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Picrites, dominantly composed of highly forsteritic olivine, can serve as 13	

important constraints on primary magma composition and eruption 14	

dynamic processes in global Continental Flood Basalt (CFB) provinces. 15	

Picrites are commonly divided into high-Ti and low-Ti groups based on 16	

whole-rock TiO2 content or Ti/Y ratio. Here, we use an Artificial Neural 17	

Network (ANN) to classify the individual olivine in picrites from global 18	

CFB provinces according to whether their parental magma is high-Ti or 19	

low-Ti to better understand the primary origin and magmatic processes. 20	

After training the ANN on one thousand olivine major element 21	

compositions data points, the network was able to differentiate chemical 22	

patterns for high-Ti and low-Ti olivine, and classify olivine into correct 23	

types with an accuracy of >95 %. Moreover, we find that two types of 24	

olivine mix in some single samples from Etendeka, Emeishan, and Karoo 25	

CFB provinces. Combining the results with chemical markers of source 26	



lithology, we suggest that the two types of olivine originate from two 27	

different sources and their olivine populations mixed during the ascent. 28	

This mixing then makes the spatial and temporal variation of picrites types 29	

in some CFB provinces unclear. 30	
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33	

PICRITE IN CONTINENTAL FLOOD BASALT PROVINCES 34	

High-Ti (HT) and low-Ti (LT) types of picrites are commonly observed in 35	

Continental Flood Basalts (CFBs) or Large Igneous Provinces (LIPs). The 36	

classification is based on the values of TiO2 or Ti/Y of whole-rock 37	

compositions (e.g. Ewart et al., 2004; Kamenetsky et al., 2017; Peate et al., 38	

1999; Xiao et al., 2004; Xu et al., 2001). Both types are found either in 39	

separate locations or within the same succession of a CFB. For example, 40	

in Karoo province, LT picrites (TiO2<1.5 wt%) are found mainly south of 41	

26 o S, whereas HT picrites predominate north of this latitude (Galerne et 42	

al., 2008). The different locations may indicate the two types were 43	

produced from different magmatic sources (e.g. Heinonen et al., 2013; 44	

Heinonen and Luttinen, 2008; Howarth and Harris, 2017; Kamenetsky et 45	

al., 2012). On the other hand, in Emeishan province, the two types are 46	

found within the Binchuan succession (e.g.(Cheng et al., 2014; Xu et al., 47	

2001)). Why the two types of picrites occur in many LIPs is unclear. 48	



Neither is it clear why the two types occur both separately and together. 49	

Since picrites are predominantly composed of highly forsteritic olivine, HT 50	

samples possibly consist of HT olivine and LT samples consist of LT 51	

olivine. In addition to HT and LT samples, some picrites have intermediate 52	

Ti/Y value (IT), and do not show clear characteristics of either HT or LT 53	

in Emeishan LIP (Kamenetsky et al. 2012). Existence of IT samples may 54	

indicate mixing of multiple olivine populations which should be confirmed, 55	

because the composition of picrite are usually used to constrain on the 56	

source composition (e.g., Zhang et al., 2006). Source compositions cannot 57	

be constrained correctly from multiple olivine populations. 58	

To address these issues, we need to analyse the chemical patterns of olivine 59	

in picrites. For this study, we have compiled thousands of compositions of 60	

olivines from published picrites samples and built an Artificial Neural 61	

Networks (ANN) to investigate the chemical characteristics of olivine from 62	

HT and LT picrites. Further, we determined the links between olivine 63	

populations and their sources and answered whether olivine populations 64	

mixed during magmatic processes. 65	

66	

DATABASE OF OLIVINE COMPOSITIONS IN PICRITES 67	

We have collected thousands of major elements data points of olivine as 68	

well as their whole-rock compositions of picrites from six CFBs (Emeishan 69	

LIP, Etendeka province, Ethiopian CFB, Karoo LIP, North Atlantic 70	



province, and Siberia CFB) from the open-access and comprehensive 71	

global petrological database GEOROC (http://georoc.mpch-72	

mainz.gwdg.de/georoc/). These CFB provinces are located in different 73	

parts of the earth, and have been well studied (Fig. 1). Within the data, Ti/Y 74	

values of picrites range from 250 to 1400 (Fig. 2). The picrites from the 75	

Ethiopian province have the highest Ti/Y values of 1400, while the 76	

maximal values of other CFBs are around 800 (Fig. 2). Although Xu et al. 77	

(2001) suggested that the Ti/Y value  boundary between HT and LT is 500 78	

for the Emeishan LIP, the boundaries for different provinces may vary 79	

between 350 and 600 based on the gaps in data in Figure 2. Thus, we 80	

assumed that samples with Ti/Y of more than 600 were HT end-members, 81	

samples with Ti/Y of less than 350 were LT end-members, and samples 82	

with Ti/Y from 350 to 600 were the intermediate Ti group (IT). 83	

We determined the quality of olivine dataset, which comprised 2898 major 84	

element compositions of olivine from picritic samples of CFBs (Table 1s 85	

in appendix), by calculating the cardinality, minimum, mean, median, 86	

maximum and standard deviation of each element’s concentration (Table 87	

1). Note, that in this study we assume all the collected data could represent 88	

the true composition of whole olivine by measuring composition of the 89	

core of olivine without the effect of diffusion (e.g. Cheng et al., 2020; 90	

Costa, 2020; Costa et al., 2020) and the random cut effect in thin sections 91	

(e.g. Cheng et al., 2017; Cheng and Costa, 2019). The cardinality measures 92	



the number of distinct values. The cardinalities of TiO2 were much lower 93	

than 1000, and the minimum value and mean value were lower than 0.01, 94	

meaning that many TiO2 values were 0. The difference between the mean 95	

and median of each composition showed the outliers. Most of the elements 96	

differed only a little (0-1 wt%), which showed that there were not too many 97	

outliers. The standard deviations of the FeO and MgO values (3-4 wt%) 98	

were much larger than the standard deviations of the other elements (less 99	

than 1 wt%), showing the large FeO and MgO variation. However, the 100	

maximum values of several elements were much larger than the normal 101	

values of olivine. For example, the maximum of SiO2 was 63 wt% and that 102	

of Al2O3 was 5 wt%. This indicated existence of several low-quality data 103	

points to be filtered out—those with analytical totals out of the range 98-104	

101 and with stoichiometric ratios of  (Mg+Fe)/Si  out of the range of 1.95-105	

2.05). Furthermore, low-quality training data to filter out were ones with 106	

SiO2 values out of the range of 38-42 wt%, Al2O3 values out of the range 107	

of 0-0.15 wt%, Cr2O3 values out of the range 0-0.2 wt%, and NiO values 108	

out of the range of 0.1-0.6 wt%. The remaining total of 1002 training data 109	

points were high-quality (Table 1s in the appendix). The same approach 110	

was taken to obtain high-quality data for IT samples. 111	

To avoid the high linear relationship between features, we also calculated 112	

the correlation coefficient between each two elements (Fig. 3). The 113	

correlation coefficients showed that MgO had a negative linear relationship 114	



with FeOT and MnO, whose correlation coefficients were -0.98 and -0.84, 115	

respectively. There was a positive linear relationship between MgO and 116	

SiO2, whose correlation coefficient was 0.86. It meant MgO could 117	

represent SiO2, FeOT and MnO. There were no clear positive or negative 118	

linear relationships between Al2O3, MgO, CaO, NiO, or Cr2O3. 119	

120	

ARTIFICIAL NEURAL NETWORKS 121	

There are several models of machine learning such as Support Vector 122	

Machine (SVM), Random Forest (RF), Naïve-Bayes Classifier (NBC), 123	

Artificial Neural Networks (ANN), Convolution Neural Network (CNN) 124	

and Recurrent Neural Networks (RNN) (Ardabili et al., 2020; Bergen et al., 125	

2019; Bishop, 2006). They all can convert experience into expertise or 126	

knowledge during learning (Ardabili et al., 2020; Bergen et al., 2019). 127	

Several ML models have been used in earth science studies (e.g. Hazen, 128	

2014; Morrison et al., 2017; Petrelli and Perugini, 2016). 129	

In this study, the ANN model was selected, since our data (major elements 130	

compositions of olivine) are tabular and ANN is powerful. But, we also 131	

compared the performance of our ANN with other traditional ML methods 132	

including SVM and NBC (see Discussion). We built a supervised ANN 133	

according to the types of picrites. The first goal of our ANN was to produce 134	

good prediction results by learning the chemical characteristics of the 135	

training data. The second goal was to use the ANN to classify the olivine 136	



data from IT samples which was a much more difficult task than 137	

predictions from training data. We used only Al2O3, MgO, CaO, NiO, or 138	

Cr2O3 as features as they had no clear linear relationship between each 139	

other, as we mentioned above (Fig. 4). Our ANN used one hidden layer 140	

with 10 nodes. We chose ‘Levenberg-Marquardt backpropagation’ 141	

(‘trainlm’ function in Matlab) as the training algorithm as it is often the 142	

fastest back propagation algorithm and gives us the most accurate results, 143	

although it does require more memory than other algorithms. 144	

To train the ANN, we selected the olivine composition of an HT end-145	

member to represent the HT group, and the composition of an LT end-146	

member to represent the LT group. We had about 1000 high-quality olivine 147	

compositions from all the global CFBs. To avoid overfitting, we randomly 148	

split our data into three groups: the training set, the validation set and the 149	

test set, using the ratios of 70:15:15. Thus, we had about 700 training 150	

samples, about 150 validation samples, and about 150 test samples. 151	

152	

RESULTS 153	

The results show that our ANN has achieved high accuracy (>95%) for all 154	

three sets (Fig. 5). For the training data, the ANN determined 233 data 155	

points as belonging to LT, out of which 229 predictions were correct and 156	

473 data points as HT, out of which 468 predictions were correct. The 157	

accuracy was thus 99 % (Fig. 5a). For the validation set, our ANN have 158	



determined that 38 data points belonged to LT, out of which 36 predictions 159	

were correct and 112 points as HT, out of which 109 predictions were 160	

correct. The accuracy achieved was 96.7% (Fig. 5b). For the test set, the 161	

ANN labelled 57 data points as LT with 54 predictions correct, and 93 data 162	

points were labelled as HT with 89 predictions correct. Thus, the accuracy 163	

was 95.3 % (Fig. 5c). The high and close accuracy values of the three sets 164	

means there are no overfitting problems. In total, the ANN’s accuracy is 165	

98.1 % for all of the data (Fig. 5d). 166	

After training the ANN, we input all of the olivine data from olivine 167	

crystals contained in the IT samples. The olivine from the IT samples were 168	

determined by the ANN to belong to LT was labelled as IT-L, and the 169	

olivines determined to belong to HT were labelled as IT-H (Fig. 6). We 170	

find that most of LT and HT olivine are located in different part of NiO-171	

MgO plot, but there are still many overlapping data points when MgO 172	

ranges from 40 to 45 wt% (Fig. 6a). The overlaps suggest that a simple 173	

relation such as NiO-MgO cannot accurately classify olivine crystals. 174	

However, the ANN model can classify them highly accurately (>95%), 175	

although several IT-L points whose MgO is about 40 wt% are located in 176	

the area of HT and IT-H, which suggests they are probably classified 177	

incorrectly (Fig. 6a). The LT and IT-L olivine show mostly higher CaO 178	

(Fig. 6b), higher Al2O3 (Fig. 6c) compared to HT and IT-H. Most LT and 179	

IT-L data points range from 0.3 to 0.6 wt% CaO, while HT and IT-H vary 180	



from 0.1 to 0.4 wt%.  However, LT and HT olivine overlap more in their 181	

relationships between Al2O3, CaO vs. MgO compared to NiO vs. MgO. 182	

There are also many overlapping points around 0.3 wt% CaO and 0.04 wt% 183	

Al2O3 (Fig. 6c & 6d). The HT and LT samples overlap mostly in the 184	

relationship between Cr2O3 and MgO compared to the rest (Fig.6d). Both 185	

HT and LT samples range from 0 to 0.16 wt%. Thus, we emphasize again 186	

that it is almost impossible to classify these overlapping data using simple 187	

relations. Overall, the ANN has correctly classified the olivine from the IT 188	

sample into the right group: most of IT-L points overlap the IT samples 189	

and most of IT-H points overlap the HT samples (Fig. 6). Moreover, ANN 190	

has performed well on the overlapping data points which could not be 191	

classified by the simple relations. 192	

193	

DISCUSSION 194	

Comparison with other machine learning methods 195	

In the previous section, we demonstrated the good performance of our 196	

ANN on IT olivine and on the overlapping data points where olivine 197	

crystals cannot be accurately classified by simple relations such as NiO-198	

MgO. Although more complex relations such as NiO-MgO-Al2O3 could be 199	

used for overlapping data points, much longer time would be required, and 200	

distinguishing differences in three-dimensional space would be more 201	

difficult. In comparison, our ANN was able to directly predict olivine 202	



populations with high accuracy for such cases within several minutes. 203	

Moreover, we compared the performance of the ANN to other traditional 204	

machine learning methods such as the Support Vector Machine (SVM) and 205	

Naïve Bayes Classifier (NBC). The SVM is a non-parametric classifier 206	

that finds a linear vector (if a linear kernel is used) to separate classes. It 207	

has been used in Earth science research. For example, Petrelli and Perugini 208	

(2016) outlined an SVM with a Gaussian kernel function for tectonic 209	

discrimination based on geochemical and isotopic data. We used the ‘linear’ 210	

function in Matlab as the kernel function. The NBC is a simple 211	

‘probabilistic classifier’ based on Bayes’ theorem, with strong 212	

independence assumptions between features (e.g., Ren et al., 2019). The 213	

NBC can be trained efficiently in a supervised learning setting, such as the 214	

one required in this study. We used the ‘kernel’ function in Matlab with a 215	

mean kernel smoothing density estimate. The SVM and NBC are highly 216	

accurate (96.5% and 94.5%, respectively), and capable of distinguishing 217	

between the two types of samples (Fig.7). However, since our ANN’s 218	

accuracy remains the highest, we suggest using ANN model (Figs. 5 and 219	

7). 220	

221	

The sources of olivine populations 222	

We have shown that different machine learning models such as ANN and 223	

SVM are able to classify the olivine populations accurately. It indicates 224	



that these results show that the olivine from two end-members are different. 225	

To investigate the link between olivine population and source lithology, 226	

we compare NiO concentrations of two olivine populations. We find that 227	

NiO of HT is much higher than that of LT at the given MgO value (Fig. 228	

8a). High NiO in olivine has, for example, been suggested to indicate a 229	

pyroxenitic source and thus determine the mafic sources for Hawaiian 230	

magma (Sobolev et al. 2005). It has been widely used to argue for an 231	

olivine-free pyroxenite source for both continental and oceanic basalts 232	

(Herzberg, 2011, 2006; Sobolev et al., 2007; Xu et al., 2012). However, 233	

high-Ni olivine could crystallize under low-temperature conditions from 234	

high-temperature peridotite melts without contributions from a pyroxenite 235	

source as shown in Fig. 8a (Matzen et al., 2017). Minor and trace element 236	

characteristics in olivine strongly depend on pressure, temperature and 237	

melt composition, as suggested by experimental petrology (Matzen et al., 238	

2013). Examples such as high-Ni and low-Mn olivine in Karoo was 239	

suggested as the result of temperature and pressure variations (Heinonen 240	

and Fusswinkel, 2017). However, we found a relatively narrow range of 241	

LT olivine and there is a linear trend between Fo and NiO for the global 242	

data, while that of HT is quite large and the Fo-NiO relationship not easily 243	

determined. These HT olivine points are further divided into two groups. 244	

For example, the olivine from Ethiopian CFB has higher NiO content than 245	

that of LT, but a bit lower NiO than that of olivine from other CFBs. Note, 246	



that olivine from other CFBs is located in the Ethiopian area (Fig. 8a). If 247	

the two populations are both from peridotite, we would expect similar 248	

trends even under different pressures or temperatures, and thus we suggest 249	

the two types of olivine are from different sources. However, we need to 250	

emphasize that the link between an olivine population and a source 251	

depends on the choice of markers of source lithology, and many markers 252	

have their own limitations (e.g. Yang et al., 2019, 2016). Thus, we also 253	

applied the last chemical marker suggested by Yang et al. (2019). This 254	

marker, combines FCAKANTMS ) =ln (FeO/CaO) − 0.08 * ln(K2O/Al2O3) 255	

− 0.052 * ln (TiO2/Na2O) − 0.036 * ln (Na2O/K2O) * ln (Na2O/TiO2) −256	

0.062 * (ln (MgO/SiO2))3 – 0.641 * (ln (MgO/SiO2))2 – 1.871 * ln 257	

(MgO/SiO2) − 1.473; all major elements in wt%) with ln 258	

(SiO2/(CaO+Na2O+TiO2) and was able to distinguish approximately 80% 259	

and 50% low to moderate degree (Fo<60%) partial melts of mafic sources 260	

from those of peridotite and transitional lithologies. We calculated the 261	

FCKANTMS values for the picrites in this study and the global melts 262	

compiled from Yang et al. (2019). We found that most of LT samples are 263	

much closer to area of peridotite source compared to HT samples (Fig. 8b). 264	

Data points of HT samples are located in two quite different areas: many 265	

data points have much lower ln (SiO2/(CaO+Na2O+TiO2) which are all 266	

from Ethiopian CFB, while many have much higher FCKANTMS and 267	

middle ln(SiO2/(CaO+Na2O+TiO2) that are from North, Karoo LIPs. The 268	



former is close to the carbonated mafic source and the latter is close to the 269	

mafic source. Two main areas of HT samples are consistent with the two 270	

main trends of HT olivines in Fig. 8a. Samples from Emeishan LIP are 271	

located in both areas, which shows the complexity of their source lithology. 272	

We propose that these HT olivines and picrites represent mafic sources and 273	

LT indicate peridotite sources. Further, the source of HT olivine could be 274	

divided into mafic (HT1) and carbonated mafic source (HT2). Our ANN 275	

has further determined the three groups linked to three sources by training 276	

the ANN on data with three labels using the same five features (Fig. 9). We 277	

have found that the accuracy for all of the data is 95%, which is lower than 278	

the accuracy of the ANN model with two outputs (Fig. 5). Clearly, 279	

classifying samples from HT1 and HT2 is more challenging due to their 280	

similarity. 281	

282	

Olivine populations in a single picritic sample 283	

We selected olivine from a single IT sample of each CFB and input them 284	

into our ANN model. Here, we used the ANN model with three outputs to 285	

determine whether LT, HT1 and HT2 olivine populations mix. Note, that 286	

we did not have IT olivine data from Karoo and Ethiopian CFBs. The 287	

results show that no single sample has all three olivine populations: some 288	

samples have both LT and HT1, and some samples only have LT or HT1. 289	

For example, for the Siberian flood basalt province, the ANN determined 290	



that all the olivine from sample SU33 with Ti/Y=350 belongs to the LT 291	

group, and all the olivine from SU50 whose Ti/Y is 474 belongs to the HT1 292	

group (Fig.10). However, the results show that: (1) 3+/-10% and 4+/-8% 293	

of the olivine are HT1 from two IT samples from Etendeka province 294	

(97SB41 and 97SB62); (2) 11+/-5%, 10+/-3% and 20+/-5% of the olivine 295	

from three IT samples of Emeishan LIP are HT1 (13-EJH08,7-EJH08, and 296	

1a-EJH06); and (3) 10 +/-11%,11 +/-9% , 7+/-4% of olivine are HT1 from 297	

three samples from North Atlantic province (400457, 400230, and 340740). 298	

We found that mixing of two olivine types was found in IT samples from 299	

Etendeka, Emeishan LIP, and North Atlantic provinces. The possible 300	

reasons are: (1) In some provinces, both types of picrite are found in the 301	

same location (e.g., in Binchuan succession in Emeishan LIP, Xu et al., 302	

2001). The two types of olivine are relatively easier to mix when they both 303	

occur in the same location in these CFBs compare to different locations. 304	

(2) The proportion of HT1 olivine in these IT samples is low, which means305	

a significant amount of olivine data is required to find HT1 olivine. But 306	

enough olivine data of intermediate samples whose Ti/Y is between 300 307	

and 500 in other CFBs are not available now. If more olivine data of 308	

samples with Ti/Y of about 300-400 are available, olivine population 309	

mixing could probably be found in other CFBs. 310	

With our crystal-scale classification, we are able to explain why two types 311	

of picrites are common in all the CFBs, yet, in some CFBs, the spatial and 312	



temporal variations of different picrite types become unclear. Although the 313	

two or three types of olivine are produced by different sources at the 314	

beginning of flood basalt eruptions, during magma ascent, these olivine 315	

types may mix. Thus, if we consider only the classification of rocks, the 316	

two types of olivine (LT and HT) in the samples will be classified into one 317	

group. However, with the powerful machine learning tool, olivine from IT 318	

samples of CFBs such as Etendeka, Emeishan, and North Atlantic 319	

provinces can still be classified into different groups. Overall, the existence 320	

of different types of picrites may be better explained by variations in 321	

sources rather than crystallization processes. Their existance in different 322	

CFBs may indicate that the origin in the global CFBs is linked to the 323	

different lithologies: peridotitic or mafic sources (e.g. Heinonen et al., 324	

2013; Heinonen and Luttinen, 2008; Kamenetsky et al., 2012; Li et al., 325	

2014; Sobolev et al., 2005). The plume in these CFBs may start from the 326	

one source such as peridotite, but with the huge volume of magma, as the 327	

plume rises another source, such as mafic, starts melting and is mixed into 328	

the magma. Thus, our results show both peridotitic and mafic sources are 329	

involved in CFB provinces and olivine populations from two sources may 330	

mix during ascent. 331	

332	

IMPLICATIONS 333	



Our study shows a clear link between olivine populations and two types of 334	

picrites, with the olivine from different types of picrites showing varying 335	

chemical characteristics. Using the source markers including NiO-Fo and 336	

FCKANTMS, we propose HT and LT olivines represent mafic and 337	

peridotite sources, respectively. The source of HT olivine could be further 338	

divided into mafic and carbonated mafic sources. We have also built an 339	

ANN model with three outputs which are linked to three different sources. 340	

Using the ANN model, we are able to find olivine populations within a 341	

single sample, which indicates that olivine populations mixed in CFB. 342	

The ANN model we have built enables grouping the olivine from the 343	

picrites found in these CFBs without knowing the whole-rock composition 344	

of the picrites. Thus, our ANN for global CFB provinces could help 345	

classify the multitude of data on olivine published without the rocks’ 346	

compositions, which could provide the information about source lithology. 347	

Another application is the recognition of multiple olivine populations in a 348	

single sample. As we mentioned above, the picritic samples are commonly 349	

used to constrain the source compositions which requires that the samples 350	

provide direct source information without any effect from crystal 351	

populations mixing. Thus, it is necessary to check the populations using 352	

our ANN model. Moreover, the application of ANN is much more simple 353	

and efficient compare to human judgment as we mentioned above. It only 354	

requires users to prepare the olivine composition with the five features and 355	



input them into the ANN models we provided (Matlab scripts and training 356	

data in appendix). The ANN model will determine the olivine type 357	

correctly within several minutes. 358	

Last but not least, there are many whole-rocks or mineral major elements, 359	

trace elements, or radiogenic isotope compositions, it is difficult for people 360	

to distinguish the hidden patterns of massive data. ML methods can exam 361	

these large and varied data sets to uncover information including hidden 362	

patterns, unknown correlations. Our study shows that ML models offer the 363	

potential to make more data-driven decisions such as classification at more 364	

high accuracy rates for these data sets. 365	
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381	

Figures	382	

Figure 1 A map showing the location of the main Continental Flood Basalts 383	

(CFBs) around the world. The CFBs highlighted in the rectangle provide 384	

many olivine data points from picrites for this study. This map is adapted 385	

from (Bryan and Ernst, 2008). 386	

387	

Figure 2 Ti/Y of samples ranging from 200 to 1400 from the six CFBs. The 388	

gray area represents intermediate Ti/Y (IT) samples. 389	

390	

Figure 3 The correlations between major elements compositions of olivine. 391	

The diagonal shows the elements, the lower triangle is the diagram of two 392	

related elements, and the upper triangle shows the correlation coefficient 393	

of the two related elements. For example, 0.25 in the second column of the 394	

first row is the correlation coefficient of SiO2 and Al2O3, and their plots are 395	

shown in the first column of the second row. 396	

397	



Figure 4 The general structure of the ANN. It has five features including 398	

Al2O3, MgO, CaO, NiO and Cr2O3. There are 10 nodes in a hidden layer. 399	

The output of the ANN is LT and HT. 400	

401	

Figure 5 A confusion matrix showing the classification accuracy of the 402	

ANN. (a) In the confusion matrix of the training data, the blue color 403	

represents a correct prediction and the red a wrong prediction. The number 404	

inside is the total number of samples.  (b) The confusion matrix of the 405	

validation data. (c) The confusion matrix of test data. (d) The confusion 406	

matrix of all the data. 407	

408	

Figure 6 Variation of NiO, CaO, Al2O3, and Cr2O3 versus MgO for olivine 409	

from global CFBs. It shows that a portion of IT samples whose major 410	

element content is similar to that of LT samples is determined as IT-L, and 411	

others similar to HT samples are determined as IT-H by our ANN. The 412	

grey triangle and circles represent olivines from HT and LT samples, 413	

respectively. The dark-yellow triangle and light-blue circles represent 414	

olivine from IT samples, which are classified as HT and LT by our ANN, 415	

respectively. The dashed line represents the area with most HT and IT-H 416	

olivines, and the solid line represents the area with most LT and IT-L 417	

olivine. Note, that many contents of Al2O3 and Cr2O3 in 6c and 6d are zero 418	

which may mean they were below the detection threshold. 419	



420	

Figure 7 A confusion matrix of all the data using an SVM and an NBC. It 421	

shows that the accuracy of the ANN shown in Fig.5 is better than the 422	

accuracy achieved by either an SVM or an NBC. The blue color represents 423	

a correct prediction and the red a wrong prediction. The number inside is 424	

the total number of samples which are same as in Fig.5.  425	

426	

Figure 8 (a) NiO-Fo relationship of olivine populations in picrites from the 427	

six CFBs. The pink field is for phenocrystals from mid-ocean-ridge basalts 428	

(after Sobolev et al., 2005). The light-green field is the NiO89 content range 429	

produced by peridotite primary melts (Matzen et al. 2017). The white 430	

dashed circle is the data from Ethiopian CFB. (b) FCKANTMS vs. 431	

ln(SiO2/(CaO+Na2O+TiO2)) of whole-rock compositions of picrites which 432	

we collected in this study. Mafic, peridotite, and carbonatite mafic melts 433	

data were compiled by Yang et al. (2019). EM43 is one LT sample from 434	

Emeishan LIP. The black dashed circle are samples from Ethiopian LIP. 435	

436	

Figure 9 A confusion matrix showing the classification accuracy of the 437	

ANN with three outputs for all the data. HT1 and HT2 represent for mafic 438	

and carbonatite mafic source, respectively. The blue color represents a 439	

correct prediction and the red a wrong prediction. The numbers inside are 440	



the total numbers of samples, and the percentage numbers inside are the 441	

ratios. 442	

443	

Figure 10 The classification results of a single IT sample for each CFB 444	

(except Karoo and Ethiopian CFBs, which do not have any IT samples). 445	

Both HT1 and LT olivine are found in the same samples from Etendeka, 446	

North Atlantic, and Emeishan CFBs. 447	
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Table 1   Data describition of olivine used in this study
Count Card. Min 1st Qrt Mean Median

SIO2(wt%) 2898 2466 35.62 39.44 39.86 39.90
TiO2(wt%) 2898 749 0.00 0.00 0.01 0.00
AL2O3(wt%) 2898 1042 0.00 0.02 0.04 0.04
CR2O3(wt%) 2898 1121 0.00 0.04 0.06 0.06
FEOT(wt%) 2898 2690 0.00 11.62 14.14 13.56
CAO(wt%) 2898 1644 0.00 0.26 0.31 0.32
MGO(wt%) 2898 2685 26.60 43.78 45.29 45.67
MNO(wt%) 2898 2048 0.00 0.17 0.20 0.20
NIO(wt%) 2898 1982 0.00 0.31 0.35 0.34
Card. Cardinality of each element, which measure the number of distinct values present



3rd Qrt. Max Std Dev.
40.29 62.52 1.02

0.01 0.36 0.01
0.06 5.00 0.11
0.08 0.49 0.04

16.16 31.37 4.08
0.36 4.51 0.12

47.51 52.88 3.32
0.23 0.48 0.06
0.40 0.63 0.09
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