1 Word Count: 5854

2

2	Revision	1
3	Revision	T

- 4 Validation of clinopyroxene-garnet magnesium isotope geothermometer to
- 5 constrain the peak metamorphic temperature in ultrahigh-temperature
- 6 ultramafic-mafic granulites
- 7
- 8 Long-Long Gou¹, Ming-Guo Zhai^{1,2*}, Cheng-Li Zhang¹, P.M. George¹, Kang-Jun Huang¹,
- 9 Xiao-Fei Xu¹, Jun-Sheng Lu¹, Yan Zhao¹, Wen-Hao Ao¹, Yu-Hua Hu¹, Feng Zhou¹

10

- ¹¹ State Key Laboratory of Continental Dynamics, Department of Geology, Northwest
- 12 University, Xi'an 710069, China
- ² State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics,
- 14 Chinese Academy of Sciences, Beijing 100029, China

15

- 16 (*corresponding author: mgzhai@mail.iggcas.ac.cn)
- 17
- 18

19

ABSTRACT

20	Conventional Fe-Mg exchange geothermometers generally are not effective means to
21	measure the peak metamorphic temperatures of granulites, because of Fe-Mg diffusion
22	during the re-equilibration during the exhumation and cooling. Therefore, it is essential to
23	find alternative geothermometers. In this study, we investigated the magnitude of Mg
24	isotope fractionation between the co-exsiting clinopyroxene and garnet in garnet
25	pyroxenites and high-pressure mafic granulites from southern India. The clinopyroxene
26	and garnet from the garnet pyroxenites have δ^{26} Mg values of -0.04% to -0.07% , and
27	-0.65% to -0.64% , respectively, with $\Delta^{26}Mg_{clinopyroxene-garnet} = \delta^{26}Mg_{clinopyroxene} - \delta^{26}Mg_{clinopyroxene}$
28	$\delta^{26}Mg_{garnet} = 0.62\%$ and 0.57‰. The $\delta^{26}Mg$ values of the coexisting clinopyroxene and
29	garnet in the high-pressure mafic granulites, are 0.03% to 0.07% , and -0.54% to
30	-0.55% , respectively, with $\Delta^{26}Mg_{clinopyroxene-garnet} = 0.57\%$ and 0.62‰. The inter-mineral
31	Mg isotope fractionations between the clinopyroxene and garnet of the garnet pyroxenites
32	are similar to those of the high-pressure mafic granulites, and more or less fall within the
33	equilibrium fractionation lines at peak metamorphic temperatures. The measured peak
34	temperatures for all four samples indicate equilibrium Mg isotope fractionations between
35	the clinopyroxene and garnet. The clinopyroxene-garnet Mg isotope geothermometer of
36	Li et al. (2016) yields temperatures of 994 \pm 60 °C and 1048 \pm 89 °C for the garnet
37	pyroxenites, and 1048 ± 89 °C and 994 ± 65 °C for the high-pressure mafic granulites,
38	which are slightly lower than those at both 10 kbar and 12 kbar from the clinopyroxene-

39	garnet Mg isotope thermometer of Huang et al. (2013). Compared with the peak
40	metamorphic conditions from phase equilibrium modelling, the clinopyroxene-garnet Mg
41	isotope thermometry yielded temperatures corresponding to the peak metamorphic
42	conditions of the garnet pyroxenites and the high-pressure mafic granulites, whereas the
43	conventional clinopyroxene-garnet Fe-Mg exchange thermometry yielded lower
44	temperatures corresponding to the retrograde metamorphism. These results underscore
45	the inter-mineral Fe-Mg exchange between clinopyroxene and garnet during the
46	retrograde cooling of the ultrahigh-temperature (>900 °C); but however did not disturb
47	their Mg isotope fractionation equilibrium attained during the ultrahigh-temperature
48	metamorphic condition. Therefore, we conclude that clinopyroxene-garnet Mg isotope
49	thermometry, together with phase equilibrium modelling, is a valid tool to constrain the
50	peak metamorphic temperature conditions even for ultramafic-mafic granulites that have
51	undergone ultrahigh-temperature metamorphism.
52	Keywords: Clinopyroxene-garnet Mg isotope geothermometer, Mg isotope fractionation,
53	Garnet pyroxenites, High-pressure mafic granulites
54	INTRODUCTION
55	It's well known that granulites provide a window to understand the accretion and
56	eventual stabilization of new crust and hence continental growth (Bohlen and Mezger,
57	1989; Harley 1989; Sawyer et al. 2011; Cipar et al. 2020), but conventional Fe-Mg
58	exchange geothermometers generally underestimate the peak metamorphic temperatures

59	of granulites (Frost and Chacko 1989; Harley 1989, 1998; Fitzsimons and Harley 1994;
60	Pattison et al. 2003; Usuki et al. 2017), due to the fast Fe-Mg diffusion during retrograde
61	cooling obliterated initial mineral compositions. Therefore, it is important to look for
62	alternative geo-thermometers to estimate the peak metamorphic temperature, unaffected
63	by the late re-equilibrium processes. Several attempts were made in this regard in the past
64	decade, and the Mg isotope geothermometer may be a good candidate, as mentioned
65	below. A large inter-mineral Mg isotope fractionation of Δ^{26} Mg _{clinopyroxene-garnet} = 1.14 ±
66	0.04‰ was found in a set of eclogites from Bixiling in the Dabie orogen, China (Li et al.
67	2011). The constant inter-mineral Mg isotope fractionation, together with homogeneous
68	mineral chemistry and equilibrium oxygen isotopic partitioning between clinopyroxene
69	and garnet, suggests an equilibrium Mg isotope fractionation (Li et al. 2011). Later
70	analyses of coexisting clinopyroxene and garnet in cratonic eclogites (Wang et al. 2012,
71	2015) and orogenic eclogites (Wang et al. 2014a, b; Li et al. 2016) also found large
72	equilibrium inter-mineral Mg isotope fractionation. This large equilibrium Mg isotope
73	fractionation is controlled by different coordination numbers of Mg in these two minerals,
74	with six in clinopyroxene and eight in garnet, as minerals with lower coordination
75	number favoring heavier isotopes when thermodynamic equilibrium is achieved (Li et al.
76	2011, 2016; Wang et al. 2012, 2015; Huang et al. 2013; Young et al. 2015). As a result,
77	equilibrium fractionation of Mg isotope between clinopyroxene and garnet could be used
78	as a geothermometer, with high-precision and wide applications in igneous and
79	metamorphic rocks where garnet co-exists with clinopyroxene (Huang et al. 2013; Li et al. $4/40$

80 2016).

81

82	However, experiment results demonstrated large Mg isotope fractionation associated with
83	diffusion of Mg along chemical and temperature gradients (Richter et al. 2008; Huang et
84	al. 2009, 2010; Chopra et al. 2012). Further studies on natural samples demonstrated that
85	there was Mg isotope fractionation related to chemical diffusion at both mineral and
86	outcrop scales (Teng et al. 2011; Chopra et al. 2012; Sio et al. 2013; Oeser et al. 2015;
87	Pogge Von Strandmann et al. 2015; Teng 2017). Therefore, it's worth to investigate
88	whether the inter-mineral diffusion exchange of Fe-Mg during the retrograde
89	metamorphism of granulites affect the equilibrium Mg isotope fractionation between
90	clinopyroxene and garnet that achieved under peak metamorphic conditions. This not
91	only can answer if the clinopyroxene-garnet Mg isotope geothermometer could be
92	applied to constrain the peak temperature of clinopyroxene- and garnet-bearing granulites,
93	but also help us to understand the Mg isotope fractionation during the granulite-facies
94	metamorphism.
95	
96	In this study, we carried out Mg isotopic analyses of clinopyroxenes and garnets from
97	newly discovered garnet pyroxenites and high-pressure (HP) mafic granulites from the
98	Namakkal Block of the Southern Granulite Terrane (SGT), India, and investigated the
99	magnitude of Mg isotope fractionation between clinopyroxene and garnet in these
100	ultramafic-mafic granulites. On the basis of results from phase equilibrium modelling,

101	mineral chemical analysis, conventional clinopyroxene-garnet Fe-Mg exchange
102	geothermometry, and clinopyroxene-garnet Mg isotope geothermometry, we evaluate the
103	feasibility of clinopyroxene-garnet Mg isotope geothermometer in these ultramafic-mafic
104	granulites, and the effect of the retrograde cooling on equilibrium Mg isotope
105	fractionation between clinopyroxene and garnet during the peak metamorphism.
106	GEOLOGICAL SETTING AND SAMPLE DESCRIPTION
107	The SGT, located at the southern margin of the Dharwar Craton, is composed of the
108	Coorg, Nilgiri, Billigiri Rangan, Shevaroy, Madras, and Namakkal granulite Blocks
109	(Figure 1). The Namakkal Block or the Kolli-massif (George and Sajeev, 2015) is
110	composed of charnockite, HP mafic granulite, garnet pyroxenite, ultramafic rocks,
111	anorthosite, gneiss, granite, migmatite, and minor layers of banded magnetite quartzite
112	(Figure 2) (Anderson et al. 2012; Mohan et al. 2013; Glorie et al. 2014; George et al.
113	2019; Peng et al. 2019; He et al. 2020, 2021). Zircon and monazite U-Pb analyses on
114	various metamorphic rocks have yielded metamorphic ages ranging from 2526 to 2442
115	Ma (Saitoh et al. 2011; Sato et al. 2011; Anderson et al. 2012; Mohan et al. 2013; Glorie
116	et al. 2014; George et al. 2019; Peng et al. 2019; Talukdar et al. 2020). Phase equilibrium
117	modelling yielded a $P-T$ condition of 22 kbar at 980 °C for the garnet pyroxenite from
118	the Jambumalai Hills in the Kolli-massif (Figure 2), and an isothermal decompression P -
119	T path was obtained based on the presence of plagioclase corona around the garnet
120	(George et al. 2019). The HP mafic granulites from the Mahadevi Layered complex

121 (MLC), record a simultaneous cooling and decompression P-T path, with peak

metamorphism that occurred under HP granulite-facies condition of ~800 °C at 12–14

kbar, and retrograde metamorphism under P-T conditions of ~10–11 kbar, ~710 °C and

 $\sim 6-8$ kbar, >580-620 °C (Chowdhury and Chakraborty 2019).

125

126	Four representative ultramafic-mafic granulite samples were selected for this study on the
127	basis of detailed petrology, which are garnet pyroxenite samples 18ID-39 and 18ID-41
128	(Figure 3a, b), and HP mafic granulite samples 18ID-46 and 18ID-50 (Figure 3c-f). The
129	garnet pyroxenite samples 18ID-39 and 18ID-41 are mainly composed of garnet and
130	clinopyroxene, plagioclase, ilmenite and hematite (Figures 3a, b and S1a, b), and
131	accessory apatite (Figure S1a). Minor hornblende and quartz occur as tiny interstitial
132	grains (Figure S1a, b), and are considered to have formed during the retrograde cooling.
133	These garnet pyroxenite samples display granoblastic texture (Figure 3a, b), indicating
134	high equilibrium temperature. Clinopyroxene develops extremely narrow orthopyroxene
135	exsolution lamellae (Figure 4a, b), which is considered as a result of the retrograde
136	cooling. Ilmenite and hematite are relatively abundant in the garnet pyroxenite and are
137	present as interstitial grains (Figures 3a, b and S1a, b). Ilmenite commonly contains
138	hematite exsolution lamellae (Figure S1a, b). As a result, the peak metamorphic phase
139	assemblage of the garnet pyroxenites, is inferred to have been garnet-clinopyroxene-
140	plagioclase-ilmenite-melt, and the final subsolidus mineral assemblage preserved in
141	these samples comprises garnet–clinopyroxene–hornblende–plagioclase–ilmenite– 7/40

142 hematite–quartz.

143

144	The HP mafic granulite samples 18ID-46 and 18ID-50 mainly consist of garnet,
145	clinopyroxene, orthopyroxene, hornblende and plagioclase (Figure 3c-f), with minor
146	quartz, and accessory ilmenite, hematite and zircon (Figure S1c, d). They also display
147	granoblastic texture (Figure 3c-f). Plagioclase is more abundant than that in the garnet
148	pyroxenites (Figure 3a-f). Only minor quartz was observed, which occurs as narrow
149	films or tiny grains along the boundary between other minerals (Figure S1c, d).
150	Hornblende occurs as corona around clinopyroxene and orthopyroxene, or as interstitial
151	grains between garnet, clinopyroxene and orthopyroxene (Figure 3d, f). Thus, the quartz
152	and hornblende in the HP mafic granulites are inferred to have formed during the
153	retrograde metamorphism. It can be noted that sample 18ID-46 contains abundant
154	hornblende, whereas sample 18ID-50 contains only minor hornblende, which are due to
155	different degrees of retrograde metamorphism. Extremely narrow orthopyroxene
156	exsolution lamellae has also been observed in the clinopyroxene in the two HP mafic
157	granulite samples (Figure 4c, d), which might have formed as a result of retrograde
158	cooling. Hematite exsolution lamellae can be also observed in ilmenite (Figure S1d).
159	Hence, the peak metamorphic phase assemblage of the HP mafic granulites, is inferred to
160	have been garnet-clinopyroxene-orthopyroxene-plagioclase-ilmenite-melt, and the
161	subsolidus mineral assemblage preserved in these sample comprises garnet-
162	clinopyroxene–orthopyroxene–hornblende–plagioclase–ilmenite–hematite–quartz. 8/40

163 ANALYTICAL METHODS

164 Mineral compositional analysis

- 165 Mineral compositions were analyzed using the JEOL JXA-8230 electron microprobe
- 166 (EMP) at the State Key Laboratory of Continental Dynamics (SKLCD), Northwest
- 167 University, Xi'an. The operating conditions are 2 µm beam size, 15 kV acceleration
- voltage, and 10 nA beam current. Mineral formula was calculated from the EMP data,
- based on the stoichiometric charge balance, using the program AX
- 170 (https://filedn.com/lU1GlyFhv3UuXg5E9dbnWFF/TJBHpages/ax.html), except for Fe³⁺
- 171 content in clinopyroxene (calculated by end-member method). Mineral compositions and
- the mole fractions of end-members for the garnet pyroxenite samples 18ID-39 and
- 173 18ID-41, and the HP mafic granulite samples 18ID-46 and 18ID-50 are given in Tables
- 174 S1, S2, S3 and S4, respectively. As the clinopyroxene in both the garnet pyroxenites and
- 175 HP mafic granulites displays exsolution lamellar of orthopyroxene, re-integrated
- 176 pre-exsolution original compositions of clinopyroxene were calculated from the
- 177 compositions of host and lamellar domains, and the mass proportions. The mass
- 178 proportions were calculated using areal proportions (assumed to be equal to volume
- propositions) of host-lamellae estimated from back-scattered images (Figure 4), and
- densities of clinopyroxene (3.27 g/cm^3) and orthopyroxene (3.61 g/cm^3) . The
- re-integrated compositions are listed in Table S5.
- 182

Tescan Integrated Mineral Analyzer (TIMA) at the SKLCD, Northwest University, Xi'an,
was used to determine hornblende and quartz in the ultramafic-mafic granulites, with a
beam current of 8.66 nA, beam energy of 25 kV, and working distance of 15 mm.

186 Pseudosection modelling

187	Phase equilibrium	modelling wa	s carried out o	on the garnet	pyroxenite sample 18	ID-39

and HP mafic granulite sample 18ID-50, to constrain the peak metamorphic P-T

condition. The bulk chemical compositions (Table 1) were determined by

190 wavelength-dispersive X-ray fluorescence (XRF) spectrometry at the SKLCD (Rigaku

191 RIX 2100) on a fused bead, except for FeO versus Fe_2O_3 (total iron was determined as

192 Fe_2O_3 by the XRF) and the H₂O content. The amount of FeO was determined by titration

and then Fe_2O_3 was calculated by difference. The loss on ignition is negative as the Fe^{2+}

194 was oxidized to Fe^{3+} during the heating. The modelled bulk-rock H₂O content in *P*–*T*

pseudosection modelling was adjusted using $T-X_{H2O}$ pseudosection, so that the final

196 phase assemblage is stable just above the solidus, which is assumed to reflect the

197 conditions where this assemblage would have been in equilibrium with the last remaining

198 melt (Korhonen et al., 2013). Phase equilibrium calculation was performed using

199 THERMOCALC version tc345 (Powell et al. 1998) with the internally consistent

thermodynamic dataset ds62 (Holland and Powell 1998, 2011) and the activity–

201 composition (a-x) models for the Na₂O–CaO–K₂O–FeO–MgO–Al₂O₃–SiO₂–H₂O–TiO₂–

 O_2 (NCKFMASHTO) system (White et al. 2014; Green et al. 2016).

203 Garnet-clinopyroxene Fe-Mg thermometry

204	The garnet-clinopyroxene Fe-Mg thermometer of Ravna (2000) was adopted to calculate
205	the metamorphic temperatures for the garnet pyroxenites and HP mafic granulites. The
206	compositions of garnet and clinopyroxene cores were used, as they record higher
207	metamorphic temperatures than those of rims. The re-integrated pre-exsolution original
208	compositions of clinopyroxene were also used to calculate metamorphic temperature, in
209	order to determine whether the exsolution lamellar of orthopyroxene significantly affect
210	the calculated temperature results. The calculated temperature results are presented in
211	Table 2.

212 Mg isotopic analysis

Solution preparation was performed in an ultra-clean room at the SKLCD. The garnet and 213 clinopyroxene separated from the crushed samples of the garnet pyroxenites and HP 214 mafic granulites were ground to powder using agate mortar, and then an appropriate 215 amount of powder was weighted to obtain $\sim 25 \ \mu g$ Mg for chemical purification based on 216 the MgO content. Weighted powders were placed in 15 mL Savillex Teflon beakers with 217 a mixture of concentrated HF-HNO₃ (3 : 1). The beakers were heated overnight at a 218 temperature of 120 °C on a hot plate, and then the solutions were evaporated to dryness. 219 The dried samples were refluxed with concentrated HNO₃ to remove residual fluorides, 220 221 and then were made to evaporate again. After the precipitation and centrifugation, the

222	dissolved rock solutions containing 25 μ g Mg were passed through two columns
223	containing AG50W-X12 cation exchange resins to eliminate matrix elements. The
224	collected solutions were then evaporated at 80 $^\circ$ C, and the residues were dissolved in 2%
225	HNO ₃ for measurement.
226	
227	Analysis of Mg isotope ratios was carried out on a Nu Plasma II MC-ICPMS (Nu
228	Instruments, Wrexham, UK) at the SKLCD. The standard-sample-standard bracketing
229	method was used to correct the instrumental mass bias during the analyses, and the
230	standard solution was GSB-Mg (Bao et al. 2020). The Mg isotopic ratios were first
231	normalized to the GSB-Mg standard by $\delta^x Mg_{Sample-Standard} = 10^3 \times \{2 \times$
232	$({}^{x}Mg/{}^{24}Mg)_{Sample(i)}/[({}^{x}Mg/{}^{24}Mg)_{Standard(i)} + ({}^{x}Mg/{}^{24}Mg)_{Standard(i+1)}] - 1\}$ (Teng 2017), where
233	x refers to mass 25 or 26. Then, the $\delta^x Mg_{Sample-Standard}$ was converted to $\delta^x Mg_{Sample-DSM3}$
234	using the following formula: $\delta^{x}Mg_{Sample-DSM3} = \delta^{x}Mg_{Sample-Standard} + \delta^{x}Mg_{Standard-DSM3} + \delta^{x}Mg_{Standard-DSM3}$
235	$10^{-3} \times \delta^x Mg_{Sample-Standard} \times \delta^x Mg_{Standard-DSM3}$ (Galy et al. 2003). The $\delta^{26}Mg$ and $\delta^{25}Mg$
236	values of the GSB-Mg standard solution relative to DSM3 are -2.049% and -1.056% ,
237	with uncertainty of 0.049‰ and 0.028‰, respectively (Bao et al. 2020). The USGS
238	basalt standards BCR-2 and BHVO-2, and procedural blank were processed through
239	column chemistry with samples to check the accuracy. The measured Mg isotopic
240	compositions agree well with previously reported values (Table 3; Bizzarro et al. 2011;
241	An et al. 2014; Teng et al. 2015; Bao et al. 2019). The detailed description of the
242	methodology used in SKLCD can be found in Bao et al. (2019).

243 Clinopyroxene–garnet Mg isotope thermometry

244	The calibrations of clinopyroxene–garnet Mg isotope thermometers from both Li et al.
245	(2016) and Huang et al. (2013) were applied to the garnet pyroxenites and the HP mafic
246	granulites. The clinopyroxene-garnet Mg isotope thermometer of Li et al. (2016) was
247	calibrated by natural samples, whereas that of Huang et al. (2013) was on the basis of
248	first-principles calculation of equilibrium Mg isotope fractionations between garnet and
249	clinopyroxene. The pressure effect was not considered in the clinopyroxene-garnet Mg
250	isotope thermometer of Li et al. (2016), whereas the pressures of 10 and 12 kbar based on
251	phase equilibrium modellings of the garnet pyroxenites and the HP mafic granulites were
252	adopted, when the clinopyroxene-garnet Mg isotope thermometer of Huang et al. (2013)
253	was applied, as Huang et al. (2013) has revealed substantial pressure effect on Mg isotope
254	fractionation between garnet and clinopyroxene.

255 **RESULTS**

256 Mineral chemistry

- 257 Compositions of garnet, clinopyroxene and orthopyroxene exsolution lamellae were
- analyzed for both the garnet pyroxenites and HP mafic granulites. Garnet in the
- garnet-pyroxenite sample 18ID-39 is rich in almandine ($X_{Alm} = 0.51-0.54$), pyrope ($X_{Prp} =$
- 260 0.27–0.30) and grossular ($X_{\text{Grs}} = 0.17-0.18$), with low abundances of spessartine ($X_{\text{Sps}} =$
- ~ 0.01) (Table S1). Clinopyroxene in the sample 18ID-39 is diopside in composition,

262	with low Na of 0.04–0.05 cations per formula unit (cpfu) (Table S1), and their Mg# and
263	Al are 0.68–0.73 and 0.18–0.25 cpfu, respectively (Table S1). Compositional profile
264	displays that both garnet and clinopyroxene have no significant variation in Mg# from
265	core to rim (Table S1; Figure 5a). Orthopyroxene exsolution lamellae has Mg# value of
266	0.54–0.55 (Table S1).
267	
268	The compositions of garnet, clinopyroxene and orthopyroxene exsolution lamellae in the
269	garnet pyroxenite sample 18ID-41 are similar to those of the sample 18ID-39 (Tables S1
270	and S2; Figure 5a, b). However, the garnet in the sample 18ID-41 has feeble
271	compositional variation from core to rim, with increasing pyrope and Mg# but decreasing
272	almandine close to the rim (Table S2; Figure 5b), due to subsolidus retrograde Fe-Mg
273	exchange. In addition, clinopyroxene exhibits a weak increase in Mg# close to the rim
274	(Table S2; Figure 5b). Orthopyroxene exsolution lamellae has Mg# ranging from 0.53 to
275	0.56 (Table S2).
276	
277	Garnet in the HP mafic granulite sample 18ID-46 is almandine-, pyrope- and
278	grossular-rich ($X_{Alm} = 0.58-0.60$; $X_{Prp} = 0.20-0.22$; $X_{Grs} = 0.18-0.19$), with low
279	concentration of spessartine ($X_{Sps} = \sim 0.01$) (Table S3); and it displays a weak variation in
280	composition from core to rim, with increasing almandine but decreasing pyrope and Mg#
281	close to the rim (Table S3; Figure 5c), due to subsolidus retrograde Fe-Mg exchange.
282	Clinopyroxene is diopside in composition, with Mg# value of 0.64–0.75, and exhibits $14/40$

283	only weak compositional variation from core to rim, with increasing Mg# close to the rim
284	(Tables S3; Figure 5c). Orthopyroxene exsolution lamellae has uniform Mg# of 0.51–
285	0.52 (Table S3).
286	
287	The compositions of garnet, clinopyroxene and orthopyroxene exsolution lamellae in the
288	HP mafic granulite sample 18ID-50 are similar to those of the sample 18ID-46 (Tables S3
289	and S4; Figure 5c, d). Garnet exhibits weak compositional zoning from core to rim, with

- increasing almandine but decreasing pyrope and Mg# close to the rim (Table S4; Figure
- 5d). The zoning profile of clinopyroxene also shows only weak compositional variation
- from core to rim, with increasing Mg# close to the rim (Tables S4; Figure 5d).

293 *P*–*T* pseudosection

294 Garnet pyroxenite sample 18ID-39

- A $T-X_{H2O}$ pseudosection was calculated at 10 kbar (Figure 6a), which is within the
- pressure range for the final phase assemblage of grt–hbl–cpx–pl–ilm–qz–liq (Figure 6b).
- 297 The H₂O contents investigated on Figure 6a range from an anhydrous composition (X_{H2O}
- 298 = 0) to the H₂O content of 5.0 mol.% (X_{H2O} = 1) (Table 1). A X_{H2O} value of 0.45 (2.25
- 299 mol.% H₂O, Table 1; red bar on Figure 6a) was selected for subsequent P-T
- 300 pseudosection modelling of this bulk composition, which corresponds to the mid-point of
- the solidus curve for the final phase assemblage (Figure 6a).
- 302

303	The calculated $P-T$ pseudosection (Figure 6b), allows the mineral assemblages to be
304	evaluated over a range of <i>P</i> – <i>T</i> conditions. The peak phase assemblage grt–cpx–pl–ilm–liq
305	occurs between 1080 and 1130 °C and 8.7–10.7 kbar (Figure 6b). The garnet-out line
306	marks the upper temperature limit of this field (Figure 6b). The upper pressure and low
307	temperature limits are the plagioclase-out and hornblende-in assemblage field boundaries,
308	respectively (Figure 6b).

309 HP mafic granulite sample 18ID-50

A $T-X_{\rm H2O}$ pseudosection for the HP mafic granulite sample 18ID-50 was also calculated

at 10 kbar (Figure 6c), which is consistent with the pressure range for the final phase

assemblage of grt-hbl-cpx-opx-pl-ilm-qz-liq (Figure 6d). A similar approach to that

described above for sample 18ID-39 was used to constrain appropriate H_2O content for

the P-T pseudosection (Figure 6c; Table 1). A X_{H2O} value of 0.06 (0.30 mol.% H₂O, Table

1; red bar on Figure 6c), corresponding to the mid-point of the solidus curve for the final

phase assemblage (Figure 6d), was selected for subsequent P-T pseudosection

317 calculation.

318

The peak phase assemblage of the HP mafic granulite is represented by the hexa-variant

field grt–cpx–opx–pl–ilm–melt in the calculated P-T pseudosection (Figure 6d), which

- occurs between 910 °C and 1140 °C and 9.0–12.4 kbar (Figure 6d). The hornblende-in
- assemblage field boundary marks the low temperature limit of this field and the

323 garnet-out assemblage field boundary marks the upper-temperature limit. The

³²⁴ upper-pressure limit is the quartz-in assemblage field boundary. Calculated isopleths of

- X_{An} for plagioclase, and X_{Grs} for garnet, were contoured in the *P*-*T* pseudosection (Figure
- 6d). Using the X_{An} in plagioclase (0.44–0.48) and the mole fraction of grossular in garnet

327 (0.18–0.19) (Table S4), the peak P-T condition was further constrained to be T = 1070-

328 1110 °C at P = 11.5 - 12.2 kbar (Figure 6d).

329 Metamorphic temperatures from the garnet–clinopyroxene Fe–Mg thermometry

The peak P-T conditions of the garnet pyroxenites and HP mafic granulites are

constrained to be 1080–1130 °C at 8.7–10.7 kbar (Figure 6b) and 1070–1110 °C at 11.5–

- 12.2 kbar (Figure 6d) from the phase-equilibrium modelling, respectively. Thus, the
- pressure should be set to 10 kbar, when the garnet–clinopyroxene Fe–Mg thermometry is
- applied to the garnet pyroxenites, and on the other hand, the pressure should be set to 12
- kbar during application of the garnet–clinopyroxene Fe–Mg thermometry to the HP mafic
- granulites. However, in order to evaluate the effect of pressure on calculated temperature
- results by the garnet–clinopyroxene Fe–Mg thermometry, metamorphic temperatures for
- the garnet pyroxenites and the HP mafic granulites at both 10 kbar and 12 kbar have beencalculated.

340

The temperatures measured for the garnet and clinopyroxene cores (Table S5), using the garnet–clinopyroxene Fe–Mg thermometer at 10 kbar are, 776 °C and 754 °C for the 17/40

343	garnet pyroxenites (Table 2; Figure 7), and 671 °C and 725 °C for the HP mafic
344	granulites (Table 2; Figure 7), which are ~ 10 °C lower than those at 12 kbar (Table 2;
345	Figure 7). However, when the compositions of garnet core and re-integrated
346	pre-exsolution original composition of clinopyroxene were applied to Fe-Mg
347	thermometer, there was a shift in the temperature, and the obtained temperatures are 818
348	°C and 800 °C at 10 kbar for the garnet pyroxenites (Table 2; Figure 7), and 698 °C and
349	767 °C at 10 kbar for the HP mafic granulites (Table 2; Figure 7). These results are also
350	~10 °C lower than those at 12 kbar (Table 2; Figure 7). It should also be noted that the
351	temperatures using the re-integrated pre-exsolution original compositions of
352	clinopyroxene are \sim 30–50 °C higher than those using clinopyroxene cores under the same
353	pressure, with the same compositions of garnet core (Table 2; Figure 7).
354	Mg isotopic compositions of clinopyroxene and garnet
355	Mg isotopic compositions of garnet and clinopyroxene are listed in Table 3.

- Clinopyroxenes and garnets from both the garnet pyroxenites and the HP mafic granulites
- have obviously different δ^{26} Mg values (Table 3; Figure 8a), suggesting large
- inter-mineral Mg isotope fractionations between clinopyroxene and garnet (Table 4;
- Figure 8a). For the garnet pyroxenite sample 18ID-39, the δ^{26} Mg values of clinopyroxene
- and garnet are $-0.04 \pm 0.04\%$ and $-0.65 \pm 0.07\%$, respectively, which are similar to
- those of the garnet pyroxenite sample 18ID-41 (Table 3; Figure 8a). The δ^{26} Mg values of
- clinopyroxenes from the HP mafic granulites are $0.03 \pm 0.05\%$ and $0.07 \pm 0.03\%$, which

363	are slightly higher than	those of clinopyroxenes	from the garnet pyroxen	ites (Table 3:

- Figure 8a). The garnets from the HP mafic granulites have δ^{26} Mg values of $-0.54 \pm 0.11\%$
- and -0.55 ± 0.09 %, which are slightly higher than those of garnets from the garnet
- pyroxenites (Table 3; Figure 8a). However, similar Δ^{26} Mg_{clinopyroxene-garnet} values are
- obtained for the garnet pyroxenites (0.62% and 0.57%) and the HP mafic granulites
- (0.57% and 0.62%) (Table 4).

369 Temperature evaluation using the clinopyroxene–garnet Mg isotope thermometry

370	The calibration	of the clinopyroxen	e–garnet Mg isotope tl	hermometer of Li et al. (2016)

yielded metamorphic temperatures of 994 ± 60 °C and 1048 ± 89 °C respectively for the

two samples of garnet pyroxenites, and 1048 ± 89 °C and 994 ± 65 °C for the HP mafic

granulites (Table 4; Figure 8b). Similar to the garnet–clinopyroxene Fe–Mg thermometry,

in order to evaluate the effect of pressure on the calculated temperature using the

clinopyroxene–garnet Mg isotope thermometer of Huang et al. (2013), metamorphic

- temperatures for the garnet pyroxenites and the HP mafic granulites at both 10 kbar and
- 12 kbar were determined. At 10 kbar, the clinopyroxene–garnet Mg isotope thermometer
- of Huang et al. (2013) yielded temperatures of 1038 ± 42 °C and 1093 ± 72 °C for the
- garnet pyroxenites, and 1094 ± 71 °C and 1038 ± 47 °C for the HP mafic granulites
- (Table 4; Figure 8b). At 12 kbar, however, the obtained temperatures are 1045 ± 43 °C
- and 1100 ± 72 °C for the garnet pyroxenites, and 1101 ± 71 °C and 1044 ± 48 °C for the

382 HP mafic granulites (Table 4; Figure 8b).

383

DISCUSSION

Implications of metamorphic temperatures from garnet–clinopyroxene Fe–Mg thermometry

386	As mentioned above, the temperatures at 10 kbar from the garnet-clinopyroxene Fe-Mg
387	thermometry are ~10 °C lower than those using the same mineral compositions at 12 kbar
388	(Table 2). Thus, the effect of pressure on the temperature results is limited. Frost and
389	Chacko (1989) concluded that pre-exsolution composition of clinopyroxene was required
390	to obtain higher temperatures from the garnet-clinopyroxene Fe-Mg thermometer, and if
391	these lamellae are lost, any evidence of high temperatures will be masked. This is
392	consistent with that the temperatures using the re-integrated pre-exsolution compositions
393	of clinopyroxene are \sim 30–50 °C higher than those using clinopyroxene cores under the
394	same pressure, with the same compositions of garnet cores (Table 2), and should be
395	closer to peak temperature conditions.
396	
397	The peak temperature conditions for the garnet pyroxenites and the HP mafic granulites
398	in this study, have been constrained from phase equilibrium modelling, which is now
399	considered generally as the most common method to constrain the peak $P-T$ conditions
400	of metamorphic rocks. The peak temperature condition of the garnet pyroxenites is 1080-
401	1130 °C at 8.7–10.7 kbar (Figure 6b), whereas that of the HP mafic granulites is 1070–
402	1110 °C at 11.5–12.2 kbar (Figure 6d). When compared with the peak temperature
	20 / 40

403	conditions calculated using the phase equilibrium modelling, metamorphic temperatures
404	from the garnet-clinopyroxene Fe-Mg thermometry, using the re-integrated
405	pre-exsolution original compositions of clinopyroxene, for the garnet pyroxenites at 10
406	kbar, are \sim 260–280 °C lower (Table 2), and those for the HP mafic granulites at 12 kbar
407	are ~290–360 °C lower (Table 2). Therefore, metamorphic temperatures by the garnet-
408	clinopyroxene Fe-Mg thermometry in this study are clearly inconsistent with the peak
409	temperature conditions, and only represent the retrograde metamorphic conditions. This
410	reflects that significant inter-mineral Fe-Mg exchange has occurred between garnet and
411	clinopyroxene during the retrograde cooling, which is usual for mafic granulites and
412	mantle rocks (Frost and Chacko 1989; Smith and Barron 1991; Ganguly et al. 1998;
413	Paquin and Altherr 2001; Usuki et al. 2017; Yang and Wei 2017). Also, all the garnets and
414	clinopyroxenes from the garnet pyroxenites and HP mafic granulites in this study have
415	relatively homogeneous Fe and Mg contents, with minor variation in the rim (Table S1-4;
416	Figure 5). All these results suggest re-equilibration of the garnets and clinopyroxenes
417	during the retrograde cooling, after being homogenized at granulite-facies condition.
418	Significance of temperatures from clinopyroxene–garnet Mg isotope thermometry
419	The metamorphic temperatures obtained using the clinopyroxene-garnet Mg isotope
420	thermometry at 10 kbar and 12 kbar are slightly different (Table 4; Figure 8b). This is
421	consistent with fact that the effect of pressure is minimal on Mg isotope fractionations
422	between garnet and clinopyroxene at equilibrium, for those rocks formed under extremely 21/40

high metamorphic temperatures (Huang et al. 2013). In addition, metamorphic 423 temperatures estimated by the clinopyroxene-garnet Mg isotope thermometer of Huang 424 et al. (2013) are slightly higher than those from that of Li et al. (2016) (Table 4; Figure 425 426 8b). 427 Metamorphic temperatures of 994 ± 60 °C and 1048 ± 89 °C for the garnet pyroxenites, 428 429 and 1048 ± 89 °C and 994 ± 65 °C for the HP mafic granulites (Table 4; Figure 8b), from 430 the clinopyroxene–garnet Mg isotope thermometer of Li et al. (2016), are similar or close to the peak temperature conditions for the corresponding samples from the phase 431 equilibrium modelling within error (Figure 9a, b). Similarly, those metamorphic 432 temperatures at both 10 kbar and 12 kbar (Table 4; Figure 8b), from the clinopyroxene-433 garnet Mg isotope thermometer of Huang et al. (2013), consistent with the peak 434 temperature conditions for the corresponding samples from the P-T phase equilibrium 435 modelling within error (Figure 9a, b). In addition, the inter-mineral Mg isotope 436 fractionations between the garnet and clinopyroxene from the garnet pyroxenites and the 437 438 HP mafic granulites are similar, and more or less fall within the equilibrium fractionation 439 lines (Huang et al. 2013; Li et al. 2016) (Figure 9), clearly indicating equilibrium fractionation that formed during the UHT metamorphism. Therefore, metamorphic 440 temperatures from the clinopyroxene-garnet Mg isotope thermometers (Huang et al. 441 2013; Li et al. 2016) are valid and can be successfully applied to constrain the peak 442 metamorphic temperature conditions that have undergone UHT metamorphism, like the 443 22 / 40

444 pyroxenites and HP mafic granulites in this study.

445 Effect of the retrograde cooling on equilibrium Mg isotope fractionation during the

446 **UHT metamorphism**

447	Experimental studies have found large Mg isotope fractionation associated with diffusion
448	of Mg along chemical and temperature gradients (Richter et al. 2008; Huang et al. 2009,
449	2010; Chopra et al. 2012). Further studies on natural samples confirmed that there were
450	Mg isotope fractionations related to chemical diffusions at both mineral and outcrop
451	scales (Teng et al. 2011; Chopra et al. 2012; Sio et al. 2013; Oeser et al. 2015; Pogge Von
452	Strandmann et al. 2015; Teng 2017). At mineral scale, Teng et al. (2011) found large Mg
453	isotopic variation (up to 0.45‰ for δ^{26} Mg) in olivine fragments from Hawaiian basalts,
454	which was caused by diffusive exchange of Mg and Fe between olivines and melts during
455	cooling. Moreover, large disequilibrium inter-mineral Mg isotope fractionation, induced
456	by diffusion, during mantle metasomatism or subsolidus Mg-Fe exchange between
457	coexisting minerals, was also observed in mantle rocks (Hu et al. 2016; Xiao et al. 2016).
458	
459	The clinopyroxene-garnet Mg isotope thermometer (Li et al. 2016; Huang et al. 2013),
460	yielded the peak metamorphic conditions for the garnet pyroxenites and the HP mafic
461	granulites in this study, suggesting equilibrium Mg isotope fractionations happened
462	during the UHT metamorphism. However, the retrograde metamorphic conditions
463	obtained for the garnet pyroxenites and the HP mafic granulites using the garnet– 23 / 40

464	clinopyroxene Fe-Mg thermometry, reveal significant inter-diffusion exchange of Fe and
465	Mg occurred between garnet and clinopyroxene during the retrograde cooling. These
466	results suggest that the inter-mineral Fe-Mg exchange occurred between garnet and
467	clinopyroxene during the retrograde cooling of the UHT rocks didn't change their Mg
468	isotope equilibrium obtained during the UHT metamorphic condition. Similar large HT to
469	UHT Mg isotope fractionations between garnet and clinopyroxene have been reported in
470	cratonic eclogites from South Africa and the Sierra Leone, West Africa (Wang et al. 2012,
471	2015). In this study, the published major elemental and Mg isotopic compositions were
472	compiled for the garnet and clinopyroxene in both cratonic eclogites (Hills and Haggerty
473	1989; Williams et al. 2009; Wang et al. 2012, 2015) and orogenic eclogites (Li et al. 2011,
474	2016) (Table S6). We have recalculated their mineral formula with the same method in
475	this study, and corresponding metamorphic temperatures using the garnet-clinopyroxene
476	Fe-Mg thermometry (Figure 9; Table S6). The garnet-clinopyroxene Fe-Mg
477	thermometry yielded higher metamorphic temperatures for the cratonic eclogites than
478	those for the orogenic eclogites (Figure 9). As shown in Figure 9, the degrees of
479	inter-mineral Mg isotope fractionations between garnet and clinopyroxene in the cratonic
480	eclogites, are close to those of the garnet pyroxenites and HP mafic granulites in this
481	study, but lower than those of the orogenic eclogites. In addition, unlike the garnet
482	pyroxenites and HP mafic granulites in this study, most samples of these cratonic and
483	orogenic eclogites have Mg isotope fractionations between garnet and clinopyroxene,
484	falling on or near equilibrium fractionation lines (Figure 9), if the adopted metamorphic $24/40$

485	temperatures were estimated by using the garnet-clinopyroxene Fe-Mg thermometry.
486	These indicate limited inter-mineral diffusion of Fe-Mg between garnet and
487	clinopyroxene in the most cratonic and orogenic eclogite samples. For the orogenic
488	eclogites, the limited inter-mineral diffusion of Fe-Mg between garnet and clinopyroxene
489	is due to their low peak metamorphic temperatures (Table S6). However, the different
490	degrees of inter-mineral diffusion of Fe-Mg between garnet and clinopyroxene in the
491	most cratonic eclogite samples, and the garnet pyroxenites and HP mafic granulites in
492	this study, may reflect different thermal evolutions after peak temperature metamorphism.
493	IMPLICATIONS
494	This study demonstrates that the clinopyroxene-garnet Mg isotope thermometry (Li et al.
495	2016; Huang et al. 2013), is a valid tool to constrain the peak temperature conditions for
496	the garnet pyroxenites and HP mafic granulites that have undergone UHT metamorphism.
497	The Mg isotope equilibrium between garnet and clinopyroxene that formed during the
498	UHT metamorphism is not disturbed by the inter-mineral diffusion exchange of Fe-Mg
499	during the retrograde cooling. Our results are inconsistent with the general understanding
500	that chemical diffusion will certainly cause the Mg isotope fractionation (Richter et al.
501	2008; Huang et al. 2009, 2010; Teng et al. 2011; Chopra et al. 2012; Sio et al. 2013;
502	Oeser et al. 2015; Teng 2017). However, there still remains an ambiguity that why the Mg
503	isotope fractionation was not disturbed by the inter-mineral diffusion exchange of Fe-Mg
504	during the retrograde cooling. Further experiments and investigations on natural samples

505 are required to clarify this question.

506	ACKNOWLEDGMENTS
507	This work was jointly supported by the National Natural Science Foundation of China
508	(Grant No. 41890831) and a research grant from the State Key Laboratory of Continental
509	Dynamics (SKLCD-04). We thank Dr. K. Sajeev for his help during the field work, and
510	Dr. Zhi-An Bao for his help in analysis of Mg isotopic compositions. The authors would
511	like to thank the Govt. of India for granting the required permissions.
512	
513	REFERENCES CITED
514	An, Y.J., Wu, F., Xiang, Y.X., Nan, X.Y., Yu, X., Yang, J.H., Yu, H.M., Xie, L.W., and
515	Huang, F. (2014) High-precision Mg isotope analyses of low-Mg rocks by
516	MC-ICP-MS. Chemical Geology, 390, 9–21.
517	Anderson, J.R., Payne, J.L., Kelsey D.E., Hand, M., Collins, A.S., and Santosh, M. (2012)
518	High-pressure granulites at the dawn of the Proterozoic. Geology, 40, 431–434.
519	Bao, Z.A., Huang, K.J., Huang, T.Z., Shen, B., Zong, C.L., Chen, K.Y., and Yuan, H.L.
520	(2019) Precise magnesium isotope analyses of high-K and low-Mg rocks by
521	MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 34, 940–953.
522	Bao, Z.A., Huang, K.J., Xu, J., Deng, L., Yang, S.F., Zhang, P., and Yuan, H.L. (2020)
523	Preparation and characterization of a new reference standard GSB-Mg for Mg isotopic
524	analysis. Journal of Analytical Atomic Spectrometry, 35, 1080–1086. 26/40

- 525 Bizzarro, M., Paton, C., Larsen, K., Schiller, M., Trinquier, A., and Ulfbeck, D. (2011)
- 526 High-precision Mg-isotope measurments of terrestrial and extraterrestrial material by
- 527 HR-MC-ICPMS-implications for the relative and absolute Mg isotope composition of
- the bulk silicate Earth. Journal of Analytical Atomic Spectrometry, 26, 565–577.
- 529 Bohlen, S.R., and Mezger, K. (1989) Origin of Granulite Terranes and the Formation of
- the Lowermost Continental Crust. Science, 244, 326–329.
- 531 Chopra, R., Richter, F.M., Bruce Watson, E., and Scullard, C.R. (2012) Magnesium
- isotope fractionation by chemical diffusion in natural settings and in laboratory
- analogues. Geochimica et Cosmochimica Acta, 88, 1–18.
- 534 Chowdhury, P., and Chakraborty, S. (2019) Slow Cooling at Higher Temperatures
- 535 Recorded within High-P Mafic Granulites from the Southern Granulite Terrain, India:
- 536 Implications for the Presence and Style of Plate Tectonics near the Archean–
- 537 Proterozoic Boundary. Journal of Petrology, 60, 441–486.
- 538 Cipar, J.H., Garber, J.M., Kylander-Clark, A.R.C., and Smye, A.J. (2020) Active crustal
- differentiation beneath the Rio Grande Rift. Nature Geoscience, 13, 758–763.
- 540 Fitzsimons, I.C.W., and Harley, S.L. (1994) The Influence of Retrograde Cation
- 541 Exchange on Granulite P–T Estimates and a Convergence Technique for the Recovery
- of Peak Metamorphic Conditions. Journal of Petrology, 35, 543–576.
- 543 Frost, B.R., and Chacko, A.T. (1989) The Granulite Uncertainty Principle: Limitations on
- 544 Thermobarometry in Granulites. The Journal of Geology, 97, 435–450.
- 545 Galy, A., Yoffe, O., Janney, P. E., Williams, R. W., Cloquet, C., and Alard, O., Halicz, L., 27/40

546	Wadhwa, M., Hutcheon, I.D., Ramon, E., and Carignan, J. (2003) Magnesium isotope
547	heterogeneity of the isotopic standard SRM980 and new reference materials for
548	magnesium-isotope-ratio measurements. Journal of Analytical Atomic Spectrometry,
549	18, 1352–1356.
550	Ganguly, J., Cheng, W., and Chakraborty, S. (1998) Cation diffusion in aluminosilicate
551	garnets: experimental determination in pyrope-almandine diffusion couples.
552	Contributions to Mineralogy and Petrology, 131, 171–180.
553	George, P.M., and Sajeev, K. (2015) Crustal evolution of Kolli-Massif, southern India:
554	Journal of Indian Institute of Science, 95, 187–201.
555	George, P.M., Sajeev, K., Santosh, M., and Zhai, M.G. (2019) Granulite-grade garnet
556	pyroxenite from the Kolli-massif, southern India: Implications for Archean crustal
557	evolution. Lithos, 342–343, 499–512.
558	Glorie, S., De Grave, J., Singh, T., Payne, J.L., and Collins, A.S. (2014) Crustal root of
559	the Eastern Dharwar Craton: Zircon U-Pb age and Lu-Hf isotopic evolution of the
560	East Salem Block, southeast India. Precambrian Research, 249, 229–246.
561	Green, E.C., White, R.W., Diener, J.F., Powell, R., Holland, T.J., and Palin, R.M. (2016)
562	Activity-composition relations for the calculation of partial melting equilibria in
563	metabasic rocks. Journal of Metamorphic Geology, 34, 845-869.
564	Harley, S.L. (1989) The origins of granulites; a metamorphic perspective. Geological
565	Magazine, 126, 215–247.
566	Harley, S.L. (1998) On the occurrence and characterization of ultrahigh-temperature

567	crustal	metamorphism.	Geological	Society,	London,	Special	Publications,	138,	81-
568	107.								

- 569 He, H.L., Wang, Y.Q., Bao, Z.A., George, P.M., Veni, S., Sajeev, K., Guo, J.H., Zhai,
- 570 M.G., and Lai, K.C. (2020) Role of melt injection and mixing in the formation of
- chromitite in Archean megacrystic anorthosites: Evidence from the Sittampundi
- anorthosite complex, southern India. Precambrian Research, 350, in press.
- 573 He, H.L., Wang, Y.Q., George, P.M., Sajeev, K., Guo, J.H., Lai, C.K., and Zhai, M.G.
- 574 (2021) Formation of ~2.5 Ga Sittampundi anorthosite complex in southern India:
- 575 Implications to lower crustal stabilization of the Dharwar Craton, Precambrian 576 Research, 354, in press.
- 577 Hills, D.V., and Haggerty, S.E. (1989) Petrochemistry of eclogites from the Koidu
- 578 Kimberlite Complex, Sierra Leone. Contributions to mineralogy and petrology, 103,
- 579 397–422.
- 580 Holland, T.J.B., and Powell, R. (1998) An internally consistent thermodynamic data set
- for phases of petrological interest. Journal of Metamorphic Geology, 16, 309–343.
- Holland, T.J.B., and Powell, R. (2011) An improved and extended internally consistent
- thermodynamic dataset for phases of petrological interest, involving a new equation of
- state for solids. Journal of Metamorphic Geology, 29, 333–383.
- Hu, Y., Teng, F.Z., Zhang, H.F., Xiao, Y., and Su, B.X. (2016) Metasomatism-induced
- 586 mantle magnesium isotopic heterogeneity: Evidence from pyroxenites. Geochimica et
- 587 Cosmochimica Acta, 185, 88–111.

- 588 Huang, F., Lundstrom, C.C., Glessner, J., Ianno, A., Boudreau, A., Li, J., Ferré, E.C.,
- Marshak, S., and DeFrates, J. (2009) Chemical and isotopic fractionation of wet andesite in a temperature gradient: Experiments and models suggesting a new mechanism of magma differentiation. Geochimica et Cosmochimica Acta, 73, 729– 749.
- 593 Huang, F., Chakraborty, P., Lundstrom, C.C., Holmden, C., Glessner, J.J.G., Kieffer,
- S.W., and Lesher, C.E. (2010) Isotope fractionation in silicate melts by thermal
 diffusion. Nature, 464, 396–400.
- Huang, F., Chen, L.J., Wu, Z.Q., and Wang, W. (2013) First-principles calculations of
- equilibrium Mg isotope fractionations between garnet, clinopyroxene, orthopyroxene,
- and olivine: Implications for Mg isotope thermometry. Earth and Planetary Science
 Letters, 367, 61–70.
- 600 Ishwar-Kumar, C., Windley, B.F., Horie, K., Kato, T., Hokada, T., Itaya, T., Yagi, K.,
- 601 Gouzu, C., and Sajeev, K. (2013) A Rodinian suture in western India: New insights on
- India-Madagascar correlations. Precambrian Research, 236, 227–251.
- Korhonen, F.J., Brown, M., Clark, C., and Bhattacharya, S. (2013) Osumilite-melt
 interactions in ultrahigh temperature granulites: phase equilibria modelling and
- implications for the P-T-t evolution of the Eastern Ghats Province, India. Journal of
- 606 Metamorphic Geology, 31, 881–907.
- Li, W.Y., Teng, F.Z., Xiao, Y.L., and Huang, J. (2011) High-temperature inter-mineral
- magnesium isotope fractionation in eclogite from the Dabie orogen, China. Earth and 30/40

609 Planetary Science Letters, 304, 224–230.

- Li, W.Y., Teng, F.Z., Xiao, Y.L., Gu, H.O., Zha, X.P., and Huang, J. (2016) Empirical
- 611 calibration of the clinopyroxene-garnet magnesium isotope geothermometer and
- 612 implications. Contributions to Mineralogy and Petrology, 171, 61.
- Mohan, M.R., Satyanarayanan, M., Santosh, M., Sylvester, P.J., Tubrett, M., and Lam, R.
- 614 (2013) Neoarchean suprasubduction zone arc magmatism in southern India:
- Geochemistry, zircon U–Pb geochronology and Hf isotopes of the Sittampundi
- Anorthosite Complex. Gondwana Research, 23, 539–557.
- Oeser, M., Dohmen, R., Horn, I., Schuth, S., and Weyer, S. (2015) Processes and time
- scales of magmatic evolution as revealed by Fe–Mg chemical and isotopic zoning in
- natural olivines. Geochimica et Cosmochimica Acta, 154, 130–150.
- 620 Paquin, J., and Altherr, R. (2001) New Constraints on the P-T Evolution of the Alpe
- Arami Garnet Peridotite Body (Central Alps, Switzerland). Journal of Petrology, 42,
 1119–1140.
- Pattison, D.R.M., Chacko, T., Farquhar, J., and Mcfarlane, C.R.M. (2003) Temperatures
- of Granulite-facies Metamorphism: Constraints from Experimental Phase Equilibria
- and Thermobarometry Corrected for Retrograde Exchange. Journal of Petrology, 44,
- 626 867–900.
- 627 Peng, P., Qin, Z.Y., Sun, F.B., Zhou, X.T., Guo, J.H., Zhai, M.G., and Ernst, R.E. (2019)
- Nature of charnockite and Closepet granite in the Dharwar Craton: Implications for the
- architecture of the Archean crust. Precambrian Research, 334, in press.

630 Powell, R., Holland, T.J., and Worley, B. (1998) Calculating phase diagrams involving

631	solid solutions via non-linear equations, with examples using THERMOCALC.
632	Journal of Metamorphic Geology, 16, 577–588.
633	Pogge Von Strandmann, P.A.E., Dohmen, R., Marschall, H.R., Schumacher, J.C., and
634	Elliott, T. (2015) Extreme Magnesium Isotope Fractionation at Outcrop Scale Records
635	the Mechanism and Rate at which Reaction Fronts Advance. Journal of Petrology, 56,
636	33–58.
637	Ravna, K. (2000) The garnet-clinopyroxene Fe ²⁺ -Mg geothermometer: an updated

Richter, F.M., Watson, E.B., Mendybaev, R.A., Teng, F.Z., and Janney, P.E. (2008)

calibration. Journal of Metamorphic Geology, 18, 211–219.

- 640 Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion.
- 641 Geochimica et Cosmochimica Acta, 72, 206–220.
- 642 Saitoh, Y., Tsunogae, T., Santosh, M., Chetty, T.R.K., and Horie, K. (2011). Neoarchean
- high-pressure metamorphism from the northern margin of the Palghat–Cauvery Suture
- Zone, southern India: Petrology and zircon SHRIMP geochronology. Journal of Asian
- Earth Sciences, 42, 268–285.

638

- Sato, K., Santosh, M., Tsunogae, T., Chetty, T.R.K., and Hirata, T. (2011) Laser ablation
- 647 ICP mass spectrometry for zircon U–Pb geochronology of metamorphosed granite
- from the Salem Block: Implication for Neoarchean crustal evolution in southern India.
- Journal of Mineralogical and Petrological Sciences, 106, 1–12.
- 650 Sawyer, E.W., Cesare, B., and Brown, M. (2011) When the Continental Crust Melts. 32/40

- Elements, 7, 229–234.
- 652 Sio, C.K.I., Dauphas, N., Teng, F.Z., Chaussidon, M., Helz, R.T., and Roskosz, M. (2013)
- Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg–Fe
- isotopic analyses. Geochimica et Cosmochimica Acta, 123, 302–321.
- Smith, D., and Barron, B.R. (1991) Pyroxene-garnet equilibration during cooling in the
- mantle. American Mineralogist, 76, 1950–1963.
- Talukdar, M., Mukhopadhyay, D., Sanyal, S., and Sengupta, P. (2020) Early
- Palaeoproterozoic structural reconstitution of a suite of rocks from the Mahadevi
- Layered Complex, Tamil Nadu, India. Geological Journal, 55, 3615–3642.
- 660 Teng, F.Z., Li, W.Y., Ke, S., Yang, W., Liu, S.A., Sedaghatpour, F., Wang, S.J., Huang,
- 661 K.J., Hu, Y., Ling, M.X., Xiao, Y., Liu, X.M., Li, X.W., Gu, H.O., Sio, C.K., Wallace,
- D.A., Su, B.X., Zhao, L., Chamberlin, J., Harrington, M., and Brewer, A. (2015)
- 663 Magnesium isotopic compositions of international geological reference materials.
- 664 Geostandards and Geoanalytical Research, 39, 329–339.
- Teng, F.Z. (2017) Magnesium Isotope Geochemistry. Reviews in Mineralogy and
 Geochemistry, 82, 219–287.
- Teng, F.Z., Dauphas, N., Helz, R.T., Gao, S., and Huang, S.C. (2011) Diffusion-driven
- 668 magnesium and iron isotope fractionation in Hawaiian olivine. Earth and Planetary
- 669 Science Letters, 308, 317–324.
- Usuki, T., Iizuka, Y., Hirajima, T., Svojtka, M., Lee, H., and Jahn, B. (2017) Significance
- of Zr-in-Rutile Thermometry for Deducing the Decompression P–T Path of a Garnet– 33/40

- 672 Clinopyroxene Granulite in the Moldanubian Zone of the Bohemian Massif. Journal of
- 673 Petrology, 58, 1173–1198.
- Wang, S.J., Teng, F.Z., Williams, H.M., and Li, S.G. (2012) Magnesium isotopic
- variations in cratonic eclogites: Origins and implications. Earth and Planetary Science
- 676 Letters, 359–360, 219–226.
- Wang, S.J., Teng, F.Z., and Li, S.G. (2014a) Tracing carbonate-silicate interaction during
- subduction using magnesium and oxygen isotopes. Nature Communication 5, 5328.
- Wang, S.J., Teng, F.Z., Li, S.G., and Hong, J.A. (2014b) Magnesium isotope systematics
- of mafic rocks during continental subduction. Geochim Cosmochim Acta 143, 34–48.
- Wang, S.J., Teng, F.Z., Rudnick, R.L., and Li, S.G. (2015) Magnesium isotope evidence
- for a recycled origin of cratonic eclogites. Geology 43, 1071–1074.
- 683 White, R.W., Powell, R., Holland, T.J.B., Johnson, T.E., and Green, E.C.R. (2014) New
- 684 mineral activity–composition relations for thermodynamic calculations in metapelitic
- systems. Journal of Metamorphic Geology, 32, 261–286.
- Whitney, D.L., and Evans, B.W. (2010) Abbreviations for names of rock-forming
 minerals. American Mineralogist, 95, 185–187.
- 688 Williams, H.M., Nielsen, S.G., Renac, C., Griffin, W.L., O'Reilly, S.Y., McCammon,
- 689 C.A., Pearson, N., Viljoen, F., Alt, J.C., and Halliday, A.N. (2009) Fractionation of
- 690 oxygen and iron isotopes by partial melting processes: Implications for the
- 691 interpretation of stable isotope signatures in mafic rocks. Earth and Planetary Science
- 692 Letters, 283, 156–166.

- 693 Xiao, Y., Teng, F.Z., Su, B.X., Hu, Y., Zhou, M.F., Zhu, B., Shi, R.D., Huang, Q.S.,
- 694 Gong, X.H., and He, Y.S. (2016) Iron and magnesium isotopic constraints on the
- origin of chemical heterogeneity in podiform chromitite from the Luobusa ophiolite,
- Tibet. Geochemistry, Geophysics, Geosystems, 17, 940–953.
- 497 Yang, C., and Wei, C.J. (2017) Ultrahigh temperature (UHT) mafic granulites in the East
- Hebei, North China Craton: Constraints from a comparison between temperatures
- derived from REE-based thermometers and major element-based thermometers.
- 700 Gondwana Research, 46, 156–169.
- Young, E.D., Manning, C.E., Schauble, E.A., Shahar, A., Macris, C.A., Lazar, C., and
- Jordan, M. (2015) High-temperature equilibrium isotope fractionation of non-traditional stable isotopes: experiments theory, and applications. Chemical Geology, 395, 176–195.

705

706 Figure captions

Figure 1. (a) The location of major Archean cratons in India. (b) Geological map of the
Dharwar Craton. Abbreviations: DC, Dharwar Craton; BC, Bastar Craton; BKC,
Bundhelkland Craton; AC, Aravalli Craton; SC, Singbhum Craton; WDC, the Western
Dharwar Craton; CDC, the Central Dharwar Craton; EDC, the Eastern Dharwar Craton;
KSZ, Kumta shear zone; ChSZ, Chitradurga Shear Zone; CoSZ, Coorg shear zone; MSZ,
Moyar Shear Zone; BSZ, Bhavani Shear Zone; MKSZ: Mettur-Kolar shear zone; NSZ:

713	Nallamalai shear zone; PCSZ, Palghat-Cauvery Shear Zone; SASZ, Salem-Attur Shear
714	Zone; CSZ, Cauvery Shear Zone; ASZ, Achankovil shear zone; KKPTSZ, Karur
715	Kambam Painavu Trichur shear zone; EGMB, Eastern Ghats Mobile Belts. Figure 1b is
716	modified after Ishwar-Kumar et al. (2013), George and Sajeev(2015), George et al.
717	(2019), and He et al. (2020).
718	

10

Figure 2. Geological map of the Namakkal Block in the southern granulite terrain, India

(modified after George and Sajeev (2015) and George et al. (2019)).

721

Figure 3. Photomicrographs (plane-polarized light) of the garnet pyroxenites and the HP 722 mafic granulites. (a) Garnet and clinopyroxene porphyroblasts in the garnet pyroxenite 723 sample 18ID-39. (b) Garnet and clinopyroxene porphyroblasts in the garnet pyroxenite 724 sample 18ID-41. (c) Garnet, clinopyroxene, orthopyroxene, plagioclase and minor 725 hornblende in the mafic granulite sample 18ID-46. (d) Hornblende corona around 726 orthopyroxene in the mafic granulite sample 18ID-46. (e) Garnet, clinopyroxene, and 727 728 plagioclase in the mafic granulite sample 18ID-50. (f) minor hornblende around orthopyroxene in the mafic granulite sample 18ID-50. The yellow lines with arrow 729 denote the locations of compositional profiles. In this study, all the mineral abbreviations 730 follow Whitney and Evans (2010). 731

732

Figure 4. Back-scattered electron photomicrographs showing narrow orthopyroxene 36/40
734	exsolution lamellae within clinopyroxene porphyroblasts from the garnet pyroxenites and
735	the HP mafic granulites. (a) Garnet pyroxenite sample 18ID-39. (b) Garnet pyroxenite
736	sample 18ID-41. (c) Mafic granulite sample 18ID-46. (d) Mafic granulite sample
737	18ID-50.

738

Figure 5. Compositional profiles of garnet and clinopyroxene porphyroblasts from the
garnet pyroxenite samples 18ID-39 (a) and 18ID-41 (b), and the HP mafic granulite
samples 18ID-46 (c) and 18ID-50 (d).

742

Figure 6. $T-X_{H2O}$ and P-T pseudosections for the garnet pyroxenite samples 18ID-39 and 743 the HP mafic granulite sample 18ID-50. (a) $T-X_{H2O}$ pseudosection for the garnet 744 pyroxenite sample 18ID-39 at 10 kbar, with the final mineral assemblage marked by Liq-745 grt-hbl-cpx-pl-ilm-qz in red type. (b) P-T pseudosection for the garnet pyroxenite 746 samples 18ID-39, with peak mineral assemblage marked by Liq-grt-cpx-pl-ilm in red 747 type. (c) $T-X_{H2O}$ pseudosection for the HP mafic granulite sample 18ID-50 at 10 kbar, 748 749 with the final mineral assemblage marked by Liq-grt-hbl-cpx-opx-pl-ilm-qz in red 750 type. (d) P-T pseudosection for the HP mafic granulite sample 18ID-50, with peak mineral assemblage marked by Liq-grt-cpx-opx-pl-ilm in red type, and isopleths of X_{grs} 751 in garnet, and X_{an} in plagioclase. The peak metamorphic condition of the HP mafic 752 granulite sample 18ID-50 is indicated by the field in yellow color. Red bars in (a) and (c) 753 754 denote H₂O contents used for subsequent modelling.

37 / 40

755

Figure 7. Plot of LnK_D versus $X_{Mg}(Grt)$ with temperature isopleths at both 10 kbar and 14 kbar, where $K_D = (Fe^{2+}/Mg)^{Grt}/(Fe^{2+}/Mg)^{Cpx}$ and $X_{Mg}(Grt) = Mg/(Mg + Fe^{2+})$ in garnet. The LnK_D and $X_{Mg}(Grt)$ are calculated using compositions of garnets and clinopyroxenes as same as those for the garnet–clinopyroxene Fe–Mg thermometry.

760

Figure 8. (a) δ^{26} Mg values of clinopyroxenes and garnets in the garnet pyroxenites and the HP mafic granulites. (b) Metamorphic temperatures calculated by the calibration of the clinopyroxene–garnet Mg isotope thermometers of Huang et al. (2013) and Li et al. (2016). Huang2013 and Li2016 mean Huang et al. (2013) and Li et al. (2016), respectively. The error bars in (a) and (b) represent the precision (2SD) on δ^{26} Mg, and the uncertainty of the estimated temperature (ΔT), respectively.

767

Figure 9. Plots of Δ^{26} Mg_{Cnx-Grt} versus 10⁶/(T)² with equilibrium Mg isotope fractionation 768 lines from Huang et al. (2013) and Li et al. (2016). The equilibrium Mg isotope 769 770 fractionation line from Huang et al. (2013) in (a) is at 10 kbar, and that in (b) is at 12 kbar. T denotes temperatures estimated by the garnet-clinopyroxene Fe-Mg thermometry, 771 using the compositions of garnet and clinopyroxene cores, whereas T1 denotes those 772 estimated by the garnet-clinopyroxene Fe-Mg thermometry, using the composition of 773 garnet core and the re-integrated pre-exsolution original composition of clinopyroxene. T 774 Pseud. means temperatures from P-T pseudosection modellings. The δ^{26} Mg values of 775 38 / 40

- garnet and clinopyroxene in the cratonic eclogites are from Wang et al (2012, 2015), and
- those in the orogenic eclogites are from Li et al (2011, 2016). Error bars represent the
- standard deviation of the Δ^{26} Mg_{Cpx-Grt} value.

779

780 Supplementary Figure

- **Figure S1.** TIMA images of the garnet pyroxenite samples 18ID-39 (a) and 18ID-41 (b),
- and the HP mafic granulite samples 18ID-46 (c) and 18ID-50 (d).

783

784 Tables

- **Table 1.** Bulk composition of the garnet pyroxenite and HP mafic granulite used for
- 786 phase equilibrium modelling.

787

Table 2. Metamorphic temperatures of the garnet pyroxenites and the HP mafic
granulites estimated by the garnet–clinopyroxene Fe–Mg thermometry.

790

- 791 Table 3. Magnesium isotopic compositions of clinopyroxenes and garnets in the garnet
- 792 pyroxenites and the mafic granulites, and standards.

793

- 794 Table 4. Metamorphic temperatures of the garnet pyroxenites and the mafic granulites
- calculated by using the clinopyroxene–garnet Mg isotope geothermometer.

39 / 40

796

797 Supplementary tables

- **Table S1.** Major element compositions of garnet, clinopyroxene, and orthopyroxene
- lamellae in the garnet pyroxenite sample 18ID-39.

800

- 801 Table S2. Major element compositions of garnet, clinopyroxene, and orthopyroxene
- lamellae in the garnet pyroxenite sample 18ID-41.

803

Table S3. Major element compositions of garnet, clinopyroxene, and orthopyroxene
lamellae in the HP mafic granulite sample 18ID-46.

806

Table S4. Major element compositions of garnet, clinopyroxene, orthopyroxene lamellae

and plagioclase in the HP mafic granulite sample 18ID-50.

809

810 Table S5. Mineral compositions used in temperatures calculated by the garnet–
811 clinopyroxene Fe–Mg thermometry.

812

Table S6. Summary of published major elemental and Mg isotopic compositions for the

- garnet and clinopyroxene in both the cratonic and orogenic eclogites, and metamorphic
- temperatures calculated by the garnet–clinopyroxene Fe–Mg thermometry.

40 / 40

Table 1

Bulk composition of the garnet pyroxenite and HP mafic granulite used for phase equilibrium modelling.

-	Whole rock compositions (wt.%)												
Sample	SiO ₂	TiO ₂	Al_2O_3	TFe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	LOI	Total
18ID-39	42.12	2.51	12.03	5.89	13.55	0.24	7.81	12.65	1.6	0.03	0.04	-0.36	98.11
18ID-50	51.21	0.87	15.38	2.70	7.66	0.15	6.20	11.50	3.22	0.21	0.10	-0.30	98.90
Normalized molar proportion used for phase equilibrium modelling													
	Figures			H_2O	SiO_2	Al_2O_3	CaO	MgO	FeO	K_2O	Na ₂ O	TiO ₂	0*
	6a	=0	0.000	43.947	7.396	14.140	12.148	16.447	0.020	1.618	1.970	2.313	
18ID-39		х	=1	5.000	41.750	7.026	13.433	11.541	15.625	0.019	1.537	1.871	2.197
	6b			2.250	42.959	7.230	13.822	11.875	16.077	0.020	1.582	1.925	2.261
18ID-50	6c	х	=0	0.000	53.795	9.520	12.942	9.710	8.860	0.141	3.279	0.687	1.066
		x	=1	5.000	51.105	9.044	12.295	9.224	8.417	0.134	3.115	0.653	1.013
	6d			0.300	53.633	9.492	12.903	9.681	8.834	0.140	3.269	0.685	1.063

Table 2

Metamorphic temperatures of the garnet pyroxenites and the HP mafic granulites estimated by the garnet–clinopyroxene Fe–Mg thermometry.

Rock type	Sample number	Grt core and cpx core, at 10 kbar	Grt core and integrated cpx, at 10 kbar	Grt core and cpx core, at 12 kbar	Grt core and integrated cpx, at 12 kbar	
		<i>T</i> (°C, R20)	<i>T</i> (°C, R20)	<i>T</i> (°C, R20)	<i>T</i> (°C, R20)	
Garnet pyroxenites	18ID-39	776	818	789	832	
Gamet pyroxemites	18ID-41	754	800	767	813	
Mafia grapulitas	18ID-46	671	698	682	709	
Mafic granulites	18ID-50	725	767	737	780	

Notes: R20 denotes Ravna (2000).

Table 3

Magnesium isotopic compositions of clinopyroxenes and garnets in the garnet pyroxenites and the mafic granulites, and standards.

marie Branantes, and Standards.										
Samples No.	$\delta^{26} Mg_{Cpx}$ (‰)	2SD	$\delta^{25}Mg_{Cpx}$ (‰)	2SD	$\delta^{26}Mg_{Grt}$ (‰)	2SD	$\delta^{25}Mg_{Grt}(\text{\rmspace{-2.5}})$	2SD		
Garnet pyroxenites										
18ID-39	-0.04	0.04	-0.01	0.04	-0.65	0.07	-0.36	0.03		
18ID-41	-0.07	0.09	-0.05	0.05	-0.64	0.07	-0.34	0.05		
Mafic granulites										
18ID-46	0.03	0.05	0.01	0.06	-0.54	0.11	-0.31	0.07		
18ID-50	0.07	0.03	0.03	0.02	-0.55	0.09	-0.29	0.06		
Standards	δ^{26} Mg (‰)	2SD	δ^{25} Mg (‰)	2SD						
BCR-2	-0.17	0.05	-0.11	0.03						
BHVO-2	-0.19	0.05	-0.10	0.05						
BHVO-2R	-0.17	0.04	-0.10	0.01						

Notes: (1) 2SD means two times the standard deviation of the population of n repeat measurements during an analytical session. (2) R means repeat column chemistry and measurement.

Table 4

Metamorphic temperatures of the garnet pyroxenites and the mafic granulites calculated by using the clinopyroxene–garnet Mg isotope geothermometer.

U	0 1 0						
Samples number	$\Delta^{26} Mg_{cpx-grt}$ (‰)	$T(^{\circ}C)^{a}$	ΔT (°C)	$T(^{\circ}C)^{b}$	ΔT (°C)	$T(^{\circ}C)^{c}$	ΔT (°C)
Garnet pyroxenites							
18ID-39	0.62	994	60	1038	42	1045	43
18ID-41	0.57	1048	89	1093	72	1100	72
Mafic granulites							
18ID-46	0.57	1048	89	1094	71	1101	71
18ID-50	0.62	994	65	1038	47	1044	48
24	24	0.6					

Notes: (1) $\Delta^{26}Mg_{cpx-grt}$ (‰) = $\delta^{26}Mg_{cpx} - \delta^{26}Mg_{grt}$. (2) a denotes temperatures calculated by the Mg isotope geothermometer of Li et al. (2016), i.e., $\Delta^{26}Mg_{cpx-grt} = (0.99 \pm 0.06) \times 10^{6}/T^{2}$. b and c denote temperatures calculated by the Mg isotope geothermometer of Huang et al. (2013) at P = 10 kbar and 12 kbar, respectively, i.e., $\Delta^{26}Mg_{cpx-grt} = 1.06 \times 10^{6}/T^{2}$ (10 kbar) and $\Delta^{26}Mg_{cpx-grt} = 1.07 \times 10^{6}/T^{2}$ (12 kbar). T is temperature in Kelvin. (3) ΔT is uncertainty of the estimated temperature, and is calculated follow Li et al. (2016) with formula of $\Delta T = S\Delta^{26}Mg_{cpx-grt}/(2A \times 10^{6}/T^{3}) + T \times S_{A}/2A$, where T is also temperature in Kelvin. $S\Delta^{26}Mg_{cpx-grt}$ is the standard deviation of the $\Delta^{26}Mg_{cpx-grt}$ value, which is calculated by $(S\Delta^{26}Mg_{cpx-grt})^{2} = (S\delta^{26}Mg_{cpx})^{2} + (S\delta^{26}Mg_{grt})^{2}$, where $S\delta^{26}Mg_{cpx}$ and $S\delta^{26}Mg_{grt}$ are the standard deviation on $\delta^{26}Mg$ of clinopyroxene and garnet, respectively. A and S_A are the slope of the calibrated line and its standard deviation, respectively.

