1	Revision 1
2	Amphibole fractionation and its potential redox effect on arc
3	crust: Evidence from the Kohistan arc cumulates
4	Jingbo Zhang ¹ , Rui Wang ^{1,} *, Jun Hong ²
5	1. State Key Laboratory of Geological Processes and Mineral Resources, Institute of
6	Earth Sciences, China University of Geosciences, Beijing 100083, China
7	2. MNR Key Laboratory for the Study of Focused Magmatism and Giant Ore
8	Deposits, Xi'an Center of Geological Survey, CGS, Xi'an 710054, China
9	
10	*Corresponding author: Rui Wang
11	Institute of Earth Sciences, China University of Geoscience
12	29 XUEYUAN RD., Haidian District
13	Beijing 100083, China
14	Phone: (+86) 010 82323212
15	E-mail: rw@cugb.edu.cn

16

ABSTRACT

17 Arc magmas, a major contributor to continental crust growth, are thought to be more oxidized than mid-ocean ridge basalts as reflected by an enrichment in ferric iron 18 relative to ferrous iron, but how arc magmas become oxidized is hotly debated. It is 19 acknowledged that the fractionation of common Fe-rich phases (e.g., amphibole) may 20 21 change the Fe valence of the derivative melt. Amphibole has Fe-rich compositions commonly found in arc systems. We present high precision ($\pm 0.01\%$) Fe valence data 22 of amphibole and cumulates from the Kohistan arc determined by Mössbauer 23 spectroscopy, and bulk cumulate Fe³⁺/∑Fe ratios by wet chemistry. We evaluate the 24 Fe³⁺/∑Fe trend of Fe-rich amphibole during arc magma fractionation. Our results show 25 that bulk $Fe^{3+}/\Sigma Fe$ ratio of cumulates in mature island arc settings is mainly controlled 26 27 by amphibole due to its abundance and decreases (from 0.4 to 0.2) with decreasing Mg# as $Fe^{3+}/\Sigma Fe$ ratios decrease in amphibole (from 0.35 to 0.2). Our modeling suggests 28 that amphibole fractionation from parental arc magmas to $Fe^{3+}/\Sigma Fe$ above 0.2 may lead 29 to an increase in Fe³⁺/ Σ Fe ratios of middle-late stage residual melts by 0.1-0.3, and the 30 partitioning of ferrous Fe into amphibole increases with the evolution of arc magmas. 31 32 Our findings highlight the importance of petrological processes in the magma that contribute to the production of fertile arc crust. 33

34

35 deposit

- 36
- 37

INTRODUCTION

Keywords: amphibole, iron valence, Kohistan cumulate, redox state, porphyry

38	The oxidation state reflected by oxygen fugacity (fO2) plays an important role in
39	many physical and chemical processes including metasomatism, magma genesis, ore-
40	forming processes and atmospheric evolution (e.g., Cottrell and Kelley, 2011; Frost and
41	McCammon, 2008). Previous studies indicate that arc magmas are oxidized with
42	Δ FMQ (relative to fayalite-magnetite-quartz buffer) of +0.5 to +2, and locally may be
43	greater than +3 (Richards, 2015, and references therein). However, there is a debate on
44	whether the oxidized nature of arc magmas is inherited from the mantle source or
45	acquired by magmatic differentiation, crustal interaction, or degassing during magma
46	upwelling (e.g., Bounce et al., 2014; Burgisser and Scaillet, 2007; De Hoog et al., 2004;
47	Kelley and Cottrell, 2009; Lee et al., 2010).

Iron is the most abundant multi-valence element in magmatic systems, thus Fe-48 bearing minerals play an important role in modulating redox conditions. One hypothesis 49 suggests that garnet fractionation in thick continental arcs results in the oxidation of the 50 residual melt due to its preference for Fe^{2+} over Fe^{3+} (Tang et al., 2018, 2019a). 51 52 Although garnet may crystallize at the base of mature island arcs built on crust >30 km thick, such as Talkeetna arc in south-central Alaska (Bucholz and Kelemen, 2019; 53 Kelemen et al., 2014), its redox effect may be much less significant due to its generally 54 55 low proportions in island arc cumulates. Amphibole fractionation is more common in arc systems (Davidson et al., 2007; Dessimoz et al., 2012), and amphibole-bearing 56 cumulates are frequently observed at convergent margins (Jagoutz and Schmidt, 2012; 57 58 Santana et al., 2020; Xu et al., 2019; Zhang et al., 2020; Zhu et al., 2019). Previous studies focused on the partitioning of Fe³⁺/∑Fe [atomic Fe³⁺/(Fe³⁺+Fe²⁺)] between 59

synthetic amphibole and basanitic melt at 1100-1175 °C and 1.5-2.0 GPa (King et al., 2000). However, these conditions are not equivalent to those in arc magmas, and whether amphibole fractionation can control the $Fe^{3+}/\Sigma Fe$ of evolving arc magmas is still unclear.

The Kohistan arc in Northern Pakistan is a mature island arc with exposures of a 64 65 continuous section from the lithospheric mantle through lower crustal cumulates to mid-crustal gabbros and granitoids (Dhuime et al. 2007; Jagoutz, 2014; Jagoutz and 66 Schmidt, 2012). The cumulates represent early products of crystallization during 67 hydrous, high-pressure fractionation starting from a mantle-derived basaltic melt 68 (Jagoutz et al., 2011), and they have not experienced subsequent crustal processes, such 69 as assimilation or degassing (Jagoutz and Schmidt, 2012). There is a complementary 70 71 relationship between the ultramafic to mafic cumulates and shallow-level intermediateto-felsic arc magmas, the granitoids in the Kohistan batholith can be successfully 72 modeled by crustal fractionation of the minerals present in the cumulates (Jagoutz et al., 73 2009; Jagoutz, 2010). Thereby, these cumulates provide an ideal case to study the 74 evolution of the Fe³⁺/ Σ Fe ratio and potential redox state of arc magmas. In this study, 75 we determine the $Fe^{3+}/\Sigma Fe$ ratio of amphibole, garnet, and bulk Kohistan cumulates to 76 77 evaluate the roles of amphibole and garnet fractionation in controlling the Fe valence, and thus the redox state of a differentiating arc magma. 78

- 79
- 80

GEOLOGICAL SETTING AND SAMPLES

81 The Kohistan arc, exposed in NE Pakistan, is one of the best-preserved complete

arc sections in the geological record (Burg, 2011; Jagoutz, 2014; Jagoutz and Schmidt, 82 2012; Zhang et al., 2021), representing the exhumed section of a Cretaceous 83 intraoceanic arc formed during presumably north-dipping subduction in the equatorial 84 region of the Neo-Tethys Ocean. The former arc is now sandwiched between the 85 Eurasian plate to the north and the Indian plate to the south; it is separated from the 86 87 Eurasian margin by the Shyok (Karakoram-Kohistan) suture and from the Indian continent by the Indus suture (Fig. 1A). To the east, the Kohistan arc is separated from 88 the Ladakh arc by the Nanga Parbat Syntaxis. 89

The Kohistan arc is composed of Jurassic-Cretaceous to Paleogene igneous and 90 sedimentary rocks. In the southmost part of the Kohistan arc, the Jijal Complex 91 represents the upper mantle to lower crust transition overlain by a thick sequence of 92 93 metaplutonic and minor metavolcanic and metasedimentary rocks referred to as the Southern Amphibolites (Kamila Complex). The Chilas Complex resulted from the 94 intra-arc extension and rifting at the base of the arc (Burg, 2011), and separates the 95 Southern Amphibolites from the Gilgit Domain to the north, which is composed 96 primarily of upper crustal plutonic rocks (Kohistan Batholith), volcanic and 97 98 volcanoclastic rocks, and sedimentary rocks (Fig. 1A).

99 The Jijal complex represents the roots of the Kohistan arc. This complex is 100 composed of a lower ultramafic section and an upper mafic section (Dhuime et al., 2007; 101 Jagoutz et al., 2011). From the bottom to the top, the ultramafic section is subdivided 102 into a peridotite zone, a pyroxenite zone, and a garnetite plus hornblendite zone (Fig. 103 1B). The mafic section (garnet gabbro zone) is dominated by garnet-bearing gabbroic 104 rocks, with lenses of hornblendites enclosed in the garnet gabbros.

105	Amphibole-bearing samples were collected from the Jijal complex and comprise
106	both hornblendite and garnet hornblendite. For comparison, some amphibole-free
107	samples (garnet pyroxenite and pyroxene garnetite) were also analyzed. The
108	composition of minerals in each sample are listed in Table 1. The amphibole-bearing
109	samples characterized by magmatic features and cumulate textures are composed of
110	euhedral amphibole and garnet (Figs. 2A and B). Similar characteristics also exist in
111	amphibole-free samples that are mainly composed of clinopyroxene and garnet (Figs.
112	2C and D). Some samples contain small amounts of plagioclase (≤10 vol%) and trace
113	magnetite (<1 vol%).
114	
115	ANALYTICAL METHODS
116	Whole-rock major elements
117	Major element analyses of whole-rock samples were conducted at the Wuhan
110	Sample Solution Applytical Technology Co. Ltd. Fresh shins of whole rock samples

118 Sample Solution Analytical Technology Co., Ltd. Fresh chips of whole-rock samples 119 were washed using distilled water, and then powdered to 200 mesh using a tungsten 120 carbide ball mill. Major element concentrations were determined with an X-ray 121 fluorescence (XRF) spectrometer (Primus II, Rigaku, Japan), with analytical 122 uncertainties lower than 2%. The FeO contents were determined by the potassium 123 dichromate titration (wet chemistry).

124 Mössbauer spectroscopy

125 The Fe³⁺/∑Fe of garnet and amphibole were determined by Mössbauer

126	spectroscopy at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences
127	using hand-picked, optically pure mineral grains. The amount of sample material was
128	adjusted to maintain a sample thickness of 10 mg Fe cm ⁻¹ , which served to minimize
129	saturation effects. The room temperature ⁵⁷ Fe Mössbauer spectra of the selected
130	PB/TiO ₂ NPs with a molar ratio of 1:60 was recorded under various simulated
131	conditions by using a Topologic 500A spectrometer and a proportional counter. ⁵⁷ Co
132	(Rh), moving with a constant acceleration mode, was used as the γ -ray radioactive
133	source. The velocity was calibrated by a standard α -Fe foil. The collection time for each
134	sample was 24 hours. Fits to Mössbauer spectra were performed using Mosswinn
135	software (Klencsár et al., 1996), and constraints on isomer shift were used for the Fe^{3+}
136	doublet, whose value was usually less than 0.5. This observation is consistent with the
137	peak width of Fe^{3+} doublet constrained to 0.4 mm s ⁻¹ (Aulbach et al., 2017). The
138	calculated Fe ³⁺ / Σ Fe values have absolute uncertainties of ±0.01%.

139

140

RESULTS

Our samples of hornblendite, garnet hornblendite, garnet pyroxenite and pyroxene garnetite have SiO₂ contents of 40.42 to 52.20 wt%, MgO contents of 4.65 to 15.33 wt%, Fe₂O₃^T contents of 10.90 to 15.60 wt%, and FeO contents determined by wet chemistry of 6.50 to 12.50 wt%. The whole-rock $Fe^{3+}/\Sigma Fe$ ratios of all samples vary from 0.15 to 0.42 (Table 1).

146 In order to cover the maximum range, we selected samples with the broadest range 147 of bulk Mg# in which to analyze the $Fe^{3+}/\Sigma Fe$ ratios. Amphiboles from samples

148	18JL023, 18JL029, and 18JL040, and garnets from samples 18JL019, 18JL021,
149	18JL023, and 18JL040 were separated for analysis. Fe ³⁺ / Σ Fe ratios of garnet and
150	amphibole from the Kohistan Jijal complex measured by Mössbauer spectroscopy vary
151	from 0.071 to 0.084, and 0.23 to 0.35, respectively. Corresponding spectra and fits are
152	shown in Figure 3, and the fitting parameters are listed in Table S1. The results
153	demonstrate that the Fe ³⁺ / Σ Fe ratios of both bulk cumulates and amphiboles decrease
154	with decreasing Mg#. In contrast, there is no correlation between the Fe ³⁺ / Σ Fe ratios in
155	garnets and their Mg#. In addition, the Fe ³⁺ /∑Fe ratio of amphibole-free samples is
156	significantly lower than that of amphibole-bearing samples (Fig. 4).

157

158 **DISCUSSION**

159 Cumulate origin for Jijal Complex samples

Several lines of evidence indicate that Kohistan Jijal complex samples formed by 160 direct crystal accumulation, and are thus of cumulate origins. Firstly, the samples are 161 characterized by magmatic features and cumulate textures, and are composed of 162 euhedral pyroxenes, garnet, and amphiboles (Fig. 2). Secondly, their major element 163 compositions (low SiO₂, high MgO and FeO^T contents) are similar to previously 164 reported typical cumulates trends from the Kohistan arc (Jagoutz, 2014) and Arizona 165 xenoliths (Chen et al., 2020; Erdman et al., 2016), and they are complementary to 166 typical calc-alkaline arc magmas such as those from Honshu, Luzon, Kohistan-Ladakh 167 and Gangdese (Fig. 5B). Finally, all cumulate samples fall on the Z-shaped cumulate 168 line derived from experimental studies of hydrous differentiation of basaltic melts under 169

10 kbar (Fig. 5A) (Müntener and Ulmer, 2018). Different segments of the Z-shaped trend are controlled by variable mineral assemblages and proportions. The first segment is mainly caused by the fractionation of olivine and pyroxene, the second segment by silica-poor minerals such as garnet, Fe-Ti oxides and hornblende, and the third segment by the reappearance of pyroxene in gabbroic rocks (Jagoutz et al., 2011). These geochemical characteristics are consistent with our observed cumulate sequence.

176

177 The role of amphibole fractionation in controlling $Fe^{3+}/\Sigma Fe$

Iron is the most abundant variable valence element in the crust and mantle, and it 178 exists in ferromagnesian silicates or Fe oxides in the form of Fe^{2+} and Fe^{3+} , therefore 179 fluctuation in the $Fe^{3+}/\Sigma Fe$ ratio is mainly controlled by the behavior of Fe-rich 180 181 minerals. To investigate the evolution of $Fe^{3+}/\Sigma Fe$ in the Kohistan arc magma, a compilation from the GEOROC database was assembled. We selected both volcanic 182 rocks and plutonic rocks that involved little contamination and thus should reflect 183 magmatic features and trends (Jagoutz and Schmidt, 2012), and for which both Fe₂O₃ 184 and FeO were reported so that the $Fe^{3+}/\Sigma Fe$ could be calculated. The results show that 185 Fe^{3+}/Σ Fe ratios of Kohistan-Ladakh arc magmas increase with decreasing Mg# (Fig. 186 6A). The weakly negative correlation between Dy/Yb and SiO₂ indicates that the 187 Kohistan arc magma experienced amphibole fractionation in the deep crust (Fig. 6B; 188 Davidson et al., 2007). It is consistent with the observation that amphibole-bearing 189 cumulates are widely distributed in the Kohistan arc root (Jagoutz et al., 2011; Jagoutz 190 and Schmidt, 2012). In addition, the analytical results show that bulk amphibole-rich 191

cumulates possess parallel Fe³⁺/ Σ Fe ratios to amphiboles, and significantly higher 192 ratios than amphibole-free cumulates (Fig. 4). It also suggests that amphibole 193 crystallized in deep crustal levels at high pressure (pressure data see Jagoutz and 194 Schmidt, 2012) may play an important role in controlling Fe³⁺/∑Fe ratio. Due to the 195 intra-oceanic nature of the Kohistan arc, data form the modern Tonga intra-oceanic 196 island arc were also compiled for comparison. The $Fe^{3+}/\Sigma Fe$ ratio also increases with 197 magma evolution in this arc (Fig. 6C), and amphibole fractionation is occurring where 198 Dy/Yb ratios decrease with elevated SiO₂ (Fig. 6D). In addition, the bulk composition 199 of Kohistan arc is andesitic, which represents a paleo-intra-oceanic arc, and has affinity 200 with continental crust (Tahirkheli et al., 1979; Jagoutz and Schmidt, 2012). We thus add 201 the well-known Andean continental arc for comparison. As shown in Fig. 6E, the 202 203 Fe^{3+}/Σ Fe ratio of the Andean arc increases with decreasing Mg#, like in the Kohistan and Tonga arcs. The arc thickness (> 35 km) and scatter of Dy/Yb ratios may suggest 204 that Andean arc magma experienced garnet fractionation, however the magnitude of the 205 fractionation may be limited on the basis of the field evidence that hornblendite 206 cumulates existed in the Andean arc root (e.g., Santana et al., 2020; Torres García et al., 207 2020), and the horizontal to slightly decreasing trends of Dy/Yb versus SiO₂ (Fig. 6F). 208 The formation of amphibole in the cumulates is attributed to either direct 209 crystallization from parental liquids following the liquid line of descent (e.g., Dessimoz 210 et al., 2012; Davidson et al., 2007) or peritectic reaction replacement with previously-211 212 crystallized clinopyroxene and/or olivine (e.g., Smith, 2014; Chang and Audétat 2018). Amphiboles in Kohistan cumulates are pargasites or tschermakites (Fig. S1). Our 213

observations show that they are mostly euhedral and that no residual clinopyroxene \pm 214 olivine is present (Fig. 2), which suggests that amphiboles in Kohistan amphibole-rich 215 cumulates are crystallized directly from the magma. Since amphibole is the 216 volumetrically abundant Fe-rich silicate phase, and Fe²⁺ occupies a greater proportion 217 of C-sites in the amphibole relative to Fe^{3+} , as the Fe^{3+}/Σ Fe ratios of amphibole 218 decreases with magma evolution (Fig. 4), Fe³⁺ will be gradually enriched in residual 219 melts. In addition, it should also be noted that the divergence of $Fe^{3+}/\Sigma Fe$ between bulk 220 cumulates and amphiboles increases with the decrease of Mg#, which means that Fe-221 (Ti)-oxides may occur in the late-stage cumulates. Based on our observations there is 222 rare magnetite and no ilmenite in the primitive (high Mg#) cumulates; the abundance 223 of magnetite increases with the decreasing Mg#, but is still less than 1 vol.% in the low 224 225 Mg# cumulates. Previous modeling shows that at high pressure (>1 GPa), the magnetite will saturate when the oxygen fugacity is above FMQ (fayalite-magnetite-quartz buffer) 226 (Tang et al., 2019a). These amphibole-bearing cumulates are formed under the pressure 227 of 1.0 to 1.2 GPa (Jagoutz, 2014), indicating that the oxygen fugacities of these 228 cumulates containing magnetite (low Mg#) are above FMQ. It is also supported by 229 experimental studies that magnetite is the first oxide phase to appear on the liquidus 230 231 when above the FMQ buffer (Toplis and Carroll, 1995). Garnet is another Fe-rich phase in arc systems, and previous studies have 232

suggested that the increasing oxidation state of evolved magmas in a thick continental crust is auto-oxidized and mainly controlled by fractionated magmatic garnets that have low Fe³⁺/ Σ Fe ratios (0.04-0.08) (Tang et al., 2018, 2019a). Our results show garnets in Kohistan cumulates also have low $Fe^{3+}/\Sigma Fe$ ratios (0.073-0.084). However, the Fe³⁺/ Σ Fe ratios of garnet neither decrease with Mg# nor correlate with bulk cumulate compositions, therefore its fractionation cannot lead to progressive increases in the Fe³⁺/ Σ Fe ratio of the residual melt.

In order to explore the relationship between amphibole and coexisting liquid, 240 experimental run product data were compiled. Previous studies suggest that the 241 Kohistan amphibole-bearing cumulates were fractionated from mantle-derived parental 242 melts following a hydrous liquid line of descent (Jagoutz et al., 2011). Therefore, we 243 selected the experiments where starting materials were basalt or high-Mg basaltic 244 andesite, and water was saturated or near saturated. The results show that there is a 245 strongly-correlative positive linear relationship between Mg# in amphibole (x) and in 246 coexisting liquid (y) according to the equation of $y = 1.31064x^2 - 0.81394x + 0.39154$ 247 (Fig. 7). In this case, amphiboles in Kohistan cumulates with Mg# between 0.7 and 0.47 248 would have coexisted with liquids with Mg# between 0.46 and 0.3; $Fe^{3+}/\Sigma Fe$ ratios of 249 these liquids based on Fig. 6A have ratios of approximately 0.4 and 0.5, respectively. 250 Using this relationship, the results are extrapolated to Tonga oceanic arc and Andean 251 continental arc, giving $Fe^{3+}/\Sigma Fe$ ratios of residual melt of 0.4-0.45, and 0.5-0.6, 252 253 respectively (Figs. 6D, F). It suggests that the coexisting liquid will likely have substantially higher $Fe^{3+}/\Sigma Fe$ ratios than the amphibole-bearing cumulates. Therefore, 254 the fractionation of amphibole and the formation of amphibole-bearing cumulates in 255 the deep crust would lead to an enrichment of the Fe³⁺/ Σ Fe ratio in the residual melt. 256 To evaluate the effect quantitatively, we used a series of initial magma $Fe^{3+}/\Sigma Fe$ 257

258	ratios and forward modeled the evolving trend of Fe ³⁺ / Σ Fe ratios of residual melts with
259	cumulate fractionation. To improve robustness of models, the bulk $Fe^{3+}\!/\!\Sigma Fe$ of
260	cumulates were recalculated on the basis of the $Fe^{3+}\!/\!\Sigma Fe$ of each mineral and their
261	relative proportions (Table 1). The Fe ³⁺ / Σ Fe ratio of clinopyroxene is estimated on the
262	basis of experimentally determined maximum Fe ³⁺ partitioning between clinopyroxene
263	and garnet (Purwin et al., 2013). Fig. 8 shows the residual melt $Fe^{3+}/\Sigma Fe$ as a function
264	of the mass proportion of fractionated cumulate with different Mg#. The calculation
265	curves indicate that the fractionation of cumulates with $Mg\# = 0.7$ will increase the
266	$Fe^{3+}/\Sigma Fe$ of residual melts when the initial melt $Fe^{3+}/\Sigma Fe$ exceeds 0.31. By contrast,
267	when $Fe^{3+}/\Sigma Fe$ of the initial melt is below 0.31, the residual melts will evolve to be
268	more reduced. In addition, the fractionation of late stage cumulates (Mg# = 0.47) will
269	significantly and efficiently elevate the $Fe^{3+}/\Sigma Fe$ ratio of residual melts. In fact, the
270	amphibole-bearing cumulate of $Mg\# = 0.7$ coexists with the liquid of $Mg\# = 0.46$,
271	which indicates that the cumulate with $Mg\# = 0.7$ is not the most primitive one.
272	Therefore, the Fe ³⁺ / Σ Fe ratio of initial parental magmas must be less than 0.31, which
273	is consistent with previously reported data ranges (Kelley and Cottrell, 2009; Lee, 2014).
274	It also implies that the Kohistan amphibole-bearing cumulates fractionated from initial
275	parental magma need an additional mechanism to acquire the Fe ³⁺ / Σ Fe values of the
276	cumulates (0.3-0.4). Crystallization experiments conducted at 1.0 GPa show that the
277	stability field of olivine, which prefers Fe^{2+} , is significantly expanded in hydrous
278	magmas, resulting in an efficient increase of Fe ³⁺ in residual melts (Ulmer et al., 2018).
279	This makes olivine, also common in the lithospheric mantle zone of Kohistan arc, a

potential candidate for increasing the Fe³⁺/ Σ Fe to 0.3-0.4 in the early stage of arc magma evolution. However, the filter effect of amphibole on the increase of Fe³⁺/ Σ Fe of arc magma in the middle to late stage is undeniable.

283

Potential redox effect on arc magmas

The redox state of magma may be expressed by oxygen fugacity, although there is 284 not really free oxygen inside the Earth. Rather, oxygen fugacity is the partial pressure 285 of oxygen, which is an equivalent concept. It is the muti-valence elements in the magma 286 that control the redox state of magma. Iron is, by mass, the most common multi-valence 287 element on Earth, thus Fe-rich minerals are potential candidates for controlling 288 magmatic redox. On the basis of this study, the fractionation of amphibole crystallized 289 in deep crustal levels at high pressure may increase the $Fe^{3+}/\Sigma Fe$ ratio of coexisting 290 291 liquid, meaning that it is an internal petrological factor driving magma oxidation (Fig. 9). A caveat in our redox budget model is that we assumed limited magnetite 292 fractionation through much of the Fe-depleting calc-alkaline differentiation series. We 293 suggest that magnetite, as an accessory mineral, has a limited effect on the $Fe^{3+}/\Sigma Fe$ 294 ratio of residual melt. Indeed, the redox state of magma is influenced by many factors, 295 and our study only provides a possible mechanism of an internal petrological factor (i.e. 296 amphibole fractionation). Previous studies also suggest other crustal processes such as 297 degassing or assimilation of oxidized material can lead to elevated oxygen fugacities 298 (e.g., Burgisser and Scaillet, 2007; Humphreys et al., 2015; Lee et al., 2010). Water, as 299 the most abundant volatile in subduction-zone magmas, is considered the key factor 300 driving melt oxidation during degassing, but recent studies suggested that water 301

302	degassing has no effect on oxidation (Crabtree and Lange, 2012; Waters and Lange,
303	2016). In addition, studies of ultrasonic acoustic velocity measurements indicated that
304	changes in pressure during magma upwelling have little effect on the oxygen fugacity
305	(Kress and Carmichael, 1991), and a study of Kohistan arc suggested that there is no
306	evidence for involvement of ancient crustal materials in their formation (Jagoutz and
307	Schmidt, 2012). Therefore, to a large extent, the rise of $Fe^{3+}/\Sigma Fe$ ratio may truly reflect
308	the increase of magma oxidation states (Fig. 9).

- 309
- 310

IMPLICATION

Amphibole, as a ubiquitous fractionating phase, is ubiquitous in both continental 311 and island arcs. Our findings indicate that amphibole exerts a fundamental control on 312 redox effect of middle to late stage arc magmas. $Fe^{3+}/\Sigma Fe$ ratios of amphibole decrease 313 with cumulate Mg#, leading to increasing Fe³⁺ abundance in residual melts by 314 multistage amphibole fractionation, i.e. accumulating in deep lower crust and potential 315 fractional crystallization in a middle to shallow magma chamber. Porphyry copper 316 deposits (PCDs) are closely associated with magmas with high oxidation state 317 (Richards, 2003; Sillitoe, 2010). In oxidized conditions ($\Delta FMQ > 1.5-2$) of arc systems, 318 sulfur is more likely to exist in the form of sulfate (SO_4^{2-}) over sulfide (S^{2-}) , and dissolve 319 in the silicate melt, which causes chalcophile elements, such as Cu, to remain in the 320 melt (e.g., Richards, 2003; Sun et al., 2015). We propose that in addition to dehydration 321 322 of subducted oceanic crust and sediments, amphibole fractionation also elevates the oxidation state of evolved magmas in subduction zones, which retain Cu in the residual 323

magma necessary to produce porphyry copper deposits. Considering the common occurrence of amphibole fractionation in arc crust (Davidson et al., 2007), this is probably a reliable mechanism for triggering porphyry copper deposit formation in subduction settings.

- 328
- 329

339

ACKNOWLEDGMENTS AND FUNDING

We thank Editor Callum Hetherington for handling the manuscript, providing 330 insightful comments, and helping to polish its presentation. Constructive comments 331 from Stephen Crabtree and three anonymous reviewers are appreciated. Andreas 332 Audétat, Ming Tang, and Jia Chang are also gratefully acknowledged for discussion on 333 early draft. We appreciate Junhu Wang and Rile Ge for their guidance in fitting 334 335 Mössbauer spectral lines, Chenhao Luo for collecting data, and Xuesong Tong for Mössbauer spectroscopy discussion. This study is financially supported by National 336 Natural Science Foundation of China (No. 41973037 and No. 41902062), and China 337 Geological Survey Program (No. DD20201159). 338

340	R EFERENCES CITED
341	Audétat, A., and Simon A.C. (2012) Magmatic controls on porphyry Cu genesis. In J.W.
342	Hedenquist, M. Harris and F. Camus, Eds., Geology and genesis of major copper
343	deposits and districts of the world: a tribute to Richard Sillitoe. Society of
344	Economic Geologists, Special Publication, 16, 553-572.
345	Aulbach, S., Woodland, A.B., Vasilyev, P., Galvez, M.E., and Viljoen, K.S. (2017)
346	Effect of low-pressure igneous processes and subduction on Fe ³⁺ / Σ Fe and redox
347	state of mantle eclogites from Lace (Kaapvaal craton). Earth and Planetary Science
348	Letters, 474, 283-295.
349	Bounce, M.N., Kelley, K.A., and Cottrell, E. (2014) Variations in Fe ³⁺ /∑Fe of Mariana
350	arc basalts and mantle wedge fO_2 . Journal of Petrology, 55, 2513-2536.
351	Bucholz, C.E., and Kelemen, P.B. (2019) Oxygen fugacity at the base of the Talkeetna
352	arc, Alaska. Contributions to Mineralogy and Petrology, 174, 79.
353	Burg, J.P. (2011) The Asia-Kohistan-India collision. In D. Brown and P.D. Ryan, Eds.,
354	Arc-Continent collision, p. 279-309. Springer.
355	Burgisser, A., and Scaillet, B. (2007) Redox evolution of a degassing magma rising to
356	the surface. Nature, 445, 194-197.
357	Chang, J., and Audétat, A. (2018) Petrogenesis and metal content of hornblende-rich
358	xenoliths from two Laramide-age magma systems in southwestern USA: Insight
359	into the metal budget of arc magmas. Journal of Petrology, 59, 1869-1898.

17

360	Chen. K.,	Tang, M.	Lee. C	.T.A. `	Wang.	Z.C.,	Zou.	Ζ.Ο.	. Hu.	Z.C.	and Liu.	Y.S. ((2020))
000	Circii, 12.,	14115, 111.	, Lee , e	~• I • <u>I</u> I • <u></u> ,	,, and, ,	<i></i> ,	L 0 u ,	2.2.	,,	, 2.0.	, and Line,	1.0.	2020)	1

- Sulfide-bearing cumulates in deep continental arcs. The missing copper reservoir.
 Earth and Planetary Science Letters, 531, 115971.
- 363 Cottrell, E., and Kelley, K.A. (2011) The oxidation state of Fe in MORB glasses and
- the oxygen fugacity of the upper mantle. Earth and Planetary Science Letters, 305,
 270-282.
- 366 Crabtree, S.M., and Lange, R.A. (2012) An evaluation of the effect of degassing on the
- 367 oxidation state of hydrous andesite and dacite magmas: a comparison of pre- and
- post-eruptive Fe²⁺ concentrations. Contributions to Mineralogy and Petrology, 163,
 209-224.
- Davidson, J., Turner, S., Handley, H., Macpherson, C., and Dosseto, A. (2007)
 Amphibole "sponge" in arc crust? Geology, 35, 787-790.
- 372 De Hoog, J.C.M., Hattori, K.H., and Hoblitt, R.P. (2004) Oxidized sulfur-rich mafic
- magma at Mount Pinatubo, Philippines. Contributions to Mineralogy and
 Petrology, 146, 750-761.
- 375 Dessimoz, M., Müntener, O., and Ulmer, P. (2012) A case for hornblende dominated
 376 fractionation of arc magmas: the Chelan Complex (Washington Cascades).
- 377 Contributions to Mineralogy and Petrology, 163, 567-589.
- Dhuime, B., Bosch, D., Bodinier, J.L., Garrido, C.J., Bruguier, O., Hussain, S.S., and
- Dawood, H. (2007) Multistage evolution of the Jijal ultramafic-mafic complex
- 380 (Kohistan, N Pakistan): Implications for building the roots of island arcs. Earth
- and Planetary Science Letters, 261, 179-200.

- 382 Erdman, M.E., Lee, C.T.A., Levander, A., and Jiang, H. (2016) Role of arc magmatism
- and lower crustal foundering in controlling elevation history of the Nevadaplano
- and Colorado Plateau: A case study of pyroxenitic lower crust from central Arizona,
- USA. Earth and Planetary Science Letters, 439, 48-57.
- 386 Frost, D.J., and McCammon, C.A. (2008) The redox state of Earth's mantle. Annual
- 387 Review of Earth and Planetary Sciences, 36, 389-420.
- 388 Grove, T.L., Elkins-Tanton, L.T., Parman, S.W., Chatterjee, N., Müntener, O., and
- 389 Gaetani, G.A. (2003) Fractional crystallization and mantle-melting controls on
- 390 calc-alkaline differentiation trends. Contributions to Mineralogy and Petrology,
- 391 145, 515-533.
- Humphreys, M.C.S., Brooker, R.A., Fraser, D.G., Burgisser, A., Mangan, M.T., and McCammon, C. (2015) Coupled interactions between volatile activity and Fe
- 394 oxidation state during arc crustal processes. Journal of Petrology, 56, 795-814.
- Jagoutz, O. (2010) Construction of the granitoid crust of an island arc part II: a
 quantitative petrogenetic model. Contributions to Mineralogy and Petrology, 160,
- **397 359-381**.
- Jagoutz, O. (2014) Arc crustal differentiation mechanisms. Earth and Planetary Science
 Letters, 396, 267-277.
- 400 Jagoutz, O., and Schmidt, M.W. (2012) The formation and bulk composition of modern
- 401 juvenile continental crust: The Kohistan arc. Chemical Geology, 298-299, 79-96.
- 402 Jagoutz, O., Müntener, O., Schmidt, M.W., and Burg, J.P. (2011) The role of flux- and
- 403 decompression melting and their respective fractionation lines for continental crust

404	formation: Evidence from Kohistan arc. Earth and Planetary Science Letters, 303,
405	25-36.
406	Jiang, Z.Q., Wang, Q., Li, Z.X., Wyman, D.A., Tang, G.J., Jia, X.H., and Yang, Y.H.
407	(2012) Late Cretaceous (ca. 90 Ma) adakitic intrusive rocks in the Kelu area,
408	Gangdese Belt (southern Tibet): Slab melting and implications for Cu-Au
409	mineralization. Journal of Asian Earth Sciences, 53, 67-81.
410	Jogoutz, O., Burg, J.P., Hussain, S.S., Dawood, H., Pettke, T., Iizuka, T., and Maruyama,
411	S. (2009) Construction of the granitoid crust of an island arc part I:
412	geochronological and geochemical constraints from the plutonic Kohistan (NW
413	Pakistan). Contributions to Mineralogy and Petrology, 158, 739-755.
414	Kelemen, P.B., Hanghøj, K., and Greene, A.R. (2014) 4.21-One view of the
415	geochemistry of subduction-related magmatic arcs, with an emphasis on primitive
416	andesite and lower crust. Treatise on Geochemistry (Second Edition), 4, 749-806.
417	Kelley, K.A., and Cottrell, E. (2009) Water and the oxidation state of subduction zone
418	magmas. Science, 325, 605-607.
419	King, P.L., Hervig, R.L., Holloway, J.R., Delaney, J.S., and Dyar, M.D. (2000)
420	Partitioning of Fe ³⁺ /Fe _{total} between amphibole and basanitic melt as a function of
421	oxygen fugacity. Earth and Planetary Science Letters, 178, 97-112.
422	Klencsár, Z., Kuzmann, E., and Vértes, A. (1996) User-friendly software for Mössbauer
423	spectrum analysis. Journal of Radioanalytical and Nuclear Chemistry, 210, 105-
424	118.

425	Kress, V.C., and Carmichael, I.S.E. (1991) The compressibility of silicate liquids
426	containing Fe ₂ O ₃ and the effect of composition, temperature, oxygen fugacity and
427	pressure on their redox states. Contributions to Mineralogy and Petrology, 108,
428	82-92.
429	Lee, C.T.A. (2014) 4.12 – Physics and chemistry of deep continental crust recycling. In
430	H.D. Holland and K.K. Turekian, Eds., Treatise on Geochemistry, second edition.
431	Elsevier, Oxford, p. 423-456.
432	Lee, C.T.A., Luffi, P., Le Roux, V., Dasgupta, R., Albaréde, F., and Leeman, W.P. (2010)
433	The redox state of arc mantle using Zn/Fe systematics. Nature, 468, 681-685.
434	Ma, L., Wang, Q., Wyman, D.A., Jiang, Z.Q., Yang, J.H., Li, Q.L., Gou, G.N., and Guo,
435	H.F. (2013a) Late Cretaceous crustal growth in the Gangdese area, southern Tibet:
436	Petrological and Sr-Nd-Hf-O isotopic evidence from Zhengga diorite-
437	gabbro. Chemical Geology, 349-350, 54-70.
438	Ma, L., Wang, Q., Wyman, D.A., Li, Z.X., Jiang, Z.Q., Yang, J.H., Gou, G.N., and Guo,
439	H.F. (2013b) Late Cretaceous (100-89 Ma) magnesian charnockites with adakitic
440	affinities in the Milin area, eastern Gangdese: Partial melting of subducted oceanic
441	crust and implications for crustal growth in southern Tibet. Lithos, 175-176, 315-
442	332.
443	Melekhova, E., Blundy, J., Robertson, R., and Humphreys, M.C.S. (2015) Experimental
444	evidence for polybaric differentiation of primitive arc basalt beneath St. Vincent,
445	Lesser Antilles. Journal of Petrology, 56, 161-192.

446	Müntener, O., and Ulmer,	P. (2018) Arc crust	t formation and dif	ferentiation constrained

- by experimental petrology. American Journal of Science, 318, 64-89.
- 448 Nandedkar, R.H., Ulmer, P., and Müntener, O. (2014) Fractional crystallization of
- 449 primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contributions
- to Mineralogy and Petrology, 167, 1015.
- 451 Purwin, H., Lauterbach, S., Brey, G.P., Woodland, A.B., and Kleebe, H.J. (2013) An
- 452 experimental study of the Fe oxidation states in garnet and clinopyroxene as a
- 453 function of temperature in the system CaO–FeO–Fe₂O₃–MgO–Al₂O₃–SiO₂:
- 454 implications for garnet–clinopyroxene geothermometry. Contributions to
 455 Mineralogy and Petrology, 165, 623-639.
- 456 Richards, J.P. (2003) Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit
 457 formation. Economic Geology, 98, 1515-1533.
- 458 Richards, J.P. (2015) The oxidation state, and sulfur and Cu contents of arc magmas:
- implication for metallogeny. Lithos, 233, 27-45.
- 460 Santana, L.C.V., McLeod, C.L., Blakemore, D., Shaulis, B., and Hill, T. (2020) Bolivian
- 461 hornblendite cumulates: Insights into the depths of Central Andean arc magmatic
 462 systems. Lithos, 370-371, 105618.
- 463 Scheibner, C., and Speijer, R.P. (2008) Late Paleocene-early Eocene Tethyan carbonate
- 464 platform evolution—A response to long- and short-term paleoclimatic change.
- 465 Earth-Science Reviews, 90, 71-102.
- 466 Sillitoe, R.H. (2010) Porphyry copper system. Economic Geology, 105, 3-41.

167	Sun WD	Huang R I	тын н	VR Zhang	C.C. Sun	SI	and Ling, M.X.	(2015)
407	Dun, w.D.	, 11uang, 10.1	, 1/1, 11., 11.	$\mathbf{L}_{\mathbf{L}}$, C.C., Dull,	D.J., (and Lmg , $m.m$	120131

- 468 Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65, 97-131.
- 469 Tahirkheli, R.A.K., Mattauer, M., Proust, F., and Tapponnier, P. (1979) The India-
- 470 Eurasia suture zone in northern Pakistan; synthesis and interpretation of recent
- 471 data at plate scale. In F. Abul and K.A. DeJong, Eds., Geodynamics of Pakistan, p.
- 472 125-130. Geol. Surv. Pakistan, Quetta, Pakistan.
- Tang, M., Erdman, M., Eldridge, G., and Lee, C.T.A. (2018) The redox "filter" beneath
 mgmatic orogens and the formation of continental crust. Science Advances, 4, 5.
- Tang, M., Lee, C.T.A., Costin, G., and Höfer, H.E. (2019a) Recycling reduced iron at
- the base of magmatic orogens. Earth and Planetary Science Letters, 528, 115827.
- 477 Tang, Y.W., Chen, L., Zhao, Z.F., and Zheng, Y.F. (2019b) Geochemical evidence for
- the production of granitoids through reworking of the juvenile mafic arc crust in
- the Gangdese orogen, southern Tibet. Geological Society of America Bulletin,
- 480 https://doi.org/10.1130/B35304.1
- Toplis, M.J., and Carroll, M.R. (1995) An experimental study of the influence of oxygen
 fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in
 ferro-basaltic systems. Journal of Petrology, 36, 1137-1170.
- 484 Torres García, M.F., Calderón, M., Ramírez de Arellano, C., Hervé, F., Opitz, J., Theye,
- 485 T., Fanning, C.M., Pankhurst, R.J., González-Guillot, M., Fuentes, F., and
- 486 Babinski, M. (2020) Trace element composition of amphibole and petrogenesis of
- 487 hornblendites and plutonic suites of Cretaceous magmatic arcs developed in the
- 488 Fuegian Andes, southernmost South America. Lithos, 372-373, 105656.

489	Ulmer, P., Kaegi, R., and Müntener, O. (2018) Experimentally derived intermediate to
490	silica-rich arc magmas by fractional and equilibrium crystallization at 1.0 GPa: an
491	evalution of phase relationships, compositions, liquid lines of descent and oxygen
492	fugacity. Journal of Petrology, 59, 11-58.
493	Waters, L.E., and Lange, R.A. (2016) No effect of H ₂ O degassing on the oxidation state
494	of magmatic liquids. Earth and Planetary Science Letters, 447, 48-59.
495	Wen, D.R. (2007) The Gangdese batholith, southern Tibet: Ages, geochemical
496	characteristics and petrogenesis, 120 p. Ph.D. dissertation, National Taiwan
497	University.
498	Xu, W., Zhu, D.C., Wang, Q., Weinberg, R.F., Wang, R., Li, S.M., Zhang, L.L., Zhao,
499	Z.D. (2019) Constructing the early Mesozoic Gangdese crust in southern Tibet by
500	hornblende-dominated magmatic differentiation. Journal of Petrology, 60, 515-
501	552.
502	Xu, W.C., Zhang, H.F., Luo, B.J., Guo, L., and Yang, H. (2015) Adakite-like
503	geochemical signature produced by amphibole-dominated fractionation of arc
504	magmas: An example from the Late Cretaceous magmatism in Gangdese belt,
505	south Tibet. Lithos, 232, 197-210.
506	Zhang, J.B., Wang, R., Hong, J., Tang, M., and Zhu, D.C. (2021) Nb-Ta systematics of
507	Kohistan and Gangdese arc lower crust: Implications for continental crust
508	formation. Ore Geology Reviews, 133, 104131.
509	Zhang, Z.M., Zhao, G.C., Santosh, M., Wang, J.L., Dong, X., and Shen, K. (2010) Late
510	Cretaceous charnockite with adakitic affinities from the Gangdese batholith,

511	southeastern Tibet: Evidence for Neo-Tethyan mid-ocean ridge
512	subduction? Gondwana Research, 17, 615-631.
513	Zheng, Y.C., Hou, Z.Q., Gong, Y.L., Liang, W., Sun, Q.Z., Zhang, S., Fu, Q., Huang,
514	K.X., Li, Q.Y., and Li, W. (2014) Petrogenesis of Cretaceous adakite-like
515	intrusions of the Gangdese Plutonic Belt, southern Tibet: Implications for mid-
516	ocean ridge subduction and crustal growth. Lithos, 190-191, 240-263.
517	Zhu, D.C., Wang, Q., Chung, S.L., Cawood, P.A., and Zhao, Z.D. (2019) Gangdese
518	magmatism in southern Tibet and India-Asia convergence since 120 Ma. In P.J.
519	Treloar and M.P. Searle, Ed., Himalayan Tectonics: A Modern Synthesis.
520	Geological Society, London, Special Publications, 483, doi: 10.1144/SP483.14.
521	Zhu, D.C., Zhao, Z.D., Pan, G.T., Lee, H.Y., Kang, Z.Q., Liao, Z.L., Wang, L, Q., Li,
522	G.M., Dong, G.C., and Liu, B. (2009) Early cretaceous subduction-related adakite-
523	like rocks of the Gangdese Belt, southern Tibet: Products of slab melting and
524	subsequent melt-peridotite interaction? Journal of Asian Earth Sciences, 34, 298-
525	309.
526	

527 Figure Captions:

547

528	Figure 1. (A) Geological map of the Kohistan arc (modified from Jagoutz, 2014) (B)
529	A-B cross-section through the Indus valley from the Jijal Complex to the Sarangar
530	gabbro (after Dhuime et al., 2007).
531	
532	Figure 2. Photomicrograph of Kohistan hornblendite (A), garnet hornblendite (B),
533	Tescan integrated mineral analyzer (TIMA) image of pyroxene garnetite (C), and
534	pyroxene garnetite (plane polarized light) (D). The yellow rectangle in C is the area of
535	D. Abbreviations: Amp-amphibole, Grt-garnet, Rt-rutile.
536	
537	Figure 3. ⁵⁷ Fe Mössbauer spectra of (A-D) garnet and (E-G) amphibole in Kohistan
538	cumulates.
539	
540	Figure 4. $Fe^{3+}/\Sigma Fe$ vs. whole-rock Mg# of Kohistan cumulates, amphiboles in
541	cumulates, and garnets in cumulates. The dots are color-coded by volume percentage
542	of amphibole, which have an estimation error of \leq 5 vol%. The Fe ³⁺ / Σ Fe values of
543	Kohistan cumulates were determined by wet chemistry method, those of amphiboles
544	and garnets were determined by Mössbauer spectroscopy.
545	
546	Figure 5. (A) Mg# vs. SiO ₂ and (B) FeO^T vs. MgO diagrams. Honshu, Luzon and

- 548 mainz.gwdg.de/georoc/Entry.html); Gangdese arc magmas are from Jiang et al. (2012),

Kohistan-Ladakh arc magmas are from GEOROC database (http://georoc.mpch-

549	Ma et al.	(2013a, b).	Tang et al.	(2019b), Wer	1 (2017), Xu et al.	(2015), Zhang et al

- 550 (2010), Zheng et al. (2014), Zhu et al. (2009); Kohistan cumulates are from Jagoutz and
- 551 Schmidt (2012); Arizona cumulates are from Chen et al. (2020).
- 552

553	Figure 6.	Whole-rock $Fe^{3+}/\Sigma Fe$ ratios	vs. Mg# and Dy/Yb ratios v	s. SiO ₂ of ((A, B))

- 554 Kohistan arc, (C, D) Tonga arc and (E, F) Andean arc. The curves with arrows in A and
- 555 F are the fitting trendline. The highlighted dots in C and E are equal interval mean
- values. The differentiation trends of Dy/Yb are from Davidson et al. (2007). The data
- of the Tonga arc and Andean arc, and the $Fe^{3+}/\Sigma Fe$ ratios of the Kohistan arc, are from
- the GEOROC database, and the Dy/Yb ratio data of the Kohistan arc are from Jagoutz
- 559 et al. (2013).
- 560

Figure 7. Relationship between the Mg# of coexisting liquid and the Mg# of crystallized amphibole as suggested by experiments. The trendline equation and Rsquared value are displayed.

564

Figure 8. Residual melt $Fe^{3+}/\Sigma Fe$ values as a consequence of fractionating amphibolebearing cumulates from different initial parental magmas with different bulk cumulate Mg#.

568

569 **Figure 9.** Schematic cross section of arc magma system and associated porphyry 570 deposit, showing the oxidation effect of amphibole fractionation in lower crustal

- 571 cumulates and potential shallow magma chamber within parentheses. The diagram is
- 572 modified from Audétat and Simon (2012).

0 1		Content (wt. %)										N //**		Mode (vol. %)				
Sample	SiO ₂	TiO ₂	Al ₂ O ₃	^T Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	FeO*	Mg# ^{**}	$\mathrm{Fe}^{3+}/\Sigma\mathrm{Fe}^{***}$ -	Amp	Grt	Px	Pl	Mag
18JL015	43.32	1.12	13.88	11.00	0.14	15.33	12.82	2.19	0.21	0.01	6.50	0.74	0.34	100				
18JL016-1	40.61	0.87	16.81	15.56	0.23	12.63	12.78	0.48	0.03	0.01	9.10	0.62	0.35	30	50	20		
18JL016-2	42.81	0.53	16.59	14.20	0.35	13.85	10.78	0.82	0.08	0.01	7.90	0.66	0.38	30	50	20		
18JL017	48.37	0.69	19.45	12.37	0.20	5.73	10.84	2.21	0.07	0.06	7.60	0.48	0.32		40	60		<1
18JL019	42.75	0.24	16.74	14.51	0.43	13.93	11.18	0.21	0.00	0.00	8.50	0.66	0.35	5	60	35		trace
18JL020-1	43.24	1.35	14.83	11.59	0.10	15.05	11.42	2.27	0.15	0.01	7.20	0.72	0.31	80	20			
18JL020-2	43.43	1.34	14.43	11.54	0.10	15.08	11.58	2.31	0.18	0.01	6.60	0.72	0.36	80	20			
18JL021	41.88	0.33	17.27	17.32	0.42	11.08	11.36	0.32	0.00	0.01	12.50	0.56	0.20		70	30		trace
18JL022	43.05	1.30	14.80	12.75	0.15	13.22	12.69	1.90	0.12	0.01	6.60	0.67	0.42	20	60	20		
18JL023	41.95	1.22	17.16	11.46	0.08	13.52	11.71	2.74	0.16	0.01	6.50	0.70	0.37	85	15			
18JL025	50.72	0.73	18.53	12.14	0.24	5.37	9.79	2.21	0.17	0.10	7.20	0.47	0.34	10	50	30	10	trace
18JL026	47.64	0.87	18.91	13.34	0.23	5.92	11.51	1.35	0.08	0.15	8.15	0.47	0.32	40	30	30		trace
18JL028	52.20	0.82	18.23	11.27	0.20	4.65	9.73	2.60	0.18	0.14	7.20	0.45	0.29	10	60	10	10	
18JL029	40.42	1.78	16.32	15.30	0.13	12.00	11.21	2.57	0.25	0.02	8.85	0.61	0.36	80	20			
18JL030	44.18	1.16	11.99	13.31	0.18	10.43	17.39	1.25	0.09	0.02	7.05	0.61	0.41	65	35			
18JL031	41.67	1.27	16.53	13.38	0.11	12.61	11.58	2.63	0.20	0.02	7.55	0.65	0.37	80	20			
18JL032	43.51	0.78	17.98	15.60	0.30	8.29	12.52	0.99	0.01	0.03	11.40	0.52	0.19		60	40		
18JL033	45.41	1.40	18.11	12.83	0.20	6.55	13.33	1.98	0.18	0.02	7.95	0.51	0.31		60	40		
18JL035	51.87	0.61	18.14	10.90	0.19	5.60	10.34	2.17	0.13	0.05	8.35	0.51	0.15		70	20	10	<1
18JL040	46.70	0.93	18.96	13.86	0.24	6.08	11.43	1.46	0.09	0.24	7.95	0.47	0.36	30	30	30	10	<1

Table 1 Major compositions and mode of the Kohistan cumulates.

* FeO contents are determined by wet chemistry.

** Mg# = atomic [Mg/(Mg+Fe)].

^{***} $Fe^{3+}/\Sigma Fe = atomic [Fe^{3+}/(Fe^{3+}+Fe^{2+})], Fe_2O_3 = {}^{T}Fe_2O_3 - FeO/0.8998.$

Abbreviations: Amp-amphibole, Grt-garnet, Px-pyroxene, Pl-plagioclase, Mag-magnetite.

