Revision2, Manuscript#8159 Aradachi et al., American Mineralogist

1	Word	Count:	5,268
---	------	--------	-------

2

3 The influence of OH content on elastic constants of topaz 4 [Al₂SiO₄(F,OH)₂]

- 5
- 6
- 7 Kako Aradachi¹⁺, Morihisa Hamada², Kiyoshi Tsuge³ and Tohru Watanabe^{1*}
- 8
- 9
- 10 1: Department of Earth Sciences, University of Toyama, Gofuku 3190, Toyama, 930-8555
- 11 Japan
- 12 2: Volcanoes and Earth's Interior Research Center, Research Institute for Marine
- 13 Geodynamics, Japan Agency for Marine-Earth Science and Technology (JAMSTEC),
- 14 Natsushima-cho 2-15, Yokosuka, 237-0061 Japan
- 3: Department of Chemistry, University of Toyama, Gofuku 3190, Toyama, 930-8555
 Japan
- 17
- +: Now at Kankyo Chishitsu Co., Kaizuka 1-4-15-203, Kawasaki-ward, Kawasaki, 210-
- 19 0014 Japan
- 20 *: Corresponding author
- 21

Revision2, Manuscript#8159 Aradachi et al., American Mineralogist

22 ABSTRACT

23 Topaz, Al_2SiO_4 (OH)_xF_(2-x), might play a significant role in transporting water and fluorine into the Earth's interior at subduction zones. Seismological detection of topaz gives us 24 25 insights into the transport of water and fluorine, and requires a thorough understanding of its elastic properties. The influence of OH content on elastic constants of topaz has not 26 been fully understood, though experimental and theoretical studies have been done on 27 topaz with various OH contents. We thus determined elastic constants of topaz for 5 28 natural single-crystal specimens with different OH content ($x=0.28\sim0.72$) via the sphere 29 30 resonance method at an ambient condition. Determined C11, C22, C44, C66, C12, C23 and C_{31} increase with OH content while C_{33} and C_{55} decrease. For the change in OH molar 31 content from 0.0 to 1.0, relatively large changes (>3.0%) are seen in C_{33} (8.0(6)%), C_{55} 32 (4.9(6)%) and C_{22} (3.1(7)%). The OH content dependence of elastic constants is 33 qualitatively similar to that of theoretically determined values except for C_{11} . The 34 theoretical value of C_{11} decreases as the OH molar content increases from 0.0 to 1.0 35 whereas the experimental value of C_{11} slightly increases. Our determined elastic constants 36 are significantly higher (>3%) than theoretically determined values, especially in 37 38 diagonal components (C_{ii}) . The theoretical lower values must be related to the lattice parameters used in the theoretical study, which are systematically larger than measured 39

40	lattice parameters. The theoretical approach should be modified to reproduce measured
41	lattice parameters and lead to the agreement of theoretical and experimental elastic
42	constants. Our results provide a clue to a better understanding of elasticity of topaz and a
43	basis for the seismological detection of subducted oceanic sediments.
44	
45	Key words: topaz, elastic constants, sphere resonance method, OH content dependence
46	
47	INTRODUCTION
48	Topaz is an orthosilicate mineral with ideal formula $Al_2SiO_4(OH)_xF_{(2-x)}$. It is usually
49	found as an accessory mineral in fluorine-rich granitic rocks related to the formation of
50	pneumatolithic/hydrothermal deposits (Pichavant and Manning, 1984; Taylor, 1992;
51	Taylor and Fallick, 1997), or in rock formations that experience ultra-high-pressure
52	metamorphism (Zhang et al., 2002; Alberico et al., 2003). High pressure and temperature
53	experiments on Al ₂ O ₃ -SiO ₂ -H ₂ O ternary system, which represents subducted oceanic
54	sediments, have shown that hydrous aluminosilicate minerals like phase pi
55	(Al ₂ Si ₂ O ₇ (OH) ₃) and topaz-OH can retain water up to ~8 GPa (Wunder et al., 1993a, b;
56	Schreyer, 1995). Later, high pressure experiments on a synthetic oceanic sediment
57	revealed that topaz-OH is stable at pressures from 8 to 12 GPa and transforms to another

58	hydrous aluminosilicate mineral phase Egg (AlSiO ₃ (OH)) at pressures beyond 12 GPa,
59	which can carry water to the mantle transition zone (Ono, 1998). The difference in the
60	stability field of topaz-OH reflects the difference in the chemical composition of their
61	starting materials. The hydroxy-rich topaz, thus, might play a significant role in
62	transporting water into the Earth's interior (Mookherjee et al., 2016; Ulian and Valdrè,
63	2017; Sema and Watanabe, 2017; Tennakoon et al., 2018).
64	Topaz might also be a major carrier of fluorine into the Earth's interior (Ulian and
65	Valdrè, 2017; Sema and Watanabe, 2017). Halogens, especially fluorine (320 ppm) and
66	chlorine (850 ppm), are relatively abundant in oceanic sediments (Carpenter, 1969;
67	Muramatsu and Wedepohl, 1998). Fluorine ions can substitute for hydroxy groups in
68	many hydrous minerals because of their similar ionic charges and radii (Pyle and Mather,
69	2009). Seismological detection of topaz gives us insights into the transport of water and
70	fluorine in subduction zones. It requires a thorough understanding of elastic properties of
71	topaz with a wide range of OH content.
72	Elastic constants of topaz were firstly determined by Voigt (1888) through bending
73	and twisting of single-crystal prisms. Later, Haussühl (1993), Sema and Watanabe (2017)
74	and Tennakoon et al. (2018) determined elastic constants of topaz with various chemical
75	compositions through the resonance method. Though the temperature dependence of

76	elastic constants was investigated by Sema and Watanabe (2017) and Tennakoon et al.
77	(2018), these measurements have been conducted only at atmospheric pressure. The
78	pressure dependence of elastic constants has been studied through the first principles
79	calculation by Mookherjee et al. (2016) and Ulian and Valdrè (2017). Mookherjee et al.
80	(2016) determined the elastic constants of topaz-OH while Ulian and Valdrè (2017)
81	evaluated those of topaz with systematically changed compositions ($x=0.0\sim2.0$).
82	The influence of OH content on elastic constants of topaz has not been fully
83	understood, though both experimental and theoretical studies have been done on elastic
84	constants of topaz with various OH contents (Table 1). Determined elastic constant C_{22} is
85	shown in Figure 1 as a function of OH molar content. Experimental works were conducted
86	at ambient temperatures (~300 K) while theoretical works determined elastic constants at
87	0 K. It is difficult to see a systematic relationship between the experimentally determined
88	elastic constant and OH molar content. Though the results of Ulian and Valdré (2018)
89	show a systematic change in C22 with OH molar content, there is a remarkable
90	discrepancy between two theoretical studies on topaz-OH and there are significant
91	discrepancies between experimental and theoretical values. These discrepancies cannot
92	be explained by the temperature difference between experimental and theoretical works.
93	Lower elastic constants are generally expected at higher temperatures.

94	Theoretical and experimental studies should be combined to understand the
95	influence of OH content on elasticity of topaz. Theoretical studies are useful for
96	understanding the influence of OH content on elasticity, since the OH content in topaz
97	can be relatively easily controlled. On the other hand, it is difficult to find natural topaz
98	single-crystal samples with wide range of the OH content, which depends on the mineral
99	formation environment (Zhang et al., 2002). However, the experimental determination of
100	elastic constants is still needed to examine theoretical studies. We have thus conducted
101	experimental determination of elastic constants of topaz for 5 different OH contents
102	$(x=0.28\sim0.72)$ by the sphere resonance method and compared them with results of
103	previous works.
103 104	previous works.
	previous works. SPECIMENS
104	
104 105	Specimens
104 105 106	SPECIMENS Five natural single-crystals of topaz were selected ($x = 0.28, 0.38, 0.45, 0.66$ and 0.72).
104 105 106 107	SPECIMENS Five natural single-crystals of topaz were selected ($x = 0.28, 0.38, 0.45, 0.66$ and 0.72). Locality, chemical formula, lattice parameters and unit cell volume are listed in Table 2.
104 105 106 107 108	SPECIMENS Five natural single-crystals of topaz were selected ($x = 0.28, 0.38, 0.45, 0.66$ and 0.72). Locality, chemical formula, lattice parameters and unit cell volume are listed in Table 2. Chemical compositions were determined by using an EPMA (JOEL, JXA-8500F) at

112	crystal X-ray diffractometer (Rigaku, VariMax RAPID-DW). Lattice parameters a and b
113	increase with increasing OH content, while c decreases. The unit cell volume increases
114	with OH content.
115	Each crystal was shaped into a sphere (Figure 2) by the two-pipe method (Bond, 1954).
116	The average and standard deviation of diameter for 30 measurements are shown in Table
117	2. The ratio of the standard deviation to the average was smaller than 0.04% for all
118	specimens. The density was calculated from the mass and volume of spheres. It decreases
119	with OH content, reflecting the increase in unit cell volume.
120	Sample FKO is the sphere sample used in Sema and Watanabe (2017). Measurements
121	were remade on this sample and the diameter was corrected to be 6.487(3) mm by using
122	a calibrated micrometer. The OH molar content, x was redetermined to be 0.45.
123	
124	SPHERE RESONANCE METHOD
125	The sphere resonance method (e.g., Soga and Anderson, 1967) was employed to
126	determine elastic constants. The measurement system is schematically shown in Figure
127	S2. A sphere specimen was held between two ultrasonic transducers (OLYMPUS,
128	V156RM). A function synthesizer (NF Corporation, WF1944B) applied a sinusoidal
129	signal (Vpp = 10.0 V) to the driving transducer and the excited vibration in the specimen

Revision2, Manuscript#8159 Aradachi et al., American Mineralogist

130	was picked up by the receiving transducer. The lower transducer was placed on a balance
131	to control the specimen-holding force. Measurements were conducted at an ambient
132	temperature (22°C). The transducers, specimen and balance were placed in a container to
133	reduce the temperature change. The amplitude of the excited vibration was measured by
134	a lock-in-amplifier (Stanford Research Systems, SR884). The frequency range of the
135	sinusoidal signal is shown in Table S1. The frequency was changed by 20 Hz.
136	Elastic constants were determined to minimize the difference between measured and
137	calculated resonance frequencies, which was characterized by the root mean square
138	relative error given by

139
$$D = \sqrt{\frac{1}{n} \sum_{i} \left(\frac{f_i^{meas} - f_i^{cal}}{f_i^{cal}}\right)^2},$$

where f_i^{meas} and f_i^{cal} are measured and calculated resonance frequencies, respectively. The *xyz* algorithm (Vissher et al., 1991) was applied to calculate resonance frequencies for a given set of elastic constants. Uncertainties in elastic constants are determined by the least-square method as described in Sema and Watanabe (2017).

144

145 ELASTIC CONSTANTS OF TOPAZ

A typical resonance spectrum is shown in Figure S3. It should be noted that the vibration of a specimen is not a free vibration. The specimen-holding force *F* slightly

Revision2, Manuscript#8159 Aradachi et al., American Mineralogist

148	deforms the specimen to change the resonant frequencies from those of free vibration. In
149	addition, the frequency of a maximum amplitude of excited vibration is different from the
150	resonant frequency of the deformed specimen with normalized difference of order $1/(2Q^2)$,
151	where Q is the quality factor of the resonance (e.g., Migliori and Sarrao, 1997). The
152	dissipation of acoustic energy is characterized by $1/Q$. In our measurements, Q is
153	evaluated by the ratio of the frequency of a maximum to the full width at half maximum
154	of the square of amplitude. It is $(1 \sim 5) \times 10^4$ for each specimen and comparable to the values
155	reported by Tennakoon et al. (2018). Thus, the difference between the frequency of a
156	maximum amplitude and the resonant frequency of the deformed specimen is negligible.
157	The frequency of a maximum amplitude can be treated as a resonant frequency of the
158	deformed specimen. Resonance frequencies were measured for 5 different specimen-
159	holding forces (2.0-10.0 gf), and the resonance frequency of free vibration was estimated
160	by extrapolating measured frequencies to $F=0$ as Sema and Watanabe (2017). Estimated
161	resonance frequencies of free vibration are summarized in Table S3. Elastic constants
162	were determined by using 42 resonance frequencies. Tennakoon et al. (2018) noted that
163	the elastic constants are determined stably if the number of resonance modes considered
164	is more than 35.

165 Elastic constants of five topaz specimens are shown in Figure 3 as a function of OH

Revision2, Manuscript#8159 Aradachi et al., American Mineralogist

166	molar content and listed in Table S4. The difference between measured and calculated
167	resonance frequencies were smaller than 0.2% for all vibration modes (Table S3). Our
168	determined C11, C22, C44, C66, C12, C23 and C31 increase with OH content, while C33 and
169	C_{55} decrease. The elastic constants of Sample FKO (x=0.45) differ from those in Sema
170	and Watanabe (2017) by 0.4% at most. A linear equation $y = a_1 + a_2 x$ was fitted to the
171	relation between the elastic constant (y) and OH content (x), and estimated a_1 and a_2 are
172	shown in Table S5. The ratio a_2/a_1 is the relative change in an elastic constant for the
173	increase in OH molar content from 0.0 to 1.0. Relatively large changes (>3.0%) are seen
174	in C_{33} (8.0(6)%), C_{55} (4.9(6)%) and C_{22} (3.1(7)%).
175	Elastic constants reported in previous studies are also shown in Figure 3 for
176	comparison. Haussül (1993) and Tennakoon et al. (2018) determined elastic constants of
177	topaz single-crystals by the resonance method for $x=0$ and 0.58, respectively. Though
178	there are some deviations, experimentally determined elastic constants show consistent
179	changes: C11, C22, C44, C66, C12, C23 and C31 increase, while C33 and C55 decrease. Ulian
180	and Valdrè (2017) determined elastic constants for a wide range of OH content by <i>first</i>
181	principles calculation. Though their theoretical values are significantly lower than
182	experimental values, especially in diagonal components, the OH content dependence of
183	theoretical values is similar to that of experimental values, except for C_{11} . A linear

184	equation was also fitted to the relation between the theoretical elastic constant (y) and OH
185	molar content (x) for $x \le 1.0$. The slope a_2 for the theoretical values is also listed in Table
186	S5 for comparison. Similar slopes are obtained for theoretical and experimental values of
187	C22, C44, C55, C66 and C12. The largest change is seen in C33 both in theoretical and
188	experimental values. The magnitude of change in the theoretical value of C_{33} is almost
189	twice as large as that in the experimental value. The theoretical value of C_{11} decreases as
190	the OH molar content increases from 0.0 to 1.0, whereas the experimental value of C_{11}
191	slightly increases.
192	
193	DISCUSSION
193 194	DISCUSSION Discrepancy between experimental and theoretical elastic constants
194	Discrepancy between experimental and theoretical elastic constants
194 195	Discrepancy between experimental and theoretical elastic constants Elastic constants determined by the <i>first principles</i> calculation (Ulian and Valdrè,
194 195 196	Discrepancy between experimental and theoretical elastic constants Elastic constants determined by the <i>first principles</i> calculation (Ulian and Valdrè, 2017) are significantly lower than experimentally determined elastic constants, though
194 195 196 197	Discrepancy between experimental and theoretical elastic constants Elastic constants determined by the <i>first principles</i> calculation (Ulian and Valdrè, 2017) are significantly lower than experimentally determined elastic constants, though theoretical and experimental values show similar dependence on OH content except for
194 195 196 197 198	Discrepancy between experimental and theoretical elastic constants Elastic constants determined by the <i>first principles</i> calculation (Ulian and Valdrè, 2017) are significantly lower than experimentally determined elastic constants, though theoretical and experimental values show similar dependence on OH content except for C_{11} (Figure 3). Theoretical values are determined at the athermal condition (<i>T</i> =0 K), as

Revision2, Manuscript#8159 Aradachi et al., American Mineralogist

202	anharmonicity. The theoretical lower elastic constants must be related to the lattice
203	parameters in the <i>first principles</i> calculation. Lattice parameters of topaz in previous and
204	our studies are shown in Figure 4 as a function of OH content. The lattice parameters in
205	Ulian and Valdrè (2017) are 1% larger than measured values in a , 0.8% in b and 1% in c .
206	The larger lattice parameters are attributed to the computational approach used in the <i>first</i>
207	principles calculation. The hybrid exchange functional (B3LYP), which was used through
208	the density functional theory, generally overestimates unit-cell volumes (Ulian and Valdrè,
209	2017). The theoretical approach should be modified to reproduce measured lattice
210	parameters. It will lead to the agreement between theoretically and experimentally
211	determined elastic constants.
212	Different trends of C_{11} are seen between experimental and theoretical values. Our
213	experimental value slightly increases (1 ± 2 GPa/mol) for the change in OH content from
214	0.28 to 0.72, whereas the theoretical value significantly decreases (-11 GPa/mol) for the
215	change in OH content from 0.0 to 1.0. Previous experimental values also show an increase
216	with OH content. This difference might also be reconciled by decreasing lattice
217	parameters in theoretical studies.

218

219 Anisotropy in compressibility

Revision2, Manuscript#8159 Aradachi et al., American Mineralogist

220	Linear compressibility is calculated from determined elastic constants and compared
221	with results of previous studies. Komatsu et al. (2003) and Gatta et al. (2006) determined
222	isothermal linear compressibility through hydrostatic compression tests. Ulian and Valdrè
223	(2017) calculated isothermal linear compressibility from the lattice parameters at different
224	pressures which were obtained through the <i>first principles</i> simulation. Tennakoon et al.
225	(2018) evaluated adiabatic linear compressibility from the elastic constants determined
226	by the resonance method. Compressibility along the <i>i</i> -th axis β_i is related to elastic
227	compliance S_{ij} as

228
$$\beta_i = S_{i1} + S_{i2} + S_{i3}$$

Adiabatic elastic compliance is calculated from determined elastic stiffness. Determined adiabatic linear compressibility is listed in Table S6 and shown in Figure 5. Adiabatic linear compressibilities which were calculated from the elastic constants determined by Haussühl (1993) are also shown in Figure 5.

The results on linear compressibility are qualitatively consistent with those in previous studies, though there are small discrepancies in magnitude between previous and our studies. The most compressible axis is the *c*-axis, and the least the *b*-axis. The compressibility along the *a*-axis is slightly lower than that along the *c*-axis. The compressibility along the *c*-axis increases with OH content ($(0.22\pm0.06)\times10^{-3}$ GPa⁻¹mol⁻

Revision2, Manuscript#8159 Aradachi et al., American Mineralogist

238	¹) while that along the <i>b</i> -axis decreases ((-0.11±0.06)×10 ⁻³ GPa ⁻¹ mol ⁻¹). That along the <i>a</i> -
239	axis shows no significant change ((-0.04 \pm 0.08)×10 ⁻³ GPa ⁻¹ mol ⁻¹). These trends are
240	broadly consistent with those of the <i>first principles</i> calculation (Ulian and Valdrè, 2017).
241	The compressibility ratio β_a/β_b is 1.41~1.45, and the ratio β_c/β_b 1.48~1.60. Both ratios
242	increase with OH content. The approaching of β_c to β_a at lower OH content is also seen
243	in theoretical results. The higher compressibility along the <i>c</i> -axis is basically due to the
244	compressible "tetrahedra-free zones" which are perpendicular to the <i>c</i> -axis (Gatta et al.,
245	2006). They reported that the SiO ₄ tetrahedron is less compressible than the AlO ₄ F ₂
246	octahedron. There are other tetrahedra-free weak zones which are subperpendicular to the
247	<i>a</i> -axis (Figure 6). These weak zones contribute to higher compressibility along the <i>a</i> -axis.
248	The isothermal compressibility obtained from hydrostatic compression tests is quite
249	close to our adiabatic compressibility. It is due to the low temperature ($T < 300 \text{ K}$) where
250	the oscillation of atoms around their equilibrium positions is nearly harmonic not to cause
251	significant thermal expansion (e.g., Poirier, 1991).
252	

253 Anisotropy in seismic velocities

254 Seismic velocities in a topaz single crystal (MC, x=0.28) at an ambient condition are 255 shown in Figure 7. Velocities in various propagation directions are calculated as solutions

256	of the Christoffel equation (e.g., Mainprice, 2007). Compressional-wave velocity (VP)
257	shows relatively large directional variation (Figure 7(a)). The anisotropy parameter AV_P
258	is 11.8%, which is comparable to that of enstatite (Chai et al., 1997b). The highest velocity
259	(9.95 km/s) is in the direction between the a - and b -axes, and the lowest (8.84 km/s) in
260	the <i>a</i> -axis direction. Compressional-wave velocity is relatively low (<9.5 km/s) in the <i>ca</i> -
261	plane.
262	In addition to the velocity variation with propagation direction, shear-wave velocity
263	changes with the polarization direction. In a given propagation direction, the highest and
264	lowest velocities are called the fast shear-wave velocity and slow shear-wave velocity,
265	respectively. The fast shear-wave velocity (V_{s1}) is high in the <i>bc</i> -plane and the <i>a</i> -axis
266	direction, while low in the direction between the <i>a</i> - and <i>b</i> -axes and that between the <i>a</i> -
267	and c-axes (Figure 7(c)). The slow shear-wave velocity (Vs2) is high in the a-axis
268	direction, while low in the direction between a - and b -axes (Figure 7(d)). The polarization
269	anisotropy, which is characterized by AVs, is remarkable (12~14%) in the direction
270	between the <i>a</i> - and <i>b</i> - axes (Figure 7(b)).
271	Topaz single crystals with higher OH content show similar directional variations in
272	seismic velocities. The directions of the highest and lowest velocities (VP, Vs1, Vs2) and
273	the maximum AV_S show no changes with OH content. The anisotropy parameters, AV_P

Revision2, Manuscript#8159 Aradachi et al., American Mineralogist

274	and the maximum AV_S are shown in Figure S4 as a function of OH content. AV_P and the
275	maximum AVs show only slight changes for the increase of OH content from 0.28 to 0.72,
276	reflecting the weak OH dependence of elastic constants. The increase in AV_P and decrease
277	in the maximum AV_S are attributed to the increase in C_{22} and decrease in C_{55} , respectively
278	(Figure 3). Similar anisotropy parameters are reported for the topaz with the OH content
279	of 0.58 (Tennakoon et al., 2018) and calculated for the fluorine end member topaz
280	(Haussühl, 1993). The elastic constants determined by Ulian and Valdrè (2017) give also
281	similar anisotropy parameters except for the OH content of 1.0. The large value of AV_P is
282	attributed to the decrease in C_{11} (Figure 3).

283

284 Isotropic Moduli

The bulk (K) and shear (G) moduli that an isotropic polycrystalline aggregate will show can be evaluated from single-crystal elastic constants through the Voigt and Reuss averaging schemes. Voigt (1928) assumed uniform strain throughout the aggregate, while Reuss (1929) uniform stress. The Voigt average gives an upper bound, and the Reuss average yields a lower bound for an isotropic modulus. Calculated isotropic moduli are shown in Figure 8 and Table S7. The Hill average, which is the arithmetic mean of the Voigt and Reuss averages, is also shown. Figure 8 also shows bulk and shear moduli

292	calculated from the previously reported elastic constants (Haussühl, 1993; Ulian and
293	Valdrè, 2017; Tennakoon et al., 2018). The lower theoretically determined elastic
294	constants of Ulian and Valdrè (2017) yield lower isotropic moduli.
295	The bulk and shear moduli slightly decrease with increasing OH content (Figure 8(a),
296	(b)). The OH content dependence of the bulk modulus is dominated by that of C_{33} , which
297	shows the strongest dependence on the OH content among elastic constants related to the
298	bulk modulus (Figure 3). On the other hand, the OH dependence of C_{33} and C_{55} dominates
299	that of the shear modulus.
300	The difference between the Voigt and Reuss averages is less than 2% for all single-
301	crystal samples. The magnitude of the difference between the two averages reflects the
302	degree of anisotropy in elasticity of a single crystal. For strongly anisotropic olivine
303	(AV_P =24.3%; Webb, 1989), the difference is 3.2% and 3.9% for the bulk and shear moduli,
304	respectively. For moderately anisotropic enstatite (AVP=13.6%; Chai et al., 1997b), the
305	difference is 1.5% and 1.7% for the bulk and shear moduli. There is little difference
306	between the two averages for nearly isotropic pyrope (Chai et al., 1997a).
307	Compressional- and shear-wave velocities calculated from isotropic moduli are
308	shown in Figure 8 as a function of OH content. Seismic velocities calculated from the
309	previously reported elastic constants are also shown for comparison. Owing to the lower

310	density, the lower isotropic moduli of Ulian and Valdrè (2017) yield slightly higher
311	compressional-wave velocity. The shear-wave velocity is almost the same as those
312	calculated from experimentally determined elastic constants. A linear equation is fitted to
313	the relation between the velocity calculated from the Hill averages and OH content. Based
314	on this study, the compositional dependence of velocities is $dV_P/dx_{OH} = 0.041(1)$ km/s
315	and $dV_s/dx_{OH} = 0.03(1)$ km/s. On the other hand, the compositional dependence of
316	velocities of Ulian and Valdrè (2017) for $0.0 \le x \le 1.0$ is $dV_P/dx_{OH} = -0.072$ (6) km/s and
317	$dV_S/dx_{OH} = -0.03(1)$ km/s. The difference in the compositional dependence of velocity is
318	mostly attributed to that in the compositional dependence of C_{11} and C_{33} between Ulian
319	and Valdrè (2017) and this study (Figure 3).
320	
321	IMPLICATIONS
322	Our study has confirmed the discrepancy between experimentally and theoretically
323	determined elastic constants that was described in Introduction. The discrepancy should
324	be a clue to a better understanding of elasticity of topaz. The theoretical lower elastic
325	constants must be related to the lattice parameters, which are systematically larger than
326	measured values. The theoretical approach should be modified to reproduce the measured

Revision2, Manuscript#8159 Aradachi et al., American Mineralogist

328	determined elastic constants and the improvement of the <i>first principles</i> calculation. This
329	study will boost our understanding of elasticity of minerals.
330	Our study will be a basis for the seismological detection of subducted oceanic crust.
331	Sema and Watanabe (2017) calculated isotropic seismic velocities in topaz (FKO) of
332	x=0.45 at high pressure (10 GPa) and temperature (300~1400 K), and compared them
333	with velocities in olivine and garnet, which are major components of the overlying wedge
334	mantle and the underlying subducted oceanic crust, respectively. The compressional-
335	wave velocity in topaz is distinctly higher (~ 1 km/s) than that in olivine. On the basis of
336	the weak dependence of isotropic seismic velocities on OH content (Fig.12(b)), at least
337	for the OH content of $x=0.0\sim1.0$, topaz should show distinctly higher compressional-wave
338	velocity than olivine. There might be a strong velocity contrast between the overlying
339	mantle and the thin sediment-origin layer at the depth around 300 km. A seismological
340	technique such as the receiver function technique (e.g., Kawakatsu and Watada, 2007)
341	should be applied to detect a thin layer of topaz. It will give us insights into the transport
342	of water and fluorine in subduction zones.
343	
344	ACKNOWLEDGMENTS

345 F. Sema, M. Fukusawa, S. Urakawa and T. Saito are thanked for their help at the early

346	stage of this work. Mainak Mookherjee and two anonymous reviewers are thanked for
347	their careful reading and constructive comments. This study was partly supported by JSPS
348	KAKENHI Grant Number 22540436.
349	
350	REFERENCES CITED
351	Alberico, A., Ferrando, S., Ivaldi, G., and Ferraris, G. (2003) X-ray single-crystal
352	structure refinement of an OH-rich topaz from Sulu UHP terrane (Eastern China) -
353	Structural foundation of the correlation between cell parameters and fluorine
354	content. European Journal of Mineralogy, 15, 875-881.
355	Bond, W.L. (1954) Making crystal spheres. Review of Scientific Instruments, 25, 401.
356	Carpenter, R. (1969) Factors controlling the marine geochemistry of fluorine. Geochimca
357	et Cosmochimica Acta, 33, 1153-1167.
358	Chai, M., Brown, J.M., and Slutsky, L.J. (1997a) The elastic constants of a pyrope-
359	grossular-almandine garnet to 20 GPa. Geophysical Research Letters, 24, 523-526.
360	Chai M, Brown, J.M., and Slutsky, L.J. (1997b) The elastic constants of an aluminous
361	orthopyroxene to 12.5 GPa. Journal of Geophysical Research, 102, 14779-14786.
362	Gatta, G.D., Nestola, F., and Boffa-Ballaran, T. (2006) Elastic behavior and structural
363	evolution of topaz at high pressure. Physics and Chemistry of Minerals, 33, 235-

- 365 Haussühl, S. (1993) Thermoelastic properties of beryl, topaz, diaspora, sanidine and
- 366 periclase. Zeitschift für Kristallographie, 204, 67-76.
- 367 Kawakatsu, H., and Watada, S. (2007) Seismic evidence for deep-water transportation in
- 368 the mantle. Science, 316, 1468-1471.
- 369 Komatsu, K., Kuribayashi, T., and Kudoh, Y. (2003) Effect of temperature and pressure
- on the crystal structure of topaz, $Al_2SiO_4(OH, F)_2$. Journal of Mineralogical and
- 371 Petrological Sciences, 98, 167-180.
- 372 Mainprice, D. (1990) A FORTRAN program to calculate seismic anisotropy from the
- lattice preferred orientation of minerals. Computers and Geosciences, 16, 385-393.
- 374 Mainprice, D. (2007) Seismic anisotropy of the deep Earth from a mineral and rock
- 375 physics perspective. In G.D. Price, and L. Stixrude, Ed., Treatise on Geophysics,
- Volume 2: Mineral Physics, p. 437-492. Elsevier, Netherlands.
- 377 Migliori, A., and Sarrao, J. L. (1997) Resonant Ultrasound Spectroscopy, Applications to
- 378 Physics, Materials Measurements, and Nondestructive Evaluation, 202 p. John
- Wiley & Sons, USA.
- 380 Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal,
- volumetric and morphology data. Journal of Applied Crystallography, 44, 1271-

382	1276

- 383 Mookherjee, M., Tsuchiya, J., and Hariharan, A. (2016) Crystal structure, equation of
- state, and elasticity of hydrous aluminosilicate phase, topaz-OH (Al₂SiO₄(OH)) at
- high temperature. Physics of the Earth and Planetary Interiors, 251, 24-35.
- 386 Muramatsu, Y. and Wedepohl, K.H. (1998) The distribution of iodine in the Earth's crust.
- 387 Chemical Geology, 147, 201-216.
- 388 Ohno, I. (1976) Free vibration of a rectangular parallelepiped crystal and its application
- to determination of elastic constants of orthorhombic crystals. Journal of Physics of
- 390 the Earth, 24, 255-279.
- 391 Ono, S. (1998) Stability limits of hydrous minerals in sediment and mid-ocean ridge
- 392 basalt compositions: Implications for water transport in subduction zones. Journal
- 393 of Geophysical Research, 103, 18253-18267.
- 394 Pichavant, M., and Manning, D. (1984) Petrogenesis of tourmaline granites and topaz
- 395 granites: the contribution of experimental data. Physics of the Earth and Planetary
- 396 Interiors, 35, 31-50.
- 397 Poirier, J.P. (1991) Introduction to the Physics of the Earth's Interior, 264 p. Cambridge
- 398 University Press, U.K.
- 399 Pyle, D.M. and Mather, T.A. (2009) Halogens in igneous processes and their fluxes to the

Revision2, Manuscript#8159 Aradachi et al., American Mineralogist

400 atmosphere and oceans from volcanic activity: A review. Chemical Geology, 263,

401 110-121.

- 402 Reuss, A. (1929) Berechnung der Fliessgrenze von Mischkristallen auf Grund der
- 403 Plastzitätsbedingung für Einkristalle. Zeitschift für Angewandte Mathematik und
- 404 Mechanik. 9, 49-58 (in Germany).
- 405 Schreyer, W. (1995) Ultradeep metamorphic rocks: the retrospective viewpoint. Journal
- 406 of Geophysical Research, 100, 8353-8366.
- 407 Sema, F., and Watanabe, T. (2017) Determination of elastic constants of a single-crystal
- 408 topaz and their temperature dependence via sphere resonance method, Physics of the
- Earth and Planetary Interiors, 271, 64-71.
- 410 Soga, N., and Anderson, O.L. (1967) Elastic properties of tektites measured by resonant
- 411 sphere technique. Journal of Geophysical Research, 72, 1733-1739.
- 412 Taylor, R.P. (1992) Petrological and geochemical characteristics of the pleasant ridge
- 413 zinnwaldite-topaz granite, southern New Brunswick, and comparisons with other
- 414 topaz-bearing felsic rocks. The Canadian Mineralogist, 30, 895-921.
- 415 Taylor, R.P., and Fallick, A.E. (1997) The evolution of fluorine-rich felsic magmas:
- 416 source dichotomy, magmatic convergence and the origins of topaz granite. Terra Nova,
- 417 9, 105-108.

Revision2, Manuscript#8159 Aradachi et al., American Mineralogist

418	Tennakoon,	S.,	Peng.	Y.,	Mookherjee,	М.,	Speziale.	. S.	. Manthilake.	G.,	Besara.	. Т.
110	remanoon,	~··,	- • · · · · · · · · · · · · · · · · · ·	±.,	1,100,1110,100,	,	opeliare.	, ~.	, inditeritation	, <u> </u>	Dobara,	, -

- 419 Andreu, L., and Rivera, F. (2018) Single crystal elasticity of natural topaz at high-
- 420 temperatures. Scientific Reports, 8:1372, DOI:10.1038/s41598-017-17856-3.
- 421 Ulian, G., and Valdrè, G. (2017) Effects of fluorine content on the elastic behavior of
- 422 topaz [Al₂SiO₄(F,OH)₂]. American Mineralogist, 102, 347-356.
- 423 Vissher, W.M., Miglior, i A., Bell, T.M., and Reinert, R.A. (1991) On the normal modes
- 424 of free vibration of inhomogeneous and anisotropic elastic objects. Jouranl of
- 425 Acoustic Society of America, 90, 2154-2162.
- 426 Voigt, W. (1888) Bestimmung der Elasticitätsconstanten von Topas und Baryt. Annalen

427 der Physik, 270, 981-1028 (in Germany).

- 428 Voigt, W. (1928) Lehrbuch der Kristallphysik, 978 p. Teubner-Verlag, Leibzig (in
 429 Germany).
- 430 Wunder, B. Rubie, D.C., Rossll, C.R., Medenbach, O., Seifert, F., and Schreyer, W.
- 431 (1993a) Synthesis, stability, and properties of Al₂SiO₄(OH)₂: A fully hydrated
- 432 analogue of topaz. American Mineralogist, 78, 285-297.
- 433 Wunder, B., Medenbach, O., Krause, W., and Schreyer, W. (1993b) Synthesis, properties
- and stability of Al₃Si₂O7(OH)₃ (phase pi), a hydrous high-pressure phase in the
- 435 system Al₂O₃-SiO₂-H₂O (ASH). European Journal of Mineralogy, 5, 637-649.

436	Zhang, R.Y., Liou, J.G., and Shu, J.F. (2002) Hydroxyl-rich topaz in high-pressure and
437	ultrahigh-pressure kyanite quarzites, with retrograde woodhouseite, from the Sulu
438	terrane, eastern China. American Mineralogist, 87, 445-453.
439	
440	
441	List of figure captions
442	Figure 1
443	Reported elastic constant C_{22} of topaz as a function of OH molar content. Experimental
444	values (Haussühl, 1993; Sema and Watanabe, 2017; Tennakoon et al., 2018) were
445	determined at ambient temperatures (~300 K) while theoretical values (Mookherjee et al.,
446	2016; Ulian and Valdrè, 2017) at 0 K. The zero-pressure elastic constant of Mookerjee et
447	al. (2016) was interpolated from reported values of orthorhombic topaz-OH at -3.5 and
448	1.2 GPa.
449	
450	Figure 2
451	Five specimens of topaz single crystal. (a) Original shape. (b) Sphere specimen.
452	
453	Figure 3

Revision2, Manuscript#8159 Aradachi et al., American Mineralogist

454	Determined elastic constants of five topaz specimens as a function of OH molar content.
455	Results of previous works are also shown for comparison. Experimental values (Haussühl,
456	1993; Tennakoon et al., 2018) were determined at ambient temperatures (~300 K) while
457	theoretical values (Mookherjee et al., 2016; Ulian and Valdrè, 2017) at 0 K. The zero-
458	pressure elastic constant of Mookerjee et al. (2016) was interpolated from reported values
459	of orthorhombic topaz-OH at -3.5 and 1.2 GPa.
460	
461	Figure 4
462	Lattice parameters as a function of OH molar content. This study, Komatsu et al. (2003),
463	Gatta et al. (2006) and Tennakoon et al. (2018) determined lattice parameters by X-ray
464	diffraction method at ambient temperatures while Mookherjee et al. (2016) and Ulian and
465	Valdrè (2017) by the <i>first principles</i> calculation at athermal condition ($T = 0$ K). A linear
466	equation was fitted to the relation between the lattice parameter and OH content in this
467	study and Ulian and Valdrè (2017) for $0 \le x \le 1$. For this study, $a = 4.636(2) + 0.036(4)$
468	x_{OH} , $b = 8.758(7) + 0.10(1) x_{OH}$, $c = 8.3962(9) - 0.014(2) x_{OH}$. For Ulian and Valdrè (2017),
469	$a = 4.701(1) + 0.020(2) x_{OH}, b = 8.8698(6) + 0.094(1) x_{OH}, c = 8.504(1) - 0.031(2) x_{OH}.$
470	

472	Linear compressibility calculated from determined elastic constants as a function of OH
473	molar content. The compressibility reported in previous studies (Komatsu et al., 2003;
474	Gatta et al., 2006; Ulian and Valdrè, 2017; Tennakoon et al., 2018) are also shown. The
475	values of Haussühl (1993) were calculated from the reported elastic constants. The solid,
476	grey and open symbols are for the directions of <i>a</i> , <i>b</i> and <i>c</i> -axis, respectively.
477	
478	Figure 6
479	Crystal structure of topaz viewed along the c-axis. There is a tetrahedra-free zone
480	subperpendicular to the <i>a</i> -axis, which contributes to relatively high compressibility along
481	the a-axis. This figure was created with a free software VESTA (Momma and Izumi,
482	2011) by using structural parameters determined by Ulian and Valdrè (2017).
483	
484	Figure 7
485	Compressional-wave velocity (V_P) and shear-wave velocities ($V_{S1} > V_{S2}$) in a topaz
486	single-crystal MC ($x=0.28$) calculated from determined elastic constants. The magnitude
487	of polarization anisotropy (AVs) and polarization plane of the fast shear-wave are also
488	shown. Careware software developed by Mainprice (1990) was used for calculation and
489	stereographic projection.

Revision2, Manuscript#8159 Aradachi et al., American Mineralogist

490

491	Figure	8

- 492 (a) Bulk and (b) shear moduli as a function of OH molar content. Isotropic moduli are
- 493 calculated from the determined elastic constants through the Voigt, Reuss and Hill
- 494 averaging schemes. The solid, open and grey symbols are for the Voigt, Reuss and Hill
- 495 averaging schemes, respectively. The values calculated from previous studies (Haussühl,
- 496 1993; Ulian and Valdrè, 2017; Tennakoon et al., 2018) are also shown for comparison. (c)
- 497 Compressional- and (d) shear-wave velocities calculated from isotropic moduli. Symbols
- 498 are used as in (a) and (b).

Table 1. Previous studies for detemining elatsic constants of topaz

	Reference	Method
Experimental	Haussühl (1993)	Rectangular-resonance method
	Sema and Watanabe (2017)	Sphere-resonance method
	Tennakoon et al. (2018)	Rectangular-resonance method
Theoretical	Mookherjee et al. (2016)	First principles calculation
	Ulian and Valdrè (2017)	First principles calculation

Pressure (GPa)	Temperature (K)	Chemical formula
0	293	$Al_2SiO_4F_2$
0	291.9	Al ₂ SiO ₄ F _{1.56} (OH) _{0.42}
0	293~973	Al ₂ SiO ₄ F _{1.42} (OH) _{0.58}
-4.9~34.1	0	Al ₂ SiO ₄ (OH) ₂
0~55	0	$Al_2SiO_4F_2$
		Al ₂ SiO ₄ F _{1.75} (OH) _{0.25}
		Al ₂ SiO ₄ F _{1.50} (OH) _{0.50}
		Al ₂ SiO ₄ F _{1.00} (OH) _{1.00}
		Al ₂ SiO ₄ F _{0.50} (OH) _{1.50}
		Al ₂ SiO ₄ (OH) ₂

Specimen	MC	MGK
Locality	Maynard's Claim, Thomas Range, Juab county, Utah state, USA	Mogok township, Pyin-Oo-Lwin district, Mandalay region, Myanmar
Chemical formula	Al _{2.00} SiO ₄ F _{1.72} (OH) _{0.28}	Al _{2.00} SiO ₄ F _{1.72} (OH) _{0.38}
Lattice parameters and unit-cell volu	me	
a (Å)	4.64719(8)	4.64982(8)
b (Å)	8.79034(16)	8.79869(16)
<i>c</i> (Å)	8.39215(15)	8.39070(15)
V (Å ³)	342.823(11)	343.283(11)
Diameter of sphere		
Average (N=30) (mm)	4.422(3)	4.588(3)
Standard deviation (N=30) (mm)	0.002	0.002
Standard deviation/Average (%)	0.04	0.04
Density (g/cm ³)	3.582(8)	3.572(7)

Table 2. Locality, chemistry and physical properties of specimens

FKO	OP	KTL
Fukuoka, Nakatsugawa city, Gifu prefecture, Japan	Ouro Preto, Minas Gerais state, Brazil	Katlang, Tharparkar district, Sindh province, Pakistan
Al _{1.97} SiO ₄ F _{1.55} (OH) _{0.45}	Al _{1.97} SiO ₄ F _{1.34} (OH) _{0.66}	Al _{1.97} SiO ₄ F _{1.34} (OH) _{0.72}
4.64956(8) 8.79758(16) 8.39106(15) 343.235(11)	4.66016(8) 8.82724(16) 8.38715(15) 345.017(11)	4.66228(14) 8.8346(3) 8.3863(2) 345.427(17)
6.487(3) 0.002 0.02 3.568(5)	2.666(3) 0.001 0.04 3.562(12)	4.078(3) 0.001 0.03 3.536(8)

Figure 7

■ Max.Velocity = 9.95 OMin.Velocity = 8.84 Anisotropy =11.8 %

■ Max.Velocity = 6.09 OMin.Velocity = 5.60 Anisotropy = 8.3 %

■ Max.Anisotropy =13.77 OMin.Anisotropy =.60

