- 1 Revision 1; Word Count: 11048
- 2 Repeat, fast and high-resolution mapping of fine-scale trace element
- 3 distribution in pyrite and marcasite by LA-Q-ICP-MS with the Aerosol Rapid
- 4 Introduction System (ARIS)
- 5 Merilie A. Reynolds^{1a*}, Balz S. Kamber^{2,3}, Cora A. McKenna², Marcus Oelze⁴, and Sarah A.
- 6 Gleeson^{4,5}
- ⁷ ¹ University of Alberta, Department of Earth and Atmospheric Sciences, Edmonton, Alberta,
- 8 Canada
- 9 ² Irish Centre for Research in Applied Geosciences, Department of Geology, School of Natural
- 10 Sciences, Trinity College Dublin, Dublin 2, Ireland
- ³ School of Earth and Atmospheric Sciences, Queensland University of Technology (QUT) |
- 12 GPO Box 2434, Brisbane, QLD 4001, Australia
- ⁴ GFZ, German Research Centre for Geosciences, 14473 Potsdam, Germany
- ⁵ Institute of Geological Sciences, Freie Universität Berlin, Malteserstrasse, 74-100, Berlin,
- 15 12249, Germany
- 16 ^a Present address: Northwest Territories Geological Survey, Government of Northwest
- 17 Territories, Yellowknife, Canada
- 18 * Correspondence: <u>Merilie_Reynolds@gov.nt.ca</u>
- 19

Abstract

- 20 The minor and trace element composition of minerals provides critical insights into a
- 21 variety of geological processes. Multi-element mapping by laser ablation-inductively coupled
- 22 plasma-mass spectrometry (LA-ICP-MS) is an important technique applied for this purpose and
- 23 although the method is rapidly advancing, there remains a fundamental compromise between

24 spatial resolution, detection limit and experiment duration when using sequential mass analyzers. 25 To address the limitation of limited analyte selection for high-spatial resolution maps imposed by 26 the sequential nature of typical quadrupole (Q)-ICP-MS, we trialed the Aerosol Rapid 27 Introduction System (ARIS) for repeat mapping of the same area. The ARIS is a high-speed 28 transfer tubing system that reduces aerosol washout times, permitting resolution of individual 29 pulses at 40-60 Hz. Here, the ARIS was tested not for pulse resolution but with novel operating 30 conditions optimized to perform fast, high spatial resolution mapping of minor and trace element 31 distribution in pyrite and marcasite. For this purpose, ablation was conducted with a 5 µm beam aperture, a repetition rate of 50 Hz, and a continuous stage scan speed of 40 µm s⁻¹. For each LA-32 33 Q-ICP-MS map, data was acquired for 6 elements with an acquisition time of 20 ms per element. 34 This deliberately surrendered the individual pulse resolution of the ARIS but instead exploited 35 the spatial resolution and sensitivity gains afforded by high laser repetition rate combined with 36 efficient aerosol transfer. The new method successfully mapped trace elements at single to 37 double digit ppm levels and the maps reveal fine-scale zoning of trace elements with an effective 38 x and y resolution of 5 μ m, while white light interferometry showed that for each experiment 39 only ca. 1 µm of sample was removed. Repeated mapping of the same area showed excellent 40 correspondence not only between element concentrations in successive experiments but also in 41 the shape, dimension and location of regions on interest defined with concentration criteria. The 42 very good repeatability of the elemental maps indicates that for studies requiring more analytes, 43 successive mapping of additional elements is possible. By contrast with conventional very small 44 spot (i.e. 5 μ m) analysis, fast repetition rate and stage scan speed mapping avoids down-hole 45 fractionation effects and minimizes accidental analysis of buried invisible inclusions. Compared 46 to conventional LA-ICP-MS mapping, the method reduces the experiment time by 4-8 times.

47

Introduction

48	The minor and trace element composition of minerals provides critical insights into a
49	variety of geological processes including the passage of magma and crystals in volcanic
50	plumbing systems (Ubide and Kamber 2018; Magee et al. 2020); the nature, origin, and
51	evolution of ore-forming fluids (Pfaff et al. 2011; Cook et al. 2013); changes in pore water fluid
52	composition during diagenesis (Gregory et al. 2019); and oxidation-reduction conditions in
53	paleo-oceans (Large et al. 2014; Gallagher et al. 2015; Mukherjee et al. 2019). Furthermore, the
54	presence and distribution of minor and trace elements can have important implications for
55	understanding mineral processing and environmental management requirements (e.g. Parbhakar-
56	Fox et al. 2013; Sykora et al. 2018). Laser-ablation inductively-coupled-plasma mass-
57	spectrometry (LA-ICP-MS) has proven particularly useful in documenting the behavior of
58	elements that substitute into the lattice of sulfide minerals (Large et al. 2007; Ulrich et al. 2011)
59	or form exsolved monosulfide solution minerals (Ulrich et al. 2009; Cafagna and Jugo 2016;
60	Duran et al. 2016). Methodological improvements have been rapid (Heinrich et al. 2003; Günther
61	and Hattendorf 2005; Sylvester 2008; Cook et al. 2016) and now permit the use of increasingly
62	small laser beam diameters, dropping from 50-70 μ m in the past to as low as 5 μ m applied today
63	(Sylvester and Jackson 2016). As the spatial resolution of the method continues to improve,
64	increasingly complex internal element zonation has been revealed in many minerals (Ingham et
65	al. 2014), including igneous silicates, phosphates and particularly sulfides (e.g. Zhou et al. 2017).
66	In the simplest case, the internal heterogeneity in trace element distribution within a
67	mineral is broadly concentric (Gallagher et al. 2015) and can be adequately documented with
68	line scans across the mineral (Gadd et al. 2016). However, intricate patterns including corroded
69	'cores', nuggets, oscillatory and sectorial zoning, and 'fractures' have been documented in sulfides

70 (Large et al. 2007, 2009; Ulrich et al. 2009, 2011; Genna and Gaboury 2015; Cook et al. 2016; 71 Nevedley et al. 2017; Zhu et al. 2021). Two-dimensional semi-quantitative (SQ) trace element 72 maps are therefore increasingly used to provide a chemical context for further in situ analysis. 73 One common approach is to produce a small number of element maps of representative sample 74 areas to guide spot selection and analyses (e.g., Gregory et al. 2016), the other is to produce 75 maps for the full crystals of interest without additional spot analyses. 76 One significant ambition of LA-ICP-MS analysts is to move from spot analysis guided by 77 qualitative maps towards quantitative mapping (Paul et al. 2014; Petrus et al. 2017) where the 78 analyst retrospectively selects regions of interest (ROI) after data acquisition. Quantitative 79 mapping holds several potential advantages including that ablation for a map only removes a 80 small amount (depth) of sample. This results in negligible down-hole fractionation (Chew et al. 81 2017), avoids analyzing material well below the visible surface, and preserves the specimen for 82 additional analysis. Furthermore, data from chemical zones that are irregularly shaped and, 83 therefore inaccessible to larger spot analysis with a square or circular beam aperture, can be 84 pooled during post-processing to improve counting statistics (Gadd et al. 2016; Petrus et al. 85 2017; Stead et al., 2017). Finally, concentration data from maps can be interpreted in the context 86 of trace element distribution patterns that are commonly complex but can be cryptic in petrographic or backscattered electron imagery. Interpretation of spot analysis data in such 87 88 settings can be difficult (Ulrich et al. 2011). Alternative methods such as gamma-enhancement of 89 reflected light imagery (Zhu et al. 2021) or the destructive practice of acid etching (Rickard 90 2012; Gregory et al. 2015) allow for a general assessment of the spatial distribution of 91 compositional heterogeneities in sulfide grains, but they do not permit the determination of the 92 chemical composition.

93 Large et al. (2009) were amongst the first to demonstrate successful semi-quantitative 94 imaging of trace elements by LA-quadrupole (Q)-ICP-MS. These authors used a fast-sweeping 95 MS to uncover the distribution of up to 20 analytes in pyrite. The acquisition of many elements 96 on a sequential mass analyzer results in relatively long collective dwell times (i.e. >0.5 seconds), 97 which limits the speed at which the stage can be moved under the laser to avoid blurring of the 98 resulting map in the stage travel direction. The spatial resolution of LA-ICP-MS elemental 99 mapping is also limited by the washout characteristics of the ablation cell and transfer tubing. 100 Thus, there is a trade-off between the number of analytes acquired, the diameter of the employed 101 beam, the limits of detection and the time it takes to obtain the map. This typically means that 102 high spatial resolution maps, which reveal fine detail, take many hours to acquire (Ingham et al. 103 2014; Nevedley et al. 2017; Ubide and Kamber, 2018). Some of these limitations can be 104 overcome with mass spectrometers that are capable of simultaneous analyte acquisition: 105 Mattauch-Herzog-MS equipped with a simultaneous (e.g. direct charge) detection system (Wang 106 et al. 2013) and Time-of-Flight-(TOF)-ICP-MS (Gundlach-Graham et al. 2015). However, such 107 instruments are still quite experimental, relatively rare and comparatively expensive, and the 108 limited data from them to date suggest that for the lighter elements (Bussweiler et al. 2020), they 109 cannot currently match the limits of detection achieved when mapping a small number of 110 analytes by Q-ICP-MS. 111 Until recently, there were three fundamental limitations to quantitative LA-ICP-MS

mapping. First, the speed of the method was critically limited by a feature of conventional instrumentation: the slow washout time of aerosols in the ablation cell severely restricted the maximum stage scan speed during imaging experiments. This made the production of element maps slow and required large amounts of expensive consumables (carrier and plasma gases).

116 Second, high spatial resolution maps (i.e. $<20 \,\mu$ m) have proven difficult to obtain for low 117 concentration elements due to limits of quantification. Third, there was limited availability of 118 software to extract fully quantitative data from trace element maps. However, significant 119 progress has been made in recent years to overcome the first and third of these limitations. 120 With regards to the first limitation, new devices have been introduced that significantly 121 reduce washout time. For example, Wang et al. (2013) and Gundlach-Graham et al. (2015) used 122 a 'tube cell' that permits resolution of individual pulses fired at 20-30 Hz. The latest low-123 dispersion LA systems now combine tube cells contained in complex air-tight chambers and 124 achieve >100 Hz pulse resolution (Van Malderen et al. 2020). An alternative and equally 125 effective solution is the commercially available Aerosol Rapid Introduction System (ARIS; Van 126 Acker et al. 2016) used in this study. It consists of a capillary tube and an Ar-He mixing device 127 that permits resolution of 40 to 60 Hz individual pulses. It works with any HelEx II cell-128 equipped laser ablation system and does not require a low dispersion sample chamber. 129 Concerning the third limitation of extracting quantitative data from the multi-dimensional 130 x-y-elemental pixel arrays, new software solutions have been proposed. The first such software 131 released addressed the problem that LA-ICP-MS maps commonly cover minerals with different 132 and/or variable internal standard concentrations and was developed in the data reduction 133 software Iolite (Woodhead et al. 2007; Hellstrom et al. 2008). Paul et al. (2014) proposed an 134 algorithm that can distinguish minerals to allow the application of different internal standard 135 concentration. More recently, Petrus et al. (2017) developed a software that can extract pixels 136 from complexly shaped areas of similar chemistry in SQ maps, which can be turned into fully 137 quantitative data if the concentration of an internal standard is known for a ROI via an 138 independent method of analysis. Another software solution uses multivariate statistics, including

139 principal component analysis, to inspect the full pixel arrays that make up maps (Winderbaum et 140 al. 2012; Gadd et al. 2016). In this approach, statistical measures are used to identify elements 141 that show strongly related or anti-correlated behavior, without attempting to extract data from a 142 particular region on the map. 143 The aim of this study was to address the second limitation: the compromise between 144 spatial resolution, detection limit and overall experiment duration by employing the ARIS with a 145 new set of operating conditions. The ARIS LA-Q-ICP-MS maps for pyrite/marcasite were 146 obtained at much higher laser repetition rates than in traditional experiments, using continuous 147 stage travel at fast speeds and lower laser fluence (Table 1) to avoid ablating deep trenches and 148 melting of sulfides. The limitation of this approach is that it cannot produce maps for more than 149 5-10 analytes per experiment. As a potential work-around, multiple repeat experiments were 150 performed over the same mapping area to test how accurately repeat maps could reproduce x-y-151 element concentration arrays and ROIs defined on them objectively with element concentration 152 criteria. 153 154 **Methods and Materials** 155 **Instrumentation: ARIS LA-Q-ICP-MS** 156 The instrumentation used in the element mapping experiments was an Analyte G2 193 157 nm excimer ArF laser ablation system equipped with a HelEx II 2-volume cell (Teledyne Photon Machines, Bozeman, MT, USA) coupled to an iCap-Qc Q-ICP-MS (Thermo Scientific, Bremen, 158 159 Germany). It was retrofitted with a Teledyne Photon Machines ARIS, which connected the 160 ablation cell to the ICP-MS torch. The ARIS is a high-speed aerosol transfer tubing system that 161 reduces ablation aerosol washout times by up to 2 orders of magnitude compared with

162 conventional ablation cell-transfer tubing configurations. It also uses a connector piece with 163 which an Ar carrier sheath is created around the central He ablation gas to inject ablated particles 164 into a more confined central area of the plasma. When used in spot analysis mode, the ARIS has 165 been shown to produce accurate trace element data at sub-ppm concentrations (e.g. light rare 166 earth elements in garnet and olivine; Petrus et al., 2017 and Stead et al., 2017, respectively) and 167 U/Pb zircon age data (Chew et al., 2017) at 40-80 Hz laser repetition rates. 168 With the ARIS, the washout time depends on the length and diameter of the transfer tube. 169 For a comfortable fit between the laser ablation unit and the mass spectrometer, the length of

tubing typically needed results in a washout time of ca. 20 ms. For the experiments reported

here, the shortest possible tubing (700 mm long, 0.75 mm internal diameter) was used. This

setup yielded a washout time of 15 ms and individual ablation pulses could be resolved at

173 sampling rates up to 50-60 Hz, depending on beam diameter and sample material. However, the

174 very short connection prevented the laser ablation system from being able to access the full area

175 of the cell. By comparison, conventionally configured LA-ICP-MS systems have washout times

of up to 1-2 s which results in the overlap of single pulse responses at sampling rates exceeding
1-2 Hz. Two-volume cells using minimal smoothing can achieve 90% washout times of ca. 250

178 ms (Chew et al. 2017).

The capability of the ARIS prototype technology was initially demonstrated by imaging element distribution in semi-conductors (Van Malderen et al. 2015), in biological tissues (Van Malderen et al. 2016) and in conjunction with an ICP-TOF-MS on very fine-grained petrology experimental charges (Bussweiler et al. 2020). Importantly, in these applications, 'spot-resolved' images were created by moving the stage exactly 1 width of the beam between each laser pulse and recording the response from each pulse with very short acquisition times (<1 ms) on the Q- 185 ICP-MS or by integrating >1,000 TOF-MS mass spectra corresponding to one pixel. The

186 resulting image is essentially an array of adjacent single shot spot analyses (Fig. 1A).

187 Conventional ablation cell configurations made spot-resolved imaging at high resolution or for

188 large areas very time-consuming. Although having a significant speed advantage, the serious

189 limitation of the ARIS spot-resolved approach for systems equipped with a Q-ICP-MS is that the

190 very short acquisition times limits its application to one or two analytes of interest.

191 In this study, we trialed the ARIS with operating conditions modified from the original 192 purpose (i.e. the spot-resolved approach). Rather, we wanted to explore its utility in continuous 193 signal acquisition for high resolution multi-element mapping of minor and trace components in 194 geological samples with a very small beam size. The components of the analytical philosophy 195 were: to use a small 5 µm beam aperture capable of resolving fine-scale compositional detail; to 196 use the highest washout-permissible repetition rate of 50 Hz to increase the size of the signal; to move the stage with a fast scan speed of 40 μ m s⁻¹; and to limit excessive ablation depth by 197 198 lowering the fluence to 1.0 J cm⁻², close to the ablation threshold for silicate glass. For 199 comparison, the construction of a 1,000 x 1,000 µm map with a 5 µm beam and a stage travel speed of 5 µm s⁻¹ takes 11.1 h (Ingham et al. 2014) without any beam overlap or pause between 200 201 line acquisition. Using the parameters tested here, the experiment time would be reduced 8-fold 202 to 1.4 h.

In trials performed ahead of the reported experiments, we initially evaluated the smallest (10 μ m) square aperture available on the LA unit but found that relative to the width of chemical zonation in the studied material, a smaller aperture size was needed. Instead, the experiments were performed with a fixed round 5 μ m aperture and the distance between adjacent lines of the mapping area was set at 4.5 μ m (somewhat less than the nominal beam diameter) as recommended by Ubide et al. (2015) for circular apertures, resulting in lines of slightly
overlapping ablation craters. A 10 s pause in sampling between ablation lines ensured that the
gas flows stabilized between line acquisitions and that there was a complete absence of mixing
from line to line, either within the sample or between the sample and the standard. The map area
was 450 µm wide by 350 µm long and the experiment lasted 0.8 h with an additional 2 m at the
start an end for the reference material analyses.

214 In our experiments, with 700 mm long of 0.75 mm internal diameter transfer tubing, the aerosol was transported with a total He gas flow of 0.35 1 min⁻¹ (less than half of typical He flow 215 216 rates) that was supplied in ca. 50:50 proportion to the cell body and the cup. With the ARIS 217 device, the Ar carrier gas is not added in a mixing 'bulb' but at the end of the transfer tubing 218 through the adapter to create a sheath-like Ar flow carrying the particles in the He. As with conventional aerosol transfer, Ar (0.6 l min⁻¹) and high-purity N₂ (11 ml min⁻¹) gas flows are 219 adjusted to achieve best sensitivity at a Th/U ratio of 1.0 and a ThO⁺/Th⁺ formation rate of 0.1 to 220 221 0.2%.

222 Because the ARIS delivers the aerosol more centrally into the plasma, the expansion 223 chamber pressure of the ICP-MS was on average 0.2 mbar higher than with conventional transfer. Despite the reduced He flow (i.e. 0.35 1 min⁻¹), compared to routine operation (0.7 to 1.0 224 225 1 min⁻¹), we attribute this observation to higher transfer of He through the sample cone and the 226 difficulty of pumping He from the expansion chamber. In terms of total signal size, the direct 227 comparison between routine vs. ARIS mode showed a substantial overall increase with the 228 ARIS. In our Q-ICP-MS, we found that the lower mass range benefitted more (up to 2-3 x) in 229 signal increase than the heaviest mass range (from 1.5-2 x) with additional signal mainly found 230 by the greater MS tuning flexibility afforded by the lower He and Ar gas flows from the ARIS.

231 Substantially improved ion yields for small spot laser ablation with the ARIS have also been 232 reported for multi-collector ICP-MS (Craig et al. 2018) particularly for the high mass range. 233 Finally, the overall intensity gains did not come at a cost of elevated signal backgrounds with the 234 ARIS installed. As reported with earlier data from this instrument setup (e.g. Stead et al. 2017) 235 for silicates, backgrounds on interference-free masses (e.g. many of the REE and the actinides) 236 remained at the 0.5-2 cps, typical for the iCap-Qc Q-ICP-MS. Combined with the improved 237 wash-out characteristics of the ARIS, this resulted in at least 10-fold improvement in signal/noise 238 ratios over conventional spot LA-Q-ICP-MS on interference-free masses. 239 Mass spectrometry 240 The mass spectrometer data was acquired with Otegra2.2 software (Thermo Scientific, 241 Bremen, Germany) in time-resolved mode. During each experiment, the mass spectrometer 242 scanned for an Fe isotope and 5 trace element isotopes, each with an acquisition time of 20 ms 243 yielding a total dwell time of 120 ms. In the selected configuration (i.e., the combination of gas 244 flows, stage travel and repetition rate), 20 ms was the shortest acquisition time that yielded a 245 signal of acceptable ($\pm 20\%$) stability. Because the total dwell time affects the map resolution in

the stage travel direction it is not possible to obtain data for a large number of analytes if high-

resolution mapping is the ultimate goal.

To attempt to overcome this limitation, the same area was mapped in three consecutive experiments, taking advantage of the excellent x-y stage reproducibility of the laser ablation system. To ensure optimal ablation, the beam was re-focused on the freshly ablated surface before repeating the experiment. Several trace elements (As, Sb, Tl, and Pb) were repeated in the third experiment to enable comparisons of element maps obtained in unrelated earlier experiments. Analytes mapped were as follows:

	254	Experiment 1	: ⁵⁸ Fe,	⁵⁹ Co,	⁶⁰ Ni,	⁷³ Ge,	⁷⁵ As,	⁹⁵ Mo
--	-----	--------------	---------------------	-------------------	-------------------	-------------------	-------------------	------------------

255 Experiment 2: ⁵⁸Fe, ⁷⁷Se, ¹⁰⁷Ag, ¹²¹Sb, ²⁰⁵Tl, ²⁰⁸Pb

256 Experiment 3: ⁵⁸Fe, ⁷⁵As, ¹²¹Sb, ¹⁹⁷Au, ²⁰⁵Tl, ²⁰⁸Pb

_ _ _

Data reduction and quantification

The laboratory had access to a set of silicate reference materials, including NIST 610 and 612 but in terms of sulfide (glasses) we could only secure the synthetic polymetallic sulfide pressed pellet MASS-1 at the time of experimentation. Initial tests with the pressed pellet showed that it did not behave well under high repetition rate ablation. It was found that during high repetition rate and fast stage travel ablation, excess material was removed from the periphery of the ablated line. Resulting ion signals also contained spikes in apparent intensity, interpreted to represent accidentally dislodged, relatively larger particles.

265 For this reason, NIST 610 was used to produce semi-quantitative (SQ) maps. The main 266 limitation to obtaining meaningful quantitative data with NIST 610 is that Fe is a trace metal in 267 the NIST glasses whereas the target minerals pyrite and marcasite (FeS₂) have a stoichiometric 268 Fe concentration of 46.55 wt%. This created a problem for the selection of the most appropriate Fe isotope to be analyzed. On the one hand, the more abundant ⁵⁷Fe trips into analogue mode 269 when ablating FeS_2 and on the other hand, the less abundant ⁵⁸Fe returns a very small signal on 270 271 NIST 610, additionally interfered by nickel. We opted to avoid the analogue pulse-count factor complexity by analyzing ⁵⁸Fe, and although the Fe signal was quantifiable, the data reduction 272 273 resulted in large error on the NIST 610 glass introducing unnecessary internal uncertainty into 274 the data. The Fe signal was thus only used to define masks on maps for Fe-sulfides and the 275 calibration was performed via the As concentration known from electron probe microanalyser 276 (EPMA) data (more details below).

277	Element distribution maps were processed and compiled with the commercially available
278	software Iolite v3 (Paton et al. 2011), which functions as an add-in for WaveMetrics' IgorPro
279	data analysis program (http://www.wavemetrics.com). Data for minor and trace elements were
280	reduced to yield SQ concentrations with the 'Trace_Element' data reduction scheme (DRS)
281	whereas data for Fe were reduced to yield counts per second with the 'Baseline_Subtract' DRS,
282	both of which are issued with the Iolite software (Longerich et al. 1996). Element maps were
283	produced with the Iolite module 'CellSpace'(Paul et al. 2012).
284	Because the composition of Fe sulfide within the mapping area had been measured at
285	various locations with EPMA (details in <u>Appendix A</u>), they were available to calibrate the SQ
286	concentrations in the minor and trace element maps to quantitative values as follows. The
287	average As concentration in 'ppm SQ' units was calculated for circular ROIs ~25 μ m in diameter
288	located at the approximate location of each WDS analysis using the Iolite add-in 'Monocle'
289	(Table 2; Petrus et al. 2017). Regions of interest were centered on corresponding EPMA analysis
290	(Fig. 2) but in a few cases the calculated area was adjusted slightly to ensure it contained
291	homogenous concentrations representative of the location of the EPMA analysis. Arsenic was
292	used for calibration because the EPMA results offered a wide range of concentrations above the
293	limits of determination (Table 2).
294	Linear regression (forced through zero) of the SQ and EPMA data yielded a slope of 2.95
295	with R ² of 0.997 and a root mean square error (RMSE) of 244 ppm (Fig. 3). Thus, SQ
296	concentrations overestimated true concentrations by 2.95x, suggesting that at the low fluence
297	applied, ablation rate on sulfide and ion yield from sulfide aerosol was ca. 3x higher than on
298	silicate glass. The apparent concentration of each SQ map was thus adjusted by a factor of 2.95.
299	Although somewhat unorthodox, this process is like the quantification typically undertaken

within Iolite in that a single correction factor (i.e., the internal standard) is applied to all analytes.
The correction factor was also applied to the limits of detection and quantification for the
mapping experiments (Table 3) and the average concentrations for regions of interest within the
maps (Tables 4, 5).

The corrected scale for element concentration is only accurate for FeS₂ minerals. For this reason, a digital mask hiding non-FeS₂ minerals was overlain on the minor and trace element maps. The masks also served to focus the eye on the structure within FeS₂ and avoid detraction by the complexity in the surrounding minerals. The masks were produced with the Mineral Mapping tool in the 'Baseline_Subtract' DRS, which did an excellent job distinguishing FeS₂ from other minerals (sphalerite, quartz) while excluding pixels with low Fe signals.

310 White Light Interferometry

311 White Light Interferometry was carried out with a Profilm3D system (Filmetrics Inc., San 312 Diego, CA, USA) on the ablated sample surface to evaluate the depth of ablation removal and 313 differential ablation behavior. Data was acquired and processed using the Profilm3D software 314 and data analysis was completed using the SPIP software package (Image Metrology A/S, 315 Hørsholm, Denmark). Scans were carried out using vertical scanning interferometry (VSI) using 316 an envelope center method to determine the z position and a scan length of 0.15 mm. Individual 317 scans were completed using a 50x magnification optical lens and stitched together into a single 318 scanned image in the Profilm3D software using a 20% overlap. At the beginning of each 319 analytical session a 1.818 µm step-height standard (VLSI standard Inc., Milpitas, CA, USA) was 320 measured to test the scan settings and accuracy to a tolerance of $1.8 \pm 2\%$ of the nominal standard 321 thickness.

322 Sample Material 323 The specimen mapped in this study is from a mineralized sample from the Anarraaq Zn-324 Pb-Ag deposit, which is located in the Red Dog District of northwestern Alaska, USA (Kelley et 325 al. 2004; Reynolds et al. 2021). The Red Dog District contains multiple clastic-dominated (CD) 326 Zn-Pb deposits and is one of the world's largest producing zinc mines (Blevings et al. 2013). The 327 LA-ICP-MS analytical work was conducted on a small piece of thin-section mounted in an 328 epoxy puck. The map area contains hydrothermal Fe sulfide (pyrite and marcasite; FeS_2) and 329 lesser sphalerite (ZnS), and late-stage quartz and calcite. 330 The LA-ICP-MS work in this study was conducted after *in situ* S isotopic (secondary ion 331 mass spectrometry; SIMS) data had been acquired (Reynolds 2019). The SIMS analysis left disc-332 shaped craters 15 μ m in diameter and 1-2 μ m in depth (Fig. 4). The Au coating used in SIMS 333 analyses was removed with a potassium iodide solution, but the puck was not polished before 334 LA-ICP-MS mapping to avoid potential damage to already very thin samples. As will be shown, 335 the SIMS craters do not correlate with any element concentration anomalies of a similar shape 336 and size. 337 **Results** 338 The overview map (Fig. 4) shows that nine of the minor and trace elements analyzed 339 reach concentrations above the background with complex, but clearly not random, distribution in 340 the Fe sulfide minerals. Maximum concentrations on the maps are as high as 10,000s of ppm Pb 341 (from galena inclusions); 1.000s of ppm Sb, As, Tl, and Ag; 100s of ppm Ni; and up to 10s of 342 ppm Co Ge, and Mo. Results for Se and Au are not displayed because of the lack of counts 343 above background (Se) and because of the potential for contamination from the Au coating used 344 in the SIMS analysis, respectively. Minimum concentrations for most metals in the pyrite

approach the limits of detection. Thus, the analyzed pyrite shows extreme contrasts in element
concentrations despite its relatively small size (300 µm across). Such stark concentration
contrasts over narrow areas are not typically encountered in silicates and illustrates the suitability
of sulfides to test the new method of this study. Unmasked versions of element maps are

349 provided in <u>Appendix B</u>.

350 Validation of concentration quantification method

351 To validate our approach to quantification, conventional LA-ICP-MS spot analysis was 352 also carried out after mapping and results were compared with the average concentrations 353 calculated for corresponding ROIs on the ARIS-LA-ICP-MS element maps (Table 5). Spot analysis was performed with the same equipment fitted with conventional transfer tubing, and 354 355 using ⁵⁷Fe as internal standard and the certified reference material MASS-1 for calibration for all 356 elements. Samples were ablated with a spot size of 20 µm, for 30s with a much slower repetition rate of 10Hz but a much higher energy density of 2-3 J/cm². The data was reduced with Iolite 4 357 358 (Paton et al., 2011) using the Trace Elements DRS (Longerich et al 1996). A more detailed 359 description of the methodology for spot analyses and full results is available in Appendix C. 360 A cross plot of As concentrations determined by spot analysis and calculated for ROIs on the ARIS map (Fig. 5) shows a linear regression with a slope very close to 1 (1.09), with with R^2 361 362 of 0.584 when the intercept was forced to zero. The proximity of the slope to 1.0 indicates that 363 the concentrations agree, on average, within 10%. However, the goodness of fit is only moderate. 364 This improves substantially after excluding those spot analyses in which the down-hole As signal strongly varied (e.g., Fig. 5c-e). For the dataset excluding inconsistent down-hole As signals, the 365 linear regression forced through zero yields a slope of 1.21 with a much improved R^2 of 0.970. A 366

367 second such comparison was carried out for Ag: the linear regression forced through zero yields 368 a slope of 0.918 with R^2 of 0.912 (Fig. 6).

369 Although the correspondence between map and spot concentrations deviates somewhat 370 from 1.0 (0.918 for Ag and 1.27 for As), the general agreement is much better than the 2.95 371 factor that was used to convert the SQ map data to quantitative concentrations. Furthermore, the 372 down-hole spot signals reveal the presence of buried micro-inclusions (particularly in As and Sb) 373 whose minor presence will undoubtedly negatively impact any method comparison. In summary, 374 the very good correspondence of the calibrated concentrations on two separate instruments, 375 operated at different conditions suggests that the calibration approach yielded reasonable 376 concentrations in the ARIS-LA-ICP-MS element maps. 377 The more extensive trace element dataset from the spot analyses also allows to verify the 378 veracity of the elemental maps in terms of molecular interferences. On the unmasked maps 379 (Appendix B) it can, for example, be seen that sphalerite grains adjacent to the FeS_2 phases, 380 show high Ag concentrations. While this likely is a real feature of Ag substitution into sphalerite, the ¹⁰⁷Ag signal could contain an undetected molecular interference from Zn-argides (e.g. 381 382 67 Zn⁴⁰Ar) and by analogy, some of the Ag zonation within the FeS₂ phases could instead reflect 383 Zn. Within the spot LA-ICP-MS data, however, there is a complete absence of correlation between Zn and Ag (R^2 of 0.0084). Because the spot and map Ag data agree very well, the 384 385 possibility of undetected molecular interference contribution to element zonation is considered 386 very small and the presence of Ag in the studied FeS₂ phases is considered real, similar to that 387 reported by Large and Maslennikov (2020).

388

389 Limits of detection and quantification

Like conventional spot LA-ICP-MS analysis, the limits of detection (LOD) depend on the signal/noise ratio, the size and stability of the background signal at each mass, the abundance of the isotope analyzed and the mass response curve of the MS. In general, Q-ICP-MS return the best LOD in the mid to high-mass range and for mono-isotopic elements. Unlike conventional spot analysis, LODs for areas extracted from maps also strongly depend on the total number of pixels contributing to a ROI (corresponding to the collective time of integration; see Appendix A of Petrus et al., 2017).

397 Representative theoretical LODs were calculated for each experiment by averaging line 398 segments 5-7 s in length from ca. 70 lines per map (Table 3). The number of data contained in 399 the chosen segments corresponds to the approximate length of the signal obtained for one 400 traverse across the FeS_2 portion of the maps. Results were divided by the same internal standard 401 correction factor (2.95) as applied to the element maps but without propagating uncertainty of 402 the As analysis. The LODs were highest for Ni and Ge with 4.91 and 1.01 ppm, respectively. For 403 the other minor and trace elements, the LOD were sub-ppm concentrations. Predictably, the 404 mono-isotopic Co and the high-mass Tl returned very low LODs of 0.18 and 0.044-0.070 ppm, 405 respectively, but owing to the very low instrument signal background (for many masses < 0.5406 cps), most analytes had very low LODs (e.g., Mo and Ag with 0.066 and 0.11 ppm, 407 respectively). For pure visual interrogation of a mineral chemical map, the LOD is the most 408 important factor and determines at which concentration a spatial distribution feature can still be 409 resolved. However, for quantitative mapping, the limits of quantification are relevant. These are 410 listed in Table 3 and depend on the actual size of the recorded signal, the size of the gas and

411	instrumental backgrounds relative to the signal, and the stability of the background. In general,
412	the maps for all analyzed elements show coherent areas of low concentration.
413	The coherence of concentration levels within thin bands of zoning (e.g. As, Tl, Co, and
414	Ni) further illustrates the excellent quality of concentration contrasts captured in the maps. In
415	these elements, individual bands can be recognized that are constituted of very similar along-
416	band concentrations. Of course, the true concentration coherence along a given zone is unknown
417	and there is likely variability within each band but the ability of these maps to show the zonation
418	sharply attests to the sound limits of quantification. We attribute this to the combination of
419	effective signal transfer with the ARIS and very low and stable background signals of the mass
420	spectrometer.
421	Spatial resolution in x and y for minor and trace elements of limited volatility
422	In contrast to previous applications of the tube cells of Wang et al. (2013) and Gundlach-
423	Graham et al. (2015) and bi-element maps produced with the ARIS (van Acker et al., 2016), the
424	operating conditions used with the ARIS in this study produce overlapping ablation pulses. This
425	is caused by the deliberate continuous stage travel; the sample area in the center of line scan
426	experiences up to 7 overlapping pulses (Fig. 1B). The acquisition time was lengthened for two
427	reasons. First, by making the acquisition time at least as long as the time between 2 consecutive
428	pulses, a relatively stable signal is generated, allowing the mass spectrometer to acquire data for
429	multiple analytes. Second, the longer integration time allows more counts to accumulate, which
430	lowers the detection limit and makes possible the quantification of lower abundance analytes. In
431	maps that are shot as orthogonal grids from top left to bottom right, the y resolution is the beam
432	diameter; in our experiments this was 5μ m. In terms of the x resolution, we hypothesized that
433	with perfect washout, it would be the distance the beam moves during the total dwell time (Fig.

434 1B). By setting the stage travel speed to $40 \ \mu m \ s^{-1}$, we aimed for a theoretical x resolution of 4.8 435 μm (8 beam diameters per second travel and 120 ms total dwell time), very close to the y 436 resolution.

437 Results from the experiments are shown in Fig. 4. Interested readers are encouraged to 438 inspect the maps using a computer to zoom into the finer detail. A full-scale version of the Pb 439 map is also shown in Appendix D. The maps were obtained with CellSpace with one pixel 440 created for each sweep of the detector through the 6 analytes. The pixels are the same size and 441 shape as the nominal beam (5µm, circular) and overlap slightly in the x direction because of the 442 difference between the beam diameter and the distance the beam moves during a single sweep 443 through the analytes (4.8 μ m); the overlapping area is assigned the average value of the two 444 adjacent pixels. The overlap in the y direction was constant and we expected it to be 0.5 µm but 445 in reality, the software produced very slightly variable overlaps, which can only be appreciated 446 on the inset areas shown on Fig. 4. We attribute this to a computational artefact of using the x-y 447 positions stored in the laser log file to synchronise with the time-resolved ICP-MS signals to 448 compute pixels of a nominal aperture diameter with some y-direction overlap of the lines. These 449 x-y positioning issues are not encountered when maps are constructed from adjacent (e.g. Van 450 Acker et al., 2016; Van Malderen et al., 2020), rather than overlapping laser ablation areas (see 451 Fig. 1). Regardless, these very minor changes in overlap did not result in cumulative offsets or 452 artefacts and did not affect the ability to compare data from consecutive maps. 453 The actual versus theoretical x-y resolution was assessed with the CellSpace maps, where 454 one pixel is 5.0 μ m in diameter, i.e. very close to the expected theoretical 4.8 x 5.0 μ m 455 resolution. In this regard, it is important that the euhedral pyrite has oscillatory zoning in several

456 elements, most evidently in As, Sb and Tl (Fig. 4). A realistic estimate for the x resolution can be

457 made in the Sb map, where a prominent near-continuous zone of enrichment ca. 15 µm inside the 458 crystal edge runs sub-parallel to the y axis of the image. Close inspection of the map (see inset in 459 Fig. 4) shows that the zone is commonly defined by a single pixel. The effective width of the 460 zone is unknown (as it cannot be seen on other types of images), but we conservatively estimate 461 the actual x resolution to be between 5-10 μ m. Where a similar zone of enrichment in the Tl map 462 runs sub-parallel to the x axis of the image in the outermost part of the euhedral pyrite crystal 463 (Fig. 4, inset), it is again obvious that an effective resolution in y of 5 μ m was achieved. In 464 summary, the fast mapping method afforded a conservatively estimated x-y resolution of 5-10 465 µm for trace elements. Although not the main purpose of this study, the spatial resolution for 466 trace elements that can become major constituents needs to be separately evaluated particularly 467 when the element is volatile. This more complex case is illustrated in the discussion section.

468 **Qualitative comparison of elemental maps across separate experiments**

469 An important objective of this study was to test how reproducible elemental maps from 470 subsequent but independent mapping experiments would be. Ubide et al. (2015) used white light 471 interferometry to show that the x-y reproducibility of modern laser ablation stages is so good that 472 mapping areas could be re-sampled well to within 1 µm. These authors re-mapped the same 473 areas with different laser ablation parameters to understand the effects of repetition rate, beam 474 size, and stage travel speed on the crispness of the resulting image without an ARIS. Next, we 475 tested the reproducibility of an elemental map between two experiments with the same laser 476 ablation parameters. Qualitative visual comparison of two As maps (Fig. 7) shows very good 477 overall correspondence. This includes a zone of high As concentration that runs in a N-S 478 direction roughly mid-way through the map. White light interferometry of the sample surface

479	after the 3 mapping experiments had been completed shows that slightly less than 3 μ m of
480	material was ablated from the Fe sulfide (Fig. 8), or just under 1 μ m per experiment.
481	One of the challenges of comparing results from different experiments of the same area is
482	to pin down the exact same spatial reference during the post-processing of each experiment. By
483	repeating the experiment, each pulse should theoretically perfectly overlay a pulse from the
484	previous experiment. However, because the laser log data (recording time, laser diameter and x-y
485	position of ablation sites) and the MS data (recording the time of signal acquisition and the signal
486	size) are synchronized to the same time manually in Iolite for each experiment, there ends up
487	being a slight offset in how the pixels are spatially referenced during image construction. In
488	CellSpace, this means that although the pixels from all the maps created in a single experiment
489	are perfectly aligned, the location of those pixels relative to the petrographic image will change
490	from experiment to experiment by a few μ m. A quantitative comparison, however, is still
491	possible by extracting independent ROIs of the same compositional features from the
492	independent maps. This quantitative comparison is presented in the next section.
493	Discussion
494	Spatial resolution in x and y for minor and trace metals that can also be major elements in
495	inclusions or accessory minerals
496	The x-y resolution is different for major elements and semi-volatile trace metals. The
497	inferior x-resolution is unlikely to be related to washout or signal smearing but most likely
498	caused by re-deposition of ablated material ahead of the following pulses. The issue can initially
499	be visualized in the Fe maps between quartz and sphalerite that surround the euhedral pyrite (Fig.
500	2). The reflected light and backscattered electron maps attest to the sharpness of the true grain
501	boundaries but where they are near-vertical on the map (i.e. orthogonal to the stage travel

direction), the apparent Fe concentrations are smeared in the x direction over 2-3 pixels (10-15 μ m). This is much farther than the sharp zone of slight Sb enrichment, for example. In our ablation cell, this is the aerosol transport direction and we interpret the smearing of the signal to be the consequence of resampling of ablation material in front of the laser beam, namely deposition of sphalerite and quartz-derived ejecta onto pyrite. Where the grain boundary is near horizontal on the map, it is typically narrower and only 2 pixels wide.

508 The ejecta redeposition explanation is supported by the observations on the Pb 509 distribution maps. Although measured as a trace element in FeS₂, Pb is a major element in 510 galena, which is present as small inclusions locally in the sample (see backscattered electron 511 image in Fig. 4). Down-stream from galena, horizontal streaks of Pb up to 7 pixels in length are 512 found decreasing in concentration from left to right, most notably from along the N-S edge of 513 euhedral pyrite crystal (Fig. 4). This apparent Pb concentration gradient is along the stage travel 514 direction, as would be expected from diminishing ejecta contamination with distance from 515 galena inclusions in the sphalerite. The same effect is also noted where a thin NW-SE oriented 516 veinlet of galena in the center of the euhedral pyrite crystal seems to create a much larger sub-517 rounded Pb anomaly in the map (Fig. 4). In contrast, where Pb is present in trace amounts in 518 pyrite, the x resolution can be as good as a single pixel (as seen in the N-S feature in the Pb map 519 inset in Fig. 4). Resampling of ablation material seems to be a bigger problem where sphalerite 520 or galena is in contact with Fe sulfide, rather than quartz. This is likely because quartz does not 521 ablate as readily at the low fluence selected to suit ablation of sulfides. The very limited ablation 522 progress on quartz (with the deliberately low fluence) is clearly evident on the post-ablation 523 white light interferometry topography (Fig. 8), where quartz is strongly elevated against adjacent 524 sulfides.

525 In summary, the resampling artefact on major elements leads to an effective most 526 pessimistic x-y resolution of 10x25 µm, where the larger dimension in x is noticeable in semi-527 volatile elements such as Pb that tend to create larger ejecta aprons than refractory elements. 528 Although LA-ICP-MS is rarely used for major element mapping, resampling artefacts in an 529 internal standard used to create quantitative maps would affect apparent trace element 530 concentrations, typically by exaggerating trace element concentrations in areas where the 531 concentration of the major element used as an internal standard is diluted by ejecta from a 532 different mineral. Resampling of ejecta is a limitation of LA-ICP-MS analysis, but in mapping 533 mode, the effects of resampling can be evaluated and problem areas can be avoided with setting 534 simple combined maximum/minimum concentration criteria when pooling pixels for quantitative 535 concentration data (Petrus et al. 2017).

536 Quantitative assessment of repeat map reproducibility

537 To assess the repeatability of the quantitative concentration maps, the Monocle tool of 538 Petrus et al. (2017) was used to define ROIs and calculate the statistics for As concentration 539 within them (Table 4). First, the map was divided into five broad areas: 'Inner' euhedral pyrite, 540 pyrite 'Rim', pyrite 'Core', 'Marcasite 1', and 'Marcasite 2'. Within each broad area, a criterion 541 was set for Monocle to extract all map pixels above or below a certain As concentration (Table 542 4). The criterion concentration value was refined by inspecting the distribution of concentrations 543 in the live histogram tool and iterative adjustment to determine which cut-off concentration 544 resulted in ROIs that best overlapped the features observed in the element maps. The spatial 545 distribution of these ROIs is shown in Fig. 7 and the statistical summary is reported in Table 4. 546 To test the quantitative correspondence of the As distribution maps, the average concentrations 547 of correlating ROIs are plotted in Fig. 9. The linear regression (forced through zero) yields a

548	slope of 0.996 with R^2 of 0.9997. If not forced through zero, a slope of 0.991 and R^2 of 0.9995
549	still show excellent correspondence. The quality of the fit, and the near 1:1 slope attest to the
550	repeatability of ARIS high-speed mapping and the robustness of the LA-ICP-MS system.
551	The comparison of two independent maps shows that combining elemental maps from
552	several experiments is a viable workaround to overcome the inherent limitation on the number of
553	analytes of the ARIS method. For example, two experiments with one major element and 5 trace
554	elements could be combined to obtain mapping information for 10 unknowns in a fraction (ca.
555	1/4) of the time used by conventional low repetition rate mapping (compare this study with
556	Ingham et al. 2014 in Table 1).
557	Recommendations for use and caveats of the tested method
558	The vast majority of in situ trace element analyses in the geosciences are performed by
559	laser ablation systems connected to Q-ICP-MS. They have a significantly long service life and,
560	for the foreseeable future, will remain the mainstay workhorses for this type of analysis
561	regardless of the fact that simultaneous mass analyzers (e.g. TOF-ICP-MS) and very rapid
562	washout laser ablation units (e.g. Van Malderen et al., 2020) offer superior potential for high
563	spatial resolution trace element mapping. The following recommendations and caveats are thus
564	intended for users of conventional LA-Q-ICP-MS systems wanting to acquire high spatial
565	resolution multi-element maps.
566	• The ARIS percent transfer system is a simple and cost-effective retrofit for HelEy
567	U coll againsed lager chlotion system. When energed with the nerrowest
30/	If cell-equipped laser ablation system, when operated with the narrowest
568	available internal diameter (0.75 mm) and short (700 mm) transfer tubing, it is
569	capable of resolving individual pulses at 40-50 Hz. This permits high spatial

resolution mapping (i.e. 5 μ m spot), resolving trace element features of <10 μ m.

570

571To achieve this resolution, it is necessary to position the torch of the ICP-MS as572closely as possible to the location of where the aerosol exits the laser ablation573system, by-passing any valves and internal gas handling of the system. Users need574to be careful with the increased pressure within the ablation chamber caused by575the small internal diameter of the transfer tubing and disable any automated gas576flushing routines that deploy high flow rates.

The ARIS carries aerosol with less He (e.g. 0.35 to $0.5 \ 1 \ min^{-1}$) than conventional 577 578 transfer systems and its connector typically requires less Ar gas to achieve high sensitivity (Th/U of 1.0 and Th $O^+/Th^+ < 0.2$ %). This gives the analyst additional 579 580 flexibility in tuning the ICP to maximum sensitivity, by increasing make-up gas 581 N_2 , optimizing the z-direction of the torch, lowering the plasma forward power, 582 and working with higher extraction voltage. This results in improved sensitivity on Q- (this study; Stead et al., 2017) and MC-ICP-MS (e.g. Craig et al., 2018) 583 584 with no detrimental effect on backgrounds or signal/background ratios. However, 585 operators need to be aware that using the ARIS can elevate the interface pressure 586 by ca. 0.2 mbar. Typical ICP-MS control software can abort after plasma start-up 587 if a target interface pressure is not reached within a specified time window. This 588 can be overcome by increasing the time given to reach the target pressure and/or 589 by raising the target pressure to a value still considered safe by the instrument manufacturer. 590

To achieve acceptable signal stability with the ARIS in the configuration of this study, the minimum analyte acquisition time is 20 ms, regardless of signal size. This limits the number of analytes that can be mapped by LA-Q-ICP-MS in rapid

594	stage movement mode because the x-direction spatial resolution is a reflection of
595	stage travel time. With larger internal diameter and longer transfer tubing, the
596	minimum acquisition time can be dropped to 5 ms (e.g., Drost et al. 2018) for
597	mapping with larger diameter beams (Zhou et al. 2017). When mapping with
598	small beams and small analyte numbers, the repeat mapping tested in this study
599	can be used to increase the number of analyzed elements, however, this surrenders
600	some of the time advantage gained by the fast mapping.
6 01 •	Due to the limited number of analytes permissible, it is not feasible to test for the
602	presence of possible isobaric molecular interferences by analyzing multiple
603	isotopes of one element in the mapping experiment. Instead, preliminary
604	experiments to test for such interferences need to be performed as line scans over
605	areas of similar phases that can be sacrificed or by running stationary spot
606	analyses with larger analyte lists in which the relationship between interferent
607	major ion (e.g. Zn) and potential isobar (67 Zn 40 Ar on 107 Ag) can be established.
608 •	A specific challenge for high repetition rate mapping on sulfides is to find suitable
609	calibration reference materials. In our experiments MASS-1 did not ablate well at
610	50 Hz, with irregular ablation track edges and spikes in signal intensities,
611	interpreted to represent dislodged rather than ablated particles. The irregular
612	ablation behavior from the surface of our MASS-1 was likely exacerbated by
613	insufficient humidity control during storage. We agree with Cook et al. (2016)
614	that the paucity of suitable crystalline sulfide and their limited availability are
615	significant factors compromising sulfide trace element studies.

616	Implications
617	In this study we used ARIS LA-Q-ICP-MS with a new set of operating conditions to
618	produce high spatial resolution (5-10 μ m) trace element distribution maps of pyrite and
619	marcasite. This novel approach has several advantages over conventional multi-element mapping
620	techniques, including:
621	• Increased speed of mapping – the ARIS LA-ICP-MS produces maps 4-8 times
622	faster than conventional mapping techniques;
623	• Decreased cost of consumables – the smaller diameter of the ARIS tubing
624	requires less He carrier gas;
625	• Decreased limits of quantification – the rapid rate of ablation, central injection of
626	aerosol, and low carrier and make-up gas flows increase ICP-MS tuning
627	flexibility yielding improved signal intensity without elevating backgrounds. This
628	results in low limits of quantification from ablation with small laser apertures;
629	• Increased resolution – the advances of the ARIS enable the use of smaller beam
630	diameters without excessive compromise of speed, cost, or limits of
631	quantification;
632	• Better sample preservation – less material is removed during mapping, preserving
633	more of the sample for future analyses. This also allows for good reproducibility
634	in consecutive experiments, meaning additional analytes can be mapped
635	(offsetting one limitation of the ARIS method in this study).
636	The tested approach provides an accessible way to map trace element distribution in geological
637	materials. In combination with other recent developments in the field of LA-ICP-MS, especially

- the ability to extract quantitative data from element maps (Petrus et al. 2017), this will lead to
- advances in the understanding of chemical heterogeneities in minerals.

640	Acknowledgments
641	Funding for the Anarraaq project was provided by Teck Resources Limited; a Natural
642	Sciences and Engineering Research Council of Canada (NSERC) Collaborative Research
643	Development Grant 452969-13 awarded to Sarah Gleeson, Robert Creaser and Teck Resources
644	Limited; and a NSERC Vanier Scholarship awarded to Merilie Reynolds. The funding for the
645	LA-ICP-MS study came from a Helmholtz-Rekrutierungsinitive 0316 to Sarah Gleeson. Balz
646	Kamber and Cora McKenna acknowledge support from Science Foundation Ireland (SFI) Grant
647	Number 13/RC/2092, co-funded under the European Regional Development Fund.
648	
649	References cited
650 651	Blevings, S., Kraft, J., Stemler, J., and Krolak, T. (2013) An overview of the structure, stratigraphy, and Zn-Pb-Ag deposits of the Red Dog District, Northwestern Alaska. In

- Special Publication 17 pp. 361–387. Society of Economic Geologists.
 Bussweiler, Y., Gervasoni, F., Rittner, M., Berndt, J., and Klemme, S. (2020) Trace element
 mapping of high-pressure, high-temperature experimental samples with laser ablation
 ICP time-of-flight mass spectrometry Illuminating melt-rock reactions in the
 lithospheric mantle. Lithos, 352–353, 105282.
- Cafagna, F., and Jugo, P.J. (2016) An experimental study on the geochemical behavior of highly
 siderophile elements (HSE) and metalloids (As, Se, Sb, Te, Bi) in a mss-iss-pyrite system
 at 650 °C: A possible magmatic origin for Co-HSE-bearing pyrite and the role of
 metalloid-rich phases in . Geochimica et Cosmochimica Acta, 178, 233–258.
- Chew, D.M., Petrus, J.A., Kenny, G.G., and McEvoy, N. (2017) Rapid high-resolution U–Pb
 LA-Q-ICPMS age mapping of zircon. J. Anal. At. Spectrom., 32, 262–276.
- Cook, N., Ciobanu, C., George, L., Zhu, Z.-Y., Wade, B., and Ehrig, K. (2016) Trace Element
 Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively Coupled Plasma Mass Spectrometry: Approaches and Opportunities. Minerals, 6, 111.
- Cook, N.J., Ciobanu, C.L., Meria, D., Silcock, D., and Wade, B. (2013) Arsenopyrite-Pyrite
 Association in an Orogenic Gold Ore: Tracing Mineralization History from Textures and
 Trace Elements. Economic Geology, 108, 1273–1283.
- 669 Craig, G., Managh, A.J., Stremtan, C., Lloyd, N.S., and Horstwood, M.S.A. (2018) Doubling
 670 Sensitivity in Multicollector ICPMS Using High-Efficiency, Rapid Response Laser
 671 Ablation Technology. Analytical Chemistry, 90, 11564–11571.

672	Drost, K., Chew, D., Petrus, J.A., Scholze, F., Woodhead, J.D., Schneider, J.W., and Harper,
673	D.A.T. (2018) An Image Mapping Approach to U-Pb LA-ICP-MS Carbonate Dating and
674	Applications to Direct Dating of Carbonate Sedimentation. Geochemistry, Geophysics,
675	Geosystems, 19, 4631–4648.
676	Duran, C.J., Barnes, SJ., and Corkery, J.T. (2016) Trace element distribution in primary
677	sulfides and Fe-Ti oxides from the sulfide-rich pods of the Lac des Iles Pd deposits,
678	Western Ontario, Canada: Constraints on processes controlling the composition of the ore
679	and the use of pentlandite compositions in exploration. Journal of Geochemical
680	Exploration, 166, 45–63.
681	Gadd, M.G., Layton-Matthews, D., Peter, J.M., and Paradis, S.J. (2016) The world-class
682	Howard's Pass SEDEX Zn-Pb district, Selwyn Basin, Yukon. Part I: trace element
683	compositions of pyrite record input of hydrothermal, diagenetic, and metamorphic fluids
684	to mineralization. Mineralium Deposita, 51, 319–342.
685	Gallagher, M., Turner, E.C., and Kamber, B.S. (2015) In situ trace metal analysis of
686	Neoarchaean – Ordovician shallow-marine microbial-carbonate-hosted pyrites.
687	Geobiology, 13, 316–339.
688	Genna, D., and Gaboury, D. (2015) Deciphering the Hydrothermal Evolution of a VMS System
689	by LA-ICP-MS Using Trace Elements in Pyrite: An Example from the Bracemac-
690	McLeod Deposits, Abitibi, Canada, and Implications for Exploration. Economic
691	Geology, 110, 2087–2108.
692	Gregory, D., Mukherjee, I., Olson, S.L., Large, R.R., Danyushevsky, L.V., Stepanov, A.S.,
693	Avila, J.N., Cliff, J., Ireland, T.R., Raiswell, R., and others (2019) The formation
694	mechanisms of sedimentary pyrite nodules determined by trace element and sulfur
695	isotope microanalysis. Geochimica et Cosmochimica Acta, 259, 53-68.
696	Gregory, D.D., Large, R.R., Halpin, J.A., Baturina, E.L., Lyons, T.W., Wu, S., Danyushevsky,
697	L., Sack, P.J., Chappaz, A., Maslennikov, V.V., and others (2015) Trace Element Content
698	of Sedimentary Pyrite in Black Shales*. Economic Geology, 110, 1389–1410.
699	Gregory, D.D., Large, R.R., Bath, A.B., Steadman, J.A., Wu, S., Danyushevsky, L., Bull, S.W.,
700	Holden, P., and Ireland, T.R. (2016) Trace Element Content of Pyrite from the Kapai
701	Slate, St. Ives Gold District, Western Australia*. Economic Geology, 111, 1297–1320.
702	Gundlach-Graham, A., Burger, M., Allner, S., Schwarz, G., Wang, H.A.O., Gyr, L., Grolimund,
703	D., Hattendorf, B., and Günther, D. (2015) High-Speed, High-Resolution, Multielemental
704	Laser Ablation-Inductively Coupled Plasma-Time-of-Flight Mass Spectrometry Imaging:
705	Part I. Instrumentation and Two-Dimensional Imaging of Geological Samples. Analytical
706	Chemistry, 87, 8250–8258.
707	Günther, D., and Hattendorf, B. (2005) Solid sample analysis using laser ablation inductively
708	coupled plasma mass spectrometry. TrAC - Trends in Analytical Chemistry, 24, 255-
709	265.
710	Heinrich, C.A., Pettke, T., Halter, W.E., Aigner-Torres, M., Audétat, A., Günther, D.,
711	Hattendorf, B., Bleiner, D., Guillong, M., and Horn, I. (2003) Quantitative multi-element
712	analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-
713	plasma mass-spectrometry. Geochimica et Cosmochimica Acta, 67, 3473-3497.
714	Hellstrom, J., Paton, C., Woodhead, J.D., and Hergt, J.M. (2008) Iolite: software for spatially
715	resolved LA-(quad and MC) ICPMS analysis. Mineralogical Assoc. Canada Short Course
716	Series, 40, 343–348.

717	Ingham, E.S., Cook, N.J., Cliff, J., Ciobanu, C.L., and Huddleston, A. (2014) A combined
718	chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits,
719	Lake Eyre Basin, South Australia. Geochimica et Cosmochimica Acta, 125, 440–465.
720	Kelley, K.D., Dumoulin, J.A., and Jennings, S. (2004) The Anarraaq Zn-Pb-Ag and Barite
721	Deposit, Northern Alaska: Evidence for Replacement of Carbonate by Barite and
722	Sulfides. Economic Geology, 99, 1577–1591.
723	Large, R., Maslennikov, V., Robert, F., Danyushevsky, L., and Chang, Z. (2007) Multistage
724	sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit,
725	Lena Gold Province, Russia. Economic Geology, 102, 1233–1267.
726	Large, R.R., and Maslennikov, V.V. (2020) Invisible Gold Paragenesis and Geochemistry in
727	Pyrite from Orogenic and Sediment-Hosted Gold Deposits. Minerals, 10, 339.
728	Large, R.R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., Gilbert, S., Bull, S.,
729	Scott, R., Emsbo, P., Thomas, H., and others (2009) Gold and trace element zonation in
730	pyrite using a laser imaging technique: implications for the timing of gold in orogenic
731	and Carlin-style sediment-hosted deposits. Economic Geology, 104, 635–668.
732	Large, R.R., Halpin, J.A., Danyushevsky, L.V., Maslennikov, V.V., Bull, S.W., Long, J.A.,
733	Gregory, D.D., Lounejeva, E., Lyons, T.W., Sack, P.J., and others (2014) Trace element
734	content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution.
735	Earth and Planetary Science Letters, 389, 209–220.
736	Longerich, H.P., Jackson, S.E., and Günther, D. (1996) Inter-laboratory note. Laser ablation
737	inductively coupled plasma mass spectrometric transient signal data acquisition and
738	analyte concentration calculation. Journal of Analytical Atomic Spectrometry, 11, 899-
739	904.
740	Magee, R., Ubide, T., and Kahl, M. (2020) The Lead-up to Mount Etna's Most Destructive
741	Historic Eruption (1669). Cryptic Recharge Recorded in Clinopyroxene. Journal of
742	Petrology, 61.
743	Mukherjee, I., Large, R.R., Bull, S., Gregory, D.G., Stepanov, A.S., Avila, J., Ireland, T.R., and
744	Corkrey, R. (2019) Pyrite trace-element and sulfur isotope geochemistry of paleo-
745	mesoproterozoic McArthur Basin: Proxy for oxidative weathering. American
746	Mineralogist, 104, 1256–1272.
747	Neyedley, K., Hanley, J.J., Fayek, M., and Kontak, D.J. (2017) Textural, Fluid Inclusion, and
748	Stable Oxygen Isotope Constraints on Vein Formation and Gold Precipitation at the 007
749	Deposit, Rice Lake Greenstone Belt, Bissett, Manitoba, Canada. Economic Geology, 112,
750	629–660.
751	Parbhakar-Fox, A., Lottermoser, B., and Bradshaw, D. (2013) Evaluating waste rock mineralogy
752	and microtexture during kinetic testing for improved acid rock drainage prediction.
753	Minerals Engineering, 52, 111–124.
754	Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J. (2011) Iolite: Freeware for the
755	visualisation and processing of mass spectrometric data. Journal of Analytical Atomic
756	Spectrometry, 26, 2508.
757	Paul, B., Paton, C., Norris, A., Woodhead, J., Hellstrom, J., Hergt, J., and Greig, A. (2012)
/38	Lelite frequence and an analysis of the letited later ablation images within the
139	Ionic freeware environment. Journal of Analytical Atomic Spectrometry, 27, 700–706.
/60	raui, B., woounead, J.D., Paton, C., Hergt, J.M., Hellstrom, J., and Norris, C.A. (2014) Iowards
761	a math ad far quantitative I A ICD MS impairs of multi share accomble and Mineral

762 763	identification and analysis correction procedures. Geostandards and Geoanalytical
763	Restalcii, 50, 255–205. Detrug I.A. Chavy D.M. Layhourna M.L. and Kambar D.S. (2017) A naw approach to lagar
765	ablation inductively coupled plasma mass spectrometry (I A ICP MS) using the flavible
765	man interrogation tool 'Monocle' Chemical Geology 463, 76, 93
760	Deaff K Koonig A Wonzel T Didley I Hildebrandt I H Leach D L and Markl G
769	(2011) Trees and minor element variations and sulfur isotones in erustalling and
760	(2011) Trace and minor element variations and surful isotopes in crystamic and colleform 7nS: Incorporation mechanisms and implications for their genesis. Chemical
709	Geology 286, 118, 134
771	Piña R Gervilla F Barnes S-I Oberthür T and Lunar R (2016) Platinum-group element
772	concentrations in pyrite from the Main Sulfide Zone of the Great Dyke of Zimbabwe
773	Mineralium Deposita 51 853–872
774	Revnolds M A (2019) Sediment-hosted Zn-Ph-Ag mineralization in the Red Dog district
775	Alaska USA: pre-ore environments and mineralizing processes. University of Alberta
776	Revnolds M A Gleeson S A Creaser R A Friedlander B A Haywood I C Hnatyshin D
777	McCusker I and Waldron I W F (2021) Diagenetic Controls on the Formation of the
778	Anarraaq Clastic-Dominated Zn-Ph-Ag Deposit Red Dog District Alaska Economic
779	Geology, 116, 1803–1824.
780	Rickard, D. (2012) Sulfidic Sediments and Sedimentary Rocks Vol. 65. Elselvier.
781	Stead, C.V., Tomlinson, E.L., Kamber, B.S., Babechuk, M.G., and McKenna, C.A. (2017) Rare
782	Earth Element Determination in Olivine by Laser Ablation-Quadrupole-ICP-MS: An
783	Analytical Strategy and Applications. Geostandards and Geoanalytical Research, 41,
784	197–212.
785	Sykora, S., Cooke, D.R., Meffre, S., Stephanov, A.S., Gardner, K., Scott, R., Selley, D., and
786	Harris, A.C. (2018) Evolution of Pyrite Trace Element Compositions from Porphyry-
787	Style and Epithermal Conditions at the Lihir Gold Deposit: Implications for Ore Genesis
788	and Mineral Processing. Economic Geology, 113, 193–208.
789	Sylvester, P.J. (2008) LA-(MC)-ICP-MS trends in 2006 and 2007 with particular emphasis on
790	measurement uncertainties. Geostandards and Geoanalytical Research, 32, 469-488.
791	Sylvester, P.J., and Jackson, S.E. (2016) A brief history of laser ablation inductively coupled
792	plasma mass spectrometry (LA-ICP-MS). Elements, 12, 307–310.
793	Ubide, T., and Kamber, B.S. (2018) Volcanic crystals as time capsules of eruption history.
794	Nature Communications, 9, 326.
795	Ubide, T., McKenna, C.A., Chew, D.M., and Kamber, B.S. (2015) High-resolution LA-ICP-MS
796	trace element mapping of igneous minerals: In search of magma histories. Chemical
797	Geology, 409, 157–168.
798	Ulrich, T., Kamber, B.S., Jugo, P.J., and Tinkham, D.K. (2009) Imaging Element Distribution
/99	Patterns in Minerals By Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry
800	(LA-ICP-MS). The Canadian Mineralogist, 47, 1001–1012.
801	Ulfich, I., Long, D.G.F., Kamber, B.S., and Whitehouse, M.J. (2011) In Situ Trace Element and
802 803	Sulfur Isotope Analysis of Pyrile in a Paleoproterozoic Gold Placer Deposit, Pardo and Clament Townshing, Ontorio, Canada, Economia Coology, 106, 667, 686
803 804	Van Acker T. Van Malderen S.I.M. Van Hearden M. McDuffie J.E. Cuwakang E. and
804	Vanhaecke E (2016) High-resolution laser ablation inductively coupled plasma mass
806	spectrometry imaging of cisplatin-induced penbrotoxic side effects. Analytica Chimica
807	Acta 945 23-30
007	$1000, 770, 40^{-}00.$

808 809 810 811	Van Malderen, S.J.M., van Elteren, J.T., and Vanhaecke, F. (2015) Development of a fast laser ablation-inductively coupled plasma-mass spectrometry cell for sub-µm scanning of layered materials - Journal of Analytical Atomic Spectrometry (RSC Publishing). Journal of Analytical Atomic Spetrometry, 30, 119–125.
812 813 814 815	 Van Malderen, S.J.M., Vergucht, E., De Rijcke, M., Janssen, C.R., Vincze, L., and Vanhaecke, F. (2016) Quantitative determination and subcellular imaging of Cu in single cells via laser ablation-ICP-mass spectrometry using high-density microarray gelatin standards. Analytical Chemistry acs analchem 6b00334
816 817 818	Van Malderen, S.J.M., Van Acker, T., and Vanhaecke, F. (2020) Sub-micrometer Nanosecond LA-ICP-MS Imaging at Pixel Acquisition Rates above 250 Hz via a Low-Dispersion Setup. Analytical Chemistry, 92, 5756–5764.
819 820 821 822	 Wang, H.A.O., Grolimund, D., Giesen, C., Borca, C.N., Shaw-Stewart, J.R.H., Bodenmiller, B., and Günther, D. (2013) Fast Chemical Imaging at High Spatial Resolution by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 85, 10107–10116
822 823 824 825	 Winderbaum, L., Ciobanu, C.L., Cook, N.J., Paul, M., Metcalfe, A., and Gilbert, S. (2012) Multivariate Analysis of an LA-ICP-MS Trace Element Dataset for Pyrite. Mathematical Geosciences, 44, 823–842.
826 827 828 829	 Woodhead, J.D., Hellstrom, J., Hergt, J.M., Greig, A., and Maas, R. (2007) Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 31, 331–343. Zhou, L., McKenna, C.A., Long, D.G.F., and Kamber, B.S. (2017) I.A. ICP, MS elemental
830 831 832	mapping of pyrite: An application to the Palaeoproterozoic atmosphere. Precambrian Research, 297, 33–55. Zhu O. Cook N.I. Xie G. Ciobanu C.L. Jian W. Wade B.P. and Xu J. (2021) Gamma-
833 834	enhancement of reflected light images: A rapid, effective tool for assessment of compositional heterogeneity in pyrite. American Mineralogist, 106, 497–505.
835	
836	List of table & figure captions
837	Figure 1. Theoretical laser ablation patterns produced with ARIS instrumentation (a) in previous
838	'spot-resolved' mapping applications and (b) in this study.
839	Figure 2. Arsenic map from experiment 1 shows the location of EPMA analyses (small solid
840	white circles) and the regions of interest (large open black or white circles). Two scales show the
841	concentration in ppm SQ units and the calibrated equivalent in ppm.
842	Figure 3. A cross plot of As concentration determined by EPMA and the average As
843	concentration in ppm SQ units calculated for the associated region of interest (ROI) in

experiment 1. Error bars represent 2x standard deviation for EPMA results and 2x standard errorfor ROI calculations.

Figure 4. Reflected light image, backscattered electron image, and ARIS-LA-Q-ICP-MS 846 847 element maps. Marcasite is distinguished from pyrite by its pleochroism and darker shade in 848 backscattered electron imagery; spot checks using micro-Raman spectroscopy were used to 849 verify visual identification (for more details, refer to Reynolds et al. 2021). Black circles on 850 reflected light image show locations of LA-ICP-MS spot analysis (more details in Appendix C). 851 All other minerals are masked in all element maps except for Fe. Insets of Sb, Tl, and Pb maps 852 show fine-scale zonation patterns (within dashed black lines) that demonstrate an effective 853 mapping resolution of 1 pixel or 5 μ m. A horizontal streak of elevated Pb concentration is 854 attributed to resampling of galena-rich material ablated to the left of the pyrite crystal. 855 Abbreviations: Gn - galena, Mrc - marcasite, Py - pyrite, Sp - sphalerite, Qz - quartz. 856 Figure 5. (a) Arsenic concentrations determined by LA-ICP-MS spot analysis are compared with 857 those calculated for the same areas on the ARIS-LA-ICP-MS element map. Inset in (b). Spot 858 analyses in which the As signal varies significantly with depth (e.g., spectra in c and d) are 859 plotted in grey and those with a consistent As signal (e.g., spectrum in e) are in black. Linear 860 regressions are plotted for all data points (dashed line) and for only black data points (solid line). 861 The scale for each analyte signal in c-e has been adjusted for display purposes; these plots do not 862 reflect the true relative concentrations of different analytes. 863 Figure 6. Silver concentrations determined by LA-ICP-MS spot analyses are compared with 864 those calculated for the same areas on the ARIS-LA-ICP-MS element map. 865 Figure 7. A comparison of As maps produced in experiment 1 (a, c) and experiment 3 (b, d). The 866 ROIs for which pooled statistics were calculated (Table 4) are shown in c and d.

867	Figure 8. (a) Reflected light image of sample area after ARIS-LA-Q-ICP-MS experiments. (b)
868	White light interferometry of the same area. Color reflects height of sample surface. Dashed
869	white line in a and b indicates ablated area. (c) Topographic profile from X to Y across ablated
870	area. Abbreviations: Mrc – marcasite, Py – pyrite, Sp – sphalerite, Qz – quartz.
871	Figure 9. A cross plot showing the average As concentration for each ROI in experiment 1
872	relative to experiment 3.
873	Appendices
874	View here: https://dataverse.scholarsportal.info/privateurl.xhtml?token=9a96bc52-5944-4736-a5c3-
875	<u>bb9647af558f</u>
876	Appendix A. Electron probe microanalysis methodology and data.
877	Appendix B. Unmasked versions of element maps.
878	Appendix C. LA-ICP-MS spot analysis methodology and data.

879 Appendix D. Large scale Pb map highlighting resampling streaks.

Table 1. Comparison of LA-Q-ICP-MS analytical protocols of element mapping in pyrite. Note that only the maps produced by Ingham et al. 2014 have a similar resolution to maps in this study.

	beam	repetition	stage travel	fluonco	1000 μm x 1000 μm
	diameter	rate	speed	nuence	map time*
Author	(µm)	(Hz)	(µm s⁻¹)	(J cm ⁻²)	(h)
Large et al. 2009	15 & 25	10	15 & 25	4 to 5	1.2 & 0.4
Ulrich et al. 2011	30	10	30	3 to 4	0.3
Winderbaum et al. 2012	10	10	10 & 20	1.9 to 2.6	2.8 & 1.4
Ingham et al. 2014	5	10	5	NR	11.1
Duran et al. 2015	15 & 25	15	10 & 20	5	1.9 & 0.6
Gallagher et al. 2015	30	10	20	3.2	0.5
Cafagna and Jugo 2016	10	5	10 & 20	5	2.8 & 1.4
Gadd et al. 2016	35 & 50	15 & 25	8	5 to 10	1.0 & 0.7
Gregory et al. 2016	10	10	10	2 to 3.5	2.8
Pina et al. 2016	15	15	12	4 to 6	1.5
Neyedely et al. 2017	20	7	12	6	1.2
This study	5	50	40	1.0	1.4

*Calculated with no overlap or pause between lines.

NR - not reported

EPMA ARIS-LA-ICP-MS Experiment 1 ID As (ppm) 2SD As (ppm SQ) 2SE 29 Α 700 480 1850 В 73 493 800 2670 С 700 53 1870 336 D 3100 400 8850 6520 Е 100 108 14 154 F 2900 740 8910 2050 G 700 92 2010 430

Table 2. Comparison of As concentration determined by EPMA

 and ARIS-LA-ICP-MS with semi-guantitative reduction.

Errors are reported as internal 2 x standard deviation (EPMA) and standard error (LA-ICP-MS).

Table 3. Limits of detection and quantification for analytes measured in mapping experiments. The correction factor of 2.95 has been applied to all values. The error for all analytes is 244 ppm when the error from the calibration curve (RMSE = 244 ppm) is propogated.

	As (pp	om)	Co (ppm) (Ge (ppm) M	No (ppm)	Ni (ppm)	Ag (ppm)	Pb (p	om)	Sb (p	om)	TI (pp	om)
	Ex. 1	Ex. 3	Ex. 1	Ex. 1	Ex. 1	Ex. 1	Ex. 2	Ex. 2	Ex. 3	Ex. 2	Ex. 3	Ex. 2	Ex. 3
Limits of detection ¹													
Minimum	0.550	0.434	0.0938	0.356	0.000	3.65	0.0646	0.0407	0.0834	0.167	0.155	0.0240	0.0381
Maximum	1.11	1.29	0.277	1.39	0.235	6.28	0.184	0.882	0.986	0.336	0.560	0.0785	0.124
Average	0.743	0.689	0.184	1.01	0.0664	4.91	0.111	0.119	0.317	0.238	0.291	0.0440	0.0699
Standard Deviation	0.132	0.208	0.0420	0.230	0.0570	0.606	0.0231	0.150	0.213	0.0389	0.086	0.0125	0.0211
Limits of quantification ²													
Minimum	1.75	1.38	0.298	1.13	0.000	11.6	0.205	0.130	0.265	0.530	0.493	0.0762	0.121
Maximum	3.54	4.09	0.880	4.42	0.749	20.0	0.586	2.80	3.14	1.07	1.78	0.250	0.394
Average	2.36	2.19	0.586	3.20	0.211	15.6	0.353	0.379	1.01	0.756	0.926	0.140	0.222
Standard Deviation	0.418	0.660	0.134	0.730	0.181	1.93	0.0736	0.478	0.676	0.124	0.274	0.0397	0.0672

Table 4. Comparison of As composition in ROIs in experiments 1 and 3. The concentration of each ROI is calculated in SQ units and then divided by the correction factor (2.95).

Name of ROI	Criteria for ROI	As (SQ units)		As (p	opm)	Area of ROI (µm²)		
	(SQ units)	Ex. 1	Ех. З	Ex. 1	Ex. 3	Ex. 1	Ех. З	
Rim - high As	As > 2250	2660(50.5)	2600(47.3)	903(244)	882(244)	2720	n.a.	
Rim - low As	As < 2250	1760(42.0)	1760(36.5)	598(244)	595(244)	4153	n.a.	
Core	As < 600	277(48.2)	356(29.4)	93.8(244)	121(244)	1038	n.a.	
Marc1 - low As	As < 500	269(11.4)	272(11.2)	91.3(244)	92.1(244)	10861	9842	
Marc1 - high As	As > 500	816(22.6)	874(24.3)	276(244)	296(244)	11879	12843	
Marc2 - low As	As < 500	289(16.6)	308(15.8)	97.8(244)	104(244)	n.a.	3526	
Marc2 - high As	As > 500	805(49.3)	745(44.6)	273(244)	253(244)	n.a.	2204	
Inner - high As	As > 4500	6780(158)	6750(141)	2297(250)	2286(248)	10612	n.a.	
Inner - med As	1800 < As < 4500	3100(63.7)	3130(65.6)	1050(245)	1060(245)	9761	n.a.	

Errors are reported as internal 2 x standard error for As (SQ units) and are propogated with the RMSE of the correction factor through to As (ppm). Criteria for ROI were applied to hand drawn areas.

Table 5. Arsenic and Ag concentration determined by traditonal spot analysis compared with average As and Ag concentrations calculated for corresponding regions of interest on the ARIS-LA-ICP-MS map.

	Spot Analyis		ARIS N	ARIS Map		nalyis	ARIS Map		
ID	As (ppm)	2SE	As (ppm)	2SE	Ag (ppm)	2SE	Ag (ppm)	2SE	
1	619	79.7	746	71.9	489	56.8	401	163	
2	566	83.4	713	70.2	455	52.6	527	188	
3	561	56.3	636	51.8	399	79.6	291	219	
4	689	124	1248	317	79.5	31.3	61.1	63.4	
5	1555	241	2568	350	24.0	3.13	43.9	24.2	
6	1137	232	881	274	35.6	7.70	27.5	17.4	
7	817	112	1002	165	21.7	4.42	22.6	10.8	
8	216	85.2	867	258	17.5	3.26	15.7	12.9	
9	863	299	249	98.7	21.9	5.32	21.3	31.9	
10	1858	289	543	310	22.2	2.94	17.0	15.7	
11	2257	278	2958	451	21.1	3.35	23.9	14.3	
12	616	139	1509	338	114	24.1	69.9	110	
13	464	62.6	663	46.6	408	75.0	384	195	
14	610	80.0	651	54.9	307	37.8	369	123	
15	76.6	10.3	123	28.6	190	34.5	109	71.4	
16	167	18.0	191	27.5	166	28.3	135	65.6	
17	213	25.8	190	18.2	272	38.6	179	82.6	
18	83.1	20.6	137	43.3	135	34.8	193	176	
19	61.2	15.3	83.0	18.9	45.6	6.88	92.3	72.1	
20	148	16.3	176	37.4	21.8	4.25	29.0	14.2	
21	238	35.9	310	38.5	12.9	2.35	21.8	8.75	
22	234	27.4	214	23.6	12.0	1.05	12.4	6.42	
23	145	29.0	216	21.0	15.2	3.58	13.0	8.44	
24	168	45.9	255	37.9	13.7	2.58	28.2	27.9	

Figure 1

Laser ablation pulse patterns in:

a) Previous mapping applications of the ARIS:

Line scan of consecutive beam pulses

Single ablation pulse					y resolution = beam diameter				
					_				
X resolution =									
b	eam diam	eter =							

distance moved between each consecutive pulse

y resolution =

beam diameter (5 μm)

a) This study:

Line scan of consecutive beam pulses

X resolution \approx

distance scanned during 1 sweep through analytes =

6 analytes*20 ms dwell/analyte*40 $\mu\text{m/s}$ scan speed = 4.8 μm

As (Experiment 1)

Mre

Fe cps

1.4e5

1.2e5

resampling streak

Backscattered electron

Figure 4

Reflected light

Co ppm

As ppm

Sb ppm

Figure 5

Figure 7

Figure 8

