern Dessert, Egypt. International Geology
 Review, 41, 932–948.
- 666 Müller, B., Frischknecht, R., Seward, T.M., Heinrich, C.A., and Gallegos, W.C. (2001) A
- fluid inclusion reconnaissance study of the Huanuni tin deposit (Belivia), using
 LA-ICP-MS micro-analysis. Mineralium Deposita, 36, 680–688.
- 669 O'Sullivan, G., Chew, D., Kenny, G., Henrichs, I., and Mulligan, D. (2020) The trace
- element composition of apatite and its application to detrital provenance studies.
 Earth-Science Reviews, 201, 103044.
- 672 Pennisi, M., Leeman, W.P., Tornarini, S., Pennisi, A., and Nabelek, P. (2000) Boron, Sr, O,
- and H isotope geochemistry of groundwaters from Mt. Etna (Sicily) hydrologica

35

674	implications	Geochimica et	Cosmochimica A	cta, 64, 961–974.
0/4	implications.	Geochimica et	Cosmochinica P	Acta, 04, 901–974.

- 675 Pesquera, A., Torres-Ruiz, J., Garcia-Casco, A., Gil-Crespo, P.P. (2013) Evaluating the
- 676 controls on tourmaline formation in granitic systems: a case study on peraluminous
- 677 granites from the Central Iberian Zone (CIZ), Western Spain. Journal of Petrology,

 678
 54, 609–634.

- 679 Qiu, KF., Yu, H.C., Hetherington, C., Huang, Y.Q., Yang, T., and Deng, J. (2021)
- Tourmaline composition and boron isotope signature as a tracer of
 magmatic-hydrothermal processes. American Mineralogist, 106, 1033–1044.
- 682 Schmidt, C., Romer, R.L., Wohlgemuth-Ueberwasser, C.C., and Appelt, O. (2020)
- Partitioning of Sn and W between granitic melt and aqueous fluid. Ore GeologyReviews, 117, 103263.
- Sha, L.K., and Chappell, B.W. (1999) Apatite chemical composition, determined by
 electron microprobe and lase-ablation inductively coupled plasma mass
 spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica
 Acta, 63, 3861–3881.
- 689 Sheppard, S.M.F. (1986) Characterization and isotopic variations in natural waters.
- 690 Reviews in Mineralogy and Geochemistry, 16, 165–183.
- 691 Shuang, Y., Bi, X.W., Hu, R.Z., Peng, J.T., Su, W.C., and Zhu, C.S. (2009) Study on the 692 ore-forming fluid geochemistry of the Furong tin polymetallic deposit, Hunan
- 693 Province, China. Acta Petrologica Sinica, 25, 2588–2600. (in Chinese with English

36

694	abstract)
-----	-----------

- 695 Slack, J.F., and Trumbull, R.B. (2011) Tourmaline as a recorder of ore-forming process.
- 696 Elements, 7, 321–326.
- 697 South Hunan Geological Survey. (2005) Mineral exploration report of the Bailashui tin

698 mine in Chenzhou city, Hunan Province. (unpublished report in Chinese).

- 699 Su, Z.K., Zhao, X.F., Li, X.C., and Zhou, M.F. (2016) Using elemental and boron isotopic
- 700 compositions of tourmaline to trace fluid evolutions of IOCG systems: The
- worldclass Dahongshan Fe–Cu deposit in SW China. Chemical Geology, 441,
 265–279.
- 703 Sun, S.S., and Mcdonough, W.F. (1989) Chemical and isotopic systematics of oceanic
- basalts: implications for mantle composition and processes. Geological Society
 London Special Publications, 42, 313–345.
- Taylor, J.R., and Wall, V.J. (1993) Cassiterite solubility, tin speciation, and transport in a

magmatic aqueous phase. Economic Geology, 88, 437–460.

- Trumbull, R.B., Codeço, M.S., Jiang, S.Y., Palmer, M.R., and Slack, J.F. (2020) Boron
 isotope variations in tourmaline from hydrothermal ore deposits: A review of
 controlling factors and insights for mineralizing systems. Ore Geology Reviews, 125,
 103682.
- van Hinsberg, V.J. (2011) Preliminary experimental data on trace-element partitioning
- between tourmaline and silicate melt. The Canadian Mineralogist, 49, 153–163.
| 714 | van Hinsberg, V.J., Franz, G., and Wood, B.J. (2017) Determining subduction-zone fluid |
|-----|---|
| 715 | composition using a tourmaline mineral probe. Geochemical Perspectives Letters, 3, |
| 716 | 160–169. |
| 717 | Wang, Y.J., Fan, W.M., Zhang, G.W., and Zhang, Y.H. (2013) Phanerozoic tectonics of the |
| 718 | South China Block: Key observations and controversies. Gondwana Research, 23, |
| 719 | 1273–1305. |
| 720 | Wang, Z.Q., Chen, B., and Ma, X.H. (2014) In situ LA-ICP-MS U-Pb age and |
| 721 | geochemical data of cassiterite of the Furong tin deposit, the Nanling Range: |
| 722 | Implications for the origin and evolution of the ore-forming fluid. Chinese Science |

723 Bulletin (Chinese Version), 59, 2505–2519. (in Chinese)

- Wolf, M.B., and London, D. (1997) Boron in granitic magmas: stability of tourmaline in
- equilibrium with biotite and cordierite. Contributions to Mineralogy and Petrology,130, 12–30.
- Xu, R., Romer, R.L., and Glodny, J. (2021) External fluids cause alteration and metal
 redistribution in the granite-hosted Tangziwa Sn–Cu deposit, Gejiu district, China:
 Lithos, 382–383, 105937.
- 730 Yan, J.X., and Wu, M. (2004) Strontium isotope and its geological implications of
- 731 chrysanthemum-shaped celestite of the Qixia formation of Permian in South China.
- Journal of Palaeogeography, 6, 191–195. (in Chinese with English abstract)
- Yang, S.Y., Jiang, S.Y., Zhao, K.D., Dai, B.Z., and Yang, T. (2015) Tourmaline as a

recorder of magmatic-hydrothermal evolution: an in situ major and trace element 734 735 analysis of tourmaline from the Qitianling batholith, South China. Contributions to Mineralogy and Petrology, 170, 42. 736 Yuan, S.D., Peng, J.T., Hu, R.Z., Bi, X.W., Qi, L., Li, Z.L., Li, X.M., and Shuang, Y. 737 738 (2008) Characteristics of rare-earth elements (REE), strontium and neodymium 739 isotopes in hydrothermal fluorites from the Bailashui tin deposit in the Furong ore field, southern Hunan Province, China. Chinese Journal of Geochemistry, 27, 740 741 342-350. Yuan, S.D., Peng, J.T., Hao, S., Li, H.M., Geng, J.Z., and Zhang, D.L. (2011) In situ 742 743 LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of 744 745 tin-polymetallic mineralization. Ore Geology Reviews, 43, 235–242. Yuan, S.D., Williams-Jones, A.E., Romer, R.L., Zhao, P.L., and Mao, J.W. (2019) 746 Photolith-related thermal controls on the decoupling of Sn and W in Sn-W 747 metallogenic provinces: Insights from the Nanling Region, China. Economic 748 Geology, 114, 1005–1012. 749 750 Zajacz, Z., Halter, W.E., Pettke, T., and Guillong, M. (2008) Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt 751 inclusions: controls on element partitioning. Geochemica et Cosmochimica Acta, 72, 752 753 2169-2197.

754	Zeng, L.P., Zhao, X.F., Li, X.C., Hu, H., and McFarlane, C. (2016) In situ elemental and
755	isotopic analysis of fluorapatite from the Taocun magnetite-apatite deposit, Eastern
756	China: Constraints on fluid metasomatism. American Mineralogist, 101, 2468–2483.
757	Zhang, F.H., Li, W.B., White, N.C., Zhang, L.J., Qiao, X.Y., and Yao, Z.W. (2020)
758	Geochemical and isotopic study of metasomatic apatite: Implications for gold
759	mineralization in Xindigou, Northern China. Ore Geology Reviews, 127, 103853.
760	Zhao, K.D., Jiang, S.Y., Nakamura, E., Moriguti, T., Palmer, M.R., Yang, S.Y., Dai, B.Z.,
761	and Jiang, Y.H. (2011) Fluid-rock interaction in the Qitianling granite and
762	associated tin deposits, South China: Evidence from boron and oxygen isotopes. Ore
763	Geology Reviews, 43, 243–248.
764	Zhao, K.D., Jiang, S.Y., Yang, S.Y., Dai, B.Z., and Lu, J.J. (2012) Mineral chemistry,
765	trace elements and Sr-Nd-Hf isotope geochemistry and petrogenesis of Cailing and
766	Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang
767	zone, South China. Gondwana Research, 22, 310–324.
768	Zhao, P.L., Zajacz, Z., Tsay, A., and Yuan, S.D. (2021) Magmatic-hydrothermal tin
769	deposits form in response to efficient tin extraction upon magma degassing.
770	Geochimica et Cosmochimica Acta, in press.
771	Zhao, X.F., Zhou, M.F., Gao, J.F., Li, X.C., and Li, J.W. (2015) In situ Sr isotope analysis
772	of apatite by LA-MC-ICPMS: Constraints on the evolution of ore-fluids of the
773	Yinachang Fe-Cu-REE deposit, Southwest China. Mineralium Deposita, 50,

40

- 774 871–884.
- Zhu, J.C., Wang, R.C., Zhang, P.H., Xie, C.F., Zhang, W.L., Zhao, K.D., Xie, L., Yang, C.,
- 776 Che, X.D., Yu, A.P., and Wang, L.B. (2009) Zircon U-Pb geochronological
- framework of Qitianling granite batholith, middle part of Nanling Range, South
- 778 China. Science China: Earth Science, 52, 1279–1294.

780

781	Figure Captions
782	Figure 1. (a) Main tectonic units of South China (Wang et al. 2013). (b) Geological
783	map of the Nanling Range, showing the distribution of granites and associated W-Sn
784	deposits (Yuan et al. 2019). (c) Geological map of the Furong deposit (Yuan et al. 2011).
785	Figure 2. Geological map of the Bailashui-Anyuan zone at Furong (modified from
786	South Hunan Geological Survey 2005).
787	Figure 3. Photographs and microphotographs of tourmaline in the late-phase granite
788	(a, b), nodule (c-h), vein (i-k), and greisen-type ore (l-o) at the HM zone. (a) Tur-1
789	occurs interstitial to quartz, K-feldspar, and albite (plane-polarized light). (b) Tur-1 in Fig.
790	3a is homogeneous in BSE image. (c) Quartz-tourmaline nodule is rimmed by a
791	leucocratic halo. (d) Nodular Tur-1 co-exists with quartz and albite (plane-polarized
792	light). (e) Brown Tur-1 is replaced by blue Tur-2 and fluorite (plane-polarized light). (f)
793	Tur-1 in Fig. 3e is replaced by Tur-2 with visible voids and fluorite inclusions in BSE
794	image. (g) Albite is replaced by muscovite (cross-polarized light). (h) Nodular Tur-2 are
795	included by or intergrown with arsenopyrite (plane-polarized light). (i) Quartz-Tur-2 vein
796	crosscuts the late-phase granite and quartz-tourmaline nodule. (j) Vein-type Tur-2 shows
797	orange to yellow-green and blue pleochroism (plane-polarized light). (k) Vein-type Tur-2
798	has weak patchy zoning in BSE image. (1) Tur-3 co-exists with quartz, muscovite, and
799	cassiterite (plane-polarized light). (m) Tur-3 in Fig. 31 shows weak oscillatory zoning in

42

BSE image. (**n**) Tur-3 co-exists with arsenopyrite and quartz (plane-polarized light). (**o**) Tur-3 co-existing with chalcopyrite is homogeneous in BSE image. Ab = albite, Apy = arsenopyrite, Ccp = Chalcopyrite, Cst = cassiterite, Fl = fluorite, Kfs = K-feldspar, Ms = muscovite, Oz = quartz, Tur = tourmaline.

Figure 4. Photographs and microphotographs of tourmaline in the vein crosscutting 804 805 the main-phase granite (a-e) and skarn-type ore (f, g) at the BA zone. (a) Quartz-Tur-4 806 vein rimmed by leucocratic halos crosscuts the main-phase granite. (b) Tur-4 occurs 807 mainly as radiating, coarse-grained, euhedral prismatic crystals (plane-polarized light). (c) 808 Tur-4 in Fig. 4b shows weak oscillatory zoning in BSE image. (d-e) Tur-4 is locally 809 intergrown with or replaced by muscovite and sphalerite (plane-polarized light). (f) Vesuvianite is replaced by Tur-5, pargasite, fluorite and cassiterite (cross-polarized light). 810 811 (g) Tur-5 in Fig. 4f shows patchy zoning in BSE image. Prg = pargasite, Ves =812 vesuvianite. Other mineral abbreviations as in Fig. 3.

Figure 5. Microphotographs of apatite in the main-phase granite (a–c) and in the skarn (d–i) and skarn-type ore (j–o) at the BA zone. (a) Ap-G is mainly included by biotite (plane-polarized light). (b) Ap-G in Fig. 5a displays yellow-green to light green luminescence in CL image. (c) Ap-G in Fig. 5b is homogeneous and bright in BSE image. (d) Ap-I is included by garnet (plane-polarized light). (e) Ap-I in Fig. 5d displays blue luminescence with very narrow green rims in CL image. (f) Ap-I in Fig. 5e is homogeneous in BSE image. (g) Apatite is interstitial between diopside grains

820	(plane-polarized light). (h) Apatite in Fig. 5g displays color zoning with blue cores (Ap-I)
821	and green rims (Ap-II) in CL image. (i) Apatite in Fig. 5h consists of light grey cores
822	(Ap-I) and dark grey rims (Ap-II) in BSE image. (j) Ap-II veinlet occurs in the skarn-type
823	ore (plane-polarized light). (k) Ap-II in Fig. 5j consists of very small blue cores and green
824	rims in CL image. (1) The core-rim texture of Ap-II in Fig. 5k is very weak in
825	high-contrast BSE image. (m) Ap-III co-exists with sphalerite (plane-polarized light). (n)
826	Ap-III in Fig. 5m shows color zoning with light bluish grey cores and green rims in CL
827	image. (o) Ap-III in Fig. 5n is homogeneous in BSE image. Ap = apatite, Bt = biotite, Di
828	= diopside, Grt = garnet, Ilm = ilmenite, Sp = sphalerite. Other mineral abbreviations as
829	in Figs. 3 and 4.
830	Figure 6. Compositional variations of the Furong tourmaline. (a) Ca– X_{\Box} –(Na+K)
831	ternary diagram (Henry et al. 2011). (b) Fe/(Fe+Mg) vs. $X_{\Box}/(X_{\Box}+Na+K)$ (Henry and
832	Guidotti 1985), (c) Mg vs. Fe, (d) Al vs. Fe, and (e) Al vs. X_{\Box} binary diagrams.
832 833	Guidotti 1985), (c) Mg vs. Fe, (d) Al vs. Fe, and (e) Al vs. X_{\Box} binary diagrams. Fe/(Fe+Mg) vs. F(f), Li (g), V (h), Ni (i), Sr (j), Zn (k), and Sn (l) binary diagrams.
833	Fe/(Fe+Mg) vs. F(f), Li (g), V (h), Ni (i), Sr (j), Zn (k), and Sn (l) binary diagrams.
833 834	Fe/(Fe+Mg) vs. F(f), Li (g), V (h), Ni (i), Sr (j), Zn (k), and Sn (l) binary diagrams. Figure 7. (a) MgO, (b) F, (c) Li, (d) Sc, (e) Zn, and (f) Sn for Tur-1 vs.
833 834 835	 Fe/(Fe+Mg) vs. F(f), Li (g), V (h), Ni (i), Sr (j), Zn (k), and Sn (l) binary diagrams. Figure 7. (a) MgO, (b) F, (c) Li, (d) Sc, (e) Zn, and (f) Sn for Tur-1 vs. corresponding Tur-2 from individual crystals within tourmaline nodules.
833 834 835 836	 Fe/(Fe+Mg) vs. F(f), Li (g), V (h), Ni (i), Sr (j), Zn (k), and Sn (l) binary diagrams. Figure 7. (a) MgO, (b) F, (c) Li, (d) Sc, (e) Zn, and (f) Sn for Tur-1 vs. corresponding Tur-2 from individual crystals within tourmaline nodules. Figure 8. (a) Histogram of B isotopic compositions of the Furong tourmaline. N is

44

840	(Belousova et al. 2002), (d) Ga vs. (Th+U), (e) Na vs. REE, and (f) LREE vs. Sr/Y
841	(O'Sullivan et al. 2020) binary diagrams for the Furong apatite. ALK = alkali-rich
842	igneous rocks, IM = mafic I-type granitoids and mafic igneous rocks, LM = low- and
843	medium-grade metamorphic and hydrothermal altered rocks, HM =
844	partial-melts/leucosomes/high-grade metamorphic, S = S-type granitoids and high
845	A/CNK 'felsic' I-types, UM = ultramafic rocks including carbonatites, lherzolites and
846	pyroxenites.
847	Figure 10. Chondrite-normalized REE patterns of (a) Ap-G, (b) Ap-I, and (c) Ap-II
848	and Ap-III at Furong. The whole-rock REE data for the main-phase granite and Permian
849	carbonate wall rocks are from Zhao et al. (2012) and Wang et al. (2014), respectively.
850	Chondrite values used for normalization are from Sun and McDonough (1989).
851	Figure 11. (a) Sr isotopic compositions and (b) T_{DM2} vs. $\varepsilon_{Nd(t)}$ diagram of the Furong
852	apatite. Data for the Permian carbonate rocks are from Yan and Wu (2014), data for the

Qitianling granites from Zhao et al. (2012) and Chen et al. (2021a), and data for fluorite from Yuan et al. (2011).

Figure 12. (a) Comparison of B isotopic data from Furong with major boron reservoirs and tourmaline from different environments (Marschall and Jiang 2011). (b) Variations in calculated $\delta^{11}B_{\text{fluid}}$ values at Furong, and Rayleigh fractionation model on B isotopic evolution of the fluid during tourmaline precipitation. The whole-rock $\delta^{11}B$ values for the Qitianling granites are from Zhao et al. (2011).

861	
862	Appendix
863	Appendix 1. Paragenetic sequence of alteration minerals and mineralization at the
864	greisen-type HM zone (a) and skarn-type No. 19 orebody at the BA zone (b).
865	Appendix 2. Analytical methods and calculation method of tourmaline-fluid
866	partition coefficients.
867	Appendix 3. Major- and trace-elemental composition of the Furong tourmaline.
868	Appendix 4. Boron isotope composition of the Furong tourmaline.
869	Appendix 5. Major- and trace-elemental composition of the Furong apatite.
870	Appendix 6. Sr–Nd isotope composition of the Furong apatite.
871	

	Tur-1	Tur-2	Tur-3	Tur-4	Tur-5
Туре	N=32	N=39	N=49	N=31	N=16
EPMA (wt%)					
SiO ₂	34.4 (0.3)	34.4 (0.4)	35.0 (0.4)	35.5 (0.4)	33.5 (0.9)
TiO ₂	0.5 (0.2)	0.2 (0.2)	0.6 (0.3)	0.5 (0.3)	0.4 (0.3)
Al ₂ O ₃	29.9 (0.9)	30.2 (1.2)	30.4 (1.1)	32.9 (0.8)	28.5 (2.6)
FeO	17.1 (0.8)	17.2 (1.1)	15.5 (1.2)	11.9 (0.8)	16.9 (1.5)
MnO	0.1 (0)	0.1 (0)	0 (0)	0 (0)	0.1 (0)
MgO	0.3 (0.1)	0.2 (0.2)	1.0 (0.4)	2.4 (0.4)	2.0 (0.9)
CaO	0 (0)	0 (0)	0.3 (0.1)	0.5 (0.2)	1.9 (0.5)
Na ₂ O	2.4 (0.2)	2.4 (0.4)	2.0 (0.2)	1.5 (0.2)	1.8 (0.2)
K ₂ O	0.1 (0)	0.1 (0)	0 (0)	0 (0)	0 (0)
F	0.9 (0.2)	0.8 (0.3)	0.4 (0.2)	0.2 (0.1)	0.4 (0.1)
Cl	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Total	85.7 (0.3)	85.5 (0.4)	85.3 (0.3)	85.5 (0.4)	85.3 (0.3)
Atomic proportions	based on the sum	of T+Z+Y cations	normalized to 15 c	ations	
Si (apfu)	6.08 (0.04)	6.08 (0.04)	6.12 (0.04)	6.03 (0.06)	5.95 (0.16)
Al (T-site)	0 (0)	0 (0)	0 (0)	0.01 (0.03)	0.08 (0.13)
Al (Z-site)	5.99 (0.04)	6.00 (0.01)	6.00 (0.01)	6.00 (0)	5.76 (0.21)
Al (Y-site)	0.25 (0.14)	0.30 (0.20)	0.26 (0.17)	0.58 (0.14)	0.11 (0.25)
Al (total)	6.24 (0.16)	6.30 (0.20)	6.26 (0.17)	6.59 (0.15)	5.96 (0.49)
Ti	0.06 (0.03)	0.02 (0.03)	0.08 (0.04)	0.07 (0.04)	0.05 (0.05)
Fe	2.53 (0.12)	2.55 (0.18)	2.27 (0.19)	1.70 (0.12)	2.50 (0.25)
Mn	0.02 (0.01)	0.02 (0.01)	0.01 (0)	0 (0)	0.01 (0)
Mg	0.08 (0.03)	0.04 (0.05)	0.27 (0.11)	0.61 (0.11)	0.52 (0.24)
Ca	0 (0)	0.01 (0.02)	0.05 (0.02)	0.09 (0.04)	0.36 (0.1)
Na	0.84 (0.06)	0.82 (0.13)	0.67 (0.06)	0.49 (0.05)	0.60 (0.08)
K	0.01 (0)	0.01 (0.01)	0.01 (0)	0 (0)	0.01 (0)
X_{\Box}	0.15 (0.06)	0.16 (0.13)	0.27 (0.07)	0.41 (0.05)	0.04 (0.04)
ОН	3.5 (0.11)	3.55 (0.15)	3.77 (0.12)	3.90 (0.07)	3.78 (0.07)
F	0.5 (0.11)	0.45 (0.15)	0.23 (0.12)	0.09 (0.07)	0.22 (0.07)
Cl	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Fe/(Fe+Mg)	0.97 (0.01)	0.98 (0.02)	0.89 (0.04)	0.73 (0.04)	0.83 (0.07)
LA-ICP-MS (ppm))				
Li	149 (81)	99 (46)	98 (33)	31 (14)	179 (74)
Be	19 (11)	8 (6)	11 (8)	14 (9)	26 (22)
Sc	24 (20)	14 (15)	7 (5)	16 (10)	1 (1)
V	3 (2)	1 (1)	30 (25)	111 (44)	29 (18)
Cr	4 (7)	21 (39)	34 (45)	34 (68)	18 (18)
Co	2 (3)	1 (1)	1 (1)	7(1)	12 (5)
Ni	1 (2)	1 (2)	1(1)	11 (4)	7 (4)

Table 1 Summary of the average elemental composition of the Furong tourmaline.

T	Tur-1	Tur-2	Tur-3	Tur-4	Tur-5
Туре	N=32	N=39	N=49	N=31	N=16
Zn	220 (58)	198 (37)	134 (29)	89 (7)	291 (37)
Ga	124 (33)	110 (25)	129 (46)	80 (11)	34 (7)
Sr	11 (16)	4 (2)	182 (65)	159 (52)	219 (72)
Sn	107 (69)	234 (136)	177 (96)	412 (207)	435 (272)
REE (total)	25 (27)	17 (18)	12 (8)	23 (14)	38 (61)
Y	0 (0)	2 (7)	1 (4)	5 (7)	0 (0)
Na _{fluid} (wt%)	6.0 (0.4)	5.9 (0.9)	4.9 (0.9)	3.7 (0.4)	4.3 (0.6)
Li _{fluid} (ppm)	498 (269)	329 (155)	326 (111)	104 (46)	597 (248)
Zn _{fluid}	2199 (580)	1978 (366)	1342 (292)	890 (70)	2907 (372)
Sr _{fluid}	6.0 (9)	2 (1)	96 (34)	83 (27)	115 (38)

Total Fe is reported as FeO. $X\square$ is vacancy in X-site. REE is the rare earth elements. Subscript "fluid" is the estimated element concentrations in the fluids responsible for tourmaline. Numbers in parentheses are standard deviations of the mean (1sd). N=analyzed spot numbers.

Туре	Ap-G	Ap-I	Ap-II	Ap-III
EPMA (wt%)	N=66	N=24	N=35	N=18
P ₂ O ₅	42.1 (0.4)	41.6 (0.6)	41.9 (0.4)	42.2 (0.6)
SiO ₂	0 (0)	0 (0)	0 (0)	0 (0)
SO ₃	0 (0)	0 (0)	0 (0)	0 (0)
TiO ₂	0 (0)	0 (0)	0 (0)	0 (0)
Al ₂ O ₃	0 (0)	0 (0)	0 (0)	0 (0)
FeO	0.2 (0.1)	0.1 (0)	0.1 (0.1)	0.1 (0.1)
MnO	0.1 (0)	0 (0)	0 (0)	0 (0)
MgO	0 (0)	0 (0)	0 (0)	0 (0)
CaO	54.7 (0.6)	55.4 (0.6)	55.9 (0.6)	55.8 (0.8)
BaO	0 (0)	0 (0)	0 (0)	0 (0)
Na ₂ O	0.1 (0)	0 (0)	0 (0)	0 (0)
K ₂ O	0 (0)	0 (0)	0 (0)	0 (0)
F	3.4 (0.4)	3.5 (0.4)	3.5 (0.4)	3.4 (0.3)
Cl	0.2 (0.2)	0.2 (0.1)	0.1 (0.1)	0.1 (0.2)
Total	99.3 (0.8)	99.3 (0.9)	99.9 (0.8)	100.2 (1.1)
Formula calculation based	l on 8 cations with F+0	Cl+OH = 1		
Р	3.01 (0.03)	2.97 (0.03)	2.97 (0.02)	2.98 (0.03)
Si	0 (0)	0 (0)	0 (0)	0 (0)
S	0 (0)	0 (0)	0 (0)	0 (0)
Ti	0 (0)	0 (0)	0 (0)	0 (0)
Al	0 (0)	0 (0)	0 (0)	0 (0)
Fe ²⁺	0.01 (0.01)	0.01 (0)	0 (0)	0.01 (0)
Mn	0 (0)	0 (0)	0 (0)	0 (0)
Mg	0 (0)	0 (0)	0 (0)	0 (0)
Ca	4.96 (0.03)	5.01 (0.03)	5.02 (0.02)	5.00 (0.03)
Ba	0 (0)	0 (0)	0 (0)	0 (0)
Na	0.01 (0)	0 (0)	0 (0)	0 (0)
K	0 (0)	0 (0)	0 (0)	0 (0)
F	0.90 (0.11)	0.95 (0.09)	0.93 (0.10)	0.89 (0.07)
Cl	0.03 (0.02)	0.02 (0.02)	0.01 (0.01)	0.02 (0.02)
ОН	0.09 (0.09)	0.06 (0.06)	0.08 (0.08)	0.10 (0.08)
LA-ICP-MS (ppm)	N=38	N=13	N=28	N=21
Na	597 (244)	266 (279)	139 (190)	126 (197)
Fe	650 (454)	298 (273)	89 (86)	157 (171)
Mn	523 (101)	111 (36)	149 (31)	124 (21)
V	5 (4)	15 (9)	25 (36)	16 (5)
Ga	11 (3)	4(1)	1 (2)	1 (1)

Table 2 Summary of the average elemental composition of the Furong apatite.

Туре	Ap-G	Ap-I	Ap-II	Ap-III
Rb	0(1)	2 (2)	1 (1)	0 (0)
Sr	102 (15)	1265 (604)	1970 (898)	938 (160)
Y	1475 (383)	395 (259)	138 (202)	111 (27)
La	1170 (336)	555 (270)	179 (245)	292 (62)
Ce	3188 (868)	940 (518)	296 (445)	270 (56)
Pr	422 (109)	115 (76)	37 (61)	59 (13)
Nd	1791 (444)	448 (323)	152 (255)	230 (53)
Sm	365 (90)	84 (67)	29 (51)	35 (8)
Eu	7 (2)	13 (8)	4 (7)	6(1)
Gd	318 (81)	76 (60)	27 (45)	25 (6)
Tb	44 (12)	11 (9)	4 (6)	3 (1)
Dy	256 (68)	59 (47)	21 (35)	16 (4)
Но	48 (13)	11 (8)	4 (6)	3 (1)
Er	128 (33)	30 (22)	10 (17)	8 (2)
Tm	17 (4)	3 (2)	1 (2)	1 (0)
Yb	98 (27)	17 (12)	6 (9)	4 (1)
Th	24 (20)	394 (506)	213 (538)	45 (14)
U	10 (8)	199 (217)	133 (224)	59 (32)
REE (total)	7863 (2045)	2363 (1392)	770 (1183)	952 (206)
La_N/Yb_N	8.7 (1.9)	30.1 (14.3)	23.6 (5.7)	52.3 (9.2)
δΕυ	0.1 (0)	0.6 (0.2)	0.5 (0.2)	0.6 (0)

Total Fe is reported as FeO. REE is the rare earth elements. $\delta Eu = 2Eu_N/(Sm_N+Gd_N)$, where subscript N means normalization to chondrite (Sun and McDonough, 1989). Numbers in parentheses are standard deviations of the mean (1sd). N=analyzed spot numbers.

Figure 9

