1 Revision 1

2	
3	Protocaseyite, a new decavanadate mineral containing a [Al ₄ (OH) ₆ (H ₂ O) ₁₂] ⁶⁺
4	linear tetramer, a novel isopolycation
5 6 7	Anthony R. Kampf ^{1,*} , Mark A. Cooper ² , John M. Hughes ³ , Chi Ma ⁴ , William H. Casey ⁵ , Frank C. Hawthorne ² , and Joe Marty ⁶
8	
9	⁴ Mineral Sciences Department, Natural History Museum of Los Angeles County, Los Angeles,
10	CA 90007, U.S.A.
11	² Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2,
12	Canada
13	³ Department of Geology, University of Vermont, Burlington, VT 05405, U.S.A.
14	⁴ Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena,
15	California 91125, U.S.A.
16	⁵ Department of Chemistry, Department of Earth and Planetary Sciences, University of California
17	at Davis, Davis, CA 95616, U.S.A.
18	⁶ 5199 E. Silver Oak Road, Salt Lake City, UT 84108, U.S.A.
19	*Corresponding author: akampf@nhm.org
20	
21	

22

ABSTRACT

23 Protocaseyite, $[Al_4(OH)_6(H_2O)_{12}][V_{10}O_{28}] \cdot 8H_2O$, is a new mineral (IMA 2020-090) 24 occurring in low-temperature, post-mining, secondary mineral assemblages at the Burro mine, 25 Slick Rock district, San Miguel County, Colorado, USA. Crystals of protocasevite are saffron-26 vellow, thick blades, with pale orange-vellow streak, vitreous luster, brittle tenacity, curved fracture, two very good cleavages, a Mohs hardness of 2, and a density of 2.45(2) g/cm³. The 27 28 optical properties of protocase vite could be only partly determined: biaxial with $\alpha = 1.755(5)$, $\beta < 1.755(5)$ 29 1.80, $\gamma > 1.80$ (white light); pleochroic with X and Y vellow, Z orange ($X \approx Y < Z$). Electron-probe 30 microanalysis and crystal-structure solution and refinement provided the empirical formula 31 $[(Al_{3,89}Mg_{0,11}Ca_{0,02})_{\Sigma 4,02}(OH)_6(H_2O)_{12}][H_{0,06}V_{10}O_{28}] \cdot 8H_2O$. Protocase vite is triclinic, P-1, a = 9.435(2), b = 10.742(3), c = 11.205(3) Å, $\alpha = 75.395(7)$, $\beta = 71.057(10)$, $\gamma = 81.286(6)^{\circ}$, V = 10.742(3)32 33 1036.4 (5) Å³, and Z = 1. The crystal structure ($R_1 = 0.026$ for 4032 $I_0 > 2\sigma I$ reflections) contains both the $[V_{10}O_{28}]^{6-}$ decavanadate polyoxoanion and a novel $[Al_4(OH)_6(H_2O)_{12}]^{6+}$ polyoxocation. 34 35 36 Keywords: protocaseyite; new mineral; polyoxometalate; crystal structure; Burro mine, San 37 Miguel County, Colorado, USA 38

40

INTRODUCTION

41 Low-temperature near-surface environments, particularly those containing highly charged 42 metal cations, have the potential to form polyoxometalate ions. In recent years, extensive work on 43 low-temperature phases associated with surficial alteration has led to the discovery of many 44 minerals containing large polyoxometalate ions. Deposits in the Uravan Mineral Belt of Colorado 45 and Utah have been a rich source of uranium and vanadium ores for more than a century. They 46 have also been a rich source of post-mining secondary vanadium minerals that typically form in mine tunnels. The most common of these are minerals containing the decavanadate $[V_{10}O_{28}]^{6-1}$ 47 48 isopolyanion, or its protonated or mixed-valence variants. Sherwoodite, from the Peanut mine in 49 Montrose County, Colorado (Thompson et al. 1958), was the first mineral confirmed to contain a heteropolyanion, the $(AlV^{4+,5+}_{14}O_{40})^{n-}$ vanadoaluminate anion (Evans and Konnert 1978), which 50 51 is structurally similar to the decavanadate anion. In recent years, new minerals containing 52 variants of the Keggin heteropolyanion (Kondinski and Parac-Vogt 2018) have also been 53 discovered in mines in the Uravan Mineral Belt. These include kegginite, 54 Pb₃Ca₃[AsV₁₂O₄₀(VO)]·20H₂O, from the Packrat mine (Mesa County, Colorado) containing a 55 mono-capped Keggin ɛ-isomer (Kampf et al. 2017a), and bicapite, KNa₂Mg₂(H₂PV⁵⁺₁₄O₄₂)·25H₂O, from the Pickett Corral mine (Montrose County, Colorado) 56 57 containing a bi-capped Keggin α-isomer (Kampf et al. 2019a). The Packrat mine has also yielded several new minerals containing a novel $[As^{3+}V^{4+,5+}{}_{12}As^{5+}{}_{6}O_{51}]^{n-}$ heteropolyanion (Kampf et al. 58 59 2016). 60 The name protocase vite links the mineral to case vite (Kampf et al. 2020a), which contains, as a core cation, a member of the class of aluminum clusters that have sheets of Al^{3+} 61

62 linked by μ_3 -OH bridges and that are referred to colloquially as 'flatimers'. This term

63	distinguishes the sheet clusters from the more common Keggin-based structures of aluminum				
64	polyoxocations. These flatimers have only recently been discovered in nature and, in particular,				
65	in the vanadoaluminate flatimer, ideally $[(V^{5+}O_2)Al_{10}(OH)_{20}(H_2O)_{18}]^{11+}$, in the structure of				
66	caseyite. The new mineral protocaseyite, described in this paper, contains the				
67	$[Al_4(OH)_6(H_2O)_{12}]^{6+}$ tetramer, which has no μ_3 -OH bridges. We refer to it as a 'flatimer', in any				
68	case, because it is the smallest cluster that can be made stable by coordination by hydrogen				
69	bonding to a decametalate anion. We thus speculate that the tetramer in protocaseyite is				
70	genetically related to caseyite and other polynuclear Group 13 cations that could be coordinated				
71	by the decavanadate anions.				
72	The new mineral and name have been approved by the Commission on New Minerals,				
73	Nomenclature and Classification of the International Mineralogical Association (IMA2020-090).				
74	Three cotype specimens, all micromounts, are deposited in the collections of the Natural History				
75	Museum of Los Angeles County, Los Angeles, California, USA; catalogue numbers 75191,				
76	75192 and 75193.				
77	OCCURRENCE				
78	Protocaseyite was found underground at the Burro mine, Slick Rock district, San Miguel				
79	County, Colorado, USA (38.04507, -108.88972). The Burro mine is the type locality for				
80	ammoniolasalite (Kampf et al. 2018a), ammoniomatesiusite (Kampf et al. 2019b),				
81	ammoniozippeite (Kampf et al. 2018b), burroite (Kampf et al. 2017b), caseyite (Kampf et al.				
82	2020a), metamunirite (Evans, 1991), metauroxite (Kampf et al. 2020b), okieite (Kampf et al.				
83	2020c), and uroxite (Kampf et al. 2020b). The mine is near the southern end of the Uravan				
84	Mineral Belt in which uranium and vanadium minerals occur together in bedded or roll-front				
85	deposits in the sandstone of the Salt Wash member of the Jurassic Morrison Formation (Carter				

86 and Gualtieri 1965; Shawe 2011). The U and V ore mineralization formed where solutions rich in

87 U and V encountered pockets of strongly reducing solutions that had developed around

88 accumulations of carbonaceous plant material.

89 The specimens of the new mineral were collected by one of the authors (JM). The mineral is rare. It occurs with ammoniozippeite, gypsum, postite (Kampf et al. 2012) and another 90 91 potentially new Al vanadate on montroseite- and corvusite-bearing sandstone. Protocaseyite 92 forms by oxidation of montroseite-corvusite assemblages in a moist environment. Mining 93 operations have exposed both unoxidized and oxidized phases. Under ambient temperatures and 94 generally oxidizing near-surface conditions, water reacts with pyrite to form aqueous solutions of 95 relatively low pH. The various secondary vanadate phases that form depend on ambient Eh-pH conditions and the presence of other cations (e.g., NH_4^+ , Na^+ , Ca^{2+} , Mg^{2+} , Mn^{2+} , Pb^{2+}). 96

97

98

PHYSICAL AND OPTICAL PROPERTIES

99 Crystals of protocasevite are thick blades up to 0.2 mm in length, commonly occurring in 100 subparallel intergrowths and divergent groups (Fig. 1). The blades are elongated on [10-1] and 101 flattened on {111}. The only crystal form that could be determined with certainty is {111}; other 102 likely forms are $\{010\}$, $\{-111\}$, $\{11-1\}$ and $\{1-21\}$ (Fig. 2). The color of the mineral is saffron 103 yellow, its streak is pale orange yellow, and it has vitreous luster. The mineral is non-fluorescent 104 in long- and short-wave ultraviolet light. The crystals are brittle, with curved fracture, and have a 105 Mohs hardness of 2 based on scratch tests. There are probably two very good cleavages, one on 106 $\{111\}$ and one along the length of the blades and at an angle to the $\{111\}$ face (possibly on 107 {010}). The density measured by floatation in a mixture of methylene iodide and toluene is 2.45(2) g/cm³. The calculated density is 2.448 g/cm³ based on the empirical formula using the 108

single-crystal cell parameters. At room temperature, the mineral is insoluble in H_2O , but is easily soluble in dilute HCl.

111 The small size and intergrown nature of crystals, the relatively high indices of refraction, 112 and the extreme dispersion complicated the determination of optical properties. Conoscopic 113 observation was inconclusive and numerous attempts to obtain extinction measurements failed 114 because of the extreme dispersion. The mineral is obviously biaxial, but the sign could not be 115 determined and 2V could not be measured. The only index of refraction that could be determined 116 (in white light) unambiguously was $\alpha = 1.755(5)$. The highest index of refraction measured on 117 flat-lying blades was 1.800(5) and this is clearly intermediate between β and γ ; therefore, $\beta <$ 118 1.80 and $\gamma > 1.80$. Assuming $n_{av} = 1.78$, the Gladstone-Dale compatibility $1 - (K_p/K_c)$ is 0.011 for 119 both the empirical and ideal formulas, in the range of superior compatibility (Mandarino 2007). 120 The pleochroism varies from yellow to orange, with only one optical direction (presumed to be Z) 121 appearing orange; therefore, X and Y yellow, Z orange; $X \approx Y < Z$. The optical orientation could 122 not be determined. 123 124 CHEMICAL ANALYSIS 125 Analyses (7 points) were done at Caltech on a JEOL 8200 electron microprobe in WDS

125 Analyses (7 points) were done at Caltech on a JEOL 8200 electron microprobe in WDS 126 mode. Analytical conditions were 15 kV accelerating voltage, 5 nA beam current and 2 μ m 127 defocused beam diameter. During vacuum deposition of the conductive carbon coat required for 128 EPMA, protocaseyite clearly suffered loss of much of the weakly held H₂O; no further loss was 129 detected during EPMA. The very large H₂O loss resulted in much higher concentrations of the 130 remaining constituents than are to be expected for the fully hydrated phase; therefore, the other 131 analyzed constituents have been normalized to provide a total of 100% when combined with the

132	H ₂ O content derived from crystal-structure analysis. Analytical data are given in Table 1. The
133	empirical formula is $[(Al_{3.89}Mg_{0.11}Ca_{0.02})_{\Sigma 4.02}(OH)_6(H_2O)_{12}][H_{0.06}V_{10}O_{28}] \cdot 8H_2O$ based on 54 O
134	<i>apfu</i> . The end-member formula is $[Al_4(OH)_6(H_2O)_{12}][V_{10}O_{28}] \cdot 8H_2O$, which requires Al_2O_3 13.35,
135	V ₂ O ₅ 59.53, H ₂ O 27.12, total 100 wt%.
136	
137	X-RAY CRYSTALLOGRAPHY AND STRUCTURE DETERMINATION
138	The X-ray powder diffraction (PXRD) pattern was recorded at the Natural History
139	Museum of Los Angeles County on a Rigaku R-Axis Rapid II microdiffractometer equipped with
140	a curved imaging plate and monochromatized MoK α radiation. A Gandolfi-like motion on the ϕ
141	and ω axes was used to randomize the orientation of the sample. Observed <i>d</i> -values and
142	intensities were derived by profile fitting using JADE Pro software (Materials Data, Inc.). Data
143	(in Å for Mo $K\alpha$) are given in Supplemental ¹ Table S1.
144	Single-crystal X-ray studies were done at the University of Manitoba on a Bruker D8
145	three-circle diffractometer equipped with a rotating-anode generator (MoKa), multilayer optics,
146	and an APEX-II detector. Structure data were collected on a crystal of protocaseyite from the
147	holotype specimen. Satellite diffraction spots were observed, suggesting a slightly offset
148	additional crystal domain. A second domain (37 % relative volume) rotated 2.8° from the primary
149	domain was identified using CELL_NOW (Sheldrick 2008) and the diffraction data were
150	integrated using orientation matrices from both domains. The multi-component data were
151	processed using TWINABS (Sheldrick 2012) such that only reflections belonging to the primary
152	component were retained (overlapping intensity from the satellite component was subtracted).
153	The unit-cell dimensions were obtained by least-squares refinement of 4070 reflections with $I >$
154	10 0 <i>I</i> .

155	The structure was solved by direct methods using SHELXS-2013 and the structure was
156	refined using SHELXL-2016 (Sheldrick 2015). All non-hydrogen atoms were located and refined
157	with anisotropic-displacement parameters and full occupancies. All hydrogen-atom sites were
158	located by difference-Fourier. Data collection and refinement details are given in Table 2, atom
159	coordinates and displacement parameters in Supplemental Table S2, cation-anion bond distances
160	in Table 3, hydrogen bonds in Table 4 and a bond-valence analysis in Table 5.
161	
162	D ESCRIPTION AND DISCUSSION OF THE STRUCTURE
163	The [V ₁₀ O ₂₈] ⁶⁻ decavanadate unit
164	The $[V_{10}O_{28}]^{6-}$ decavanadate unit is shown in ball-and-stick and polyhedral
165	representations in Figure 3. The outer surface of the polyanion consists of 26 O atoms (O1
166	through O13) that are all bond-valence deficient (range = $1.62 - 1.90$ vu) from the V ⁵⁺ cation
167	contributions alone (Table 5). Eight near-planar anion surfaces define the polyanion's exterior
168	and collectively have maximal $2/m 2/m 2/m$ point-group symmetry. Four large anion surfaces,
169	each containing nine anions in a hexagonal pattern, form one prism; another prism consists of
170	four smaller triangular shaped faces, each containing six anions (Fig. 3b). For protocaseyite, the
171	point group symmetry of the decavanadate polyanion is -1 , and symmetry equivalent anion faces
172	occur in pairs on opposite sides of the polyanion (the two symmetrically distinct larger anion
173	faces have their anions labelled in Figure 3b).
174	
175	The [Al ₄ (OH) ₆ (H ₂ O) ₁₂] ⁶⁺ flatimer

176 The $[Al_4(OH)_6(H_2O)_{12}]^{6+}$ moiety, which we refer to as a "flatimer", is an aluminum 177 polyoxocation consisting of a single layer of edge-sharing octahedra. It is shown in plan view and

178 also rotated 90° about its long axis in Figures 4a, b. A "flatimer" is a small, approximately two-179 dimensional aluminum polyoxocation and the term distinguishes such arrangements from highersymmetry Keggin-like ions like the more familiar $[AlO_4Al_{12}(OH)_{24}(H_2O)_{12}]^{7+}$ ion. All anions (O 180 181 sites) are either OH groups (shared along Al–Al edges) or H₂O groups, and the Al-flatimer in 182 protocasevite can be described as a corrugated unit of octahedra with flat top and bottom, and 183 fully decorated by H atoms. To better highlight the anion configuration of this unit, only anions 184 are drawn and connected (in plan view) in Figure 4c. Like the $[V_{10}O_{28}]$ decavanadate unit, the Al-185 flatimer also has -1 symmetry with the center of symmetry located at its core. The Al-flatimer 186 has two symmetrically distinct planar surfaces of anions with O_{donor}-H bonds projecting from 187 both surfaces at high angles. The first is the top (or bottom) surface of the flatimer containing six 188 anions bonded to the six H atoms (H1, H2, H3, H5, H6, H9), and the second is located on the side 189 of the flatimer and contains five anions in a ring, with four of the five anions having H atoms 190 (H3, H4, H10, H14) with their O_{donor}–H bonds at a high angle to the anion surface (Fig. 4c). The 191 hexagonal pattern of the six H atoms on the top surface is a match for six anions on one of the 192 large flat anion surfaces (centered by O13) of the decavanadate, and the resulting H-bond 193 arrangement is shown in Figure 5a, b. The rhombic-shaped pattern of H atoms on the side of the 194 Al-flatimer is also a match to the anion configuration on the other large flat anion surface 195 (centered by O12) of the decavanadate, and the resulting H-bond arrangement is shown in Figure 196 5a, c.

197

198 Linkage of the decavanadate unit and the Al-flatimer

199 The protocase structure is a layered hydrated salt. The structure consists of alternating 200 $[V_{10}O_{28}]^{6-}$ decavanadate polyanions and $[Al_4(OH)_6(H_2O)_{12}]^{6+}$ flatimers packed in a rhombic

201	pattern, with larger-area anion surfaces perpendicular to the plane of the pattern (Fig. 6). The
202	decavanadate and Al-flatimer units link via strong H-bonding: the anion surfaces of the
203	decavanadate, centered on the O13 anion, accept strong H-bonds along [111] from the upper and
204	lower protonated surfaces of the Al-flatimer (Fig. 6); the other two surfaces of each
205	decavanadate-anion, centered on the O12 anion, H-bond to the protonated side of the Al-flatimer
206	along 1-11] (Fig. 6). The layer in Figure 6 links to the layers adjacent along [111] via H-bonding
207	from interstitial (H ₂ O) groups (Fig. 7) that links the small decavanadate surfaces (the two sloping
208	triangular anion faces in Figure 3b) with the ends of the Al-flatimers. Thus each $[V_{10}O_{28}]^{6-1}$
209	decavanadate unit is surrounded by six $[Al_4(OH)_6(H_2O)_{12}]^{6+}$ flatimers, and each
210	$[Al_4(OH)_6(H_2O)_{12}]^{6+}$ flatimer is surrounded by six $[V_{10}O_{28}]^{6-}$ decavanadate units.
211	Protocaseyite has a well-ordered atomic arrangement that was refined from sharp high-
212	quality X-ray diffraction data. This is a first for a naturally occurring solid containing an
213	extended Al-flatimer. Caseyite was the first mineral found to contain an extended Al-flatimer;
214	however, caseyite is plagued by structural disorder that is accompanied by extensive chemical
215	variability among its interstitial constituents (Kampf et al. 2020a). As Al-flatimers have been
216	postulated to be important building blocks for the formation of many minerals and to occur
217	extensively in the natural environment, the recent discovery of protocaseyite and caseyite offer
218	important insight toward the occurrence of natural Al-flatimers in minerals. Two questions arise:
219	(1) Why do Al-flatimers combine with the decavanadate polyanion in minerals?
220	(2) Why does protocaseyite occur as extraordinarily well-ordered crystals, whereas compounds
221	bearing tridecamer-like Al-flatimers tend to form poor crystals, if they are crystalline at all?
222	The following observations on the structure of protocaseyite may help to address these
223	questions:

224	(1) The $[V_{10}O_{28}]^{6-}$ decavanadate polyanion has a surface of bond-valence-deficient anions that are
225	ideal H-bond acceptors. The entire surface of an Al-flatimer is decorated by H-atoms (either
226	as OH groups along shared Al-Al edges, or as H ₂ O groups). The O _{donor} anions all receive
227	incident bond-valence from the constituent Al ³⁺ ions in excess of that required to accord with
228	the valence-sum rule assuming an O_{donor} -H of 1 vu, and hence the constituent H-atoms will
229	form H-bonds with adjacent potential Oacceptor anions.
230	(2) The decavanadate polyanion and Al-flatimers have matching flat anion surfaces with
231	stereochemistries suitable for the formation of linking H-bonds.
232	(3) If the decavanadate polyanion(s) and Al-flatimers are stable and coexist in solution, the
233	properties described in (1) and (2) suggest that they may crystallize by condensation
234	involving the formation of linking H-bonds if the specific Al-flatimer provides a
235	stereochemical match for the decavanadate polyanion. The well-ordered protocaseyite
236	structure, with a simple 1:1 stoichiometry of polyanion and polycation constituents and
237	minimal additional interstitial constituents, may represent one of the simplest and most
238	compact decavanadate – Al-flatimer combinations to occur in crystalline form.
239	
240	DECAVANADATE BOND-VALENCE ANOMALY
241	Reliable well-defined H positions were recovered for the (OH) and (H ₂ O) groups in
242	protocaseyite from the difference-Fourier map, and the refined positions conform to well-ordered
243	H sites exhibiting usual H-bond geometries (Table 4). The proposed bond-valence distribution
244	among O_{donor} and $O_{acceptor}$ anions from these H positions yields bond-valence sums from 1.91 to
245	2.15 vu for 25 of the 27 anions, values that accord well with the valence-sum rule (Brown 2016),
246	and noticeably low bond-valence sums of 1.77 and 1.79 vu for the O3 and O4 anions respectively

247 (Table 5). These O3 and O4 anions are [1]-coordinated decavanadate surface anions that form 248 strong vanadyl bonds, and do not accept any additional bonds from interstitial constituents. Are 249 these low bond valences significant? How do these V4–O3 and V5–O4 vanadyl bond lengths 250 compare to other vanadyl bonds in similar decavanadate mineral structures? Are there other 251 decavanadate mineral structures possessing similar "naked" decavanadate surface anions that do 252 not form any additional bonds to neighboring interstitial constituents? In recent years, the number 253 of decayanadate mineral structures has steadily increased, and eleven of these structures 254 (including protocasevite) were compared to address the above questions in relation to the 255 apparent bond-valence anomaly in protocaseyite. The selection criteria focused on well-refined 256 structures (R values < 4%) containing precise atomic positions for all atoms (i.e. well-ordered 257 with all H positions reliably located). Cooper et al. (2019) previously noted that highly accurate bond valences can be obtained from reliable V⁵⁺–O bond lengths using the bond-valence equation 258 259 of Brown and Altermatt (1985). For the eleven decavanadates compared here, the calculated bond-valence sums for all V sites ranges from 4.94 - 5.14 vu, and are close to the postulated V⁵⁺ 260 261 charge. We can infer that the complimentary bond valences at the coordinating O sites are 262 accurate as well, and the bond-valence sums of 1.77 and 1.79 vu for the O3 and O4 anions from the V^{5+} contribution alone in protocaselyite are a major departure from the valence-sum rule. 263 Within a given $[V_{10}O_{28}]^{6}$ polyanion, there are eight surface anions that each receive a single 264 265 vanadyl bond (Fig. 8), and for the eleven structures investigated there are 88 individual vanadyl 266 bonds displayed on a bar graph in Figure 9. The maximum in the distribution occurs in the range \sim 1.60 – 1.61 Å, and the V4–O3 and V5–O4 distances of 1.5910 and 1.5871 Å in protocasevite 267 268 are distinctly short, in accord with the lack of interstitial bonds to these anions. A typical vanadyl 269 bond of 1.606 Å would result in a bond-valence deficiency of ~0.3 vu, whereas the shorter V4–

270	O3 and V5–O4 distances in protocaseyite help alleviate the deficiency somewhat (i.e. reduce it to
271	~0.2 vu). The shortest $^{[6]}V^{5+}$ -O bond observed in inorganic crystals is 1.554 Å (Gagné and
272	Hawthorne 2020), indicating that the values of ~1.59 Å in protocase yite may represent a near
273	limit of bond-length distortion for the V^{5+} polyhedra involved, where any further shortening of
274	the vanadyl bond becomes disruptive to overall bonding within the polyanion. The eight vanadyl
275	O atoms on a given decavanadate polyanion are the most bond-valence deficient surface anions
276	(typically ~ 0.3 vu deficiency) and they are also the furthest away from the central core of the
277	polyanion. As a result, they are ideally placed to accept additional bonds from interstitial
278	constituents. The fact that four of these eight vanadyl oxygens on the surface of the protocaseyite
279	decavanadate polyanion do not receive any additional bonding from interstitial constituents is
280	quite remarkable. Of all eleven structures investigated, only one other structure, namely postite
281	(Kampf et al. 2012), contains a similar [1]-coordinated vanadyl oxygen; postite is also the only
282	other decavanadate that also contains an interstitial flatimer, the $[Al_2(OH)_2(H_2O)_8]^{4+}$ polycation.
283	The [1]-coordinated vanadyl oxygen in postite is at the O11 site, and the V5–O11 distance of
284	1.599 Å is a relatively short vanadyl distance. The [1]-coordinated vanadyl O atoms in both
285	protocaseyite and postite are similarly situated on the equatorial girdle of the polyanion (Fig. 8).
286	Both protocaseyite and postite have short distances between the flat anion surfaces of
287	decavanadate polyanions and flat aluminate-hydrate polycations, which are bridged by H bonds.
288	In turn, this may lead to relatively inaccessible <i>dead zones</i> near the fringes of these zones of H
289	bonds, where the ability of other interstitial components to bond to some decavanadate surface
290	anions (i.e. outermost vanadyl O atoms) is sterically inhibited. More equant interstitial
291	constituents [e.g. Na(H ₂ O) ₆ clusters or small (H ₂ O) groups] are more suited to provide a more
292	complete distribution of weak bonding to all decavanadate surface anions without major steric

293 interference. Although only a few structures with well-behaved decayanadate – flatimer units are 294 known, the interaction of these two types of unit apparently leads to undersaturated surface anions on the decayanadate polyanion. With a much larger $[V^{5+}O_2Al_{10}(OH)_{20}(H_2O)_{18}]^{11+}$ flatimer. 295 296 casevite invokes a novel mechanism by which it alters the bonding landscape at the periphery of 297 the flatimer and may help to prevent a local dead zone from occurring via inversion of the steric argument: adding a $V^{5+}O_2(OH)_4$ octahedron with two outer vanadyl O atoms onto the margin of 298 299 the flatimer removes any sterically interfering H atoms projecting outward from an H₂O group 300 and allowing other interstitial constituents to bond to under-bonded anions (Kampf et al. 2020a). 301

302

IMPLICATIONS

Aluminum is the third most abundant element (after oxygen and silicon) in the Earth's crust. Although clay minerals generally maintain low Al concentrations in surface waters, the solubilities can become high in acidic solutions, such as those found near exposed ore deposits. Generally, millimolar concentrations of total dissolved aluminum are required for formation of multimeric ions like the $[AlO_4Al_{12}(OH)_{24}(H_2O)_{12}]^{7+}$, and these may actually be metastable relative to monomer ions and solids.

It is difficult to prove unequivocally that an oxide ion cluster found in a mineral previously existed separately as an ion in the precipitating solution. Such proof generally requires isotope-tracing experiments or dynamic spectroscopy. Clusters in a mineral could polymerize at the interface during mineral growth and have no existence separately in solution. In the opposite extreme, isotope-tracing experiments have shown that large cluster ions of inert metals, like Group V and VI polyoxometalates, clearly form minerals when rates of ligand exchange are much slower than rates of mineral growth (see Spiccia and Casey 2006). Even aquated monomer

316	ions form solids as intact solvated ions when the rates of ligand exchanges are much slower than
317	the rates of mineral growth. Such would be found, for example, for $[Rh(H_2O)_6]^{3+}$ ions where Rh-
318	bonded waters of hydration have an average lifetime of two years in the inner-coordination
319	sphere of the metal (Richens 1997). The metal-hydroxide solid Rh(H ₂ O) ₃ (OH) ₃ forms
320	instantaneously when the ion is thrice deprotonated, but the inner-sphere waters never move out
321	of their positions bonded to the Rh ³⁺ (see Spiccia and Marty 1986; Crimp and Spiccia 1995;
322	Spiccia 2004).
323	However, proving this point is particularly difficult for metal cations like Al ³⁺ , where the
324	rates of ligand exchange are on the same time scale, or faster than, rates of mineral growth. Rates
325	of ligand substitution at Al ³⁺ centers are seconds to microseconds, and are particularly fast if the
326	metal is partly hydrolyzed (Casey 2005). Thus, it is completely possible that the flatimers
327	polymerized at the growing mineral interface and have no separate lifetime as ions in solution.
328	Aluminum nanoclusters are rarely found as isolated entities in minerals. A noteworthy
329	counterexample is the α -Al ₁₃ Keggin cluster that forms part of the framework structure of zunyite
330	(Louisnathan and Gibbs 1972; Baur and Ohta 1982).
331	The core cation in caseyite has a tridecamer structure that is well known from synthesis
332	(Wang et al. 2011; Gatlin et al. 2008) and is referred to as a 'flatimer' to distinguish it from
333	Keggin structures. The novel $[Al_4(OH)_6(H_2O)_{12}]^{6+}$ flatimer in protocase yite is the smallest
334	possible Al-flatimer that can assemble with $[V_{10}O_{28}]^{6-}$ polyanions in a 1:1 stoichiometry. If a
335	smaller Al-flatimer were present (e.g. $[Al_3(OH)_4(H_2O)_{10}]^{5+}$), then a 1:1 Al-flatimer-to-
336	decavanadate stoichiometry could assemble only with an additional charged (i.e. 1+) interstitial
337	constituent present. In this sense, the 'proto' designator distinguishes protocaseyite as the simple
338	proto-type structure from which all other Al-flatimer – decavanadate structures are hierarchical

339	derivatives. Larger Al-flatimers are expected to be identified in future studies, probably along
340	with greater variability in additional charged interstitial constituents and possible replacement of
341	some Al^{3+} with other highly charged cations, e.g. V^{5+} as in caseyite.
342	There have been many synthesis studies of polyoxometalate anions and, more rarely,
343	polyoxometalate cations, in recent years, largely because of their potential technological uses.
344	The occurrence of both polyoxometalate anions and polyoxometalate cations in the same crystal
345	structure (e.g., protocaseyite, caseyite) suggests that co-crystallization of these units could
346	provide a strategy for crystallization of synthetic phases containing species that are in aqueous
347	solution but not readily incorporated into crystalline hydroxy-hydrated aluminates.
348	
349	ACKNOWLEDGEMENTS
350	Two anonymous reviewers are thanked for constructive comments, which improved the
351	manuscript. This study was funded, in part, by the John Jago Trelawney Endowment to the
352	Mineral Sciences Department of the Natural History Museum of Los Angeles County.
353	
354	References
355	Baur, W.H., and Ohta, T. (1982) The Si_5O_{16} pentamer in zunyite refined and empirical relations
356	for individual silicon-oxygen bonds. Acta Crystallographica, B38, 390-401.
357	Bennett, J.W., Bjorklund, J.L., Forbes, T.Z., and Mason, S.E. (2017) Systematic study of
358	aluminum nanoclusters and anion adsorbates. Inorganic Chemistry, 56, 13014–13028.
359	Brown, I.D. (2016) The Chemical Bond in Inorganic Chemistry. The Bond Valence Model. 2 nd
360	Edition. Oxford University Press, U.K.
361	Brown, I.D., and Altermatt, D. (1985) Bond-valence parameters from a systematic analysis of the
362	inorganic crystal structure database. Acta Crystallographica, B41, 244-247.

- 363 Carter, W.D., and Gualtieri, J.L. (1965) Geology and uranium-vanadium deposits of the La Sal
- 364 quadrangle, San Juan County, Utah, and Montrose County, Colorado. United States
- 365 Geological Survey Professional Paper, 508.
- 366 Casey, W.H. (2005) Large aqueous aluminum-hydroxide molecules. Chemical Reviews, 106, 1–
- 367 16.
- 368 Colombo, F., Baggio, R., and Kampf, A.R. (2011) The crystal structure of the elusive huemulite.
- The Canadian Mineralogist, 49, 849–864.
- 370 Cooper, M.A., Hawthorne, F.C., Kampf, A.R., and Hughes, J.M. (2019) Determination of
- 371 $V^{4+}: V^{5+}$ ratios in the $[V_{10}O_{28}]^{n-}$ decavanadate polyanion. The Canadian Mineralogist, 57,
- 372 235–244.
- 373 Crimp, S.J., and Spiccia, L. (1995) Characterization of three active rhodium(III) hydroxides.
- Australian Journal of Chemistry, 48, 557–566.
- 375 Evans, H.T., Jr. (1991) Metamunirite, a new anhydrous sodium metavanadate from San Miguel
- 376 County, Colorado. Mineralogical Magazine, 55, 509–513.
- 377 Evans, Jr., H.T., and Konnert, J.A. (1978) The crystal chemistry of sherwoodite, a calcium 14-
- 378 vanadoaluminate heteropoly complex. American Mineralogist, 63, 863–868.
- 379 Gagné, O.C., and Hawthorne, F.C (2015) Comprehensive derivation of bond-valence parameters
- 380 for ion pairs involving oxygen. Acta Crystallographica, B71, 562–578.
- 381 Gatlin, J.T., Mensinger, Z.L., Zakharov, L.N., MacInnes, D., and Johnson, D. W. (2008) Facile
- 382 synthesis of the tridecameric Al₁₃ nanocluster Al₁₃(μ_3 -OH)₆(μ -OH)₁₈(H₂O)₂₄ (NO₃)₁₅.
- 383 Inorganic Chemistry, 47, 1267–1269.
- Hughes, J.M., Schindler, M., Rakovan, J., and Cureton, F.E. (2002) The crystal structure of
- hummerite, $KMg(V_5O_{14}) \cdot 8H_2O$: bonding between the $[V_{10}O_{28}]^{6-}$ structural unit and the

- $\{K_2Mg_2(H_2O)_{16}\}^{6+}$ interstitial complex. The Canadian Mineralogist, 40, 1429–1435.
- 387 Hughes, J.M., Schindler, M., and Francis, C.A. (2005) The C2/m disordered structure of pascoite,
- 388 $Ca_3(V_{10}O_{28}) \cdot 17H_2O$. The Canadian Mineralogist, 43, 1379–1386.
- Hughes, J.M., Wise, W.S., Gunter, M.E., Morton, J.P., and Rakovan, J. (2008) Lasalite,
- 390 $Na_2Mg_2[V_{10}O_{28}] \cdot 20H_2O$, a new decavanadate mineral species from the Vanadium Queen
- 391 Mine, La Sal District, Utah: Description, atomic arrangement, and relationship to the pascoite
- 392 group of minerals. The Canadian Mineralogist, 46, 1365–1372.
- 393 Kampf, A.R., and Steele, I.M. (2008) Magnesiopascoite, a new member of the pascoite group:
- 394 Description and crystal structure. The Canadian Mineralogist, 46, 679–686.
- 395 Kampf, A.R., Hughes, J.M., Marty, J., and Nash, B. (2012) Postite,
- 396 $Mg(H_2O)_6Al_2(OH)_2(H_2O)_8(V_{10}O_{28}) \cdot 13H_2O$, a new mineral species from the La Sal mining
- district, Utah: Crystal structure and descriptive mineralogy. *The Canadian Mineralogist* **50**,
- 398 45–53.
- 399 Kampf, A.R., Hughes, J.M., Nash, B.P., and Marty, J. (2014a) Kokinosite,
- 400 $Na_2Ca_2(V_{10}O_{28}) \cdot 24H_2O$, a new decavanadate mineral species from the St. Jude mine,
- 401 Colorado: crystal structure and descriptive mineralogy. The Canadian Mineralogist, 52, 15–
 402 25.
- 403 Kampf, A.R., Hughes, J.M., Nash, B.P., and Marty, J. (2016a) Vanarsite, packratite, morrisonite,
- 404 and gatewayite: four new minerals containing the $[As^{3+}V^{4+,5+}]_{12}As^{5+}O_{51}$ heteropolyanion, a
- 405 novel polyoxometalate cluster. The Canadian Mineralogist, 54, 145–162.
- 406 Kampf, A.R., Hughes, J.M., Nash, B.P., Marty, J., Cooper, M.A., Hawthorne, F.C., Karpenko,
- 407 V.Y., Pautov, L.A., and Agakhanov, A.A. (2016b) Revision of the formulas of wernerbaurite
- 408 and schindlerite: Ammonium- rather than hydronium-bearing decavanadate minerals. *The*

- 409 *Canadian Mineralogist* **54**, 555–558.
- 410 Kampf, A.R., Hughes, J.M., Nash, B.P., and Marty, J. (2017a) Kegginite,
- 411 $Pb_3Ca_3[AsV_{12}O_{40}(VO)] \cdot 20H_2O$, a new mineral with an ε -isomer of the Keggin anion.
- 412 American Mineralogist, 102, 461–465.
- 413 Kampf, A.R., Nash, B.P., Marty, J., and Hughes, J.M. (2017b) Burroite,
- 414 $Ca_2(NH_4)_2(V_{10}O_{28}) \cdot 15H_2O$, a new decavanadate mineral from the Burro mine, San Miguel
- 415 County, Colorado. The Canadian Mineralogist, 55, 473–481.
- 416 Kampf, A.R., Nash, B.P., Adams, P.M., Marty, J., and Hughes, J.M. (2018a) Ammoniolasalite,
- 417 $(NH_4)_2Mg_2(H_2O)_{20}$ [V₁₀O₂₈], a new decavanadate species from the Burro mine, Slick Rock
- 418 district, Colorado. The Canadian Mineralogist, 56, 859–869.
- 419 Kampf, A.R., Plášil, J., Olds, T.A., Nash, B.P., and Marty, J. (2018b) Ammoniozippeite, a new
- 420 uranyl sulfate from the Blue Lizard mine, San Juan County, Utah, and the Burro mine, San
- 421 Miguel County, Colorado, USA. The Canadian Mineralogist, 56, 235–245.
- 422 Kampf, A.R., Hughes, J.M., Nash, B.P., and Marty, J. (2019a) Bicapite,
- 423 KNa₂Mg₂(H₂PV⁵⁺¹⁴O₄₂)·25H₂O, a new mineral with a bicapped Keggin anion from the
- 424 Pickett Corral mine, Montrose County, Colorado, USA. American Mineralogist, 104, 1851–
- 425 1856.
- 426 Kampf, A.R., Plášil, J., Nash, B.P., and Marty, J. (2019b) Ammoniomathesiusite, a new uranyl
- 427 sulfate-vanadate mineral from the Burro mine, San Miguel County, Colorado, USA.
- 428 Mineralogical Magazine, 83, 115–121.
- 429 Kampf, A.R., Cooper, M.A., Hughes, J.M., Nash, B.P., Marty, J., and Hawthorne, F.C. (2020a)
- 430 Caseyite, a new mineral containing a variant of the flat- Al_{13} polyoxometalate cation.
- 431 American Mineralogist, 105, 123–131.

- 432 Kampf, A.R., Plášil, J., Nash, B.P., Němec, I., and Marty, J. (2020b) Uroxite and metauroxite, the
- first two uranyl-oxalate minerals. Mineralogical Magazine, 84, 131–141.
- 434 Kampf, A.R., Adams, P.M., Nash, B.P., Marty, J., and Hughes, J.M. (2020c) Okieite,
- 435 $Mg_3[V_{10}O_{28}] \cdot 28H_2O$, a new decavanadate mineral from the Burro mine, Slick Rock mining
- district, San Miguel County, Colorado, USA. The Canadian Mineralogist, 58, 125–135.
- 437 Kondinski, A., and Parac-Vogt, T.N. (2018) Keggin Structure, Quō Vādis?. Frontiers in
- 438 Chemistry, 6, Article 346.
- 439 Louisnathan, S.J., and Gibbs, G.V. (1972) Aluminum-silicon distribution in zunyite. American
- 440 Mineralogist, 57, 1089-1108.
- 441 Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting
- 442 mineral species for further study. The Canadian Mineralogist, 45, 1307–1324.
- 443 Perkins, C.K., Eitrheim, E.S., Brantly L. Fulton, B.L., Fullmer, L.B., Colla, C.A., Park, D.-H.,
- 444 Oliveri, A.F., Hutchison, J.E., Nyman, M., Casey, W.H., Forbes, T.Z., Johnson, D.W., and
- 445 Keszler, D.A. (2017) Synthesis of aluminum hydroxide octamer by a simple dissolution
- 446 method. Angewandte Chemie, 56, 10161–10162.
- 447 Richens, D.T. (1997) Chemistry of Aqua Ions. J. Wiley.
- 448 Shawe, D.R. (2011) Uranium-vanadium deposits of the Slick Rock district, Colorado. United
- 449 States Geological Survey Professional Paper, 576-F.
- 450 Sheldrick, G.M. (2008) CELL_NOW, Version 2008/4; Georg-August-Universität Göttingen:
- 451 Göttingen, Germany.
- 452 Sheldrick, G.M. (2012) TWINABS 2012/1. Georg-August-University Göttingen, Göttingen,
- 453 Germany.
- 454 Sheldrick, G.M. (2015) Crystal Structure refinement with SHELX. Acta Crystallographica, C71,

455 3-8.

- 456 Spiccia, L., and Marty, W. (1986) The fate of active chromium hydroxide, Cr(OH)₃·3H₂O, in
- 457 aqueous suspension. Study of the chemical changes involved in its aging. Inorganic
- 458 Chemistry 25, 266–271.
- 459 Spiccia, L. (2004) Homopolynuclear and heteropolynuclear Rh(III) aqua ions a review.
- 460 Inorganica Chimica Acta, 357, 2799–2817.
- 461 Spiccia, L., and Casey, W.H. (2006) Synthesis of experimental models for molecular inorganic
- 462 geochemistry-A review with examples. Geochimica et Cosmochimica Acta, 71, 5590–5604.
- 463 Wang, W., Wentz, K.M., Hayes, S.E., Johnson, D.W., and Keszler, D. (2011) Synthesis of the
- 464 hydroxide cluster $[Al_{13}(\mu_3-OH)_6(\mu-OH)_{18}(H_2O)_{24}]^{15+}$ from an aqueous solution. Inorganic
- 465 Chemistry, 50, 4683–4685.
- 466
- 467 Endnote:
- ¹Deposit item AM-21-XXXXX, Supplemental tables and CIF. Deposit items are free to all
- 469 readers and found on the MSA website, via the specific issue's Table of Contents (go to
- 470 http://www.minsocam.org/MSA/AmMin/TOC/2021/Xxx2021_data/ Xxx2021_data.html).

472	FIGURE CAPTIONS
473	Figure 1. Protocaseyite crystals; field of view 0.4 mm across.
474	Figure 2. Crystal drawing of protocaseyite; clinographic projection in non-standard orientation,
475	[10-1] vertical.
476	Figure 3. The $[V_{10}O_{28}]^{6-}$ decavanadate polyanion represented as: (a) ball and stick, and (b)
477	polyhedral representations. Orange circles = V atoms; red circles = O atoms; white circles
478	= surface anions of the two largest non-symmetrically related anion faces of the
479	polyanion.
480	Figure 4. The $[Al_4(OH)_6(H_2O)_{12}]^{6+}$ flatimer: (a) plan view, (b) rotated 90°, (c) plan view
481	containing only anions (larger red circles: top surface anions, smaller red circles: lower
482	surface anions, black circles: H atoms), transparent yellow planes: highlight surface
483	anions belonging to 2^{nd} largest anion surface; blue lines with black rims connect upper /
484	lower surface anions, blue lines: connect lower to upper anions.
485	Figure 5. Hydrogen bonding between: (a) upper surface O_D anions of the $[Al_4(OH)_6(H_2O)_{12}]^{6+}$
486	flatimer, and (b) O_A anions of the O13-centred face; and between side O_D anions of the
487	$[Al_4(OH)_6(H_2O)_{12}]^{6+}$ flatimer to (c) O_A anions of the O12-centred face of the $[V_{10}O_{28}]^{6-}$
488	decavanadate polyanion. Decavanadate polyanions represented by surface anions only
489	(yellow and red circles), with large circles as upper surface anions, polyanion surface
490	junctures marked with orange lines containing black rims; pale yellow shaded circles =
491	O_D and O_A anions involved in hydrogen bond coupling (green, pink dashed lines).
492	Figure 6. The $[V_{10}O_{28}]^{6-} - [Al_4(OH)_6(H_2O)_{12}]^{6+}$ layer in protocase yite projected down [1-21].
493	Hydrogen bonds are shown as red lines. The view is approximately parallel to the plane of
494	the layer. Interstitial H ₂ O groups are not shown.

495	Figure 7. The structure of protocaseyite projected down [10-1]. The O atoms of the interstitial
496	(H ₂ O) groups are shown as red circles. The outline of the unit cell is shown in green.
497	Figure 8. The $[V_{10}O_{28}]^{6-}$ decavanadate polyanion in protocase yite with the "naked" O3 and O4
498	atoms indicated with arrows. Note that the "naked" O11 atom in postite in is the same
499	position as the O4 atom in protocaseyite. V atoms = black circles, [1]-coordinated O
500	atoms = red circles, [2]-coordinated O atoms = blue circles, [3]-coordinated O atoms =
501	green circles, [6]-coordinated O atoms = yellow circles, V–O _{vanadyl} bonds = thick black
502	line, V–O _{trans} bonds = thin black line, V–O _{equatorial} bonds = grey shaded line.
503	Figure 9. The 88 vanadyl bonds for the [1]-coordinated O atoms of 11 decavanadate mineral
504	structures: ammoniolasalite (Kampf et al. 2018a), huemulite (Colombo et al. 2011),
505	hummerite (Hughes et al. 2002), kokinosite (Kampf et al. 2014a), lasalite (Hughes et al.
506	2008), magnesiopascoite (Kampf and Steele 2008), okieite (Kampf et al. 2020c), pascoite
507	(Hughes et al. 2005), postite (Kampf et al. 2012), protocaseyite (this study), and
508	wernerbaurite (Kampf et al. 2016b).
509	
510	

512 Table 1. Chemical analytical data in wt% for protocaseyite.

Constituent	Mean	Range	S.D.	Standard	Normalized
MgO	0.32	0.27-0.37	0.03	forsterite	0.28
CaO	0.09	0.07-0.10	0.01	anorthite	0.08
Al ₂ O ₃	14.86	14.42-15.30	0.33	anorthite	12.98
V_2O_5	68.10	66.70–69.43	1.04	V_2O_5	59.51
H ₂ O*					27.15
Total					100.00

514 * Based upon the crystal structure with V = 10 and O = 54 apfu.

510 I dole 2. Data concerton and stracture remember details for protocase yra	516	Table 2. Data colle	ection and structur	e-refinement de	etails for pro	tocasevite
---	-----	---------------------	---------------------	-----------------	----------------	------------

Diffractometer	Bruker D8 three-circle
X-ray radiation / source	Mo $K\alpha$ ($\lambda = 0.71073$ Å) / rotating anode
Temperature	293(2) K
Structural Formula	$[Al_4(OH)_6(H_2O)_{12}][V_{10}O_{28}]\cdot 8H_2O$
Space group	<i>P</i> -1
Unit cell dimensions	$a = 9.435(2) \text{ Å}$ $\alpha = 75.395(7)^{\circ}.$
	$b = 10.742(3) \text{ A}$ $\beta = 71.057(10)^{\circ}.$
V	$c = 11.205(3) \text{ A}$ $\gamma = 81.286(6)^{\circ}$. 1036 $A(5) \text{ Å}^3$
7	1050.4(5) A
Density (for above formula)	2448 g cm^{-3}
Absorption coefficient	2.383 mm^{-1}
<i>F</i> (000)	760
Crystal size	$45 \times 22 \times 15 \ \mu m$
θ range	2.81 to 27.59°
Index ranges	$-12 \le h \le 12, -13 \le k \le 13, -14 \le l \le 14$
Reflections collected/unique	$30690/4786; R_{int} = 0.0347$
Reflections with $I > 2\sigma I$	4032
Completeness to $\theta = 27.59^{\circ}$	99.9%
Refinement method	Full-matrix least-squares on F^2
Parameters/restraints	377/23
GoF	1.072
Final <i>R</i> indices $[I > 2\sigma I]$	$R_1 = 0.0254, wR_2 = 0.0689$
R indices (all data)	$R_1 = 0.0333, wR_2 = 0.0716$
Largest diff. peak/hole	$+0.64/-0.33 \text{ e A}^{-3}$
$\overline{R_{\text{int}} = \Sigma F_o^2 - F_o^2(\text{mean}) / \Sigma [F_o^2]}.$	GoF = $S = \{\Sigma[w(F_o^2 - F_c^2)^2]/(n-p)\}^{1/2}$. $R_1 = \Sigma F_o - F_c /\Sigma F_o $. $wR_2 =$
$\{\Sigma[w(F_{o}^{2}-F_{c}^{2})^{2}]/\Sigma[w(F_{o}^{2})^{2}]\}^{1/2};$	$w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP]$ where <i>a</i> is 0.0297, <i>b</i> is 1.2951 and <i>P</i> is
$[2F_{c}^{2}+Max(F_{o}^{2},0)]/3.$	
$[2F_{c} + Max(F_{0}, 0)]/3.$	

548	Table 3. Selected bond distances (in	Å) in	protoca	seyite.
540					

V1–O5	1.6764(17)	V4–O3	1.5910(18)	Al1–OH3	1.8327(18)
V1–O6	1.7048(17)	V4-011	1.8522(17)	Al1–OH1	1.8530(18)
V1012	1.9194(16)	V4010	1.8652(17)	Al1–OH1	1.8852(18)
V1–O13	1.9337(16)	V4–O7	1.8859(17)	Al1–OH2	1.9122(18)
V1–O14	2.1049(16)	V4–O5	2.0657(17)	Al1–OW1	1.9419(19)
V1-014	2.1300(16)	V4–O14	2.2969(16)	Al1–OW2	1.967(2)
<v1–o></v1–o>	1.912	<v4–o></v4–o>	1.926	<a11-0></a11-0>	1.899
V201	1.6012(17)	V5–O4	1.5871(18)	Al2–OH3	1.8221(18)
V2–O7	1.8266(17)	V5-011	1.8492(17)	Al2–OH2	1.8564(18)
V2–O8	1.8327(17)	V5–O8	1.8637(17)	Al2–OW5	1.8972(19)
V2012	1.9941(16)	V5–O9	1.9098(18)	Al2–OW4	1.9013(19)
V2013	2.0031(16)	V5–O6	2.0326(17)	Al2–OW6	1.906(2)
V2–O14	2.2424(16)	V5–O14	2.3633(16)	Al2–OW3	1.9576(19)
<v2–o></v2–o>	1.917	<v5–o></v5–o>	1.934	<al2–o></al2–o>	1.890
V3–O2	1.6256(18)				
V3–O9	1.7873(17)				
V3–O10	1.8305(17)				
V3–O13	1.9870(17)				
V3–O12	2.0489(16)				
V3–O14	2.2307(16)				
<v3–o></v3–o>	1.918				

554	Table 4.	Proposed	hydrogen-	-bonding	for pro	tocaseyite
-----	----------	----------	-----------	----------	---------	------------

555	

OD	Н	O _A	$O_{D}-O_{A}(A)$	$H \cdots O_A (Å)$	O_{D} –H– O_{A} (°)	$H-O_D-H$ (°)
OH1	H1	013	2.823(2)	1.850(6)	172(4)	
OH2	H2	09	2.904(2)	1.932(6)	172(4)	
OH3	H3	01	2.815(2)	2.02(3)	136(3)	
		01	2.768(2)	2.06(3)	128(3)	
OW1	H4	08	2.668(2)	1.689(4)	176(4)	
	H5	06	2.724(2)	1.758(9)	168(4)	110(3)
OW2	H6	O2	2.865(3)	1.906(11)	165(4)	
	H7	OW8	2.736(3)	1.831(19)	152(4)	106(3)
OW3	H8	OW8	2.764(3)	1.823(14)	160(3)	
	H9	O7	2.617(2)	1.661(11)	164(4)	113(3)
OW4	H10	O2	2.790(3)	1.833(11)	164(4)	
	H11	OW10	2.624(3)	1.647(5)	174(4)	102(3)
OW5	H12	011	2.709(2)	1.729(3)	178(4)	
	H13	OW9	2.644(3)	1.680(10)	167(4)	106(3)
OW6	H14	012	2.683(2)	1.711(7)	170(4)	
	H15	OW7	2.735(3)	1.823(18)	153(4)	108(3)
OW7	H16	O10	2.752(3)	1.802(16)	162(5)	
	H17	09	3.254(3)	2.47(4)	136(4)	104(4)
		O10	2.935(3)	2.20(4)	131(4)	
		011	3.224(3)	2.35(3)	148(4)	
OW8	H18	OW9	2.804(3)	1.88(2)	156(5)	
	H19	05	3.089(3)	2.18(2)	154(4)	107(4)
OW9	H20	OW7	2.705(3)	1.742(13)	167(5)	
	H21	02	3.320(3)	2.50(3)	141(4)	111(4)
OW10	H22	08	3.377(3)	2.49(3)	150(4)	
	H22	011	3.150(3)	2.33(3)	141(4)	
	H23	OW3	3.015(3)	2.049(11)	168(5)	121(4)

Table 5. Bond-valence analysis for protocaseyite.

	V1	V2	V3	V4	V5	Al1	Al2	Σ	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23	Σ
01		1.73						1.73			0.10																					1.93
			1.6					1 / 1			0.10			0.1.5															0.10			
02			1.62	1.55				1.62						0.15				0.20											0.10			2.07
03				1.77				1.77																								1.77
04	1 41			0.40	1.79			1.79																			0.10					1.79
05	1.41			0.49	0.54			1.90					0.00														0.10					2.00
06	1.30	0.04		0.00	0.54			1.84					0.20				0.05															2.04
07		0.94		0.80	0.05			1.74				0.00					0.25													0.05		1.99
08		0.92	1.04		0.85			1.77				0.20													0.00					0.05		2.02
09			1.04	0.05	0.75			1.79		0.15						-					-				0.03							1.97
010			0.93	0.85	0.00			1.78												0.00				0.20	0.03					0.0-		2.01
011	0.70	0.60	0.51	0.88	0.88			1.76												0.20		0.00			0.03					0.05		2.04
012	0.73	0.60	0.51					1.84	0.1.5													0.20										2.04
013	0.70	0.58	0.61					1.89	0.15																							2.04
014	0.44 0.41	0.30	0.31	0.26	0.22			1.94																								1.94
OH1						0.57		1.10	0.85																							1.95
OH2						0.49	0.57	1.06		0.85																						1.91
OH3						0.60	0.62	1.22		0.00	0.80																					2.02
OW1						0.45		0.45				0.80	0.80																			2.05
OW2						0.43		0.43						0.85	0.80																	2.08
OW3							0.44	0.44								0.80	0.75														0.10	2.09
OW4							0.50	0.50										0.80	0.75													2.05
OW5							0.51	0.51												0.80	0.75											2.06
OW6							0.50	0.50														0.80	0.80									2.10
OW7								0.00															0.20	0.80	0.91			0.20				2.11
OW8								0.00							0.20	0.20										0.80	0.90					2.10
OW9								0.00													0.25					0.20		0.80	0.90			2.15
OW10								0.00											0.25											0.90	0.90	2.05
Σ	4.99	5.07	5.02	5.05	5.03	3.07	3.14		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Bond	-val	ence	e pa	rame	eter	s foi tion	V^{5}	+-O	are	fron fror	n Br	own	and	d Al lista	term	natt	(198 ng I	35) a Brov	ind t	those	e for	r Al rmai	-O a	re fi	rom	Gag	gné a	and	Haw	tho	rne ((2015
rryui	ugu	1-00	nu v	Joint	inu		5 63	unno	iicu	101		۰۷	\mathcal{J}_{A}	iisia	11003	usi	ing i	5100	vii a	nu r	incl	ina	u (1.	,05								

Figure 1

