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Abstract 22 

Clinopyroxene ferric iron content is an important consideration for garnet-clinopyroxene 23 

geothermometry and estimations of water storage in the Earth’s interior, but remains difficult and 24 

expensive to measure. Here, we develop seven classic algorithms and machine learning methods 25 

to estimate Fe3+/ΣFe in clinopyroxene using major element data from electron microprobe 26 

analyses. The models were first trained using a large dataset of clinopyroxene Fe3+/ΣFe values 27 

determined by Mössbauer spectroscopy and spanning a wide compositional range, with major 28 

uncertainties ranging from 0.25 to 0.3 and root-mean-square errors on the test dataset ranging from 29 

0.071 to 0.089. After dividing the entire dataset into three compositional sub-datasets, the machine 30 

learning models were trained and compared for each sub-dataset. Our results suggest that ensemble 31 

learning algorithms (random forest and Extra-Trees) perform better than principal component 32 

analysis-based elastic net polynomial, artificial neural network, artificial neural network ensemble, 33 

decision trees, and linear regressions. Using a sub-dataset excluding clinopyroxene in spinel 34 

peridotite and omphacite in eclogite, the new models achieved uncertainties of 0.15 to 0.2 and 35 

root-mean-square errors on the test dataset ranging from 0.051 to 0.078, decreasing prediction 36 

errors by 30–40%. By incorporating compositional data on coexisting spinel, new models for 37 

clinopyroxene in spinel peridotite show improved performance, indicating the interaction between 38 

spinel and clinopyroxene in spinel peridotite. Feature importance analysis shows Na+, Ca2+, and 39 

Mg2+ to be the most important for predicting Fe3+ content, supporting the coupled substitution 40 

between Ca2+-M2+ and Na+-M3+ in natural clinopyroxenes. The application of our models to 41 

garnet-clinopyroxene geothermometry greatly improves temperature estimates, achieving 42 

uncertainties of ±50 ℃, compared with uncertainties of ±250 ℃ using previous models assuming 43 

all Fe as Fe2+ or calculating Fe3+ by charge conservation. Differences in the ferric iron contents, as 44 



manuscript submitted to American Mineralogist 

3 
 

calculated using the machine learning models, of clinopyroxenes that did or did not experience 45 

hydrogen diffusion during their crystallization from basaltic magma support a redox-driven 46 

mechanism for hydrogen diffusion in clinopyroxene. 47 

Keywords: Clinopyroxene, Fe3+/ΣFe, machine learning, geothermometer, redox 48 

 49 

Introduction 50 

Clinopyroxene is prevalent throughout the deep crust and upper mantle, and its chemical 51 

composition carries essential information on metamorphism, partial melting, melt reactions, and 52 

deep volatile cycles (Råheim and Green 1974; Rudnick and Fountain 1995; Hirschmann 2000; Xia 53 

et al. 2013; Thomson et al. 2016; Beard et al. 2019). In particular, clinopyroxene Fe3+/ΣFe content 54 

strongly reflects mantle redox conditions and therefore the stability of carbon-bearing minerals, 55 

because the mantle redox state determines whether carbon is present as carbonate, carbonatite melt, 56 

diamond, or other reduced phases (Luth and Canil 1993; Dasgupta and Hirschmann 2006; Brey et 57 

al. 2008; Frost and McCammon 2008; Rohrbach and Schmidt 2011; Stagno et al. 2013; Zhang et 58 

al. 2019). Furthermore, the garnet-clinopyroxene geothermometer, widely applied to garnet-59 

lherzolites, eclogites, and granulites, and based on the reaction (Råheim and Green 1974; Ellis and 60 

Green 1979; Ganguly 1979; Saxena 1979; Krogh 1988): 61 

!
"
Mg"Al#Si"O12 	+ 	CaFeSi#O& 	↔ 	 !

"
Fe"Al#Si"O12 	+ 	CaMgSi#O&,               (1) 62 

																		  Pyrope            Hedenbergite             Almandine          Diopside 						 63 

assumes iron is present only as ferrous iron; large errors likely result if both clinopyroxene ferrous 64 

and ferric iron contents are not considered (McGuire et al. 1989; Canil and O’Neill 1996; Galazka-65 
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Friedman et al. 1998; Schmid et al. 2003; Proyer et al. 2004; Li et al. 2005). Thus, it is important 66 

to constrain both the ferric and ferrous iron contents in clinopyroxene. 67 

Moreover, the oxidation of Fe2+ to Fe3+ has been proposed as an important mechanism of 68 

dehydrogenation in clinopyroxenes crystallized from basaltic magmas (Skogby and Rossman 1989; 69 

Stalder and Ludwig 2007; Su et al. 2008; Sundvall et al. 2009) following the reaction: 70 

OH' + Fe#( =		O#' + Fe"( +	!
#
H# .                                              (2) 71 

This reaction is crucial for evaluating the preservation of water in clinopyroxene phenocrysts, 72 

which constrains the H2O contents of basaltic magmas (Wade et al. 2008; Xia et al. 2013; Lloyd 73 

et al. 2016; Xu et al. 2019). Thus, the accurate determination of clinopyroxene ferric iron contents 74 

greatly impacts constraints of the abundance and distribution of water in Earth’s interior. 75 

Although clinopyroxene major element contents, including total iron content, are widely 76 

measured by electron microprobe analyses (n = 130,000 in the Georoc database), the ferric and 77 

ferrous iron contents are rarely measured separately (<1000) due to technical challenges, cost, and 78 

limited access to ferric iron analytical facilities, such as Mössbauer spectroscopy (Dyar et al. 79 

2006), X-ray absorption near edge structure (XANES) spectroscopy (Bajt et al. 1994; Delaney et 80 

al. 1998; Kelley and Cottrell 2009; Cottrell and Kelley 2013; Terabayashi et al. 2013), transmission 81 

electron microscopy electron energy loss spectroscopy (TEM-EELS; van Aken et al. 1998; van 82 

Aken and Liebscher 2002; Rohrbach et al. 2007, 2011; Rzehak et al. 2020) and electron 83 

microprobe analyses employing the flank and peak-shift methods (Fialin et al. 2001; Höfer and 84 

Brey 2007; Lamb et al. 2012; C. Zhang et al. 2018). Although wet chemistry analyses are widely 85 

available, this destructive method requires greater amounts of sample, limiting its application to 86 

clinopyroxenes, which commonly account for only small volumes in mineral separates or have 87 
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compositional heterogeneity. Instead of analytical measurements, the ferric iron contents of 88 

minerals are commonly calculated based on charge conservation. However, this method is affected 89 

by the accuracy of Si and Na measurements by microprobe. On one hand, Si is a major element 90 

with 4+ ionic charge, and a slight deviation in its concentration can have a significant effect on 91 

charge balance. On the other hand, precise measurements of Na are challenging due to its low 92 

atomic number (Dyar et al. 1989; Canil and O’Neill 1996; Sobolev et al. 1999). 93 

Machine learning (ML) models can reveal complex correlations among elements following 94 

a data-driven approach. In recent years, ML methods have been broadly applied in various fields 95 

of mineralogy, petrology, and geochemistry (Dyar et al. 2012; Boucher et al. 2015; Petrelli and 96 

Perugini 2016; Le Losq et al. 2019; Li et al. 2020a, 2020b; Petrelli et al. 2020; Ptáček et al. 2020; 97 

Thomson et al. 2021). In this contribution, we develop and compare the performance of several 98 

ML methods to calculate Fe3+/ΣFe in clinopyroxene from microprobe data. To improve ML model 99 

performance from the dataset perspective, we divided the clinopyroxene dataset into several 100 

compositional sub-datasets. The application of ferric iron contents obtained using our models to 101 

geothermometry results are compared to those obtained using the traditional charge balance 102 

method. Finally, the application of ferric iron contents is used to test the redox-driven hydrogen 103 

diffusion hypothesis in clinopyroxene crystallized from basaltic magma. 104 

 105 

Material and methods 106 

Data description 107 

The natural clinopyroxene compositional dataset compiled in this study comprises 407 108 

terrestrial samples from 62 publications, including both major element concentrations and 109 
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Fe3+/ΣFe ratios (Supplementary Table S1). Synthetic clinopyroxenes (n = 45) were excluded 110 

because they mostly have simple compositions or extreme values; e.g., a synthetic diopside sample 111 

(Di70_F) reported in Redhammer et al. (2012) has Fe3+/ΣFe = 1.0, which is extremely rare in 112 

nature. Because, in principle, the ML training and prediction datasets should overlap, incorporating 113 

such simple, non-natural compositions in the training dataset would negatively affect the 114 

performance of the model when predicting Fe3+ concentrations in natural samples. 115 

Major element concentrations (Si, Ti, Al, Cr, Fe, Mn, Mg, Ca, Na) measured by microprobe 116 

were selected as eigenvalues (X) for the model input data, and Fe3+/ΣFe ratios obtained by 117 

Mössbauer spectroscopy as the ‘tag’ values (Y) representing the model output. Among the 118 

analytical methods capable of measuring Fe3+/ΣFe, we chose only Mössbauer spectroscopy for 119 

two reasons: 1) micro-XANES standards are calibrated by Mössbauer spectroscopy, leading to 120 

repetitive counts of Mössbauer spectroscopy data in the training dataset; and 2) ferric iron data 121 

from micro-XANES and other methods are significantly less abundant than Mössbauer data. 122 

We used this dataset to train the ML models in two ways. First, the entire dataset (n = 407) 123 

was used to train the general models. In a second approach, the dataset was split into three sub-124 

datasets numbered I–III based on mineral species and petrological context: I, diopside and augite 125 

in spinel peridotite (n = 127); II, omphacite in eclogite (n = 72); and III, the remaining data (n = 126 

208). The models were trained using each sub-dataset to obtain better accuracy. 127 

As shown in Figure 1, the entire dataset spans a wide range of compositions: 45.32–57.65 128 

wt% SiO2, 0–9.76 wt% TiO2, 0.12–16.37 wt% Al2O3, 0–29.37 wt% Cr2O3, 0.67–30.05 wt% FeO, 129 

0–1.97 wt% MnO, 0.01–21.5 wt% MgO, 0.03–24.91 wt% CaO, 0.04–17.26 wt% Na2O, and 130 

Fe3+/ΣFe ratios ranging from 0 (Fe2+ endmember, hedenbergite) to 1 (Fe3+ endmember, aegirine). 131 
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Some rare clinopyroxenes, such as esseneite (purely ferric) and spodumene (Fe-free), were 132 

excluded. 133 

Most Fe3+/ΣFe ratios reported in the literature ignore the recoil-free fractions of Fe3+ and 134 

Fe2+, which may contribute large errors to Fe3+/ΣFe values measured by Mössbauer spectroscopy 135 

(Dyar et al. 2012). To reduce the negative effect of such measurement errors on the tag values in 136 

our models, we corrected such values using the recoil-free fractions (C) listed in Table 1 as: 137 

)!"

)#"
= 𝐶 × *!"

*#"
,                                                             (3) 138 

where A is the doublet area of Fe3+ or Fe2+ in the Mössbauer spectrum, and N their corresponding 139 

corrected abundances. 140 

Training and test datasets 141 

We divided the compositional dataset into training and test datasets using the stratified 142 

random sampling function in the Scikit-learn library, which produces training sets that reflect, as 143 

much as possible, the characteristics of the entire dataset. The training set is used to train the 144 

models, whereas the independent test set, which is not involved in model training, is used to 145 

estimate the generalization of the trained models by evaluating their performance on a ‘new’ 146 

dataset. We selected 80% of the compiled dataset (or sub-dataset) for the training set, leaving 20% 147 

for testing. The exception is sub-dataset I, which is much smaller than the other sub-datasets; for 148 

this sub-dataset, we selected 90% of the data for training and 10% for testing to allow more data 149 

for training the algorithms. 150 

Machine learning algorithms 151 
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We used seven classic algorithms and ML methods that are widely used in regression 152 

studies: linear regression, principal component analysis (PCA)-based elastic net polynomial 153 

regression, artificial neural network regression, artificial neural network ensemble (ANN ensemble) 154 

regression, decision trees regression, random forest regression, and extremely randomized tree 155 

(Extra-Trees) regression. Detailed descriptions of the principles of each algorithm are provided in 156 

Supplementary Text 1. In addition, because they employ ensemble learning based on bagging, the 157 

random forest and Extra-Trees algorithms can prevent overfitting. Therefore, it is worthwhile to 158 

test their performance on small datasets such as clinopyroxene composition. Furthermore, these 159 

two algorithms provide feature importance information, facilitating the interpretation of their 160 

results. 161 

Performance metrics 162 

Model performance was evaluated using two parameters: the coefficient of determination 163 

(R2) and the root-mean-square error (RMSE). To avoid overfitting, we estimated the robustness of 164 

the model predictions. R2 is a dimensionless metric of a model’s goodness of fit, reflecting the 165 

degree to which the input variables explain variations in the output. The formula for R2 is: 166 

𝑅# = 1 − ∑ (-$'-%. )#
&
$'(
∑ (-$'-0)#&
$'(

,                                                               (4) 167 

where 𝑦1 denotes the real value, 𝑦7 is the mean value of 𝑦1, and 𝑦28  is the predicted value. R2 values 168 

range from −∞ to 1, with the best possible score being R2 = 1.0. 169 

RMSE estimates the error between the real and predicted values as the square root of the 170 

sum of all errors divided by the number of values: 171 
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RMSE = ;∑ (-$'-%. )#&
$'(

3
.                                                        (5) 172 

RMSE values closer to zero indicate a better fit. 173 

Considering the small size of our dataset, we performed 10-fold cross-validation to 174 

estimate the robustness of each ML algorithm; this method divides the dataset into ten subgroups 175 

(nine for training and one for validation) and repeats the process ten times. We repeated the 10-176 

fold cross-validation ten times with various random seeds, resulting in 100 sub-sample sets. Thus, 177 

in each 10-fold cross-validation, ten sub-sample sets were created, each consisting of 10% of the 178 

total samples. Finally, the R2 distribution of each of the 100 sub-sample sets was analyzed by kernel 179 

density estimation, a non-parametric method for estimating the probability density function of a 180 

random variable, and which can re-express the discrete histogram with a smooth and continuous 181 

curve to make it more accessible for model comparisons. 182 

 183 

Results 184 

Models trained on the entire dataset 185 

Figure 2a shows the R2 distribution for each model. The random forest and Extra-Trees 186 

algorithms showed the best performance, each with R2 distributions characterized by a modal value 187 

of 0.89 and a mean RMSE value of 0.078, followed by the polynomial, neural network, and ANN 188 

ensemble algorithms with mean RMSE values of 0.080, 0.080, and 0.082, respectively. In contrast, 189 

the decision trees algorithm was the least accurate and robust, with very poor performances during 190 

some validation iterations. Figure 2b–g shows the details of each ML method by comparing the 191 

reference and predicted Fe3+/ΣFe values. Remarkably, the correlations between the reference and 192 
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predicted values in all model outputs plot along the 1:1 trend, indicating accurate predictions. 193 

The uncertainties of the linear and decision trees models were about ±0.3, whereas the 194 

other models showed uncertainties of approximately ±0.25. The RMSE values obtained for the 195 

independent test dataset were 0.071 (random forest), 0.077 (Extra-Trees), 0.084 (polynomial), 196 

0.081 (neural network), 0.084 (ANN ensemble), 0.089 (linear), and 0.086 (decision trees), similar 197 

to those obtained using the training dataset. 198 

It is crucial to incorporate analytical uncertainties into our models because they determine 199 

the reliability of the ML algorithms. Analytical uncertainties on Mössbauer spectroscopy analyses 200 

are at least ±5% and increase with decreasing total Fe content (H.L. Zhang et al. 2018). Therefore, 201 

analytical errors are more significant for clinopyroxenes with low total Fe contents, which then 202 

propagates into the ML models. Indeed, the residual error, i.e., the difference between the predicted 203 

and reference values, increased at low Fe contents in all models (Figure 3a–g): the residual errors 204 

of the linear and decision trees algorithms increased from 0.2 to 0.3 at Fe contents below 0.4 atoms 205 

per formula unit (apfu); those of the polynomial, neural network, and ANN ensemble models 206 

increased from 0.15 at >0.4 apfu Fe to about 0.25 at lower Fe contents; in contrast, neither the 207 

random forest nor Extra-Trees algorithms were very sensitive to the Fe3+ measurement 208 

uncertainties (Figure 3f–g). Furthermore, Canil and O’Neill (1996) reported microprobe analytical 209 

uncertainties on Si measurements. Indeed, our models inherited Si analytical uncertainties (Figure 210 

3h–n); in contrast to Fe, the residual error increased with increasing Si content. Again, the random 211 

forest and Extra-Trees algorithms were the least sensitive to Si measurement uncertainties. 212 

Models trained on compositional sub-datasets 213 

The Fe3+/ΣFe ratios of certain sample types were poorly predicted by the general models, 214 
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namely diopside and augite in spinel peridotite (n = 127) and omphacite in eclogite (n = 72). 215 

Therefore, we further trained ML models on these sub-datasets and investigated the feature 216 

importance information provided by the random forest and Extra-Trees algorithms. 217 

Figure 4 compares models for diopside and augite in spinel peridotite (sub-dataset I). 218 

Linear regression did not achieve a correlation between the reference and predicted values, and 219 

simply predicted values around the average composition of the training dataset to achieve a low 220 

RMSE (Figure 4a). This is not surprising because the Pearson correlation coefficient shows nearly 221 

no correlation between any major element content and Fe3+/ΣFe (below ±0.3), indicating that in 222 

these samples, Fe3+/ΣFe does not depend solely on clinopyroxene composition. Previous studies 223 

suggest that coexisting spinel might perturb the incorporation of Fe3+ in clinopyroxene (Canil and 224 

O’Neill 1996; Woodland et al. 2006; Woodland 2009). Therefore, we added the chemical 225 

compositions of coexisting spinel into sub-dataset I and trained new models on the combined 226 

clinopyroxene and spinel compositional data. The feature importance information returned by the 227 

random forest and Extra-Trees algorithms both indicate that the most important feature is Fe 228 

content in spinel, with other elemental concentrations in spinel also having moderate contributions 229 

to the predictions (Figure 5). Consequently, the performance of these models improved 230 

significantly when including coexisting spinel (Figure 4b, d, f), attaining uncertainties of ±0.15 on 231 

the linear model and ±0.08 on the random forest and Extra-Trees algorithms. 232 

Because the omphacite-in-eclogite dataset is relatively small (n = 72), we do not provide 233 

exclusive models for omphacite herein and recommend using the general models to calculate 234 

Fe3+/ΣFe in omphacite. Thus, here, we estimate the performance of the general models for 235 

omphacite (Figure 6). The maximal uncertainty was within ±0.25, but the correlation between the 236 

reference and predicted values was relatively weak, especially for the polynomial, neural network, 237 
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and ANN ensemble regression algorithms. The random forest and Extra-Trees algorithms again 238 

showed the best result. Considering that Fe3+/ΣFe values in omphacite span a wide range (0.11–239 

0.76 in sub-dataset II), the errors on the models are acceptable for omphacite in eclogite (RMSEs 240 

for all provided models are below 0.15). 241 

Figure 7 shows that when trained using sub-dataset III, the PCA-based elastic net 242 

polynomial, random forest, and Extra-Trees algorithms performed excellently, with modal R2 243 

values of about 0.96, uncertainties below ±0.15, and RMSE values for the test dataset ranging from 244 

0.051 to 0.057. On the other hand, the linear, decision trees, and neural network algorithms 245 

performed relatively poorly in accuracy and precision, with uncertainties below ±0.2. Compared 246 

to the neural network algorithm, the ANN ensemble regression significantly improved precision, 247 

giving robust results without improving accuracy, with uncertainties below ±0.2. 248 

 249 

Discussion 250 

Evaluation of ML model performances 251 

Here, we compare the different ML models based on the accuracy, uncertainty, and 252 

robustness of their predictions. Among the considered models, the random forest and Extra-Trees 253 

algorithms show the best performance, with high modal R2 values and low mean RMSE values. 254 

Furthermore, these two algorithms are less sensitive to uncertainties on compositions measured by 255 

microprobe and/or Mössbauer spectroscopy. In comparison, the polynomial, neural network, and 256 

ANN ensemble algorithms show moderate performance, and the ANN ensemble algorithms are 257 

more sensitive to measurement uncertainties than the random forest and Extra-Trees algorithms. 258 

In particular, the neural network algorithm shows poor performance on the sub-datasets, indicating 259 
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that the neural network algorithm is not suitable for small datasets. However, the accuracy, 260 

precision, and robustness of predictions improve significantly when combining the neural network 261 

and bagging algorithms (ANN ensemble algorithms). In contrast, the decision trees algorithm and 262 

linear regression show the worst accuracy and robustness, with poor performance during some 263 

validation iterations. Therefore, the ensemble learning algorithms are the best suited to the 264 

clinopyroxene compositional datasets. 265 

The datasets used to train the ML models also have great impact on their performance. For 266 

clinopyroxene in spinel peridotite (sub-dataset I), the ML models’ performances improved after 267 

incorporating coexisting spinel compositions (Figure 4), consistent with the relative importance of 268 

clinopyroxene and spinel compositions to the model predictions. This indicates that the correlation 269 

between Fe3+/ΣFe and major element content in clinopyroxenes of sub-dataset I is likely due to 270 

spinel-clinopyroxene interaction. Therefore, the ML algorithms will be improved after 271 

incorporating a relevant parameter affecting clinopyroxene compositions (see next subsection). In 272 

sub-dataset II, the poor model performance was likely due to the complex Fe3+ substitution 273 

mechanisms in omphacite. Unlike clinopyroxene in spinel peridotite, Na+ abundance is strongly 274 

correlated with Fe3+/ΣFe in omphacite (Pearson correlation coefficient r > 0.6). Furthermore, the 275 

small dataset (n = 72) spans various P-T conditions, some of which may have not reached 276 

equilibrium, further contributing to the poor predictive capacity of the ML models for sub-dataset 277 

II. After excluding clinopyroxene in spinel peridotite and omphacite in eclogite, ML model 278 

performances on sub-dataset III improved compared to the entire dataset (r = +0.95, −0.83, and 279 

−0.92 for Na, Mg, and Ca, respectively). This result suggests a general relationship between Fe3+ 280 

and Na+, Mg2+, and Ca2+. Therefore, ML model performances can be improved with petrological 281 

and geological context. 282 
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Cation substitution mechanisms revealed by ML models 283 

Previous studies have proposed cationic substitution mechanisms for Fe3+. Redhammer et 284 

al. (2000, 2012) reported a coupled Ca2+-Na+ and M2+-Fe3+ substitution (where M indicates an ion 285 

in the clinopyroxene M1 site) along the join of the hedenbergite-aegirine and diopside-aegirine 286 

solid solution series: 287 

Fe3+	(M1)	+	Na+	(M2)	=	Fe2+	(M1)	+	Ca2+	(M2),                                     (6) 288 

Fe3+	(M1)	+	Na+	(M2)	=	Mg2+	(M1)	+	Ca2+	(M2).                                      (7) 289 

Nestola et al. (2007) reported the coupled substitution of Ca and Fe2+ for Na and Al along the 290 

jadeite-hedenbergite solid solution series and the isovalent substitution of Fe3+ for Al along the 291 

jadeite-aegirine series: 292 

Al3+	(M1)	+	Na+	(M2)	=	Fe2+	(M1)	+	Ca2+	(M2),                                       (8) 293 

Fe3+	(M1)	=	Al3+	(M1).                                                          (9) 294 

These coupled substitution mechanisms indicate that the replacement of the original ion in the M1 295 

site by Fe3+ is accompanied by substitution between Na and Ca in the M2 site to maintain charge 296 

balance. 297 

Based on the feature importance information from the random forest algorithm, Na, Ca, 298 

and Mg contents in clinopyroxene are the essential features for predicting Fe3+/ΣFe (Figure 8), in 299 

agreement with their strong positive (Na, r = +0.89) and negative Pearson correlation coefficients 300 

(Mg, r = −0.78; Ca, r = −0.86) with Fe3+/ΣFe for the entire dataset. The general model indicates 301 

that Fe3+ is incorporated in clinopyroxene as NaFe3+Si2O6 (Equations 6, 7). However, 302 



manuscript submitted to American Mineralogist 

15 
 

clinopyroxene in spinel peridotite shows a poor correlation between Na and Fe3+ (r = +0.09), with 303 

poor model performances unless coexisting spinel is included in the model (Canil and O’Neill 304 

1996; Woodland et al. 2006; Woodland 2009; Hao and Li 2013). As mentioned above, this 305 

observation can be explained by reactions between clinopyroxene and coexisting spinel. 306 

To determine the mechanism of Fe3+ incorporation in clinopyroxene in spinel peridotite, 307 

we analyzed the correlation coefficient matrix for sub-dataset I (Supplementary Table S2) and the 308 

feature importance of the model. The Cr and Al contents in clinopyroxene show strong positive 309 

correlations with Cr (r = +0.65) and Al (r = +0.70) contents in spinel, respectively (Figure 9a, b). 310 

Similarly, Woodland et al. (2006) suggested that Fe3+ partitioning between clinopyroxene and 311 

spinel varies with the Cr/Al ratio in spinel, indicating that Cr/Al in spinel may influence Fe3+/ΣFe 312 

in clinopyroxene. In addition, Fe has high feature importance scores in both clinopyroxene and 313 

spinel. Comparing Fe, Al, and Cr partitioning between spinel and clinopyroxene shows a strong 314 

positive correlation between Dspl/cpxFe and Dspl/cpxCr, but a poor correlation between Dspl/cpxFe and 315 

Dspl/cpxAl (Figure 9c, d). These results suggest that Dspl/cpxFe may lead to Cr/Al variation in spinel, 316 

in turn affecting Dspl/cpxFe3+ and Fe3+/ΣFe in clinopyroxene by the reaction: 317 

4CaMg2+Si2O6+Fe2+Fe23+O4+Fe2+Al23+O4=2CaFe2+Si2O6	+2CaFe3+Al3+SiO6+2Mg2
2+SiO4. (10) 318 

	Clinopyroxene					Spinel															Spinel								Clinopyroxene				Clinopyroxene								olivine    319 

However, the effect of Dspl/cpxFe on Fe3+/ΣFe in clinopyroxene should not be the dominant 320 

factor controlling Fe3+ in clinopyroxene, as reflected by the weak correlation between Fe in 321 

clinopyroxene or spinel and Fe3+/ΣFe in clinopyroxene. Furthermore, Na content in clinopyroxene 322 

shows moderate to strong negative correlations with Ca (r = −0. 42) and Mg (r = −0.64) in 323 

clinopyroxene, indicating the possibility of NaFe3+Si2O4 incorporation (Equation 7). In addition, 324 
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the Al content in clinopyroxene was strongly negatively correlated with Si (r = −0.72) and Mg (r 325 

= −0.6) in clinopyroxene, which suggests Fe3+ incorporation as CaFe3+AlSiO6: 326 

Fe3+	(M1)	+	Al3+	(T)	=	Mg2+	(M1)	+	Si4+	(T).                                 (11) 327 

We note that all feature importance scores are less than 17.5% (Figure 5), indicating that 328 

none of the features are dominant in the system. Therefore, we suggest multiple Fe3+ substitution 329 

mechanisms between clinopyroxene and spinel in spinel peridotite, without a single mechanism 330 

dominating. Furthermore, our results indicate that cation substitution is a mixed process that is 331 

effectively quantified by ML models. 332 

Comparing ML models to charge-balance for geothermometry applications 333 

Figure 10 compares the predicted Fe3+/ΣFe values for both the entire dataset and sub-334 

dataset III (i.e., excluding clinopyroxene in spinel peridotite and omphacite in eclogite) using our 335 

polynomial, neural network, ANN ensemble, random forest, and Extra-Trees models to those using 336 

the traditional charge conservation method of Droop (1987), a simple general equation for 337 

estimating Fe3+ content in ferromagnesian oxides and silicate minerals from microprobe analyses: 338 

Fe"( = 2𝐺(1 − 𝐼/𝑂),                                                           (12) 339 

where I is the ideal number of cations per formula unit, and O is the observed cation total per G 340 

oxygens calculated assuming all iron to be Fe2+. Their method generally overestimates Fe3+/ΣFe 341 

in clinopyroxene with Fe3+/ΣFe < 0.4. By comparing Fe3+/ΣFe values calculated by charge 342 

conservation to those obtained by Mössbauer spectroscopy, McGuire et al. (1989) and Canil and 343 

O’Neill (1996) showed that the uncertainty on Droop’s (1987) method is too significant for 344 

practical application. In contrast, the predictions of our models are in good agreement with the true 345 
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values, and the predicted errors are mainly within ±0.2. Therefore, our models significantly 346 

improve both the precision and uncertainty of the traditional method. 347 

Garnet-clinopyroxene geothermometry 348 

The garnet-clinopyroxene geothermometer has been widely applied to garnet lherzolites, 349 

eclogites, and granulites (Råheim and Green 1974; Ellis and Green 1979; Ganguly 1979; Saxena 350 

1979; Powell 1985). Because this geothermometer is based on the exchange of Fe2+ and Mg2+ 351 

between garnet and clinopyroxene, it is important to obtain the Fe2+ value from the Fe3+/ΣFe ratio. 352 

Whereas the Fe3+ content in garnet is negligible at shallow depths (Geiger et al. 1987), that in 353 

clinopyroxene is not. Therefore, accurate estimation of Fe3+ in clinopyroxene is crucial to the 354 

successful application of this geothermometer. Our models address the lack of available methods 355 

for accurately calculating Fe3+ in clinopyroxene and will contribute to accurate and convenient 356 

temperature calculations. 357 

We applied our models to calculate temperatures using the garnet-clinopyroxene 358 

geothermometer of Ellis and Green (1979) and compared the results with those calculated from 359 

Mössbauer spectroscopy data (Figure 11). We also estimated temperatures by considering all Fe 360 

as Fe2+ or by predicting Fe2+ based on Droop’s (1987) charge conservation method. We used the 361 

‘WinGrt’ program (Yavuz and Yildirim 2020) for the garnet-clinopyroxene geothermometer 362 

calculation. The data used here were randomly selected from the test dataset and cover a wide 363 

temperature range. Compared to those calculated from Mössbauer spectroscopy data, temperatures 364 

are overestimated when assuming all Fe as Fe2+, consistent with the results of Galazka-Friedman 365 

et al. (1998). The Fe2+ contents calculated by Droop’s (1987) method also result in large 366 

temperature uncertainties. In contrast, the ML models show superior performance; compared to 367 
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major uncertainties up to about ±250 ℃ when assuming all Fe as Fe2+ or using Droop’s (1987) 368 

method, the ML models achieved uncertainties below ±50 ℃. Temperatures calculated for various 369 

samples from Mössbauer spectroscopy data and using different formulations of the garnet-370 

clinopyroxene geothermometer are reported in Table 2. The standard error between different 371 

formulas averages to 59 ℃, which translates to average uncertainties of ±118 ℃ (2σ). In contrast, 372 

when applying our models to calculate Fe2+ content and then temperature, the largest uncertainties 373 

are around ±50 ℃, within the error of the garnet-clinopyroxene geothermometer. Therefore, our 374 

models will improve garnet-clinopyroxene geothermometry calculations. 375 

Testing the hypothesis of hydrogen diffusion 376 

The oxidation of Fe2+ following Equation (2) is commonly regarded as the mechanism of 377 

hydrogen diffusion in clinopyroxene (Skogby and Rossman 1989; Bromiley and Keppler 2004; 378 

Koch-Müller et al. 2007; Stalder and Ludwig 2007). However, Sundvall et al. (2009) reported that 379 

this mechanism may not dominate in Fe-poor clinopyroxenes (<2 wt.% FeO) and that an additional 380 

reaction must be considered. These studies focused on a limited number of samples because of the 381 

scarcity of Mössbauer analyses. Here, to give a general perspective on the mechanism of hydrogen 382 

diffusion in clinopyroxene, we apply our models to calculate Fe3+/ΣFe for a large number of 383 

clinopyroxenes in basalts (n = 109) and compare the difference between the Fe3+/ΣFe values of 384 

dehydrogenated (n = 31) and non-dehydrogenated (n = 78) samples. These clinopyroxene samples 385 

are compiled in Supplementary Table S3; they were collected from several published 386 

clinopyroxene samples for which the original literature clearly discussed whether each sample 387 

suffered from dehydrogenation. As these clinopyroxenes are from basalts, we applied our models 388 

trained on sub-dataset III (i.e., excluding clinopyroxene in spinel peridotite and omphacite in 389 

eclogite). We plotted the predicted Fe3+/ΣFe values vs. Fe content for both dehydrogenated and 390 
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non-dehydrogenated samples in Figure 12a–c and used kernel density estimation to compare the 391 

Fe3+/ΣFe values of dehydrogenated and non-dehydrogenated samples, with the RMSE values of 392 

the test dataset for each model taken as the model error (Figure 12d–f). Ferric iron content should 393 

increase with increasing dehydrogenation if the mechanism of Equation (2) dominates. The 394 

distribution of Fe3+/ΣFe values in samples that suffered dehydrogenation is relatively higher than 395 

that for samples that did not (Figure 12). Although the differences between the Fe3+/ΣFe values of 396 

the dehydrogenated and non-dehydrogenated samples are within the error range of our models, 397 

their statistical distribution tends to support the mechanism in Equation (2). 398 

There are two reasons why the application of our models cannot unequivocably support or 399 

refuse the mechanism of ferric iron oxidation. First, if the mechanism of Equation (2) dominates, 400 

the magnitude of OH loss should equal that of ferric iron gain. However, because there is much 401 

less water than iron in clinopyroxene, dehydrogenation may not strongly influence Fe3+/ΣFe. 402 

Second, except for the oxidation of Fe2+ to Fe3+, other major element content variations would be 403 

limited. Thus, because our models only incorporate major element concentrations, they may not 404 

be sensitive enough to distinguish the slight changes in major element contents expected during 405 

dehydrogenation. Nonetheless, our investigation implies that major element compositional 406 

differences might exist between dehydrogenated and non-dehydrogenated clinopyroxenes, which 407 

could be verified by future ML studies. 408 

 409 

Implications 410 

These ML algorithms were trained on a small dataset of 407 samples with known ferric 411 

iron contents. As more data becomes available, a more extensive training dataset will improve the 412 
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performance of the models. These ML models predicting Fe3+ in clinopyroxene are useful for 413 

estimating clinopyroxene Fe3+ content when laboratory measurements are unavailable, whether 414 

due to technical or financial reasons. Knowing clinopyroxene Fe3+ content also improves the 415 

precision of garnet-clinopyroxene geothermometers, offering better constraints and that could be 416 

used to provide new insights into metamorphic petrology and mineralogy. Our ML models imply 417 

a redox-driven mechanism for hydrogen diffusion in clinopyroxene during their crystallization 418 

from basaltic magma, but further work is required to verify or disprove this prediction. 419 

Furthermore, similar ML algorithms to predict mineral Fe3+ contents could be developed for other 420 

Fe3+-rich phases such as garnet and bridgmanite. The results of such models will be useful for 421 

probing the broader redox distribution of the solid earth. In addition, comprehensive ML 422 

investigations can be applied to various other geological questions that require regression, but are 423 

poorly fit by simple linear regressions, such as the sulfur content of silicate melts at sulfide 424 

saturation (Smythe et al. 2017; Chowdhury and Dasgupta 2020). 425 

 426 

Data Availability Statement 427 

Python scripts for the application of the ML regression models are available on Github at 428 

https://github.com/ZJUEarthData/pyro_processor. The Fe3+ calculator is not needed to configure 429 

the python environment and can be run from the terminal in Windows, Mac OS X, and Linux. 430 
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 655 

Figure 1. Clinopyroxene compositions: (a) Mg-Fe-Ca clinopyroxenes and (b) Ca-Na and Na 656 

clinopyroxenes. Data sources are listed in Supplementary Table S1. Abbreviations: Wo, 657 

wollastonite; En, enstatite; Fs, ferrosilite; Q, Wo + En + Fs; Di, diopside; Hd, hedenbergite; Aug, 658 

augite; Pgt, pigeonite; Cen, clinoenstatite; Cfs, clinoferrosilite; Omp, omphacite; Agt, aegirine-659 

augite; Jd, jadeite; Ae, aegirine. 660 

Figure 2. Performance of the seven ML algorithms trained on the entire dataset. (a) Kernel density 661 

estimation of the coefficient of determination (R2) from 10-fold cross-validation. (b–h) 662 

Correlations between the known Fe3+ abundances in the training and test datasets with those 663 

predicted by the linear, polynomial, neural network, ANN ensemble, decision trees, random forest, 664 

and Extra-Trees algorithms, respectively. 665 

Figure 3. Residual error (reference value − predicted value) as a function of (a–g) Fe and (h–n) 666 

Si contents (atoms per formula unit, apfu) in reference clinopyroxenes: (a, h) linear regression, (b, 667 
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i) polynomial regression, (c, j) neural network regression, (d, k) ANN ensemble regression, (e, l) 668 

decision trees regression, (f, m) random forest regression, and (g, n) Extra-Trees regression. 669 

Figure 4. Comparison of model performance for sub-dataset I, clinopyroxene in spinel peridotite 670 

(n = 127). Models were trained using either (a, c, e) a dataset of exclusively clinopyroxene 671 

compositions (cpx only) or (b, d, f) one including both clinopyroxene and coexisting spinel 672 

compositions (cpx + spl). Correlations are shown between the known Fe3+ abundances in the 673 

training and test datasets and those predicted by (a, b) linear regression, (c, d) random forest 674 

regression, and (e, f) Extra-Trees regression. 675 

Figure 5. Relative feature importance in (a) random forest and (b) Extra-Trees predictions of 676 

Fe3+/ΣFe for clinopyroxene in spinel peridotite (sub-dataset I). 677 

Figure 6. Correlations between the known Fe3+ abundances in omphacite in eclogite (sub-dataset 678 

II) and those predicted by the (a) polynomial, (b) neural network, (c) ANN ensemble, (d) random 679 

forest, and (e) Extra-Trees regressions. 680 

Figure 7. Performance of the seven ML algorithms trained on sub-dataset III (i.e., excluding 681 

clinopyroxene in spinel peridotite and omphacite in eclogite). (a) Kernel density estimation of the 682 

coefficient of determination (R2) from 10-fold cross-validation. (b–h) Correlations between the 683 

known Fe3+ abundances in the training and test datasets and those predicted by the linear, 684 

polynomial, neural network, ANN ensemble, decision trees, random forest, and Extra-Trees 685 

regressions, respectively. 686 

Figure 8. Relative feature importance in random forest predictions of Fe3+/ΣFe for clinopyroxene 687 

in (a) the entire dataset and (b) sub-dataset III (excluding clinopyroxene in spinel peridotite and 688 
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omphacite in eclogite). 689 

Figure 9. Elemental partitioning between clinopyroxene and spinel. Data on (a) Cr and (b) Al are 690 

plotted based on a 12-oxygen formula unit. Partitioning coefficient pairs are plotted in (c) Dspl/cpxCr 691 

versus Dspl/cpxFe and (d) Dspl/cpxAl versus Dspl/cpxFe. 692 

Figure 10. Comparison of predicted Fe3+/ΣFe values in clinopyroxene using our (a, b) polynomial, 693 

(c, d) neural network, (e, f) ANN ensemble, (g, h) random forest, and (i, j) Extra-Trees methods 694 

with those predicted by Droop’s (1987) method for (a, c, e, g, i) models trained using the entire 695 

dataset and (b, d, f, h, j) those trained using sub-dataset III (excluding clinopyroxene in spinel 696 

peridotite and omphacite in eclogite). 697 

Figure 11. Application of our (a) polynomial, (b) neural network, (c) ANN ensemble, (d) random 698 

forest, and (e) Extra-Trees models to the garnet-clinopyroxene geothermometer (Ellis and Green 699 

1979). Red symbols are temperatures obtained considering all Fe as Fe2+, black symbols are those 700 

using Fe2+ contents predicted by our models trained on the entire dataset, and blue symbols are 701 

those using Fe2+ contents predicted by Droop’s (1987) method. The temperatures obtained using 702 

these various methods are compared to those calculated directly from Mössbauer spectroscopy 703 

data (MS, y-axis). 704 

Figure 12. Comparison of (a–c) Fe3+/ΣFe values as a function of Fe content (atoms per formula 705 

unit, apfu) and (d–f) kernel density estimations of the distribution of Fe3+/ΣFe values for 706 

dehydrogenated and non-dehydrogenated clinopyroxenes predicted by (a, d) polynomial, (b, e) 707 

random forest, and (c,f) Extra-Trees regressions. 708 

 709 
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 712 

 713 

 714 

 715 

 716 

 717 

Table 1. Recoil-free fractions of Fe in clinopyroxene (C) at room temperature used to correct literature 718 

Fe3+/ΣFe ratios. 719 

Species C Application to this study Reference 

Di (N) 1.22 Di De Grave and Van Alboom (1991)  

Hd (N) 1.17 Hd Eeckhout and De Grave (2003) 

Ae (N) 1.15 Ae Eeckhout and De Grave (2003) 

Avg 1.18 Aug, Pgt, Omp, Jd, Agt Eeckhout and De Grave (2003) 

Abbreviations: N, natural sample; Avg, average value; Di, diopside; Hd, hedenbergite; Ae, aegirine; 

Aug, augite; Pgt, pigeonite; Omp, omphacite; Jd, jadeite; Agt, aegirine-augite. 

 720 

 721 

 722 

 723 

 724 
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 726 

 727 

 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

Table 2. Temperatures calculated using various formulations of the garnet-clinopyroxene geothermometer. 736 

Geothermometer formulation 

Sample

No. 

TRG74 

(℃) 

TEG79 

(℃) 

TG79 

(℃) 

TP85 

(℃) 

TK88 

(℃) 

TA94 

(℃) 

TG96 

(℃) 

TL98 

(℃) 

TKR00 

(℃) 

TN09 

(℃) 

Cpx96a 704 693 744 670 647 615 753 625 693 707 

Cpx98a 686 673 725 650 626 592 735 603 672 688 

Cpx99a 679 666 718 642 618 584 728 595 664 681 

Cpx104a 695 684 735 660 637 604 744 614 683 698 

Cpx107a 707 697 747 673 651 619 756 628 697 710 

Cpx108a 706 695 745 672 649 617 755 627 695 709 

F-8b 1400 1256 1290 1247 1243 1268 1318 1293 1421 1398 

F-11b 1423 1252 1286 1241 1237 1290 1313 1300 1412 1414 

F-16b 1492 1256 1307 1244 1207 1310 1330 1324 1441 1469 

87-70c 1417 1240 1265 1228 1238 1297 1295 1294 1384 1418 
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BY-19c 1275 1297 1328 1302 1302 1212 1353 1250 1459 1407 

8508-9c 1181 1187 1233 1184 1167 1064 1260 1103 1314 1282 

94M80d 595 670 677 650 622 614 672 606 630 590 

97M32d 513 519 562 495 469 456 560 447 507 505 

944012-

11d 
678 883 818 870 774 767 827 748 785 679 

Garnet-clinopyroxene geothermometer formulations: TRG74, Råheim and Green (1974); TEG79, Ellis and Green 

(1979); TG79, Ganguly (1979); TP85, Powell (1985); TK88, Krogh (1988); TA94, Ai (1994); TG96, Ganguly et 

al. (1996); TL98, Liu (1998); TKR00, Ravna (2000); TN09, Nakamura (2009). 

Data references: aProyer et al. (2004); bLazarov et al. (2009); cNimis et al. (2015); dLi et al. (2005). 
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