> Revision 1 Pardo et al., 2022 American Mineralogist

1	Word count: 7280 Re	vision 1
2	X-ray Diffraction Reveals Two St	ructural Transitions in Szomolnokite
3		
4	Author list: Olivia S. Pardo ¹ , Vasilije V. Dobr	rosavljevic ¹ , Tyler Perez ^{1,2} , Wolfgang Sturhahn ¹ ,
5	Zhenxian Liu ³ , George R. Rossman ¹ , Jennifer	M. Jackson ¹
6	Affiliations: ¹ California Institute of Technolog	gy (1200 E California Blvd. Pasadena, CA 91125),
7	² Now at Johns Hopkins University (3400 N. C.	harles St. Baltimore, MD 21218), ³ Department of
8	Physics, University of Illinois at Chicago (Chic	cago, IL 60607, USA)
9		
10	At	ostract
11	Hydrated sulfates have been identified and stud	died in a wide variety of environments on Earth,
12	Mars, and the icy satellites of the solar system.	The subsurface presence of hydrous sulfur-
13	bearing phases to any extent necessitates a bett	er understanding of their thermodynamic and
14	elastic properties at pressure. Endmember expe	erimental and computational data are lacking and
15	are needed to accurately model hydrous, sulfur	-bearing planetary interiors. In this work, high-
16	pressure X-ray diffraction and synchrotron Fou	rier-transform infrared (FTIR) measurements
17	were conducted on szomolnokite (FeSO ₄ ·H ₂ O)	up to ~83 and 24 GPa, respectively. This study
18	finds a monoclinic-triclinic ($C2/c$ to $P-1$) struct	tural phase transition occurring in szomolnokite
19	between 5.0(1) and 6.6(1) GPa and a previousl	y unknown triclinic-monoclinic (P -1 to $P2_1$)
20	structural transition occurring between 12.7(3)	and 16.8(3) GPa. The high-pressure transition
21	was identified by the appearance of distinct ref	lections in the XRD patterns that cannot be
22	attributed to a second phase related to dissociate	tion of the <i>P</i> -1 phase and is further characterized
23	by increased H ₂ O-bonding within the structure	. We fit 3 rd order Birch-Murnaghan equations of

> Revision 1 Pardo et al., 2022 American Mineralogist

24	state for each of the three phases identified in our data and refit published data to compare the
25	elastic parameters of szomolnokite, kieserite (MgSO4·H2O), and blödite (Na2Mg(SO4)2·4H2O).
26	At ambient pressure, szomolnokite is less compressible than blödite and more than kieserite, but
27	by 7 GPa both szomolnokite and kieserite have approximately the same bulk modulus, while
28	blödite's remains lower than both phases up to 20 GPa. These results indicate the stability of
29	szomolnokite's high-pressure monoclinic phase and the retention of water within the unit cell up
30	to pressures found in planetary deep interiors.
31	Keywords: szomolnokite, hydrated sulfates, high pressure, X-ray diffraction, infrared
32	spectroscopy, equation of state
33	
34	1. Introduction
-	
35	Szomolnokite (FeSO ₄ ·H ₂ O) is a hydrous, ferrous iron-sulfate belonging to the kieserite group of
35	Szomolnokite (FeSO ₄ ·H ₂ O) is a hydrous, ferrous iron-sulfate belonging to the kieserite group of
35 36	Szomolnokite (FeSO ₄ · H_2O) is a hydrous, ferrous iron-sulfate belonging to the kieserite group of minerals which is composed of monoclinic hydrated metal sulfates. On Earth, szomolnokite and
35 36 37	Szomolnokite (FeSO ₄ ·H ₂ O) is a hydrous, ferrous iron-sulfate belonging to the kieserite group of minerals which is composed of monoclinic hydrated metal sulfates. On Earth, szomolnokite and other metal sulfates naturally occur as weathering products of pyrite or pyrrhotite and have been
35 36 37 38	Szomolnokite (FeSO ₄ ·H ₂ O) is a hydrous, ferrous iron-sulfate belonging to the kieserite group of minerals which is composed of monoclinic hydrated metal sulfates. On Earth, szomolnokite and other metal sulfates naturally occur as weathering products of pyrite or pyrrhotite and have been studied in relation to evaporate deposits, hydrothermal systems, and mine waste (Chou et al.
35 36 37 38 39	Szomolnokite (FeSO ₄ ·H ₂ O) is a hydrous, ferrous iron-sulfate belonging to the kieserite group of minerals which is composed of monoclinic hydrated metal sulfates. On Earth, szomolnokite and other metal sulfates naturally occur as weathering products of pyrite or pyrrhotite and have been studied in relation to evaporate deposits, hydrothermal systems, and mine waste (Chou et al. 2013; Dyar et al. 2013; Machado de Oliveira et al. 2019). Because ferrous iron-sulfates can host
 35 36 37 38 39 40 	Szomolnokite (FeSO ₄ ·H ₂ O) is a hydrous, ferrous iron-sulfate belonging to the kieserite group of minerals which is composed of monoclinic hydrated metal sulfates. On Earth, szomolnokite and other metal sulfates naturally occur as weathering products of pyrite or pyrrhotite and have been studied in relation to evaporate deposits, hydrothermal systems, and mine waste (Chou et al. 2013; Dyar et al. 2013; Machado de Oliveira et al. 2019). Because ferrous iron-sulfates can host numerous other divalent metals, such as Cu and Mn, they are capable of releasing significant
 35 36 37 38 39 40 41 	Szomolnokite (FeSO ₄ ·H ₂ O) is a hydrous, ferrous iron-sulfate belonging to the kieserite group of minerals which is composed of monoclinic hydrated metal sulfates. On Earth, szomolnokite and other metal sulfates naturally occur as weathering products of pyrite or pyrrhotite and have been studied in relation to evaporate deposits, hydrothermal systems, and mine waste (Chou et al. 2013; Dyar et al. 2013; Machado de Oliveira et al. 2019). Because ferrous iron-sulfates can host numerous other divalent metals, such as Cu and Mn, they are capable of releasing significant amounts of other trace metals into the surrounding environment (Chou et al. 2013). Hydrated
 35 36 37 38 39 40 41 42 	Szomolnokite (FeSO ₄ ·H ₂ O) is a hydrous, ferrous iron-sulfate belonging to the kieserite group of minerals which is composed of monoclinic hydrated metal sulfates. On Earth, szomolnokite and other metal sulfates naturally occur as weathering products of pyrite or pyrrhotite and have been studied in relation to evaporate deposits, hydrothermal systems, and mine waste (Chou et al. 2013; Dyar et al. 2013; Machado de Oliveira et al. 2019). Because ferrous iron-sulfates can host numerous other divalent metals, such as Cu and Mn, they are capable of releasing significant amounts of other trace metals into the surrounding environment (Chou et al. 2013). Hydrated sulfates have also been discussed in relation to volatile cycling within the mantle and their role as

> Revision 1 Pardo et al., 2022 American Mineralogist

	i aldo et al., 2022 American Mineratogist
46	Hydrated sulfates are not only studied in relation to surface and subsurface processes on Earth
47	but have more recently become of interest for other planetary bodies, after sulfate minerals,
48	including szomolnokite, were detected on Mars using absorption spectroscopy (Bishop et al.
49	2009; King and McLennan 2010; Chou et al. 2013). This has led to hydrated sulfates'
50	importance as potential hosts for water at depth, their use in determining past hydrological
51	activity on the surface of Mars, and their role in volatile and sulfur cycling (Lichtenberg et al.
52	2010; Wendt et al. 2011; McCanta et al. 2014; Franz et al. 2019). On Venus, sulfates are
53	hypothesized to exist at the surface and crust (Barsukov et al. 1982). Additionally, hydrous metal
54	sulfates have been proposed to exist on the surface of icy moons in our solar system owing to
55	their spectral similarity between laboratory measurements and remote observations (Dalton and
56	Pitman 2012; Ligier et al. 2019; Trumbo et al. 2020).
57	
58	Hydrated sulfates have been characterized under a range of pressures and temperatures.
59	Szomolnokite has a monoclinic crystal structure (space group $C2/c$) at ambient conditions as
60	determined by early X-ray diffraction (XRD) measurements on powdered szomolnokite
61	(Pistorius 1960), and ambient pressure single crystal XRD measurements (Wildner and Giester
62	1991; Giester et al. 1994). At ambient conditions szomolnokite belongs to the kieserite group,
63	which consists of monoclinic, hydrous metal sulfates (MSO ₄ ·H ₂ O). The kieserite structure
64	consists of corner sharing $[MO_4(H_2O)]^{6-}$ units running parallel to the crystallographic <i>c</i> -axis.

65 Most recently, single crystal, high-pressure XRD measurements combined with Raman and

66 Fourier-transform infrared (FTIR) spectroscopy up to 9.2 GPa found a monoclinic-triclinic

67 structural phase transition at 6.154(1) GPa and retention of structurally-bound H₂O throughout

the pressure range investigated (Meusburger et al. 2019). An analogous transition was observed

> Revision 1 Pardo et al., 2022 American Mineralogist

69	to occur in the Mg-endmember kieserite (MgSO ₄ ·H ₂ O) at lower pressures (Meusburger et al.
70	2020), the Ni-endmember dworknikite (NiSO ₄ ·H ₂ O) (Ende et al. 2020), and the Co-endmember
71	$(CoSO_4 \cdot H_2O)$ (Wildner et al. 2021).
72	
73	Other studies conducted on hydrated sulfates have focused on decomposition induced by
74	moderate pressure and variable temperature. Neutron powder diffraction of deuterated
75	MgSO ₄ ·11D ₂ O, the deuterated analog of meridianiite, was used to explore pressures between
76	0.1-1000 MPa and temperatures between 150-280 K (Fortes et al. 2017). At ambient conditions
77	meridianiite is triclinic (space group P -1) with a structural phase transition and decomposition of
78	MgSO ₄ ·11D ₂ O to ice VI + MgSO ₄ ·9D ₂ O occurring at 0.9 GPa and 240 K. The relatively
79	dehydrated MgSO ₄ ·9D ₂ O is monoclinic (space group $P2_1/c$). Additional work has focused on the
80	decomposition of hydrous, Cu, Ni, Zn, and Fe-bearing sulfates as a function of temperature using
81	X-ray photoelectron spectroscopy, scanning electron microscopy/X-ray microanalysis,
82	thermogravimetric analysis, diffuse reflectance infrared Fourier transform spectroscopy, and X-
83	ray diffraction (Siriwardane et al. 1999). Results for the FeSO ₄ ·7H ₂ O sample used in these
84	decomposition experiments indicate dehydration initiating at temperatures up to 200°C with the
85	decomposition of sulfate initiating around 500°C, producing Fe ₂ O ₃ (Siriwardane et al. 1999).
86	
87	Phase relations of $MSO_4 \cdot nH_2O$ systems have been explored at high pressure and temperature.
88	One experiment on the $MgSO_4$ - H_2O system at temperatures ranging from 298-500 K and
89	pressures up to 4.5 GPa found a eutectic system with six distinct phases (Nakamura and Ohtani
90	2011). Using X-ray diffraction and micro-Raman spectrometry, MgSO ₄ ·H ₂ O, MgSO ₄ ·6H ₂ O, and
91	MgSO ₄ ·7H ₂ O were among the identified phases that coexisted with high-pressure ice

> Revision 1 Pardo et al., 2022 American Mineralogist

92	polymorphs. In-situ X-ray diffraction and Mössbauer spectroscopy were used to investigate the
93	two endmembers and 10 intermediate compositions of the $FeSO_4 \cdot H_2O$ -CuSO ₄ ·H ₂ O solid solution
94	series (Giester et al. 1994). At ambient conditions $CuSO_4 \cdot H_2O$ is triclinic (space group <i>P</i> -1).
95	Giester et al. (1994) found that $FeSO_4$ ·H ₂ O-CuSO ₄ ·H ₂ O compositions with >20 mol% Cu are
96	triclinic (space group P-1), distorted from the monoclinic (space group $C2/c$) structure of
97	FeSO ₄ ·H ₂ O. Additionally, the FeSO ₄ ·H ₂ O-MgSO ₄ ·H ₂ O solid-solution series was examined under
98	ambient and Martian surface temperature conditions using X-ray diffraction, Fourier transform
99	infrared spectroscopy, and Raman spectroscopy (Talla and Wildner 2019). Linear changes in
100	lattice parameters, crystal structure, and the positions of absorption bands were observed as a
101	function of Fe-content and deviated from linear behavior with decreasing temperature.
102	
103	The pressure dependence of hydrated sulfate properties, in particular szomolnokite, has received
103 104	The pressure dependence of hydrated sulfate properties, in particular szomolnokite, has received less attention. Their stability at depth determines, in part, their volatile transport capabilities and
104	less attention. Their stability at depth determines, in part, their volatile transport capabilities and
104 105	less attention. Their stability at depth determines, in part, their volatile transport capabilities and geophysical behavior. For example, structural phase transitions influence the dynamics and
104 105 106	less attention. Their stability at depth determines, in part, their volatile transport capabilities and geophysical behavior. For example, structural phase transitions influence the dynamics and seismic signatures within planetary interiors, especially for phase transitions exhibiting large
104 105 106 107	less attention. Their stability at depth determines, in part, their volatile transport capabilities and geophysical behavior. For example, structural phase transitions influence the dynamics and seismic signatures within planetary interiors, especially for phase transitions exhibiting large volume changes. As an endmember hydrated sulfate, szomolnokite provides a means to study the
104 105 106 107 108	less attention. Their stability at depth determines, in part, their volatile transport capabilities and geophysical behavior. For example, structural phase transitions influence the dynamics and seismic signatures within planetary interiors, especially for phase transitions exhibiting large volume changes. As an endmember hydrated sulfate, szomolnokite provides a means to study the effects of iron on phase stabilities and elastic properties, which are the focus of this study.
104 105 106 107 108 109	less attention. Their stability at depth determines, in part, their volatile transport capabilities and geophysical behavior. For example, structural phase transitions influence the dynamics and seismic signatures within planetary interiors, especially for phase transitions exhibiting large volume changes. As an endmember hydrated sulfate, szomolnokite provides a means to study the effects of iron on phase stabilities and elastic properties, which are the focus of this study. Characterization of endmember species, like szomolnokite, under high-pressure conditions will
104 105 106 107 108 109 110	less attention. Their stability at depth determines, in part, their volatile transport capabilities and geophysical behavior. For example, structural phase transitions influence the dynamics and seismic signatures within planetary interiors, especially for phase transitions exhibiting large volume changes. As an endmember hydrated sulfate, szomolnokite provides a means to study the effects of iron on phase stabilities and elastic properties, which are the focus of this study. Characterization of endmember species, like szomolnokite, under high-pressure conditions will help develop our understanding of the complex behavior of this class of minerals and their role in

114 associated elastic properties utilizing X-ray powder diffraction and synchrotron infrared

Revision 1

Pardo et al., 2022 American Mineralogist

115	spectroscopy. We present detailed analysis and equation of state fits of X-ray powder diffraction
116	measurements conducted in the pressure range of 0-83 GPa. Within this pressure interval we find
117	that the data are compatible with two different structural phase transitions. We term the high.
118	pressure phases β -Sz and γ -Sz. The phase transition from the <i>C</i> 2/ <i>c</i> to <i>P</i> -1 space group (β -Sz)
119	occurs between 5.0(1) and 6.6(1) GPa, and the transition from the <i>P</i> -1 to <i>P</i> 2 ₁ space group (γ -Sz)
120	occurs between 12.7(3) and 16.8(3) GPa, where the number in parentheses is the estimated
121	pressure uncertainty for the last significant digit. Synchrotron infrared spectra reveal that for
122	each phase transition, structurally bound H ₂ O is retained in the unit cell. We fit finite-strain
123	equations of state to the data for each polymorph, compare against previous work, and present
124	our new results on the γ -Sz phase.
125	
126	2. Methods
127	Powdered szomolnokite was synthesized through collaboration with Isoflex (FeSO ₄ ·H ₂ O, using
127	Powdered szomolnokite was synthesized through collaboration with Isoflex (FeSO ₄ ·H ₂ O, using
127 128	Powdered szomolnokite was synthesized through collaboration with Isoflex (FeSO ₄ ·H ₂ O, using 96% 57 Fe) and loaded into a symmetric diamond anvil cell (DAC) using a helium pressure
127 128 129	Powdered szomolnokite was synthesized through collaboration with Isoflex (FeSO ₄ ·H ₂ O, using 96% 57 Fe) and loaded into a symmetric diamond anvil cell (DAC) using a helium pressure medium to achieve hydrostatic pressure conditions. Diamond anvils (250 µm flat culet diameter,
127 128 129 130	Powdered szomolnokite was synthesized through collaboration with Isoflex (FeSO ₄ ·H ₂ O, using 96% 57 Fe) and loaded into a symmetric diamond anvil cell (DAC) using a helium pressure medium to achieve hydrostatic pressure conditions. Diamond anvils (250 µm flat culet diameter, 300 µm bevel) were mounted on either a tungsten carbide seat (upstream side of the DAC) or a
127 128 129 130 131	Powdered szomolnokite was synthesized through collaboration with Isoflex (FeSO ₄ ·H ₂ O, using 96% 57 Fe) and loaded into a symmetric diamond anvil cell (DAC) using a helium pressure medium to achieve hydrostatic pressure conditions. Diamond anvils (250 µm flat culet diameter, 300 µm bevel) were mounted on either a tungsten carbide seat (upstream side of the DAC) or a cubic boron nitride seat (downstream side of the DAC) to maximize the accessible 20 range for
127 128 129 130 131 132	Powdered szomolnokite was synthesized through collaboration with Isoflex (FeSO ₄ ·H ₂ O, using 96% 57 Fe) and loaded into a symmetric diamond anvil cell (DAC) using a helium pressure medium to achieve hydrostatic pressure conditions. Diamond anvils (250 µm flat culet diameter, 300 µm bevel) were mounted on either a tungsten carbide seat (upstream side of the DAC) or a cubic boron nitride seat (downstream side of the DAC) to maximize the accessible 20 range for X-ray diffraction measurements. Using an electric discharge machine, a 150 µm (diameter) hole
127 128 129 130 131 132 133	Powdered szomolnokite was synthesized through collaboration with Isoflex (FeSO ₄ ·H ₂ O, using 96% 57 Fe) and loaded into a symmetric diamond anvil cell (DAC) using a helium pressure medium to achieve hydrostatic pressure conditions. Diamond anvils (250 µm flat culet diameter, 300 µm bevel) were mounted on either a tungsten carbide seat (upstream side of the DAC) or a cubic boron nitride seat (downstream side of the DAC) to maximize the accessible 20 range for X-ray diffraction measurements. Using an electric discharge machine, a 150 µm (diameter) hole was drilled into a pre-indented (50 µm thick) rhenium gasket, which served as the sample
127 128 129 130 131 132 133 134	Powdered szomolnokite was synthesized through collaboration with Isoflex (FeSO ₄ ·H ₂ O, using 96% 57 Fe) and loaded into a symmetric diamond anvil cell (DAC) using a helium pressure medium to achieve hydrostatic pressure conditions. Diamond anvils (250 µm flat culet diameter, 300 µm bevel) were mounted on either a tungsten carbide seat (upstream side of the DAC) or a cubic boron nitride seat (downstream side of the DAC) to maximize the accessible 20 range for X-ray diffraction measurements. Using an electric discharge machine, a 150 µm (diameter) hole was drilled into a pre-indented (50 µm thick) rhenium gasket, which served as the sample chamber. The powdered szomolnokite sample that was loaded had the approximate shape of a
127 128 129 130 131 132 133 134 135	Powdered szomolnokite was synthesized through collaboration with Isoflex (FeSO ₄ ·H ₂ O, using 96% ⁵⁷ Fe) and loaded into a symmetric diamond anvil cell (DAC) using a helium pressure medium to achieve hydrostatic pressure conditions. Diamond anvils (250 μ m flat culet diameter, 300 μ m bevel) were mounted on either a tungsten carbide seat (upstream side of the DAC) or a cubic boron nitride seat (downstream side of the DAC) to maximize the accessible 20 range for X-ray diffraction measurements. Using an electric discharge machine, a 150 μ m (diameter) hole was drilled into a pre-indented (50 μ m thick) rhenium gasket, which served as the sample chamber. The powdered szomolnokite sample that was loaded had the approximate shape of a disk with the following dimensions: 85 μ m in diameter and approximately 50 μ m thick, together

> Revision 1 Pardo et al., 2022 American Mineralogist

138	of 0.44 GPa in the sample chamber. The sample chamber diameter decreased by ${\sim}20~\mu\text{m}$
139	immediately after helium loading at 0.44 GPa, and the approximate volume ratio of helium to
140	sample and pressure gauges (tungsten powder and a ruby sphere) was ~3:1. In-situ pressure
141	determination was achieved using X-ray diffraction (XRD) measurements of the tungsten
142	powder at each compression point (Dorogokupets and Oganov 2006). The tungsten and sample
143	were not co-located, thus pressure determination and uncertainties were estimated by collecting
144	an XRD pattern of the tungsten powder immediately before (and after) collecting an XRD
145	pattern of the szomolnokite sample. The reported experiment pressure was taken to be the
146	standard error of these two pressure measurements.
147	
148	X-ray diffraction measurements were conducted at beamline 12.2.2 of the Advanced Light
149	Source at Lawrence Berkeley National Laboratory up to 83 GPa at room temperature. An X-ray
150	wavelength of 0.4972 Å and a beam size of 20 μm were used on a sample size of ~85 μm in
151	diameter. Ambient pressure (1 bar) room-temperature measurements were performed on
152	powdered szomolnokite in a Kapton tube. The sample-to-detector distance and tilt were
153	calibrated using a CeO ₂ standard. The integration of raw diffraction patterns was performed
154	using the Dioptas software (Prescher and Prakapenka 2015). Saturated regions and diamond
155	reflections were manually masked for each XRD pattern in Dioptas before being exported to
156	GSAS-II for Pawley refinement (Toby and Von Dreele 2013; Prescher and Prakapenka 2015).
157	Although the observable 2θ range extends up to 28.7° , we restrict our refinement analysis to the
158	range of $\sim 4 \le 2\theta(^\circ) \le 24$ to simplify background removal.
159	

159

> Revision 1 Pardo et al., 2022 American Mineralogist

	Pardo et al., 2022 American Mineralogist
160	High-pressure synchrotron infrared compression and decompression measurements up to 24 GPa
161	were conducted at beamline 22-IR-1 at the National Synchrotron Light Source II at Brookhaven
162	National Laboratory. Powdered szomolnokite was loaded into a diamond anvil cell with a KBr
163	pressure medium and ruby sphere for pressure determination. Synchrotron FTIR spectroscopic
164	measurements were taken using a Bruker Vertex 80v FTIR spectrometer and a custom IR
165	microscope system with a wide-band MCT detector from 400-5000 cm ⁻¹ .
166	
167	Third-order Birch Murnaghan equation of state fits for each of the three structural polymorphs
168	identified in this study were carried out using the MINUTI (MINeral physics UTIlities) open-
169	source software (Sturhahn 2020). Three approaches were used to fit each of the polymorphs: (1)
170	K_{T0} was fixed and V_{T0} and K_{T0} were varied without the use of priors; (2) K_{T0} , V_{T0} , and K_{T0} were
171	varied without priors; and (3) K_{T0} ', V_0 , and K_{T0} were all varied with priors. See Table 2 for select
172	details on initial values and choice of prior values. The $C2/c$ and P-1 single crystal szomolnokite
173	data of Meusburger et al. (2019) were refit using the same procedure described above. This
174	allows our work to be directly compared with the low-pressure polymorphs, including pressure-
175	dependent error ellipses to visualize the correlation between V , K_T and K_T ' for each fit result.
176	
177	3. Results
178	Figure 1 presents select X-ray diffraction patterns with predicted reflections corresponding to
179	each structural phase identified in this work. An overview of the full integrated diffraction
180	pattern data set is displayed in the supplemental Figure S1. The $C2/c$ structure fits the XRD
181	patterns from 0-5 GPa, after which a second-order structural phase transition occurs and the
182	patterns are well described by the P-1 structure. Following the nomenclature used for the same

> Revision 1 Pardo et al., 2022 American Mineralogist

183	C2/c to P-1 transition for kieserite (MgSO ₄ ·H ₂ O) (see Meusburger et al. 2020), we term the
184	FeSO ₄ ·H ₂ O <i>P</i> -1 structure β -Sz. Between 12.7(3)-16.8(3) GPa β -Sz undergoes a previously
185	unknown transformation into a $P2_1$ structure, now termed γ -Sz, that fits the data until the last
186	compression point measured at 83 GPa. See supplement Table S1 for the full set of refined
187	lattice parameters resulting from Pawley refinement in GSAS-II. Figure 1 shows a schematic of
188	the three unit cells associated with the $C2/c$, P-1, and P2 ₁ phases. See Figure S2 for the relative
189	size and orientation of each cell. High-pressure FTIR measurements indicate retention of water
190	and the strengthening of hydrogen bonds within the unit cell of each phase up to pressures of 24
191	GPa.

192

193 **3.1** *C*2/*c* to β-Sz *P*-1: **0.0-12.7** GPa

194 The ambient pressure diffraction pattern was fitted using the lattice parameters and space group 195 C2/c reported from an earlier study on szomolnokite (Giester et al. 1994; Meusburger et al. 196 2019) as starting values in the refinement process. The ambient pressure lattice parameters 197 derived in this work are generally in good agreement with those reported from recent XRD 198 experiments, with the exception of those reported by Pistorius (1960) (Table 1). With increasing 199 pressure, the space group $C^{2/c}$ provides a good fit to the XRD patterns up to 5 GPa. At this 200 pressure peak splitting is observed, and the patterns can no longer be fit using the predicted 201 reflections for the monoclinic C2/c structure. Using the cell-search capability in GSAS-II, 202 selected crystal structures and space groups were tested in order to find the best-fit crystal 203 structure model for the high-pressure phase. This analysis finds a structural phase transition 204 occurring from the monoclinic C2/c to triclinic P-1 structure between 5.0(1) and 6.6(1) GPa. 205

> Revision 1 Pardo et al., 2022 American Mineralogist

206	The XRD patterns collected from 6.6(1) GPa to 12.7(3) GPa are well described by the triclinic
207	structure (P-1). The monoclinic-triclinic transition pressure interval in our study brackets the
208	transition pressure reported from recent XRD measurements (Giester et al. 1994; Meusburger et
209	al. 2019). Meusburger et al. (2019) performed single crystal XRD measurements on
210	szomolnokite up to 9.2 GPa, finding a second-order, monoclinic-triclinic structural phase
211	transition occurring between 5.951(5)-6.154(1) GPa. They identify distortion in the crystal lattice
212	after the phase transition, which creates a second, distinct octahedral site within the crystal
213	structure. A comparison between our low-pressure monoclinic and high-pressure triclinic (β -Sz)
214	lattice parameters and those reported by Meusburger et al. (2019) is shown in Figure 2. The
215	structural parameters of β -Sz are transformed into the monoclinic $C2/c$ space group for both
216	datasets to allow for easier comparison (see Giester et al. (1994) for details of this
217	transformation).

218

219 The unit cell volume values agree well with the single crystal data at all overlapping pressures 220 with more deviation occurring between the reported lattice parameters. The *a*-parameter agrees 221 well up to ~ 2 GPa, where it begins to deviate (up to ~ 0.06 Å difference) and follows a steeper 222 pressure-dependence trend compared to Meusburger et al. (2019). The *b*-parameter in both 223 studies follow the same general trend, but in our work it appears to decrease linearly versus 224 parabolically in the C2/c phase. In the β -Sz phase the differences between *b*-parameters increases 225 by approximately double (from ~ 0.01 Å to ~ 0.02 Å) with increasing pressure. Our values are 226 higher than the single crystal work and further diverge as pressure increases. The *c*-parameter in 227 both studies agrees the best out of the three unit cell lengths up to 6.6 GPa, just past the β -Sz 228 phase transition. After this pressure our *c*-parameter values trend lower than the single crystal

> Revision 1 Pardo et al., 2022 American Mineralogist

	Turdo et ul., 2022 American Mineraiogist
229	work and intersect the <i>b</i> -parameter at ~8.8 GPa. The <i>b</i> and <i>c</i> parameters as reported by
230	Meusburger et al. (2019) indicate they would also intersect, but at higher pressures than our data.
231	Axial ratio trends for unit cell lengths a, b, and c are plotted in supplemental Figure S3.
232	
233	The unit cell angles α , β , and γ across the entire pressure range of this work together with the
234	parameters reported by Meusburger et al. (2019) are shown in panels (b) and (c) of Figure 2. The
235	α and γ angles in the C2/c and β -Sz phase are fixed at 90°, characteristic of the monoclinic
236	structure. For easier comparison between the three phases, the β -Sz data are transformed into the
237	monoclinic setting using the cell transformation tool in GSAS-II, using the transformation matrix
238	as described in Giester et al. (1994). The transformation provides a description of the cell in the
239	monoclinic structure by allowing the α and γ angles to be approximately 90°. Lattice parameters
240	in the P-1 space group are reported in Table S3. For both our data and the transformed P-1 data
241	reported by Meusburger et al. (2019) α remains approximately constant, with our values
242	scattering around 90°, while γ increases by ~2° throughout the β -Sz stability field.
243	
244	3.2 γ-Sz <i>P</i> 2 ₁ : 16.8-83 GPa
245	At 16.8 GPa, the <i>P</i> -1 space group cannot describe the XRD pattern due to the appearance of
246	intense peaks where no <i>P</i> -1 reflections are predicted (e.g., at ~ $10.5^{\circ} 2\theta$), and the disappearance
247	or merging of triclinic-assigned peaks (see Figure S4 for reflections predicted by the P-1 space
248	group at 16.8 GPa). These significant changes in the pattern at 16.8(3) GPa indicate the
249	likelihood that a structural phase transition is occurring. A cell-search was again performed in
250	order to find the best-fit crystal structure and space group. The results of this search indicated
251	that at 16.8(3) GPa, β -Sz undergoes a phase transition from triclinic <i>P</i> -1 to a primitive

> Revision 1 Pardo et al., 2022 American Mineralogist

252	monoclinic lattice. We select $P2_1$ as the best-fitting space group (see discussion below), and term
253	this new phase γ -Sz. Upon further compression, the XRD data are compatible with the $P2_1$
254	structure up to the highest pressure in this study, 83 GPa. Figure 1 displays selected X-ray
255	diffraction patterns highlighting the ambient pressure pattern and the two structural phase
256	transitions occurring between 5.0(1)-6.6(1) GPa and 12.7(3)-16.8(3) GPa.
257	
258	At 16.8(3) GPa, there are several new reflections with a larger $\partial 2\theta / \partial P$ dependence compared to
259	other reflections. These reflections cannot be attributed to other materials in the sample chamber
260	(W, Al ₂ O ₃ , He, or Re). The decomposition of β -Sz was considered, but these additional
261	reflections cannot be attributed to H ₂ O ice VI-VIII, Fe ₂ O ₃ , or other iron sulfate/hydroxyl
262	mixtures. However, direct comparison of various iron sulfate/hydroxyl mixtures at these
263	experimental pressures is difficult without available high-pressure XRD data for such phases. In
264	Figure S4 we demonstrate that the theoretical high-pressure phase of SO ₂ does not account for
265	the new reflections (Zhang et al. 2020). While this is not an exhaustive list of possible phases,
266	the shift of the additional reflections as a function of pressure is well-described by a primitive
267	monoclinic space group and thus we do not attribute these new reflections to a separate phase.
268	
269	This work tested many possible crystal structures and space groups in order to identify the best-
270	fitting structural model to the γ -Sz phase transition at 16.8(3) GPa. The <i>P</i> -1 and <i>P</i> 1 space groups
271	do not account for several peak positions in the γ -Sz phase, including the complete absence of
272	the cluster of peaks between 10° and 11° 20. A triclinic cell with a larger unit cell volume
273	compared to the last-calculated $C2/c$ volume could be a possible solution, but due to the inability
274	to extract atomic positions within the unit cell and choose a cell with consistent density relative

> Revision 1 Pardo et al., 2022 American Mineralogist

- 275 to β-Sz, we do not consider triclinic cells as candidate structures. Nevertheless, the data is well-276 fit by a primitive monoclinic structure of comparable size to the monoclinic-setting β -sz unit cell 277 and thus exhibits reflections that can be attributed to a higher symmetry phase. 278 279 Supplemental figures S5-S6 plots reflections for the C2/m (Figure S5 only), $P2_1$, $P2_1/m$, P2/m, 280 P2/c, $P2_1/c$, P2, Pm, and Pc groups resulting from Pawley refinement fits at 16.8 and 67.4 GPa. 281 Face-centered monoclinic structures do not fit the data, as seen in Figure S5 with the example of the C2/m space group, thus only primitive monoclinic structures were examined in detail. The 282 283 eight monoclinic-P space groups tested here all exhibit almost identical reflection sets except for 284 a few reflection regions located at ~5°, ~8.45°, ~12.15°, ~14.1°, ~20.3° 20 at 16.8 GPa. The peaks present at ~12.15° and ~14.1° 20 for space groups such as Pm and P2/c additionally 285 286 overlap with Re peaks from the strained gasket detected by tails of the X-ray focused beam. 287 Figure S5 contains a caked diffraction image at 16.8 GPa zoomed into the 20 region containing 288 two Re peaks at $\sim 12.15^{\circ}$ and $\sim 14.1^{\circ} 2\theta$. The Re peaks are diffuse and the image does not indicate 289 presence of overlapping szomolnokite reflections. For this reason, only space groups without 290 reflections overlapping with the ~12.15° 20 Re peak were considered: $P2_1$, $P2_1/m$, P2/m, and 291 $P2_{1}/c$.
- 292

Upon increasing pressure it is clear that more than one reflection is needed to fit the peaks at $\sim 5.1^{\circ} 2\theta$ and $\sim 9.4^{\circ} 2\theta$, which only includes the $P2_1$, $P2_1/m$, and P2/m space groups, which are almost identical. With the broad and overlapping nature of the peaks characteristic of highpressure powder data, it is difficult to make any further distinction based on the quality of fits (see Figure S7 for R_w discussion). Out of these three space groups, the $P2_1$ phase is chosen as the

> Revision 1 Pardo et al., 2022 American Mineralogist

298	reported space group due to it being the lowest symmetry. However, we fit the entire γ -Sz
299	pressure region with both the $P2_1$ and $P2_1/m$ space groups and find that the resulting equation of
300	state parameters are the same within error. Lattice parameters for all space groups fit are given in
301	Table S1-S3. We stress that the γ -Sz phase may be attributed to several primitive monoclinic
302	space groups, and although we choose the $P2_1$ space group for discussion within this manuscript,
303	future work is needed to accurately determine the atomic positions within the unit cell of γ -Sz
304	and allow for selection of a unique space group.

305

306 The stability of γ -Sz and the retention of H₂O within its crystal structure after the high-pressure 307 phase transition is further supported by high-pressure synchrotron infrared measurements. Figure 308 3 displays measured FTIR spectra in the frequency range of 500-4000 cm⁻¹ of 17 compression measurements up to 24 GPa and four decompression measurements. Assigned SO_4^{2-} and $H_2O_4^{2-}$ 309 310 bands from several infrared spectroscopy measurements on szomolnokite are plotted at the 311 bottom of the right panel in Figure 3 (Chio et al. 2007; Lane 2007; Majzlan et al. 2011; 312 Meusburger et al. 2019). Spectral features indicate increased hydrogen bonding environments 313 and strength in the crystal structure due to the broadening and pressure-dependent shift of H₂O bands in the $\sim 3000 \text{ cm}^{-1}$ range towards lower wavenumbers with increasing pressure. The shift 314 315 towards lower wavenumbers, combined with increasingly broadened H₂O bands without addition of new spectral features in the $\sim 3000 \text{ cm}^{-1}$ region with increasing pressure does not indicate 316 317 addition of H₂O groups into the unit cell, suggesting that the monohydrated structure is the most 318 stable at high pressure. Upon decompression, all bands in the spectra return to the same 319 wavenumber positions and relative intensities measured at ambient pressure prior to 320 compression.

> Revision 1 Pardo et al., 2022 American Mineralogist

2	2	1
Э	7	T

322	The β -Sz <i>P</i> -1 to γ -Sz <i>P</i> 2 ₁ transition exhibits a noticeable volume drop (~6% decrease over a ~4
323	GPa pressure interval, see Figure 4). The volume drop is characterized by a sharp decrease in the
324	<i>c</i> -axis unit cell length (0.25 Å), and moderate drops in the <i>a</i> - and <i>b</i> -axis lengths (0.12 and 0.14 Å,
325	respectively) over the ~4 GPa interval bracketing the phase transition. At higher pressures, the β
326	angle begins to decrease and continues until ~45 GPa. At this pressure, the β angle plateaus until
327	the last compression point. The β angle decreases from 118.2° to 114.8° from the start of the γ -
328	Sz phase transition at 16.8(3) GPa to the last measured compression point at 83 GPa. Over the γ -
329	Sz pressure range the <i>a</i> and <i>c</i> axis lengths compress at approximately the same rate beginning at
330	~45 GPa, corresponding with the plateauing of the β angle. This behavior may occur over the
331	pressure range in which the Fe atoms undergo a broad spin transition between 45 and 95 GPa.
332	See Perez et al. (2020) for further discussion regarding spin transition models for szomolnokite
333	and its high-pressure phases.
334	
335	4. Equations of State
336	Equation of state (EoS) fits from MINUTI using priors and pressure-volume data for
337	szomolnokite and its β -Sz and γ -Sz high-pressure polymorphs are presented in Figure 4a. We
338	compare our re-fit of the single-crystal data from Meusburger et al. (2019) for the $C2/c$ and β -Sz
339	P-1 phases. We find that extremely small differences in volume measurements, most likely due
340	to experimental conditions, combined with small volume-error values, produces EoS fit results
341	with statistically different V_0 values (see supplemental Figures S8-S10 for K_T - V_T error ellipses
342	for each phase). Error ellipses provide a valuable method for visualizing the uncertainty and
343	correlation between model parameters in an EoS fit. Figure 4b and 4c plot K_T '- K_T at 0 and 7

> Revision 1 Pardo et al., 2022 American Mineralogist

344	GPa. Error ellipses for our re-fit results of Meusburger et al. (2019) along with their reported
345	EoS fit values at 1 bar are also plotted. We find that for the $C2/c$ phase at 1 bar both studies
346	exhibit a strong negative correlation between K_T , and K_T , but these parameters are positively
347	correlated by 7 GPa in the β -Sz phase.
348	
349	EoS model parameters are commonly reported at 1 bar, regardless if the data are representative
350	of phases whose stability fields only exist at high pressure. In this work, we demonstrate the
351	importance of comparing the elastic properties of high-pressure phases within their respective
352	stability fields. In supplemental Figure S11 we plot our re-fit K_T vs. K_T ' error ellipse results for
353	the Mg-hydrated sulfate endmember kieserite (Mg(SO ₄)·H ₂ O) using volume values reported
354	from single-crystal XRD data (Meusburger et al. 2020), and a re-fit of a single-crystal XRD
355	volume measurements of blödite (Na2Mg(SO4)2·4H2O) (Comodi et al. 2014), a candidate Na-
356	bearing mineral modeled on the surface of Europa (Dalton et al. 2012). We find that at ambient
357	pressure, szomolnokite is less compressible than blödite, but more than kieserite. However, by 7
358	GPa, both szomolnokite and kieserite have undergone $C2/c$ to P-1 structural transitions (into the
359	β -Sz and β -Ks phases, respectively) and have approximately the same bulk modulus value, while
360	blödite remains lower than both phases up to 20 GPa. Figure 5 plots K_T and density as a function
361	of pressure for szomolnokite, kieserite, blödite, and their respective high-pressure phases
362	resulting from our MINUTI EoS fits and re-fits.
363	
364	Even though β -Ks and β -Sz display similar incompressibilities around 10 GPa, kieserite and β -
365	Ks are much lower in density (Figure 5). Szomolnokite exhibits a slight density increase across

366 the β -Sz transition, but undergoes a sharp increase in density across the γ -Sz transition. Blödite is

> Revision 1 Pardo et al., 2022 American Mineralogist

367	significantly lower in density than both phases which is accompanied by its lower bulk modulus
368	across this entire pressure range. It was not observed to undergo a phase transition from its
369	ambient pressure monoclinic $P2_1/a$ structure up to 11.2 GPa and retains water within the unit
370	cell, exhibiting increased hydrogen bonding with increasing pressure (Comodi et al. 2014).
371	
372	5. Implications
373	Surface measurements and observations of icy satellites in the solar system indicate an
374	abundance of hydrated sulfates on Europa, Ganymede, and Callisto (Dalton et al. 2012; Hibbitts
375	et al. 2019; Cartwright et al. 2020). The relative exogenic vs. endogenic origins of these surface
376	sulfur-bearing ice and salt phases is unclear (Trumbo et al. 2020), but even a purely exogenic
377	sulfur origin could result in subsequent sulfur cycling due to exchange between the icy crust and
378	underlying interior (Vu et al. 2020). The stability and elastic properties of szomolnokite and
379	related phases discussed in this work imply complex pressure and chemical-dependent behavior,
380	and thus potentially important factors for icy satellite interiors. Within the high-pressure triclinic
381	stability field, β -Sz and β -Ks exhibit equal incompressibility with drastically different density,
382	while the addition of Fe into Mg-bearing hydrated sulfates may affect the elastic parameters and
383	increase the depth at which the monoclinic-triclinic transition occurs within sulfate-bearing icy
384	mantles. For smaller icy satellites, where mantle pressures are less than 5 GPa, this transition
385	may not occur at all.
386	
387	If β -Sz retains its water after the γ -Sz structural transition, as our preliminary FTIR data indicate,
388	the stability of this new high-pressure phase to pressures of at least 83 GPa could have

389 implications for its ability to retain water in planetary deep interiors. However, other obvious

> Revision 1 Pardo et al., 2022 American Mineralogist

390	factors such as temperature and co-existing phases, would affect this behavior and are largely
391	unexplored. For example, incorporating Mg into the crystal structure could significantly lower
392	the β -phase transition pressure (Meusburger et al. 2020) and also affect water retention. In
393	particular, future work investigating the effect of temperature on the structural behavior of
394	szomolnokite, its high-pressure β -Sz and γ -Sz phase transitions, and other co-existing and/or
395	hydrous sulfates will deepen our understanding of their ability to retain water at conditions most
396	relevant to icy satellite or terrestrial-type planetary interiors. Future work investigating the
397	electronic and vibrational properties of szomolnokite will further broaden our understanding of
398	the Fe-endmember hydrated sulfate. Such data, including the work presented here, are needed to
399	conduct more complex phase equilibria modeling for planetary interiors in which hydrous
400	sulfates are proposed to exist.
401	
401 402	Acknowledgements
	Acknowledgements We thank the W.M. Keck Foundation and the National Science Foundation (NSF-CSEDI-EAR-
402	
402 403	We thank the W.M. Keck Foundation and the National Science Foundation (NSF-CSEDI-EAR-
402 403 404	We thank the W.M. Keck Foundation and the National Science Foundation (NSF-CSEDI-EAR- 1600956, 2009935) for supporting this work. O.P. acknowledges the support of DOE NNSA
402 403 404 405	We thank the W.M. Keck Foundation and the National Science Foundation (NSF-CSEDI-EAR- 1600956, 2009935) for supporting this work. O.P. acknowledges the support of DOE NNSA SSGF (DE-NA0003960). Work at the National Synchrotron Light Source II at Brookhaven
402 403 404 405 406	We thank the W.M. Keck Foundation and the National Science Foundation (NSF-CSEDI-EAR- 1600956, 2009935) for supporting this work. O.P. acknowledges the support of DOE NNSA SSGF (DE-NA0003960). Work at the National Synchrotron Light Source II at Brookhaven National Laboratory was funded by the Department of Energy (DEAC98- 06CH10886). The use
402 403 404 405 406 407	We thank the W.M. Keck Foundation and the National Science Foundation (NSF-CSEDI-EAR- 1600956, 2009935) for supporting this work. O.P. acknowledges the support of DOE NNSA SSGF (DE-NA0003960). Work at the National Synchrotron Light Source II at Brookhaven National Laboratory was funded by the Department of Energy (DEAC98- 06CH10886). The use of the 22-IR-1 beamline was supported by COMPRES under NSF Cooperative Agreement EAR
402 403 404 405 406 407 408	We thank the W.M. Keck Foundation and the National Science Foundation (NSF-CSEDI-EAR- 1600956, 2009935) for supporting this work. O.P. acknowledges the support of DOE NNSA SSGF (DE-NA0003960). Work at the National Synchrotron Light Source II at Brookhaven National Laboratory was funded by the Department of Energy (DEAC98- 06CH10886). The use of the 22-IR-1 beamline was supported by COMPRES under NSF Cooperative Agreement EAR

> Revision 1 Pardo et al., 2022 American Mineralogist

413	Bénard, A., Klimm, K., Woodland, A.B., Arculus, R.J., Wilke, M., Botcharnikov, R.E., Shimizu,
414	N., Nebel, O., Rivard, C., and Ionov, D.A. (2018) Oxidising agents in sub-arc mantle
415	melts link slab devolatilisation and arc magmas. Nature Communications, 9, 3500.
416	Bishop, J.L., Parente, M., Weitz, C.M., Noe Dobrea, E.Z., Roach, L.H., Murchie, S.L., McGuire,
417	P.C., McKeown, N.K., Rossi, C.M., Brown, A.J., and others (2009) Mineralogy of
418	Juventae Chasma: Sulfates in the light-toned mounds, mafic minerals in the bedrock, and
419	hydrated silica and hydroxylated ferric sulfate on the plateau. Journal of Geophysical
420	Research, 114, E00D09.
421	Cartwright, R.J., Nordheim, T.A., Cruikshank, D.P., Hand, K.P., Roser, J.E., Grundy, W.M.,
422	Beddingfield, C.B., and Emery, J.P. (2020) Evidence for Sulfur-bearing Species on
423	Callisto's Leading Hemisphere: Sourced from Jupiter's Irregular Satellites or Io? The
424	Astrophysical Journal, 902, L38.
425	Chio, C.H., Sharma, S.K., and Muenow, D.W. (2007) The hydrates and deuterates of ferrous
426	sulfate (FeSO ₄): a Raman spectroscopic study. Journal of Raman Spectroscopy, 38, 87–
427	99.
428 429 430	Chou, IM., Seal, R.R., and Wang, A. (2013) The stability of sulfate and hydrated sulfate minerals near ambient conditions and their significance in environmental and planetary sciences. Journal of Asian Earth Sciences, 62, 734–758.
431	Comodi, P., Nazzareni, S., Balic-Zunic, T., Zucchini, A., and Hanfland, M. (2014) The high-
432	pressure behavior of blödite: A synchrotron single-crystal X-ray diffraction study.
433	American Mineralogist, 99, 511–518.
434 435	Dalton, J.B., and Pitman, K.M. (2012) Low temperature optical constants of some hydrated sulfates relevant to planetary surfaces. Journal of Geophysical Research: Planets, 117.
436	Dalton, J.B., Shirley, J.H., and Kamp, L.W. (2012) Europa's icy bright plains and dark linea:
437	Exogenic and endogenic contributions to composition and surface properties. Journal of
438	Geophysical Research: Planets, 117.
439 440	Dorogokupets, P.I., and Oganov, A.R. (2006) Equations of state of Al, Au, Cu, Pt, Ta, and W and revised ruby pressure scale. Doklady Earth Sciences, 410, 1091–1095.
441	Dyar, M.D., Breves, E., Jawin, E., Marchand, G., Nelms, M., O'Connor, V., Peel, S., Rothstein,
442	Y., Sklute, E.C., Lane, M.D., and others (2013) Mössbauer parameters of iron in sulfate
443	minerals. American Mineralogist, 98, 1943–1965.
444	Ende, M., Kirkkala, T., Loitzenbauer, M., Talla, D., Wildner, M., and Miletich, R. (2020) High-
445	Pressure Behavior of Nickel Sulfate Monohydrate: Isothermal Compressibility, Structural
446	Polymorphism, and Transition Pathway. Inorganic Chemistry, 59, 6255–6266.
447 448 449	Fortes, A.D., Fernandez-Alonso, F., Tucker, M., and Wood, I.G. (2017) Isothermal equation of state and high-pressure phase transitions of synthetic meridianiite (MgSO ₄ ·11D ₂ O) determined by neutron powder diffraction and quasielastic neutron spectroscopy. Acta

> Revision 1 Pardo et al., 2022 American Mineralogist

450 Crystallographica Section B Structural Science, Crystal Engineering and Materials, 73, 451 33-46 452 Franz, H.B., King, P.L., and Gaillard, F. (2019) Sulfur on Mars from the Atmosphere to the Core. In Volatiles in the Martian Crust pp. 119–183. Elsevier. 453 454 Giester, G., Lengauer, C.L., and Redhammer, G.J. (1994) Characterization of the FeSO₄·H₂O-455 $CuSO_4 \cdot H_2O$ solid-solution series, and the nature of poitevinite, $(Cu,Fe)SO_4 \cdot H_2O$. The Canadian Mineralogist, 32, 873-884. 456 457 Hibbitts, C.A., Stockstill-Cahill, K., Wing, B., and Paranicas, C. (2019) Color centers in salts -458 Evidence for the presence of sulfates on Europa. Icarus. 326, 37–47. 459 King, P.L., and McLennan, S.M. (2010) Sulfur on Mars. Elements, 6, 107–112. 460 Lane, M.D. (2007) Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals. 461 American Mineralogist, 92, 1–18. Li, J.-L., Schwarzenbach, E.M., John, T., Ague, J.J., Tassara, S., Gao, J., and Konecke, B.A. 462 463 (2021) Subduction zone sulfur mobilization and redistribution by intraslab fluid-rock interaction. Geochimica et Cosmochimica Acta, 297, 40-64. 464 465 Lichtenberg, K.A., Arvidson, R.E., Morris, R.V., Murchie, S.L., Bishop, J.L., Fernandez Remolar, D., Glotch, T.D., Noe Dobrea, E., Mustard, J.F., Andrews-Hanna, J., and others 466 467 (2010) Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, 468 Mars. Journal of Geophysical Research, 115, E00D17. 469 Ligier, N., Paranicas, C., Carter, J., Poulet, F., Calvin, W.M., Nordheim, T.A., Snodgrass, C., 470 and Ferellec, L. (2019) Surface composition and properties of Ganymede: Updates from 471 ground-based observations with the near-infrared imaging spectrometer 472 SINFONI/VLT/ESO. Icarus, 333, 496–515. 473 Machado de Oliveira, C., Gesser Müller, T., Patricio Ferreira, L., Prado Cechinel, M.A., 474 Peterson, M., and Raupp-Pereira, F. (2019) Valorization of iron pyrite from coal mining in southern Brazil. Journal of Environmental Chemical Engineering, 7, 102931. 475 476 Maizlan, J., Alpers, C.N., Koch, C.B., McCleskey, R.B., Myneni, S.C.B., and Neil, J.M. (2011) Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the 477 478 weathered massive sulfide deposit at Iron Mountain, California. Chemical Geology, 284, 479 296-305. 480 McCanta, M.C., Dyar, M.D., and Treiman, A.H. (2014) Alteration of Hawaiian basalts under 481 sulfur-rich conditions: Applications to understanding surface-atmosphere interactions on 482 Mars and Venus. American Mineralogist, 99, 291–302. 483 Meusburger, J.M., Ende, M., Talla, D., Wildner, M., and Miletich, R. (2019) Transformation 484 mechanism of the pressure-induced C2/c-to-P-1 transition in ferrous sulfate monohydrate 485 single crystals. Journal of Solid State Chemistry, 277, 240–252.

> Revision 1 Pardo et al., 2022 American Mineralogist

486 Meusburger, J.M., Ende, M., Matzinger, P., Talla, D., Miletich, R., and Wildner, M. (2020) Polymorphism of Mg-monohydrate sulfate kieserite under pressure and its occurrence on 487 488 giant icy jovian satellites. Icarus, 336, 113459. 489 Nakamura, R., and Ohtani, E. (2011) The high-pressure phase relation of the MgSO₄ $-H_2O$ system and its implication for the internal structure of Ganymede. Icarus, 211, 648-654. 490 491 Perez, T., Finkelstein, G.J., Pardo, O., Solomatova, N.V., and Jackson, J.M. (2020) A 492 Synchrotron Mössbauer Spectroscopy Study of a Hydrated Iron-Sulfate at High 493 Pressures. Minerals, 10, 146. 494 Pistorius, W.F.T. (1960) Lattice Constants of FeSO₄·H₂O (artificial szomolnokite) and NiSO₄·H₂O. Bulletin des Sociétés Chimiques Belges, 69, 570–574. 495 496 Prescher, C., and Prakapenka, V.B. (2015) DIOPTAS: a program for reduction of two-497 dimensional X-ray diffraction data and data exploration. High Pressure Research, 35, 223-230. 498 499 Schwarzenbach, E.M., Caddick, M.J., Petroff, M., Gill, B.C., Cooperdock, E.H.G., and Barnes, 500 J.D. (2018) Sulphur and carbon cycling in the subduction zone mélange. Scientific 501 Reports, 8, 15517. 502 Siriwardane, R.V., Poston Jr, J.A., Fisher, E.P., Shen, M.-S., and Miltz, A.L. (1999) 503 Decomposition of the sulfates of copper, iron (II), iron (III), nickel, and zinc: XPS, SEM, 504 DRIFTS, XRD, and TGA study. Applied Surface Science, 152, 219–236. 505 Sturhahn, W. (2020) MINeral physics UTIlity (MINUTI) open-source software package. 506 www.nrixs.com. 507 Talla, D., and Wildner, M. (2019) Investigation of the kieserite-szomolnokite solid-solution 508 series, (Mg,Fe)SO₄·H₂O, with relevance to Mars: Crystal chemistry, FTIR, and Raman 509 spectroscopy under ambient and martian temperature conditions. American Mineralogist, 510 104, 1732–1749. 511 Toby, B.H., and Von Dreele, R.B. (2013) GSAS-II: the genesis of a modern open-source all 512 purpose crystallography software package. Journal of Applied Crystallography, 46, 544-513 549. 514 Trumbo, S.K., Brown, M.E., and Hand, K.P. (2020) Endogenic and Exogenic Contributions to Visible-wavelength Spectra of Europa's Trailing Hemisphere. The Astronomical Journal, 515 516 160, 282. 517 Vu, T.H., Choukroun, M., Hodyss, R., and Johnson, P.V. (2020) Probing Europa's subsurface 518 ocean composition from surface salt minerals using in-situ techniques. Icarus, 349, 519 113746.

> Revision 1 Pardo et al., 2022 American Mineralogist

- Wendt, L., Gross, C., Kneissl, T., Sowe, M., Combe, J.-P., LeDeit, L., McGuire, P.C., and
 Neukum, G. (2011) Sulfates and iron oxides in Ophir Chasma, Mars, based on OMEGA
 and CRISM observations. Icarus, 213, 86–103.
- Wildner, M., and Giester, G. (1991) The crystal structures of kieserite-type compounds. I.
 Crystal structures of Me(II)SO₄·H₂O (Me = Mn, Fe, Co, Ni, Zn). Neues Jahrbuch für
 Mineralogie Journal of Mineralogy and Geochemistry, 7, 296–306.
- Wildner, M., Ende, M., Meusburger, J.M., Kunit, R., Matzinger, P., Talla, D., and Miletich, R.
 (2021) CoSO₄·H₂O and its continuous transition compared to the compression properties
 of isostructural kieserite-type polymorphs. Zeitschrift für Kristallographie Crystalline
 Materials, 236, 225–237.

Zhang, H., Tóth, O., Liu, X.-D., Bini, R., Gregoryanz, E., Dalladay-Simpson, P., De Panfilis, S., Santoro, M., Gorelli, F.A., and Martoňák, R. (2020) Pressure-induced amorphization and existence of molecular and polymeric amorphous forms in dense SO₂. Proceedings of the National Academy of Sciences, 117, 8736–8742.

- 534
- 535

Figure Captions

- 536 Figure 1. Integrated diffraction patterns at five selected compression points are plotted with a
- 537 vertical offset: the ambient pressure pattern and the diffraction patterns before and after each

538 structural phase transition. Each pattern has undergone background removal and the intensity of

- 539 each pattern has been normalized for easier comparison between the different compression points
- 540 such that the maximum value of each pattern is equal to one. Reflections for the crystal
- 541 structures used to fit each pattern are plotted below each respective pattern. The phase transition
- from the C2/c to P-1 space group occurs between 5.0(1) and 6.6(1) GPa, and the transition from
- 543 the *P*-1 to $P2_1$ space group occurs between 12.7(3) and 16.8(3) GPa. The unit cell
- transformations are described schematically to the right of the diffraction patterns, see Figure S2
- 545 for relative cell size and orientation.

- 547 **Figure 2.** The lattice parameters determined from this work are plotted as a function of pressure:
- 548 (a) *a*, *b*, *c*, (b) β , (c) α and γ . Lattice parameters reported by Meusburger et al. (2019) up to 9.2

> Revision 1 Pardo et al., 2022 American Mineralogist

549	GPa are also plotted for comparison. Dashed lines indicate the $C2/c$ to P-1 (between 5.0(1) and
550	6.6(1) GPa) and P-1 to $P2_1$ (between 12.7(3) and 16.8(3) GPa) structural transitions. Lattice
551	parameters for the P-1 cell have been transformed into the monoclinic setting for easier
552	comparison across the dataset.
553	
554	Figure 3. Panel (a) plots infrared spectra for the 17 compression points up to 24 GPa. Pressure-
555	dependent shift of the H_2O bands initially centered around 3200 cm ⁻¹ at 1 bar towards lower
556	wavenumbers with increasing pressure indicates increased hydrogen bonding within the crystal
557	structure. Panel (b) plots the four decompression measurements. The pre-compression 1 bar
558	pattern is also plotted against the post-decompression 1 bar pattern for comparison. The bottom
559	of panel (b) plots assigned bands as reported by their four respective studies. The high-frequency
560	noise present in all spectra is due to interference from the diamond anvils within the sample
561	chamber.
562	
563	Figure 4. Panel (a) plots volume data with equation of state fits for the three $C2/c$, P-1, and $P2_1$
564	phases for this study (solid circles, dashed lines) and the re-fits of the single crystal study for the
565	C2/c and P-1 phases (open diamonds, dotted lines). Volume measurements for these two phases
566	match well between these two studies. Our work extends the P-1 stability field until at least
567	12.7(3) GPa. 1 σ and 3 σ error ellipses are plotted in panel (b) K_{T0} ' vs. K_{T0} error ellipse at 1 bar, in
568	addition to reported values by Meusburger et al. (2019), and panel (c) K_T vs. K_T at 7 GPa for our
569	data and refit of Meusburger et al. (2019).

> Revision 1 Pardo et al., 2022 American Mineralogist

571	Figure 5.	(a) Calculated densities	output by MINUTI	I for szomolnokite, kieserite, and blödite
-----	-----------	--------------------------	------------------	--

- and their respective high-pressure phases. The high-pressure polymorphs of szomolnokite and
- 573 kieserite are plotted as different colors (blue and green for szomolnokite, pale red for kieserite).
- 574 (b) MINUTI results for the bulk modulus K_T as a function of pressure are plotted for
- 575 szomolnokite, kieserite, and blödite and their respective high-pressure phases. Space groups for
- 576 each polymorph are indicated by adjacent color-coded labels. Errors are reported as the shaded
- 577 regions, most visible in the γ -Sz P2₁ phase. Dashed lines indicate extrapolation above previously
- 578 reported experimental pressures. It is unknown if β-Ks and blödite undergo phase transitions
- above 8.3 and 11.2 GPa, respectively.
- 580
- 581

Tables

	Table 1. Szomolnokite ambient condition lattice parameters						
a (Å ³)	$\boldsymbol{b}(\text{\AA}^3)$	$\boldsymbol{c}(\text{\AA}^3)$	β (°)	Volume (Å ³)	Ref.		
7.624(9)	7.469(9)	7.123(9)	115.86(3)	391.70	Pistorius (1960) ^a		
7.078(3)	7.549(3)	7.773(3)	118.65(2)	364.45	Wildner and Giester (1991) ^b		
7.084	7.550	7.779	118.63	365.16	Giester et al. (1994) ^a		
7.086(1)	7.555(1)	7.780(1)	118.61(1)	365.63(8)	Talla and Wildner (2019) ^b		
7.0823(2)	7.5525(2)	7.7786(5)	118.631(3)	365.23(30)	Meusburger et al. (2019) ^b		
7.086(2)	7.5497(3)	7.779(2)	118.656(3)	365.15(3)	This work ^a		

582 Notes: uncertainties are given in parentheses for the last significant digit(s).

^aPowder X-ray diffraction.

^bSingle crystal X-ray diffraction.

Table 2. Equation of state fit parameters and results						
Phase $V_0(Å^3)$ $K_0(GPa)$ K_{0T} , χ^2						
Szomolnokite (FeSO ₄ ·H ₂ O) C2/c						
Fixed: K_{0T} ' Fit: V_0 , K_0	[365.23 0.30] 365.13(2)	[45.2 5] 45.2(4)	[6.7]	0.93		
Fit: V ₀ , K ₀ , K _{0T} '	[365.23 0.30] 365.14(2)	[45.2 5] 44.5(5)	[6.7 2] 7.5(5)	0.65		

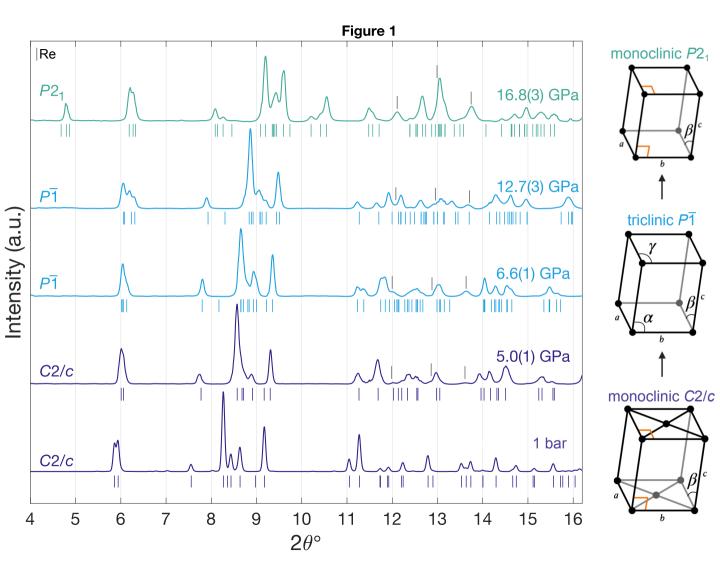
Refit of published data Fit: V ₀ , K ₀ , K _{0T} '	[365.23 0.30] 365.23(2)* 365.2(3)**	[45.2 5] 45.2(2)* 45.2(2)**	[6.7 2] 6.8(1)* 6.7(1)**	0.53* 0.53**		
	Szomolnokite (FeS	SO ₄ ·H ₂ O) <i>P</i> -1		·		
Fixed: K_{0T} ' Fit: V_0 , K_0	[367 0.4] 367.02(9)	[45.11 5] 45.5(2)	[5.4]	0.14		
Fit: V ₀ , K ₀ , K _{0T} '	[367 0.4] 367.02(9)	[45.11 5] 46.3(6)	[5.4 2] 5.1(2)	0.09		
Refit of published data Fit: V ₀ , K ₀ , K _{0T} '	[367 0.4] 367.0(4)* 367.0(4)**	[45.11 5] 45(1)* 45.1(6)**	[5.4 2] 5.4(2)* 5.4 (fixed)**	1.72* 0.93**		
	Szomolnokite (FeS	SO ₄ ·H ₂ O) <i>P</i> 2 ₁		•		
Fit: V ₀ , K ₀ , K _{0T} '	[365 15] 357(2)	[45 5] 44(2)	[5.4 2] 5.8(1)	1.03		
Kieserite (MgSO ₄ ·H ₂ O): <i>C</i> 2/ <i>c</i> and <i>P</i> -1						
C2/c Refit of published data Fit: V ₀ , K ₀ , K _{0T} '	[355.5 0.4] 355.5(3)^ 355.5(4)^^	[48.1 2] 48.5(5)^ 48.1(5)^^	[8.1 2] 7.8(5)^ 8.1(6)^^	0.63^ 0.60^^		
P-1 Refit of published data Fit: V ₀ , K ₀ , K _{0T} '	[355.8 0.4] 355.8(2)^ 356(2)^^	[49.3 2] 49.3(6)^ 49(6)^^	[4.8 2] 4.8(1)^ 5(1)^^	1.01^ 1.14^^		
Blödite (Na ₂ Mg(SO ₄) ₂ ·4H ₂ O)						
$P2_1/a$ Refit of published data	$[496.6\ 0.4] \\ 496.5(2)^{\#}$	[36 2] 36.0(7) [#]	[5.1 2] $5.1(2)^{\#}$	4.82 ##Not		
Fit: V_0 , K_0 , K_{0T} '	496.9(7)##	36(1)##	5.1(4)##	Reported		

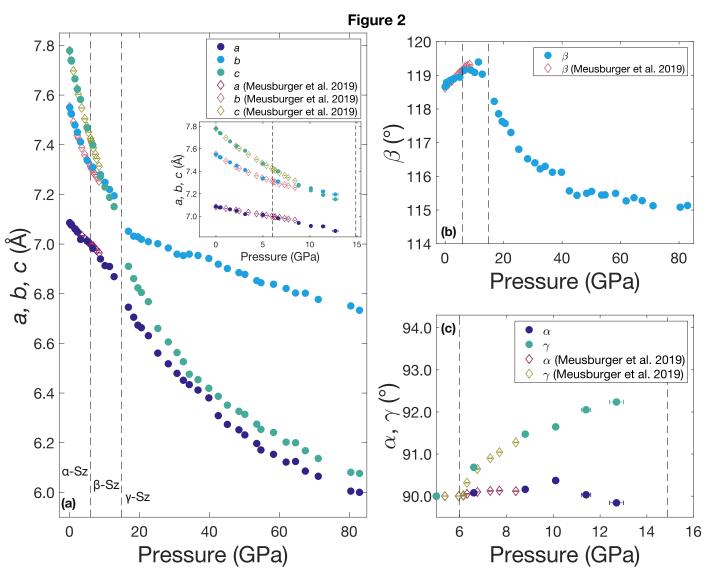
Revision 1 Pardo et al., 2022 American Mineralogist

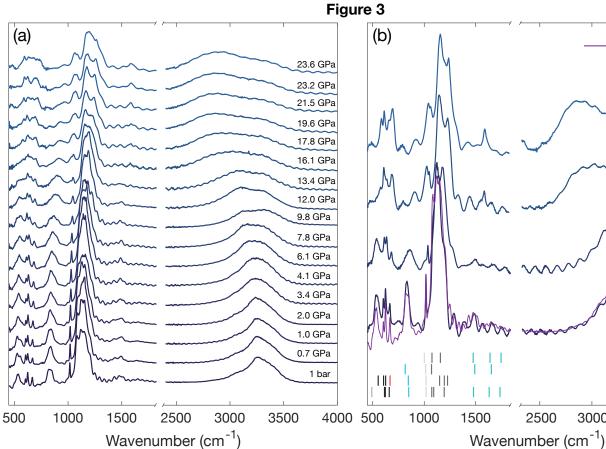
586 Notes: notation explanation for columns V₀, K₀, K_{0T}', [A B] X(Y): starting value of A with a prior

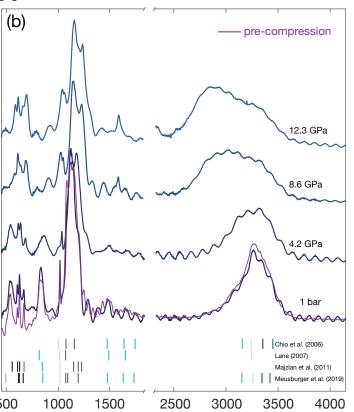
587 window of B, and best fit value of X with an error of Y. [A]: fixed parameter at value of A.

*This work's results from re-fitting the data of Meusburger et al. (2019).


**As-reported results in Meusburger et al. (2019).


590 ^This work's results from re-fitting the data of Meusburger et al. (2020).


591 ^^As-reported results in Meusburger et al. (2020).


[#]This work's results from re-fitting the data of Comodi et al. (2014).

^{##}As-reported results in Comodi et al. (2014).

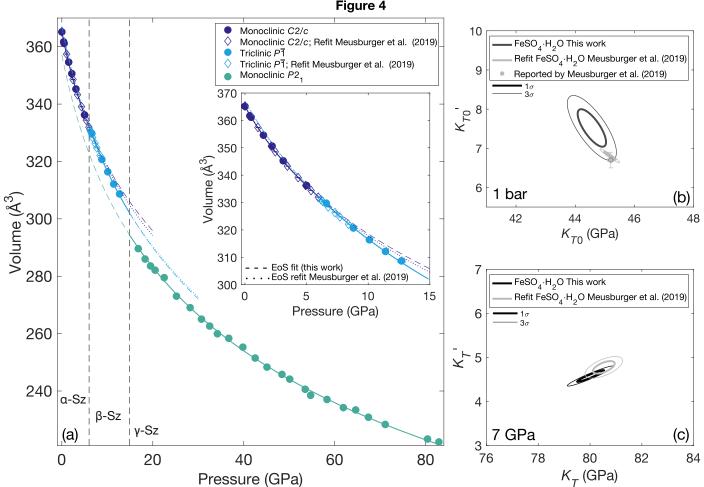
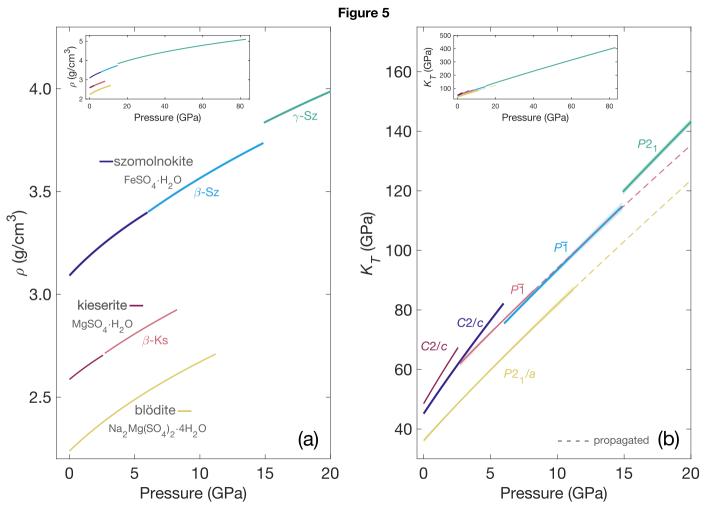



Figure 4

