1	Pressure-induced C23–C37 transition and compression
2	behavior of orthorhombic Fe ₂ S to Earth's core pressures
3	and high temperatures
4	Claire C. Zurkowski ^a , Barbara Lavina ^{b,c} , Nigel M. Brauser ^a , Anne H. Davis ^a , Stella
5	Chariton ^b , Sergey Tkachev ^b , Eran Greenberg ^{b†} , Vitali B. Prakapenka ^b , Andrew J.
6	Campbell ^a
7 8	^a University of Chicago, Department of the Geophysical Sciences, 5734 S Ellis Ave, Chicago, IL 60637, USA
9	^b Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA
10	^c X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
12	Now at Applied Physics Department, Soreq Nuclear Research Center (NRC), Favne 81800, Israel
13	Corresponding Author: Claire Zurkowski, czurkowski@uchicago.edu
14	
15	Highlights
10 17	 Fe2S is observed coexisting with iron between 25 and 194 GPa and to 2500 K. A pressure-induced C23, C37 Fe3S phase transition is observed at core mantle boundary.
18	pressures.
19	- The density profile of C37 Fe ₂ S indicates that 8.6 wt% S is required to match the density
20	at Earth's inner core boundary.
21	ABSTRACT
22	The phase stability of orthorhombic Fe_2S was explored to 194 GPa and 2500 K using
23	powder and multigrain synchrotron X-ray diffraction techniques. Between 30 and 120 GPa, a
24	C23-like (Co ₂ P, <i>Pnma</i> , Z=4) Fe ₂ S unit cell is observed and determined to exhibit a highly
25	compressible <i>a</i> axis. A softening of the <i>a</i> axis occurs between 120 and 150 GPa and a relative
26	stiffening of the b and c axes accompanies this compressibility change. Above 150 GPa, the a
27	axis stiffens as the <i>b</i> and <i>c</i> axes soften and a C37-like (Co ₂ Si, <i>Pnma</i> , Z=4) Fe ₂ S unit cell is
28	measured. On the basis of these changes in unit-cell geometry, a pressure-induced C23-C37
29	Fe ₂ S phase transition is inferred between 120–150 GPa. The C23 and C37 (Pnma, Z=4)
30	structures are closely related and share the same site symmetries. Forming the $C37$ structure
31	from the C23 structure requires a shortening of the a axis and lengthening of the b and c axes

32	accompanied by a 4- to 5-fold coordination change. The softening of the a axis above 120 GPa
33	may therefore indicate the onset of a coordination change, and the final compressibility change
34	above 150 GPa may mark the completion of this phase transition. The presented pressure-
35	temperature (<i>P-T</i>) stabilities of C23 and C37 structures of Fe_2S are in agreement with and
36	resolve the differing observations of two previous studies (Tateno et al. 2019; Zurkowski et al. in
37	press). As C37 Fe ₂ S is observed to core-mantle boundary pressures and high temperatures, the
38	C37 Fe ₂ S density profile through Earth's outer core was determined by fitting the C23 Fe ₂ S
39	equation of state (<120 GPa) and applying a 1.6 % volume reduction based on the C37 Fe_2S
40	volume residuals to this fit. Comparing the density of liquid C37 Fe ₂ S with that of liquid hcp-Fe
41	(Dewaele et al. 2006) and the seismologically determined density deficit of Earth's core (Irving
42	et al. 2018), 13.9±1.5 wt% and 8.6±0.8 wt% sulfur is required to match the density at the CMB
43	and ICB, respectively, for a purely Fe–S core.
44	
45	INTRODUCTION
46	Earth's seismologically determined density profile and geomagnetic field indicate that its
47	core is likely iron rich, and chemical analysis of mantle materials compared to meteorite
48	compositions suggest that the density deficit measured in Earth's core compared to iron is a
49	result of a light element component (e.g. Birch, 1952; Jephcoat and Olsen, 1987; McDonough
50	and Sun, 1995; Scott and Wasson, 1975). Earth's core is a complex, natural system, and
51	cosmochemically abundant elements such as S, O, Si, C and H are primary core alloying
52	candidates. Investigating the densities of these core-relevant Fe-alloys at high pressures and
53	temperatures is critical for assessing the multicomponent composition of Earth's liquid outer and
54	solid inner core (Birch, 1952, McDonough and Sun, 1995). Fe-S alloys are of particular

Revision 1

55	importance because sulfur is a significant component of the iron-rich meteorites thought to
56	originate in the cores of planetesimals. As Earth likely formed from collision and aggregation of
57	planetesimals, iron meteorites may be relict of the building blocks of terrestrial planets like
58	Earth. Sulfur also significantly lowers the melting point of pure iron (e.g. Campbell et al. 2007;
59	Chen et al. 2008; Fei et al. 1997; Fei et al. 2000; Morard et al. 2008), and during Earth's
60	differentiation, the presence of sulfur would have facilitated metal melt formation and core
61	segregation (e.g. Murthy and Hall, 1970; Shannon and Agee, 1996; Stevenson, 1988; Yoshino et
62	al. 2003).
63	The Fe–S system is characterized by intricate phase and melting relations. Several high
64	<i>P-T</i> sulfide phases have been reported in Fe-rich systems. At low pressures, Fe and FeS form a
65	binary eutectic with Fe ₃ S ₂ stabilizing as an intermediate compound above 14 GPa. Fe ₃ S ₂ melts at
66	a peritectic to FeS plus liquid at 14 GPa (Fei et al. 1997), and a non-ideal Fe-rich liquidus curve

67 is observed between 14 and 21 GPa (Chen et al. 2008; Tao and Fei, 2021). Above 21 GPa,

68 several other sulfides have been identified: Fe₃S is observed to melt incongruently to Fe₃S₂ plus

69 liquid, and Fe₂S is observed over a limited subsolidus temperature and composition range (Fei et

al. 2000). The structures of Fe_3S_2 (exhibiting nonstoichiometry close to $Fe_{3.2}S_2$) and Fe_2S were

71 preliminarily investigated by TEM after synthesis at 21 GPa and 1900 K and were reported to

both adopt hexagonal lattices (Koch-Müller et al. 2002). Fe₃S adopts a tetragonal unit cell with

73 the Fe₃P-type structure (I-4, Z=8) is reported to be the Fe-rich sulfide to 250 GPa at high

temperatures (Fei et al. 2000; Kamada et al. 2010; Mori et al. 2017; Ozawa et al. 2013; Seagle et

al. 2006; Thompson et al. 2020). Above 250 GPa, tetragonal Fe₃S breaks down into *B*8 FeS+Fe

at moderate temperatures, and at high temperatures above 250 GPa, *B*8 FeS and Fe react to form

an orthorhombic Fe₂S on the liquidus in Fe-rich compositions (Mori et al. 2017; Ozawa et al.

78	2013; Tateno et al. 2019). The orthorhombic Fe ₂ S observed at these conditions adopts a unit-cell
79	compatible with the C37 structure (Co ₂ Si-type, Pnma, Z=4) (Tateno et al. 2019).
80	As Fe ₂ S is observed coexisting with Fe on the liquidus at pressures related to Earth's
81	outer core (136-360 GPa), investigating its material properties has become the focus of recent
82	investigations (Tateno et al. 2019; Zurkowski et al. in press). Tateno et al. (2019) measured the
83	volume of Fe ₂ S between 190 and 306 GPa and determined that its unit-cell parameters and
84	diffraction angles are compatible with an orthorhombic lattice with space group Pnma. In
85	particular, the c/a ratio measured for Fe ₂ S is similar to that of the Co ₂ Si structure type (C37,
86	Pnma, Z=4) (Geller and Wolontis, 1955) (Figure 1). The recent crystallographic analyses of Fe ₂ S
87	synthesized at ~90 GPa and 2400 K established that Fe_2S assumes a C23 structure at these
88	conditions (Co ₂ P-type, <i>Pnma</i> , Z=4) (Zurkowski et al. in press) (Figure 1). To resolve the
89	differences in observations between these two recent studies, a C23–C37 transition in Fe ₂ S must
90	occur in the 90–190 GPa pressure range. Furthermore, A C23–C37 pressure-induced transition
91	has been recently reported in Fe ₂ P around 42 GPa (Nakajima et al. 2020), supporting that
92	pressure plays a role in shaping the Co ₂ P structure type into the Co ₂ Si structure type, as the Fe–P
93	system has been shown to be a low-pressure analog to the Fe–S system (e.g. Gu et al. 2016).
94	Comparing the C23 and C37 structures may provide insight into the plausible mechanism
95	for a pressure-induced C23–C37 transition. These structures are routinely compared on the basis
96	of their relative unit cells and coordination environments (e.g. Rundqvist 1960; Shoemaker and
97	Shoemaker, 1965; Rundqvist and Nawapong, 1966; Jeitschko and Altymeyer, 1990; Nakajima et
98	al. 2020). The C23 and C37 structures have the same site symmetries, space group, and formula
99	units per cell, but the $C37$ structure is distinct from the $C23$ structure based on its relatively
100	larger b and c axes and shorter a axis (Figure 1). The C23 structure is composed of MX_4

Revision 1

101	tetrahedra and MX_5 square pyramids while the C37 structure is composed of MX_5 dipyramids and
102	MX_5 square pyramids (Figure 1). The additional $M-X$ bond in the C37 MX_5 dipyramid compared
103	to the C23 MX_4 tetrahedra is oriented along the <i>a</i> direction. The C37 structure can therefore be
104	seen as a distortion of the C23 structure: the C37 structure forms from the C23 structure by
105	shortening the a axis and lengthening the b and c axes, resulting in a 4- to 5-fold coordination
106	change with the next nearest X site along the a direction.
107	This work investigates the compression behavior of orthorhombic Fe ₂ S using powder and
108	multigrain X-ray diffraction techniques between 29 and 194 GPa and to 2500 K. A C23-like
109	Fe ₂ S phase is observed between 30 and 120 GPa and at high temperatures. Between 120 and 150
110	GPa, a softening of the a axis and relative stiffening of the b and c axes is measured, and, above
111	150 GPa, a C37-like unit-cell of Fe ₂ S is observed. A sharp C23-C37 transition is not observed;
112	instead, the C23 Fe ₂ S unit-cell evolves towards a C37 structure with pressure and this behavior
113	intensifies in the 120-150 GPa pressure range, likely as a result of the onset of a 4- to 5-fold
114	coordination change on the FeS4 tetrahedral sites. Fe2S is observed in this study to coexist with
115	hcp-Fe, and, as the C23–C37 Fe ₂ S transition occurs around core-mantle boundary pressures and
116	high temperatures, this transition in Fe ₂ S is important to consider in the context of Earth's core
117	chemistry and dynamics. A thermal equation of state (EoS) is presented for C23 Fe ₂ S to 120 GPa
118	and a volume reduction is applied to characterize the <i>P</i> - <i>V</i> - <i>T</i> behavior of C37 Fe ₂ S above 150
119	GPa. Comparing the calculated density of C37 Fe ₂ S with that of hcp-Fe (Dewaele et al. 2006)
120	and the seismologically determined densities at CMB and ICB conditions (Dziewonski and
121	Anderson, 1981; Irving et al. 2018), the sulfur content of a purely Fe–S core is presented.
122	
123	

124

Revision 1

125

MATERIALS AND METHODS

126	In this study, Fe ₂ S was observed in experiments on Fe-rich Fe–S and also Fe–S–O
127	compositions. Previous single crystal analyses of Fe ₂ S at 90 GPa and 2400 K (Zurkowski et al. in
128	press) indicate that Fe ₂ S forms in an oxygen-free system with all sites occupied by sulfur.
129	Observations of Fe ₂ S in FeO saturated compositions are therefore included in this study, as
130	differences in measured Fe ₂ S volumes are not discernable between the Fe–S and Fe–S–O
131	compositions. Starting powders for these experiments consisted of Fe (99.9+%, <10 μ m, Alfa
132	Aesar), iron sulfide (FeS, 99.99%, Alfa Aesar) and iron oxide (FeO, 99.5%, Alfa Aesar)
133	powders. Two Fe-FeS compositions were weighed: Fe-12.5S, Fe-23S (dashed notation indicates
134	wt%). The Fe-FeS compositions were homogenized in a mortar and pestle for 1 hour in alcohol,
135	dried and then mixed dry for a short duration to reset any density settling during alcohol
136	evaporation. Fe-S-O mixtures were homogenized in alcohol in a ball mill for 1.5-3 hours at 20
137	Hz, dried and then ball milled dry for a short duration to reset any density segregation. The final
138	Fe-S-O starting compositions were measured by SEM: Fe-13S-5O, Fe-17S-5O, Fe-6S-12O,
139	Fe–3O–7S, and Fe– 4O–8S.
140	The starting material was compressed into foils between two ungasketed diamond anvils
141	prior to loading into the diamond anvil cell (DAC). Type I diamonds and tungsten carbide or
142	cBN seats as well as Boehler-Almax conical diamonds and seats were used for the high-pressure
143	experiments. The culet sizes ranged from 300-50 μ m. Sample foils were loaded into rhenium
144	gaskets preindented to 28-40 GPa with 120-25 μ m diameter sample chambers. Samples were

145 loaded in KCl, KBr, NaCl, SiO₂, or Ne pressure media and were dried at 100°C for 30 minutes

146 prior to gas loading or pressurization.

147	Angle dispersive X-ray diffraction (XRD) experiments took place at Argonne National
148	Laboratory, Sector 13 ID-D (GeoSoilEnviroCars) of the Advanced Photon Source. Data was
149	collected with a 2 μm x 3 μm full width at half maximum incident X-ray beam with energy of 37
150	or 42 keV. Diffracted X-rays were collected using a CdTe 1M Pilatus detector or a MarCCD
151	detector with a typical exposure time of 1-2 s. The sample to detector geometry was calibrated
152	using the diffraction of LaB ₆ NIST standard at 1 bar.
153	Double-sided laser heating was conducted using fiber lasers shaped with a flat top $\sim 10 \ \mu m$
154	radius spot size. The X-ray beam and laser were aligned using the X-ray induced fluorescence of
155	the alkali halide pressure media and sample, ruby or the gasket (Prakapenka et al. 2008).
156	Temperature was measured spectroradiometrically (Heinz and Jeanloz, 1987) during XRD
157	collection using a gray body approximation of the thermal emission from a 6 μ m diameter region
158	at the center of the laser heated spot. A 3% correction was applied to account for axial
159	temperature gradients through the sample (Campbell et al. 2007; 2009). Samples were typically
160	heated for 15-30 minutes.
161	Rotational scans of the sample chamber were collected upon quench during select
162	experiments. Upon quenching from target temperatures, rotation XRD images were collected
163	spanning ± 17 to $\pm 30^{\circ}$ depending on the angular opening of the cell. During rotation, diffraction
164	images were collected in 0.25°-0.5° steps with exposure times of 1–2 s at each step. Grains of the
165	target Fe ₂ S phase were then identified in reciprocal space (Rigaku OD, 2018).
166	Powder diffraction data were integrated using Dioptas (Prescher and Prakapenka, 2015).
167	Peaks were fitted using Fityk (Wojdyr, 2010) and lattice parameters from each measurement
168	were obtained on the basis of an orthorhombic Fe ₂ S cell. For runs where rotational scans were

Revision 1

performed, data from individual grains of Fe₂S were indexed using Crysalis Pro (Rigaku OD,
2018).

- 171 RESULTS AND DISCUSSION
- 172 Evidence for a C23–C37 transition in Fe₂S
- 173 Between 30 and 194 GPa and upon heating to subsolidus temperatures, in all
- 174 compositions examined, hcp-Fe (and FeO, if oxygen was present) was observed in the diffraction
- 175 patterns coexisting with a set of diffraction angles that cannot be accounted for by the tetragonal
- 176 Fe₃S phase that is reported to be stable at higher temperatures in this pressure range (e.g. Ozawa
- 177 et al. 2013; Seagle et al. 2006; Thompson et al. 2020) (Figure 2). The peaks were instead indexed
- to an orthorhombic lattice with a volume equal to 4 formula units of Fe₂S. As shown in the
- 179 example provided in Figure 2a, the diffraction angles measured for Fe₂S at 74(1) GPa and
- 180 1750(110) K fit to an orthorhombic unit-cell with parameters: a = 5.253(2)Å, b = 3.328(2)Å,
- and c = 6.222(3) Å. This cell is compatible with that reported for C23 Fe₂S at 90 GPa
- 182 (Zurkowski et al. in press). In contrast, at 169(1) GPa and 2100(120) K (Figure 2b), Fe₂S is

183 observed with unit cell parameters: a = 4.561(3) Å, b = 3.281(3) Å, and c = 6.145(5) Å, in

agreement with the C37-like Fe₂S unit-cell geometry reported by Tateno et al. (2019) at \sim 190

185 GPa.

The high temperature observations of Fe_2S in *P-T* space are shown in Figure 3 and all data associated with these measurements are given in Appendix A1. The light blue data indicate the stability of a *C*23-like Fe_2S , including the data from Zurkowski et al. (in press), and the emerald green data indicate the stability of *C*37 Fe_2S , including the data from Tateno et al. (2019). The

190	split blue-green data points represent the region where the measured Fe ₂ S unit-cell is transitional
191	between the C23 and C37 structures. The observed C23 and C37 unit cells suggest that the
192	structural evolution of Fe ₂ S is more sensitive to pressure than temperature (Figure 3).
193	The C23, transitional, and C37 Fe ₂ S phase fields plotted in Figure 3 were determined
194	based on the evolution of the measured unit cell parameters with pressure (Figure 4, including
195	the data by Zurkowski et al. in press and Tateno et al. 2019). Between 29 and 306 GPa, Fe ₂ S
196	exhibits pronounced anisotropic compression, wherein the a axis is more compressible than the b
197	and c axes (Figure 4a). A more rapid softening of the a axis and relative stiffening of the b and c
198	axes is observed above ~120 GPa, indicating a change in compressibility of the structure.
199	Stiffening of the <i>a</i> axis and softening of the <i>b</i> and <i>c</i> axis is further observed above ~150 GPa,
200	marking another structural change in Fe ₂ S (Figure 4a). The Fe ₂ S unit-cell geometries reported by
201	Zurkowski et al. (in press) and Tateno et al. (2019) support the trend observed in Figure 4a;
202	namely a C23 Fe ₂ S cell between 30 and ~120 GPa and a C37 Fe ₂ S unit cell above ~150 GPa.
203	Between these pressures, the unit cell geometry is transitional between the C23 and C37 lattices.
204	The compressional behavior of Fe_2S can also be viewed in terms of the c/a ratio trend and
205	systematically compared to the c/a ratio of the Co ₂ P and Co ₂ Si structure types (Figure 4b). The
206	relative unit cells of M_2X and MX_2 structures with these site symmetries have been routinely
207	compared and grouped into Co ₂ P- and Co ₂ Si-branches of the PbCl ₂ family in previous studies
208	(e.g. Rundqvist 1960; Shoemaker and Shoemaker, 1965; Rundqvist and Nawapong, 1966;
209	Jeitschko and Altymeyer, 1990; Nakajima et al. 2020). At ambient conditions, Co ₂ P and Co ₂ Si
210	have c/a ratios of 1.19 and 1.44 respectively (dashed horizontal lines in Figure 4b), and here we
211	take these values as characteristic of their two structure types and associated with the difference
212	in their cation coordinations. Up to 112 GPa, the Fe ₂ S c/a ratio shows a nearly linear trend

213	increasing from around 1.14 at 29 GPa to 1.22 at 112 GPa, similar to that of the Co ₂ P structure
214	type (Figure 4b). Between 159 GPa and 306 GPa, the Fe ₂ S c/a ratios show an approximately
215	linearly increasing trend with c/a ratios ranging from 1.34–1.40, more like that of the Co ₂ Si
216	structure type (Figure 4b). Across the pressure range of this study (30-194 GPa), the data trend
217	along an S-shaped curve where Fe ₂ S is more rapidly evolving from a C23- to a C37-like unit cell
218	in the 120–150 GPa transitional pressure range. The inflection point in this trend occurs around
219	142 GPa, marking the possible cut-off pressure between the C23 and C37 structural stabilities
220	(Figure 4).
221	Based on the systematic comparison between the C23 and C37 structures (Figure 1), a
222	highly compressible <i>a</i> axis and the onset of bonding between Fe and the next nearest S site along
223	the <i>a</i> direction is necessary for a $C23-C37$ pressure-induced transition. The unit-cell
224	compression of Fe ₂ S shown in Figure 4 demonstrates this pronounced anisotropic compression
225	behavior. The softening of the a axis above 120 GPa may also indicate the onset of a
226	coordination change, and the final compressibility change above 150 GPa may mark its
227	completion. Further crystallographic analysis is required to better characterize the details of the
228	Fe ₂ S atomic arrangement across this transition, but it is clear that Fe ₂ S exhibits distinct structural
229	changes in this pressure range that are supportive of the requisite behavior of a pressure-induced
230	C23–C37 transition.
231	Previous studies have reported analogous $C23-C37$ transitions in other M_2X compounds,
232	including PbF ₂ at 10 GPa and Fe ₂ P at 42 GPa (Haines et al. 1998; Nakajima et al. 2020). These
233	lower pressure studies observe the C23–C37 M_2X transition to occur over a few GPa, whereas
234	changes in compressibility of Fe ₂ S bracket a $C23-C37$ Fe ₂ S transition across ~30 GPa pressure
235	range above 120 GPa. The difference in chemistry and the higher transition pressures observed

Revision 1

236 in Fe₂S compared to PbF₂ and Fe₂P may play a role in the difference in behavior across the 237 transition, but further compression experiments are needed to better characterize the structural changes in these phases during the respective C23-C37 transitions. 238 239 240 Equation of state of C23 and C37 Fe₂S 241 The measured volumes of Fe₂S between 29 and 194 GPa are plotted in Figure 5 along with 242 the Fe₂S volumes reported by Zurkowski et al. (in press) and Tateno et al. (2019). As Fe₂S is 243 observed to undergo a change in compressibility above 120 GPa and again above 150 GPa 244 (Figure 4), a thermal equation of state was fit only to the C23 Fe₂S volumes measured below the 245 first compressibility change (<120 GPa, Figure 4). The C23 Fe₂S P-V data were fitted to a Mie-246 Grüneisen EoS given in Equation 1. The $P_{300}(V)$ term in Equation 1 (expanded in Equation 2) is 247 a third-order Birch-Murnaghan EoS (Birch, 1952) fit to the room temperature P-V data via the isothermal bulk modulus, K₀; pressure derivative, K'; and zero-pressure volume, V₀. High 248 249 temperature data were fitted using the Grüneisen parameter (γ , Equation 3) and the Debye model 250 of vibrational energy relating thermal energy E with γ and Debye temperature (θ_D , Equation 4). 251 To decrease the number of fitted parameters, anharmonic and electronic contributions to thermal 252 pressure were not included, and the one bar Grüneisen parameter, γ_0 , was fit to our high

253 temperature data with θ_0 and q fixed to 400 K and 1, respectively.

254 1.
$$P(V, T) = P_{300}(V) + (\gamma/V)[E(\theta_D, T) - E_{300}(\theta_D, 300)]$$

255 2.
$$P_{300}(V) = 3K_0 f (1+2f)^{2.5} * (1+1.5(K'-4)f), f = 0.5 * ((V/V_0)^{(-2/3)} - 1)$$

 $3. \qquad \gamma = \gamma_0 \left(V/V_0 \right)^q$

257 4.
$$\theta_{\rm D} = \theta_0 \exp[\gamma_0(1 - (V/V_0)^q/q]]$$

258	The fitted C23 Fe ₂ S equation of state is listed in Table 1 and the covariance in the EoS
259	parameters are plotted in Figure S1. The room temperature, 1000 K, 2000 K and 3000 K
260	isotherms calculated from this EoS fit are plotted in Figure 5. Pressure residuals for the C23 Fe ₂ S
261	data (<120 GPa) show a root mean square value of ~1.5 GPa (Figure 5b). The pressure residuals
262	for the Fe ₂ S measurements in the 120–194 GPa range (triangles, Figure 5) and those reported by
263	Tateno et al. (2019) were calculated based on the EoS and plotted in Figure 5b. These data are
264	not well described by the C23 Fe ₂ S equation of state, supporting the observed structural changes
265	in Fe ₂ S above 120 GPa.
266	As C37 Fe ₂ S is only observed above 150 GPa, the low pressure data necessary for
267	adequately describing its EoS parameters are lacking. To characterize the P - V - T behavior of $C37$
268	Fe ₂ S, we assume here that its compressional and thermal behavior are identical to the C23 phase,
269	with only a different volume V_0 . The high-temperature volume residuals observed for C37 Fe ₂ S
270	above 150 GPa show an average 1.6% decrease in volume compared to the C23 Fe ₂ S thermal
271	EoS (Figure S2). As the C23 and C37 structure types are closely related and low pressure (<150
272	GPa) data for C37 Fe ₂ S is not available, a C37 Fe ₂ S EoS was constructed by applying this
273	volume change to the C23 Fe ₂ S thermal equation of state, while keeping the K_0 , K' , and χ_0
274	parameters fixed. The resulting modified thermal equation of state is plotted with the high
275	temperature C37 data (>150 GPa) in Figure 6. The 120–150 GPa pressure range was not
276	included in this volume change calculation, as a phase transition is likely occurring.
277	The 300 K C37 Fe ₂ S data reported in the Tateno et al. (2019) study show anomalously high
278	volumes compared to the high temperature $C37$ Fe ₂ S volumes measured in this study (Figure 5).
279	In the Tateno et al. (2019) study, Fe ₂ S was synthesized at high pressures and temperatures,
280	quenched, and decompressed at 300 K in an MgO pressure medium, a significantly harder

281	medium compared to Ne or NaCl mediums used to collect the room temperature data reported in
282	this study. The greater room temperature Fe ₂ S volumes measured in the Tateno et al. (2019)
283	study may be a consequence of the more nonhydrostatic nature of the ceramic medium compared
284	to alkali halide and noble gas media, and future room temperature decompression measurements
285	on C37 Fe ₂ S synthesized in neon would benefit the EoS fitting presented here and resolve the
286	difference in volume of Fe ₂ S reported in this study compared to that of Tateno et al. (2019).
287	
288	IMPLICATIONS
289	The C23–C37 Fe ₂ S transitional pressure range (120-150 GPa) encompasses core-mantle
290	boundary pressures. As Fe ₂ S is observed in this study coexisting with hcp-Fe at moderate
291	temperatures, further experimental work is required to understand how the $C23-C37$ Fe ₂ S
292	transition affects the thermodynamics and phase relations in Fe-rich systems at core-mantle
293	boundary conditions. Furthermore, at pressure beyond the $C23-C37$ transition in Fe ₂ S,
294	anisotropic compression of $C37$ Fe ₂ S is observed to still higher pressures, where the <i>a</i> axis
295	continues to compress more rapidly than the b and c axes (this study, Tateno et al. 2019). As
296	C37-like Fe_2S is observed in Fe-rich systems on the liquidus to at least 306 GPa (Tateno et al.
297	2019), any further structural transitions in C37 Fe ₂ S may be addressed in future experiments as
298	this phase, or a high-pressure polymorph of it, may be relevant to the thermodynamics of
299	solidification at Earth's inner core boundary.
300	To constrain the possible sulfur contribution to the density of Earth's multicomponent core,
301	the density profile of Fe ₂ S was calculated using the C37 Fe ₂ S EoS and extrapolated throughout
302	the core. As the C37 Fe ₂ S phase is stable at core mantle boundary pressures and high
303	temperatures, the C37 Fe ₂ S density profile extrapolated through the core provides an important

304	addition to previous Fe-sulfide EoS studies (e.g. Fei et al. 2000; Kamada et al. 2014; Seagle et al.
305	2006; Tateno et al. 2019). The densities of Fe ₂ S calculated at CMB and ICB conditions were
306	then combined with that of hcp-Fe (Dewaele et al. 2006) and compared to the seismologically
307	determined CMB density reported by Irving et al. (2018) and the ICB density reported by the
308	PREM model (Dziewonski and Anderson, 1981). Results from the Irving et al. (2018) study of
309	the outer core is used for the CMB density calculations in this study, as this work reported elastic
310	parameters that better predict the observed normal mode frequencies and body wave models for
311	the outer core. A CMB density and pressure of 10.05 g/cm ³ and 135.8 GPa (Irving et al. 2018)
312	and an ICB density and pressure of 12.8 g/cm ³ and 328.9 GPa (Dziewonski and Anderson, 1981)
313	was implemented into our calculations, respectively. An adiabatic temperature profile for the
314	outer core (Birch, 1952), a 1% volume increase from solid to liquid iron alloy (Anderson, 2003),
315	and a CMB temperature set at 4000 ± 500 K (Anderson, 2003) was assumed. The inner core
316	boundary temperature, calculated along the hcp-Fe adiabat, was determined to be 5200 ± 500 K.
317	Figure 7 shows the adiabatic density profiles of $C37 \text{ Fe}_2S$ (this study) (blue) and hcp-Fe
318	(Dewaele et al. 2006) (red), compared to the density profile for the outer core and inner core
319	(Dziewonski and Anderson, 1981; Irving et al. 2018). Comparing these density trends, $13.9 \pm$
320	1.5% S is required to match CMB density and 8.6 ± 0.8 wt% S is required to match the ICB
321	density. Previous iron sulfide equations of state studies conclude that 11-16 wt% S is required to
322	match the density deficit at the CMB (e.g., Seagle et al. 2006; Thompson et al. 2016; Thompson
323	et al. 2020) and 6.9 ± 0.9 wt% S is required to match the ICB density deficit (Kamada et al.
324	2014). Within error, the calculated CMB and ICB sulfur concentrations reported in this study are
325	in good agreement with these previous works.

326	Earth's core is likely a multicomponent system with significant compositional
327	contributions from cosmochemically abundant light elements such as S, Si, O, C, and H
328	(McDonough 2003). From the density extrapolations presented here, it is apparent that the
329	curvature of the liquid Fe ₂ S and Fe and the liquid outer core density profiles do not match,
330	indicating that the density and sound velocities of a purely Fe-S core would not satisfy
331	geophysical constraints. Furthermore, melting studies of the Fe-Fe ₃ S system report 5.7 ± 0.3
332	wt% S in the eutectic liquid at 250 GPa, and the eutectic liquid composition is likely more Fe-
333	rich at ICB conditions (Mori et al. 2017; Tateno et al. 2019). Results from this work combined
334	with that of Kamada et al. (2014) predict 6.9-8.6 wt% S to match the density at the inner core
335	boundary, suggesting that the sulfur content of a purely Fe-S core may be on the S-rich side of
336	the Fe-liquidus field, violating the observed presence of a denser inner core (Mori et al. 2017;
337	Tateno et al. 2019). The novel equation of state for $C37$ Fe ₂ S reported here agrees with previous
338	iron-sulfide EoS studies (e.g., Seagle et al. 2006; Thompson et al. 2016; Thompson et al. 2020;
339	Kamada et al. 2014) and improves quantification of the density and elasticity of Fe-S alloys by
340	presenting P-V data at outer core pressures and high temperatures. In comparison to geophysical
341	constraints on the density, melting, and crystallization sequences of Earth's iron-rich core, this
342	work also supports that sulfur is likely not the sole core-alloying light element, but rather a
343	contributor to the chemistry and dynamics occurring in Earth's complex core.
 344 345 346 347 348 349 350 351 	
352	

353	
354	
355	
356	
358	
359	
360	
361	
362	ACKNOWLEDGMENTS
363	Portions of this work were performed at GeoSoilEnviroCARS (The University of Chicago,
364	Sector 13), Advanced Photon Source (APS), Argonne National Laboratory.
365	GeoSoilEnviroCARS is supported by the National Science Foundation - Earth Sciences (EAR -
366	1634415). This research used resources of the Advanced Photon Source, a U.S. Department of
367	Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by
368	Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Use of the
369	COMPRES-GSECARS gas loading system was supported by COMPRES under NSF
370	Cooperative Agreement EAR -1606856 and by GSECARS through NSF grant EAR-1634415
371	and DOE grant DE-FG02-94ER14466. This research used resources of the Advanced Photon
372	Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the
373	DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-
374	06CH11357.This material is based upon work supported by a National Science Foundation
375	Graduate Research Fellowship to C.C.Z. This work was also supported by the National Science
376	Foundation by grant EAR-1651017 to A.J.C.
377	
378	
379	
380	

381	
382	
383	
384	
385	REFERENCES
386	Bazhanova, Z.G., Roizen, V.V., and Oganov, A.R. (2017) High-pressure behavior of the Fe-S
387	system and composition of the Earth's inner core. Uspekhi Fizicheskih Nauk, 187, 1105-
388	1113
389	Birch, F. (1952) Elasticity and constitution of the Earth's interior. Journal of Geophysical
390	Research, 57, 227–286.
391	Campbell, A.J., Seagle, C.T., Heinz, D. L., Shen, G., and Prakapenka, V.B. (2007) Partial
392	melting in the iron-sulfur system at high pressure: A synchrotron X-ray diffraction study.
393	Physics of the Earth and Planetary Interiors, 162, 119–128.
394	Campbell, A.J., Danielson, L., Righter, K., Seagle, C.T., Wang, Y. and Prakapenka, V.B. (2009)
395	High pressure effects on the iron-iron oxide and nickel-nickel oxide oxygen fugacity
396	buffers. Earth and Planetary Science Letters, 286, 556-564.
397	Chen, B., Li, J. and Hauck, S.A. (2008) Non-ideal liquidus curve in the Fe-S system and
398	Mercury's snowing core. Geophysical Research Letters, 35.
399	Dziewonski, A. M. and Anderson, D. L. (1981) Preliminary reference Earth model. Physics of
400	the Earth and Planetary Interiors 25, 297–356.
401	Dewaele, A., Loubeyre, P., Occelli, F., Mezouar, M., Dorogokupets, P.I. and Torrent, M. (2006)

402	Quasihydrostatic equation of state of iron above 2 Mbar. Physical Review Letters, 97,
403	215504.
404	Fei, Y., Bertka, C.M. and Finger, L.W. (1997) High-pressure iron-sulfur compound, Fe ₃ S ₂ , and
405	melting relations in the Fe–FeS system. Science, 275, 1621–1623.
406	Fei, Y., Li, J., Bertka, C.M. and Prewitt, C.T. (2000) Structure type and bulk modulus of Fe ₃ S, a
407	new iron-sulfur compound. American Mineralogist, 85, 1830–1833.
408	Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G. and Prakapenka, V. (2007) Toward an
409	internally consistent pressure scale. Proceedings of the National Academy of Sciences,
410	104, 9182–9186.
411	Geller, S., and Wolontis, V.M. (1955) The crystal structure of Co2Si. Acta Crystallographica, 8,
412	83–87.
413	Gu, T., Fei, Y., Wu, X. and Qin, S. (2016) Phase stabilities and spin transitions of $Fe_3(S_{1-x}P_x)$ at
414	high pressure and its implications in meteorites. American Mineralogist, 101, 205–210.
415	Heinz, D.L., and Jeanloz, R. (1987) Measurement of the melting curve of Mg _{0.9} Fe _{0.1} SiO ₃ at
416	lower
417	mantle conditions and its geophysical implications. Journal of Geophysical Research, 92,
418	437–444.
419	Irving, J.C., Cottaar, S. and Lekic, V. (2018). Seismically determined elastic parameters for
420	Earth's outer core. Science advances, 4(6)
421	Jephcoat, A. and Olson, P., (1987) Is the inner core of the Earth pure iron? Nature, 325, 332-
422	335.
423	Kamada, S., Terasaki, H., Ohtani, E., Sakai, T., Kikegawa, T., Ohishi, Y., Hirao, N., Sata, N. and

424	Kondo, T. (2010) Phase relationships of the Fe–FeS system in conditions up to the	
425	Earth's outer core. Earth and Planetary Science Letters, 294, 94–100.	
426	Koch-Müller, M., Fei, Y., Wirth, R. and Bertka, C.M. (2002) Characterization of	
427	high-pressure iron-sulfur compounds. Lunar and Planetary Science Conference, 1424.	
428	McDonough, W.F. and Sun, S.S. (1995) The composition of the Earth. Chemical geology, 120,	
429	223–253.	
430	Momma, K. and Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal,	
431	volumetric and morphology data. Journal of applied crystallography, 44, 1272–1276.	
432	Mori, Y., Ozawa, H., Hirose, K., Sinmyo, R., Tateno, S., Morard, G. and Ohishi, Y. (2017)	
433	Melting experiments on Fe-Fe ₃ S system to 254 GPa. Earth and Planetary Science Letters,	
434	464 135–141.	
435	Morard, G., Andrault, D., Guignot, N., Sanloup, C., Mezouar, M., Petitgirard, S. and Fiquet, G.,	
436	(2008) In situ determination of Fe-Fe3S phase diagram and liquid structural properties up	
437	to 65 GPa. Earth and Planetary Science Letters, 272, 620-626.	
438	Murthy, V.R. and Hall, H.T. (1970) The chemical composition of the earth's core: Possibility of	
439	sulphur in the core. Physics of Earth Planetary Interiors, 2, 276–282.	
440	Nakajima, Y., Araki, S., Kinoshita, D., Hirose, K., Tateno, S., Kawaguchi, S.I. and Hirao, N.	
441	(2020) New pressure-induced phase transition to Co ₂ Si-type Fe ₂ P. American	
442	Mineralogist, 105, 1752–1755.	
443	Ozawa, H., Hirose, K., Suzuki, T., Ohishi, Y. and Hirao, N. (2013) Decomposition of Fe ₃ S	
444	above 250 GPa. Geophysical research letters, 40, 4845–4849.	
445	Prakapenka, V.B., Kubo, A., Kuznetsov, A.Laskin, A., Shkurikhin, O., Dera, P., Rivers, M. L.	
446	and Sutton, S.R. (2008) Advanced flat top laser heating system for high pressure research	

447	at GSECARS: application to the melting behavior of germanium. High Pressure	
448	Research, 28, 225–235.	
449	Prescher, C., and Prakapenka, V.B. (2015) DIOPTAS: a program for reduction of two	
450	dimensional X-ray diffraction and data exploration. High Pressure Research, 35(3), 223-	
451	230.	
452	Rigaku Oxford Diffraction (2018) CrysAlisPRO software system, ver. 1.171.39.44a Rigaku	
453	Corporation, Oxford, U.K	
454	Rundqvist, S. (1960) The structures of Co ₂ P, Ru ₂ P and related phases. Acta Chemica.	
455	Scandinavica, 14, 1961–1979.	
456	Rundqvist, S. and Nawapong, P.C. (1966) The crystal structure of ZrFeP and related compounds.	
457	Acta Chemica Scandinavica, 20, 2250–2254.	
458	Scott, E.R. and Wasson, J.T. (1975) Classification and properties of iron meteorites. Reviews of	
459	Geophysics, 13, 527–546.	
460	Seagle, C.T., Campbell, A.J., Heinz, D.L., Shen, G. and Prakapenka, V.B. (2006) Thermal	
461	equation of state of Fe ₃ S and implications for sulfur in Earth's core. Journal of	
462	Geophysical Research: Solid Earth, 111.	
463	Shannon, M.C. and Agee, C.B. (1996) High pressure constraints on percolative core formation.	
464	Geophysical Research Letters, 23, 2717–2720.	
465	Shoemaker, C.B. and Shoemaker, D.P., 1965. A ternary alloy with PbCl ₂ -type structure: TiNiSi	
466	(E). Acta Crystallographica 18, 900–905.	
467	Stevenson, D.J. (1988) Fluid dynamics of core formation. In Topical Conference Origin of the	
468	Earth, 681, 87.	
469	Tao, R. and Fei, Y. (2021) High-pressure experimental constraints of partitioning behavior of Si	

470	and S at the Mercury's inner core boundary. Earth and Planetary Science Letters, 562,	
471	116849.	
472	Tateno, S., Ozawa, H., Hirose, K., Suzuki, T., I-Kawaguchi, S., and Hirao, N. (2019) Fe ₂ S: the	
473	most Fe-rich iron sulfide at the Earth's inner core pressures. Geophysical Research	
474	Letters, 46, 11,944–11,949.	
475	Thompson, S., Komabayashi, T., Breton, H., Suehiro, S., Glazyrin, K., Pakhomova, A. and	
476	Ohishi, Y. (2020) Compression experiments to 126 GPa and 2500 K and thermal	
477	equation of state of Fe ₃ S: Implications for sulphur in the Earth's core. Earth and Planetary	
478	Science Letters, 534, 116080.	
479	Wojdyr, M. (2010) Fityk: a general-purpose peak fitting program. Journal of applied	
480	crystallography, 43, 1126–1128.	
481	Yoshino, T., Walter, M.J. and Katsura, T. (2003) Core formation in planetesimals triggered by	
482	permeable flow. Nature, 422, 154–157.	
483	Zurkowski, C.C., Lavina, B., Chariton, S., Tkachev, S., Prakapenka V.B. and Campbell A.J.,	
484	in press. The crystal structure of Fe ₂ S at 90 GPa based on single-crystal X-ray diffraction	
485	techniques. American Mineralogist, https://doi.org/10.2138/am-2022-7973	
486 487 488 489 490 491 492 493 494 495 496		
497		

498	
499	
500	
501	
502	
503	
504	
505	
506	FIGURE CAPTIONS
507	Figure 1. Comparison between the a) C23, Co ₂ P-type and b) C37, Co ₂ Si type structures (Geller
508	and Wolontis, 1955; Rundvist, 1960) that are inferred in this Fe ₂ S study. The C23 structure is
509	composed of CoP ₅ square pyramid (green) and CoP ₄ tetrahedral (blue) building blocks. The C37
510	structure is composed of CoP5 square pyramid (green) and CoP5 dipyramid (blue) building
511	blocks. The C23 and C37 structures are closely related: both structures have the same ste
512	symmetries, are orthorhombic and adopt the <i>Pnma</i> (Z=4) space group. The C37 structure can be
513	seen as a distortion of the C23 structure; namely, the Co ₂ Si structure can be formed from the
514	Co_2P structure by shortening the <i>a</i> axis and lengthening the <i>b</i> and <i>c</i> axes and inducing a
515	coordination change from a 4-fold tetrahedral site (blue polyhedra) in Co ₂ P to a 5-fold dipyramid
516	site (blue polyhedra) in Co ₂ Si.
517	
518	Figure 2. Integrated X-ray diffraction patterns exemplifying the observations of Fe ₂ S at high <i>P</i> -
519	T. a) At 74(1) GPa and 1750(110) K, Fe ₂ S is observed coexisting with hcp-Fe and B1 FeO in a
520	KCl medium. The Fe–12S–5O (wt%) starting composition is shown by the star in the ternary.
521	The fitted lattice parameters of Fe ₂ S support a C23 unit cell. The calculated diffraction angles
522	based on this fit are plotted as the red dashed vertical lines, and prominent peaks of C23 Fe ₂ S are
523	labeled with their corresponding Miller indices in light blue. Two low intensity unidentified

Revision 1

524	peaks are marked by the question mark (?) and may represent the initial peaks of the higher	
525	temperature Fe ₃ S phase. b) At 169(1) GPa and 2100(120) K, Fe ₂ S is observed coexisting with	
526	hcp-Fe in a SiO ₂ pressure medium. The starting composition is Fe–12.5S (wt%) and given by the	
527	star in the ternary. The fitted lattice parameters of Fe ₂ S support a C37-like unit cell. The	
528	calculated diffraction angles based on this fit are plotted as the red dashed vertical lines and	
529	prominent peaks of C37 Fe ₂ S are labeled with their corresponding Miller indices in emerald	
530	green. One unidentified peak at around $17.5^{\circ} 2\Theta$ is distinguishable from the background and	
531	marked by the question mark.	
532		
533	Figure 3. The phase stability of C23 and C37 Fe_2S in pressure-temperature space. The blue	
534	circles indicate observations of a C23-like unit cell of Fe ₂ S in this study. The blue star at 89 GPa	
535	and 2380 K refers to the single crystal study by Zurkowski et al. (in press) in which the structure	
536	of Fe ₂ S was determined to be C23 after temperature quenching from these conditions. The	
537	emerald circles represent observations of a C37-like unit cell of Fe ₂ S in this study. The emerald	
538	squares refer to the Tateno et al. (2019) study, where a C37 Fe ₂ S unit cell was measured above	
539	190 GPa. The split blue/green data between 110 and 150 GPa indicate the observations of a	
540	transitional C23–C37 Fe ₂ S unit-cell.	
541		
542	Figure 4. a) Relative lattice parameters measured for Fe ₂ S in this study (circles) along with the	

543 data reported by Tateno et al. (2019) (squares) and Zurkowski et al. (in press) (stars). The shaded

- regions encompass the data that is more compatible with a Co₂P-like unit-cell (light blue
- shading) and data more compatible with a Co₂Si-like unit-cell (green shading). The shaded
- 546 regions overlap where the relative lattice parameters measured along the a axis soften as the b

547	and c axes stiffen between ~110-150 GPa, indicating a potential transitional pressure range
548	between these two structure types. The red, vertical dashed line represents this $C23-C37$ cut-off.
549	b) <i>C/a</i> ratio measured for Fe ₂ S in this study (circles) along with the data reported by Tateno et
550	al. (2019) (squares) and Zurkowski et al. (in press) (star). The horizontal dashed lines indicate
551	the c/a ratio determined for Co ₂ P (light blue) (Rundqvist, 1960) and Co ₂ Si (emerald green)
552	(Geller and Wolontis, 1955). The shaded regions encompass the data that is more compatible
553	with a Co ₂ P-like c/a ratio (light blue shading) and data more compatible with a Co ₂ Si-like c/a
554	ratio (green shading). As the c/a ratios measured evolve smoothly from Co ₂ P-like to Co ₂ Si-like,
555	the shaded regions overlap in the potentially transitional pressure range. The inflection point in
556	this S-shaped <i>c/a</i> ratio trend occurs around 142 GPa, differentiating the more C23-like and C37-
557	like unit-cells of Fe ₂ S. The red, vertical dashed line represents this C23–C37 cut-off.
558	
559	Figure 5. a) <i>P</i> - <i>V</i> data for Fe ₂ S (color coded for temperature) collected in this study (circles,
560	triangles), Zurkowski et al. (in press) (stars), and Tateno et al. (2019) (squares). The 300 K
561	(black), 1000 K (green), 2000 K (orange) and 3000 K (red) isotherms (solid lines) were
562	calculated based on the thermal EoS fit to C23 Fe ₂ S data collected up to 120 GPa in this study
563	and the study by Zurkowski et al. (in press) (~90 GPa, stars) (Table 1). The dashed line and label
564	brackets the Fe ₂ S volumes included in the fit. The Fe ₂ S volumes measured above 120 GP are not
565	included in the EoS fit as the lattice parameters indicate a change in compressibility and phase
566	transition to the C37 structure. For comparison, the Bazhanova et al. (2017) calculated 300 K
567	EoS for Pnma Fe ₂ S (dashed-dot line) is included. The shaded regions represent the pressure
568	ranges where C23-like (light blue), transitional (blue green), and C37-like (light green) Fe ₂ S
569	structures are observed. The red, vertical dashed line represents this C23-C37 cut-off determined

570	in Figure 4. b) Residuals to the EoS fit 1 are plotted with an r.m.s. of ~1.5 for the fitted C23 Fe ₂ S	
571	data (<120 GPa) (filled circles). The plotted open triangles depict the difference in pressure	
572	calculated from this EoS versus measured pressure for the Fe ₂ S data in the transitional and C37	
573	Fe ₂ S pressure range. The black squares show the same comparison for the data reported by	
574	Tateno et al. (2019).	
575		
576	Figure 6. <i>P-V</i> data collected on <i>C</i> 23 Fe ₂ S (<120 GPa, light blue shaded region), <i>C</i> 37 Fe ₂ S (>150	
577	GPa, green shaded region) and the transitional cell (120-150 GPa, blue-green shaded region) in	
578	this study up to 194 GPa and to 2500 K. The equation of state fit to the C23 Fe ₂ S data is plotted	
579	up to 120 GPa and is color coded for temperature. The $C37$ Fe ₂ S volume residuals for this	
580	equation of state show an average 1.6% volume reduction in Fe ₂ S above 150 GPa. This volume	
581	reduction was applied to the C23 Fe ₂ S equation of state, keeping K_0 , K' , and γ_0 fixed, and plotted	
582	above 150 GPa. The overlap in the C23 (blue) and C37 (green) shaded regions in the 120-150	
583	GPa pressure range indicates the pressure range where C23-like Fe ₂ S transitions to the C37-like	
584	structure. This pressure range was not included in the volume reduction calculation. The red,	
585	vertical dashed line represents the C23–C37 cut-off determined in Figure 4.	
586		
587	Figure 7. Calculated adiabatic density curves for liquid C37 Fe ₂ S (blue) and liquid hcp-Fe (red)	
588	(Dewaele et al. 2006) plotted with the density profiles of the outer core based on the PREM	
589	model (Dziewonski and Anderson, 1981) (solid black line) and Irving et al. (2018) (dashed black	
590	line).	
591 502		
592 593		

Revision 1

594	
595	TABLES

596 **Table 1.** EoS parameters for Fe₂S calculated based on the volumes measured in this study.

597

	V ₀ (cm3/mol)	K ₀ (GPa)	К'	γο	q	θ ₀ (K)	Dataset
	20.6(3)	138(22)	5.6(7)	2.59(8)	1	400	C23 Fe₂S EoS fitted to the C23 Fe ₂ S volumes measured in this study (< 120 GPa) and combined with the Fe ₂ S data from Zurkowski et al. 2021
598 599 600 601							
602							
603							
604							
605							
606							
607							
608							
609							
610							
611							
612							
613							

614

Revision 1

616

FIGURES

617

Revision 1

618 619

620

621

Figure 2, Revision 1

Revision 1

Figure 3, Revision 1

Revision 1

Figure 4, Revision 1

638

Revision 1

Figure 5, Revision 1

Revision 1

640 641

Figure 6, Revision 1

Revision 1

Figure 7, Revision 1

- 0.00