AmMin7996 Revision2

1	Formation process of Al-rich calcium amphibole in quartz-bearing
2	eclogites
3	from the Sulu belt, China
4	
5	MASAKI ENAMI ^{1, *} , TOMOKI TAGUCHI ^{2, **} , YUI KOUKETSU ³ ,
6	KATSUYOSHI MICHIBAYASHI ³ , AND TADAO NISHIYAMA ⁴
7	
8	¹ Institute for Space–Earth Environmental Research, Nagoya University, Nagoya
9	464-8601, Japan
10	² Department of Geology and Mineralogy, Graduate School of Science, Kyoto
11	University, Kyoto 606-8502, Japan
12	³ Department of Earth and Planetary Sciences, Graduate School of Environmental
13	Studies, Nagoya University, Nagoya 464-8601, Japan
14	⁴ Graduate School of Science and Technology, Kumamoto University, Kumamoto
15	860-8555, Japan
16	
17	* E-mail: <u>enami@nagoya-u.jp</u>
18	** Present address: Department of Earth Sciences, School of Education, Waseda
19	University, Shinjuku-ku, Tokyo 169–8050, Japan
20	
21	ABSTRACT
22	Aluminum-rich and Si-poor calcium amphibole [~3.9 Al atom per formula unit (apfu)
23	and ~5.5 Si apfu for 23 O] occurs in the quartz-bearing eclogites from the Donghai area,
24	Sulu ultrahigh-pressure metamorphic belt, eastern China. Most of the aluminous

amphibole phases are retrograde products from the exhumation and hydration stage, and
are texturally divided into a mantle phase around a porphyroblastic garnet and
crack-filling (vein) phase of a garnet. Less aluminous amphibole occurs as symplectite
phase with plagioclase after omphacite. The formation process of the aluminous
amphibole in the quartz-bearing samples is discussed on the basis of the analytical data
by EPMA, FIB-TEM, and EBSD.

The mantle amphibole occurs between garnet and symplectite or quartz. A set of plagioclase and aegirine-diopside/argirine-hedenbergite thin monomineralic bands forms at the boundary between the mantle amphibole and matrix quartz. However, these monomineralic bands do not occur at the mantle amphibole-symplectite boundary. These textural differences indicate that the recrystallization of the aluminous amphibole around garnet was controlled by significant local reactions and the size of equilibrate domains were probably several tens of micrometers or less.

38 The mantle amphibole is composed of inner (garnet-side) and outer (matrix-side) 39 zones. The inner zone is compositionally homogeneous and its atomic Al/Si value is 40 approximately 0.63–0.66, and similar to that of garnet. Atomic Ca/Si value in the inner 41 zone is also almost uniform, and is generally identical to that of garnet. The outer zone 42 exhibits a monotonic decrease in the Al/Si and Ca/Si values outwards, and its 43 composition at the outermost margin is similar to that of the symplectitic amphibole. 44 The crack-filling amphibole has a composition similar to the inner zone of the mantle 45 amphibole. The CPO pattern of the crack-filling amphibole is different from that of the 46 adjacent mantle amphibole, showing that the crack-filling amphibole is cut by the mantle 47 amphibole. The textural relationship between the mantle and crack-filling amphibole 48 phases and their compositional characteristics imply that (1) the mantle type is a slightly

Enami and others

49 later stage product than the crack-filling type and (2) the boundary between the inner 50 and outer zones of the mantle aluminous amphibole probably corresponds to the initial 51 surface of the porphyroblastic garnet. The inner zone is considered to have grown 52 inward by simple substitution of garnet, using the tetrahedral and octahedral cations of 53 the garnet as the basic framework. On the other hand, most of the outer zone of the 54 mantle-type amphibole grew outwards in the matrix from the initial surface of the 55 garnet porphyroblast. The mantle amphibole shows a CPO similar to that of amphibole 56 in the adjacent symplectite domain, suggesting that these two types of amphibole 57 formed almost simultaneously, sharing crystallographic orientation with each other. 58 The formation of crack-filling aluminous amphibole was probably promoted by the 59 hydraulic microfracturing process at an early stage of exhumation and hydration. The 60 mantle and symplectitic amphibole phases formation was promoted by the subsequent 61 infiltration of metamorphic fluid. The aluminous amphibole in the SiO₂ phase-bearing 62 eclogites probably recrystallized with the formation of a localized SiO₂-undersaturated 63 reaction domain because of rapid exhumation and subsequent rapid cooling of the Sulu 64 UHP metamorphic belt. 65 Keywords: Aluminous amphibole, EPMA, FIB-TEM, EBSD, eclogite, Sulu UHP 66

67 metamorphic belt

68

INTRODUCTION

Detailed compilations of the chemical compositions of amphibole formed under
various environmental conditions show that most of the calcium amphibole phases are
more siliceous and/or less aluminous than the tschermakite–pargasite solid solution (e.g.,
Deer et al., 1997; Martin, 2007; Schumacher, 2007). An aluminous [~4.5 atom per

Enami and others

73	formula unit (apfu) for 23O) and Si-poor (~4.6 apfu) calcium amphibole, a sadanagaite,
74	was first reported from spinel-bearing skarns in the Ryoke low pressure (P)/temperature
75	(T) metamorphic belt, Japan, by Shimazaki et al. (1984). Subsequently, the aluminous
76	and Si-poor amphibole, which is hereafter defined as aluminous amphibole unless
77	otherwise stated, has been described from various types of lithologies. They have mostly
78	SiO ₂ -depleted whole-rock compositions such as metacarbonate (Mogessie et al., 1986),
79	the reaction zone between the crystalline limestone and K-metasomatized basalt in
80	granitic contact aureole (Sawaki, 1989), calc-silicate pods in layered gneisses of the
81	transitional amphibolite and granulite facies conditions (Shiraishi et al., 1994),
82	corundum- and spinel-bearing schist (Savel'eva and Korikovskii, 1998), and
83	K-metasomatized basalt around granite intrusions (Banno et al., 2004). Appleyard (1975)
84	also reported aluminous amphibole (~3.3 Al apfu and ~5.3 Si apfu) from spinel-bearing
85	metasomatic alkaline gneisses before the application for registration and its acceptance
86	as a new mineral, "sadanagaite". The extent of tschermak substitution in calcic
87	amphibole is sensitive to silica activity (e.g., Hoschek, 1995), and these limited
88	occurrences of aluminous calcium amphibole could indicate that the ${\rm SiO}_2\mbox{-}undersaturated$
89	system generally plays a definitive role in the formation of aluminous amphibole.
90	However, Si-poor and aluminous amphibole phases (\sim 3.5–3.7 Al apfu and \sim 5.8–5.5 Si
91	apfu) have been occasionally reported from retrograde eclogites in Alps (e.g., Mogessie
92	et al., 1986; Messiga et al., 1991; Poli, 1991) and Himalaya (e.g., Palin et al., 2014;
93	O'Brien, 2019). They sometimes occur as pseudomorphs after garnet also in coesite
94	eclogites from several localities of the Sulu ultrahigh-pressure (UHP) metamorphic belt,
95	China, such as Rongcheng, Yangkou, and Donghai areas (~3.5 Al apfu and ~5.5 Si apfu:
96	Enami et al., 1993; Yang, 2004; Liu et al., 2009; Yamasaki et al., 2018). Yang (2004)

Enami and others

97 discussed the mass transfer during the formation of retrograde amphibole grains using 98 the isocon method. However, it has not been well understood why these aluminous 99 amphibole phases recrystallized in the SiO₂-excess whole-rock compositions. 100 In this study, we focused on the fact that aluminous amphibole phases, which coexist 101 with coesite/quartz, characteristically occur in eclogites, and systematically analyzed the 102 aluminous amphibole phases in coesite eclogites from the Donghai area of the Sulu UHP 103 metamorphic belt as a case study. We will describe the mode of occurrence, 104 compositional characteristics, and relationships of crystallographic orientations of the 105 aluminous amphibole based on the analytical results of electron probe microanalyzer 106 (EPMA), focused ion beam system (FIB)-transmission electron microscope (TEM), and 107 electron back scattered diffraction (EBSD) method, and then discuss the cause of the 108 formation of aluminous amphibole in SiO₂-saturated rocks. 109 110 **GEOLOGICAL SETTING AND PETROGRAPHY** 111

Samples studied were collected from Qinglongshan (JDQ03) and Caihu (91CHXX 112 and 91CH08) areas in the Donghai region, which is located at the southwestern part of 113 the Sulu UHP metamorphic belt, eastern China (Fig. 1). Geological map of the 114 Qinglongshan area was reported by Yang (2004). Eclogites (e.g., Zhang et al., 1995; 115 Nagasaki and Enami, 1998), ultramafic and related rocks (e.g., Enami and Zang, 1988; 116 Zhang et al., 2004, 2008, 2011), and their host orthogneiss and paragneiss occur 117 extensively in the Donghai area (Fig. 1b). Hirajima et al. (1990) described a coesite 118 eclogite from Mengzhong, which was one of the first reports of authentic evidence for 119 UHP metamorphism in the Sulu UHP metamorphic belt (Fig. 1b). Many petrological 120 and mineralogical studies have been conducted also on core samples from the Chinese

Enami and others

121 Continental Scientific Drilling (CCSD) main drill hole (e.g., Liu et al., 2001; Zhang et122 al., 2006).

Common occurrences of coesite and other UHP index phases indicate that the eclogite,

123

124 ultramafic rock, and their host gneisses in the Donghai area were extensively 125 recrystallized under the coesite eclogite facies conditions (e.g., Zhang et al., 2005, 2009; 126 Liu and Liou, 2011). Peak metamorphic conditions for the Donghai area were estimated 127 at 2.2–4.0 GPa/620–880 °C (e.g., Zhang et al., 2000; Li et al., 2011; Yamasaki et al., 128 2018). Yamasaki et al. (2018) systematically studied amphibole-bearing samples from 129 Qinglongshan and Jianchang (Fig. 1b) and concluded that sodium-calcium amphibole 130 phases (barroisite-taramite) have been stable under UHP metamorphic stage. The 131 eclogites in the Donghai area are considered to have experienced near isothermal 132 decompression down to amphibolite or lower-granulite facies conditions during early 133 exhumation (e.g., Enami et al., 1993; Zhang et al., 1995). Mafic phases of the eclogite 134 facies stage were replaced to varying degrees by amphibole and other phases because of 135 hydration reactions undergone during this stage. 136 Petrographical characteristics of the sample JDQ03 were briefly described by Enami et 137 al. (1993). The present study was conducted on a newly prepared thin section, which 138 contains garnet, amphibole, epidote, phengite, and quartz (former coesite) as the main 139 coesite eclogite facies phases (Fig. 2a). Omphacite grains were completely recrystallized 140 to a symplectitic fine aggregate of sodic diopside, amphibole, and plagioclase. The 141 amphibole of the UHP metamorphic stage was confirmed to occur as inclusions in garnet 142 and matrix phase. Retrogressive amphibole was observed as a zone around garnet 143 (denoted as mantle amphibole hereafter, unless otherwise stated) and symplectitic 144 particles with sodic diopside and plagioclase after omphacite. The segment of mantle

Enami and others

amphibole is composed of a single phase and does not include any other phases. Rutile
and apatite are minor constituents, and K-feldspar occurs as an inclusion in garnet. Biotite
occurs as a retrograde phase replacing phengite.

- 148The samples 91CHXX and 91CH08 are petrographically similar to each other. They
- 149 are mainly composed of garnet, amphibole, zoisite/epidote, paragonite, and quartz
- 150 (former coesite), with accessory minerals rutile and apatite. Omphacite occurs as
- 151 inclusions in garnet of 91CH08, and matrix omphacite grains of 91CHXX and 91CH08
- 152 were completely replaced by symplectite of sodic diopside, plagioclase, and amphibole
- 153 (Fig. 2b-d). In 91CHXX, amphibole of the eclogite facies stage was confirmed as an
- 154 inclusion in garnet and in an isolated matrix phase. Retrograde amphibole occurs as
- 155 crack-filling (vein) phase of garnet other than the mantle and symplectite amphibole
- 156 phases. The mantle and crack-filling amphibole phases in 91CHXX are a single phase
- 157 similar to the mantle amphibole in JDQ03 and do not contain any other phases. On the
- 158 other hand, the mantle and crack-filling amphibole phases in 91CH08 contain
- 159 fined-grained garnet (less than 25 μ m in size).
- 160

161

ANALYTICAL PROCEDURES

- 162 The mineral compositions were analyzed using an EPMA with wavelength-dispersive
- 163 system (WDS, JXA-8900R; JEOL) at the Petrology Laboratory of Nagoya University.
- 164 The operating conditions were 15 kV accelerating voltage, 12 nA beam current, and a 2–3
- 165 µm beam spot diameter. Well-characterized natural and synthetic phases, including
- 166 synthetic F-phlogopite (F = 8.7 wt%) and natural Cl-rich hastingsite (Cl = 3.27 wt%,
- 167 Suwa et al. 1987), were employed as standards. Detection limits (2σ level) of F and Cl are
- 168 0.03 wt% and 0.01 wt%, respectively. The correction factors calculated by Kato (2005)

Enami and others

were employed for the matrix correction. Representative analyses of amphibole are
presented in Table 1. Minerals and endmember abbreviations are from Whitney and
Evans (2010), unless otherwise noted.

An ultra-thin section across a garnet-amphibole boundary was made using a FIB

173 system (Helios NanoLab G3 CX, ThermoFisher Scientific) at the Mineralogical 174 Laboratory of Kyoto University. A predefined area ($\sim 30 \ \mu m^2$) was coated with platinum 175 (Pt) and its surround was cut out to a depth of 15 µm using a gallium (Ga) ion beam. Next, 176 the resulting foil was picked up by an *in-situ* tungsten (W)-probe inside the FIB and 177 mounted on a copper (Cu) TEM grid. The extracted sample was thinned to 200 nm using 178 a Ga ion beam at 30 kV with beam currents ranging from 0.1-3 nA and at 5 kV with a 179 beam current of 16 pA for the final processing. The TEM foil was examined at Kyoto 180 University using a TEM (JEM-2100F, JEOL) equipped with an energy-dispersive X-ray 181 spectroscopy (EDS) system (JED-2300T, JEOL) operating at 200 kV. The TEM images 182 were recorded using a charge-coupled device (CCD) camera (Orius200D, Gatan, 183 Pleasanton, CA, USA). The zone axes of individual amphibole and garnet grains were 184 identified based on selected area electron diffraction (SAED) patterns, which were 185 analyzed using a Gatan Digital Micrograph (GMS 3) and the ReciPro software

186 (<u>http://pmsl.planet.sci.kobe-u.ac.jp/~seto/</u>).

172

187 Crystal–preferred orientations (CPO) of minerals were measured by indexing EBSD

188 patterns produced in a Hitachi S-3400 N scanning electron microscope equipped with

- an Oxford AZtec EBSD system at the Petrology Laboratory of Nagoya University.
- 190 Diffraction pattern acquisition was performed using an acceleration voltage of 20 kV
- and a working distance of 27 mm. Processing and indexation of Kikuchi bands and
- 192 post-acquisition processing of crystallographic orientation measurements were made

Enami and others

using HKL Channel 5 software (Oxford Instruments). Pole figures were prepared using
PFctf and ROTctf4 computer programs by D. Mainprice and Matlab MTEX toolbox by
K. Michibayashi.

- 196
- 197

MINERALOGY

198 Amphibole

199 Amphibole phases are texturally grouped into inclusion in garnet, the matrix phase,

symplectite phase, mantle phase, and vein-filling phase of garnet (Fig. 2 and Table 1).

201 Figure 3 compares chemical compositions among these texturally discerned amphibole

202 groups. The Fe^{3+}/Fe^{2+} value of amphiboles was estimated according to the method

proposed by Hawthorne et al. (2012) using ACES_9-8.xlsx provided by Locock (2014).

Hawthorne et al. (2012) proposed the $^{C}(Al + Fe^{3+} + Cr + 2Ti) - ^{A}(Na + K)$ diagram as a

205 criterion for classifying the calcium amphibole, where superscript C and A indicate

206 octahedral site and the largest 10 to 12-coordinated site, respectively. However, the

207 parameter $^{C}(Al + Fe^{3+} + Cr + 2Ti)$ also depends on the amount of the substitution

208 $^{B}Na^{C}(Al, Fe^{3+})Ca_{.1}(Mg, Fe^{2+})_{.1}$ in addition to the $^{C}(Al, Fe^{3+})^{T}Al(Mg, Fe^{2+})_{.1}Si_{.1}$

substitution, where superscripts B and T indicate 8-coordinated site and tetrahedral site,

210 respectively. This point should be considered when discussing the chemical

211 compositions of calcium and sodium-calcium amphibole groups in eclogites and their

- 212 hydrated lithologies. Therefore, the chemical composition of amphibole will be
- 213 described by adopting the Si $-^{B}$ Na diagram in addition to C (Al + Fe³⁺ + Cr + 2Ti) $-^{A}$ (Na

214 + K) diagram.

215

8

216 Eclogite facies amphibole: The inclusion and matrix amphibole phases show a relatively

- 217 wide compositional range from
- 218 sadanagaite/ferro-sadanagaite-pargasite/ferro-pargasite-taramite/ferro-taramite-
- 219 katophorite/ferro-katophorite as follows: 5.70-6.51 Si apfu [for 24 (OH, F, Cl, O)],

220 $1.32-1.85^{C}(Al + Fe^{3+} + Cr + 2Ti)$ apfu, 0.20–0.66 ^BNa apfu, 0.81–0.99 ^A(Na + K) apfu,

221 and 0.32–0.61
$$X_{Mg}$$
 [= Mg (Mg + Fe²⁺)] in JDQ03 (Fig. 3a and b); 5.52–6.15 Si apfu,

222 1.06-1.85 ^C(Al + Fe³⁺ + Cr + 2Ti) apfu, and 0.41-0.54 X_{Mg} in 91CHXX (Fig. 3c and d).

223 In 91CHXX, the inclusion amphibole has higher ${}^{B}Na$ (0.11–0.45 apfu) and lower ${}^{A}(Na +$

224 K) (0.83–0.96 apfu) than the matrix amphibole [0.02-0.08 ^BNa apfu and 0.90–1.00 ^A(Na

+K) apfu], unlike those in JDQ03. Inclusion and matrix amphibole in JDQ03 are rich in

226 Cl and reach 1.8 wt% and 2.4 wt%, respectively, and are poor in F, which is mostly

227 below the detection limit. The Cl and F contents of amphibole in 91CHXX and 91CH08

are also mostly below the detection limit, respectively.

229 Retrograde amphibole: Retrograde amphibole phases occur as the mantle phase around

230 garnet, crack-filling phase of garnet [Amp (G)], and symplectitic aggregates after

231 omphacite [Amp (S)]. The mantle amphibole around garnet is divided into those that

232 occur between the garnet-symplectitic omphacite boundary [Amp (O)] and garnet-quartz

boundary [Amp (Q)]. Amp (Q) is separated from the quartz matrix by a set of thin bands

234 (30–60 μm in width) of plagioclase [Amp (Q) side] and

aegirine-diopside/aegirine-hedenbergite (simply denoted as aegirine-diopside hereafter)

- 236 (quartz side) (Figs. 2d, 6a, and 9). Image processing of reaction zone between the
- 237 garnet–quartz for four grains using ImageJ (ver. 1.53j) gives volume proportions of
- about 56–63%, 21–28%, and 10–21% for Amp (Q), aegirine-diopside, and plagioclase,
- respectively. A thin amphibole-poor and plagioclase-rich band (20–30 µm in width)

Enami and others

240 intervenes between the Amp (O) and symplectite after omphacite (e.g., Figs. 4a and 5a).

241	No other phase was observed at the Amp (G)-garnet interface.
242	The mantle amphibole phases around garnet [Amp (O) and Amp (Q)] were divided
243	into the garnet-side (inner) and symplectite/quartz-side (outer) zones based on
244	compositional variations (Figs. 4b, 5b, and 6b, c). The inner and outer zones of the Amp
245	(O) are 20–40 μm and 15–20 μm in width, respectively, and those in the Amp (Q) are
246	relatively wider (60–80 μ m in width) and narrower (~10 μ m in width) than the Amp
247	(O), respectively. The inner garnet-side zones of the Amp (O) and Amp (Q) are
248	compositionally homogeneous and have atomic Al/Si values [0.63 (2)–0.66 (1)] similar
249	to garnet [0.65 (1)], where the standard deviation in parentheses (1 σ level) corresponds
250	to the last digit of the average value. Atomic Ca/Si values are also constant in the inner
251	zones, and are almost identical to those of the garnet in JDQ03 and 91CHXX. In the
252	outer zones of the Amp (O) and Amp (Q) , the Al/Si and Mg/Fe $^{2+}$ values decrease and
253	increase toward the margin, respectively. The Ca/Si value also decreases toward the
254	margin in most outer zones. Consequently, the outermost rim of the Amp (O) has
255	similar chemical composition to the Amp (S) in the symplectite (Figs. 4b, 5b and 6b).
256	The Amp (G) (60–200 μm in width) is compositionally homogeneous (Fig. 6d) and has
257	the Al/Si value [0.64 (2)–0.65 (1)] similar to the garnet and inner garnet-side zones of
258	the Amp (O) and Amp (Q).
259	The Amp (O) in JDQ03 has a wide compositional range and is richer in the edenite
260	component and poorer in the sodic amphibole components than the inclusion phase in
261	garnet and matrix phase: 5.62–6.27 Si apfu, 1.16–1.72 $^{\text{C}}$ (Al + Fe ³⁺ + Cr + 2Ti) apfu,
262	0.19–0.40 $^{\rm B}$ Na apfu, 0.84–1.00 $^{\rm A}$ (Na + K) apfu, and 0.45–0.64 $X_{\rm Mg}$ (Fig. 3a and b). The
263	Amp (O) in 91CHXX is poorer in the A (Na + K) component than the matrix phase and in

10

^BNa component than the inclusion phase in garnet: 5.55-6.17 Si apfu, 1.13-1.67 ^C(Al +

- **265** Fe³⁺ + Cr + 2Ti) apfu, 0.04–0.10 ^BNa apfu, 0.83–0.96 ^A(Na + K) apfu, and 0.47–0.60 X_{Mg}
- 266 (Fig. 3c and d). The Amp (O), Amp (Q), and Amp (G) in 91CH08 have a similar
- 267 compositional range, which is relatively limited compared to those in JDQ03 and
- **268** 91CHXX: 5.50–6.03 Si apfu, $1.64-2.00^{\circ}$ (Al + Fe³⁺ + Cr + 2Ti) apfu, $0.26-0.75^{\circ}$ Na apfu,
- **269** $0.88-1.00^{\text{A}}(\text{Na} + \text{K})$ apfu, and $0.27-0.41 \text{ X}_{\text{Mg}}$ (Fig. 3e and f).
- 270 The symplectitic Amp (S) is poorer in the tschermak component and higher in X_{Mg}
- value than the other amphibole phases (Fig. 3): 5.94–6.73 Si apfu, 0.77-1.41 ^C(Al + Fe³⁺
- **272** + Cr + 2Ti) apfu, 0.12–0.36 ^BNa apfu, 0.77–0.98 ^A(Na + K) apfu, and 0.60–0.72 X_{Mg} in
- **273** JDQ03; 6.03–6.29 Si apfu, 1.04–1.23 ^C(Al + Fe³⁺ + Cr + 2Ti) apfu, 0.05–0.10 ^BNa apfu,
- **274** 0.81–0.96 A (Na + K) apfu, and 0.53–0.58 X_{Mg} in 91CHXX; and 5.72–6.15 Si apfu,

275
$$1.62-1.83^{\circ}$$
 (Al + Fe₃₊ + Cr + 2Ti) apfu, $0.39-0.82^{\circ}$ Na apfu, $0.97-1.00^{\circ}$ (Na + K) apfu,

- **276** and $0.44-0.66 X_{Mg}$ in 91CH08.
- 277 The Cl and F contents of the retrograde amphibole are mostly below the detection
- 278 limit.

279 Garnet and other phases

- 280 Garnet porphyroblasts are homogeneous, and there is no distinct compositional
- 281 modification at the interface with the amphibole. They are a grossular-rich
- almandine-pyrope series and have end-member proportions, which are calculated
- assuming total iron as FeO, of Alm₄₈₋₅₀Prp₂₁₋₂₂Sps₁₋₂Grs₂₈₋₂₉ in JDQ03,
- 284 Alm₄₇₋₅₀Prp₁₇₋₁₉Sps₁Grs₃₂₋₃₄ in 91CHXX, and Alm₄₉₋₅₃Prp₁₂₋₁₄Sps₂₋₃Grs₃₃₋₃₆ in 91CH08.
- Small garnet grains included in the Amp (O) and Amp (G) of 91CH08 are distinctly
- 286 grossular-richer than the garnet porphyroblasts, and their end-member proportions

11

calculated on the basis of charge balance and stoichiometry assuming 8 total cation for 12

- 288 O (Droop, 1987) are $Alm_{19-32}Prp_{1-3}Sps_{5-8}Grs_{55-68}Adr_{2-8}$.
- 289 Clinopyroxene grains are grouped into omphacite included in garnet, sodic diopside in
- 290 the symplectite, and aegirine-diopside in the Amp (Q)–quartz boundary. Omphacite
- 291 grains are homogeneous and their compositions calculated based on charge balance and
- stoichiometry (4 total cation for 6 O) are $Jd_{60-64}Di/Hd_{29-33}Aeg_{6-8}$ and 0.60–0.72 X_{Mg} in
- 293 91CH08. Sodic diopside grains are Jd₉₋₂₈ Di/Hd ₆₇₋₇₈Aeg₅₋₁₅ and 0.80–0.90 X_{Mg}, Jd₆₋₇
- 294 $Di/Hd_{72-80}Aeg_{14-22}$ and 0.71–0.81 X_{Mg} , and $Jd_{5-24} Di/Hd_{44-51}Aeg_{25-50}$ and 0.60–0.82 X_{Mg}
- in JDQ03, 91CHXX, and 91CH08, respectively. Aegirine-diopside grains in 91CH08 are
- **296** Jd_{2-9} Di/Hd $_{35-54}$ Aeg $_{37-62}$ and 0.21–0.59 X_{Mg}.
- Anorthite contents of plagioclase grains in the symplectite are An_{8-16} , An_{15-18} , and
- 298 An₈₋₂₆ in JDQ03, 91CHXX, and 91CH08, respectively. Plagioclase grains around the
- 299 matrix zoisite in 91CH08 are slightly calcic (~ An₂₆). $X_{Fe} = Fe^{3+}/(Fe^{3+} + Al)$ values of
- 300 epidote in JDQ03 are 0.23–0.26. In 91CH08, X_{Fe} values of coexisting prograde zoisite
- and epidote are 0.04–0.05 and 0.10–016, respectively. Some zoisite and epidote grains

have SrO up to 1.2 and 2.7 wt%, respectively (Nagasaki and Enami, 1998).

303

304

FIB-TEM OBSERVATION

305 Using the FIB, we cut the selected portion of the interface between the Amp (O) and

306 garnet of 91CHXX. Figure 7 shows the high-angle annular dark-field scanning TEM

- 307 (HAADF-STEM) and bright field (BF)-TEM images of the investigated TEM foil. The
- 308 HAADF-STEM (Fig. 7a) and X-ray images show that the Amp (O) and garnet are
- 309 compositionally homogeneous and their SAED patterns are uniquely consistent with
- those of calcium amphibole and garnet (Fig. 7a and its insets). The BF-TEM image was

observed from the [001] direction of the Amp (O), and shows that some subgrain
boundaries were developed within the Amp (O) in contrast to the garnet (Fig. 7b). The
TEM observations show that the interface between the Amp (O) and garnet form sharp
boundaries and no other phases crystallized at the interfaces between these two phases.

316

EBSD ANALYSIS

317 Amphibole replacing garnet

318 The Amp (O), Amp (Q), and Amp (G) show characteristic EBSD images, respectively. 319 The Amp (O) is divided into several segments of $600-700 \,\mu\text{m}$ or more in length. Each 320 segment has a nearly identical CPO and is probably a single crystal (Figs. 8a and 9). The 321 Amp (Q) is mainly composed of several segments (200–350 μ m in length). Each segment 322 is an aggregate of subgrains (less than 50–100 µm in size) that have similar CPO (Fig. 9). 323 The Amp (G) is composed of an aggregate of anhedral and prismatic crystals (20–80 µm 324 in length), which mostly extend toward the center of the vein from the interface with the 325 host garnet on either side (Fig. 9 and 10a).

326 The Amp (O) and Amp (Q) surround a set of garnet and crack-filling Amp (G) (Figs. 9,

327 10a, and 11a). Figure 10 shows contrasts of CPO patterns and compositional zoning

328 between the Amp (Q) and Amp (G). In the analyzed part, the Amp (Q) is composed of

domains 5 and 6 (Fig. 10a). They are composed of several segments, which have a

330 similar crystallographic orientations, respectively (Fig. 10b). However, the domains 7 of

the Amp (G) exhibits weak girdles of orientations in (010) and [001], showing different

332 CPOs to the Amp (Q) (Fig. 10b). These data clearly suggest that the Amp (G) is cut by the

- 333 Amp (Q). A similar relationship was also observed between the Amp (G) and Amp (O)
- 334 (right part of Fig. 9 and left-lower part of Fig. 11a). As shown in a compositional zoning

13

335	through the boundary between the Amp (G) and Amp (Q) (Fig. 10c), part of the Amp (G)
336	was compositionally homogeneous and its Al/Si value [0.65 (1)] is similar to that of the
337	porphyroblastic garnet [0.65 (0)]. In contrast, in the Amp (Q) part, the Al/Si and Ca/Si
338	values decrease and Mg/Fe ^{$2+$} value increases toward the outermost margin and reach 0.51,
339	0.18, and 0.51, respectively.
340	
341	CPO relationship between Amp (O) and Amp (S)
342	The EBSD mappings of boundaries between the Amp (O) and Amp (S) domains,
343	which are in contact with each other, qualitatively show that these two-types of
344	amphibole share similar CPO patterns (Figs. 8a, 9 and 11a). Figure 11b and c
345	quantitatively compare the CPO patterns of the Amp (O) and Amp (S), which constitute
346	bordering domains. Each set of neighboring Amp (O) and Amp (S) shows a similar CPO
347	pattern; thus, the two Amp (O) domains, which are located on either side of the Amp (S)
348	domain, also share a similar CPO pattern: e.g., sets of domains 8, 9, and 10 (Fig. 11b) and
349	domains 11, 12, and 13 (Fig. 11c). The Amp (O) segment and Amp (S) grains are
350	sometimes continuous at their interface, thus forming a single crystal (cf. the parts
351	enclosed by the circles in Figs. 8a and 11a).
352	
353	CPO relationship between Amp (S) and symplectitic sodic diopside
354	The CPO data show that the symplectitic sodic diopside grains form a domain structure
355	with the same crystal orientation (Fig. 8b). The ranges of the sodic diopside domain are
356	almost identical to those of the Amp (S) domain, and these two phases share the same

orientations of (100), (010), and [001] for each domain (Fig. 8c and d).

358

14

359 FORMATION CONDITIONS OF AMPHIBOLE

- 360 Symplectite amphibole [Amp (S)] and mantle amphibole around the garnet [Amp (O)
- and Amp (Q)] closely coexist with plagioclase, suggesting that the assemblage of these
- two phases formed during the exhumation and hydration stage of the eclogites. The
- 363 Amp (O) and Amp (Q) are systematically zoned and have minimum Al/Si and Ca/Si
- 364 values and maximum Mg/Fe²⁺ value at the interface with plagioclase (Figs. 4b, 5b, and
- 365 6b, c). Their interface chemical compositions might have represented the final
- **366** recrystallization of these two phases.
- 367 The following net-transfer reactions were proposed for a calcic
- 368 amphibole-plagioclase geothermometer (Blundy and Holland, 1990; Holland and
- 369 Blundy, 1994):

371 =
$$Ca_2(Mg, Fe^{2+})_5Si_8O_{22}(OH)_2 + NaAlSi_3O_8$$
 (R1)

373 =
$$Ca_2(Mg, Fe^{2+})_4Al(AlSi_7)O_{22}(OH)_2 + NaAlSi_3O_8$$
 (R2)

376 However, the amphiboles discussed in this paper are significantly rich in the $^{A}(Na + K)$

377 component, which is usually >0.8–0.9 apfu (Fig. 3), and probably contain little amount

378 of the edenite-free end-member components such as tremolite and hornblende.

379 Therefore, the tremolite- or hornblende-bearing geothermometers [reactions R1 and R2]

- 380 would be inappropriate for estimating the temperature of the aluminous
- amphibole-bearing equilibrium. Consequently, a combination of the reaction R3 for the
- 382 geothermometer [thermometer B of Holland and Blundy (1994)] and the Al/Si

383	partitioning between amphibole and plagioclase for the geobarometer (Molina et al.,
384	2015) was employed for the P-T estimations (Table 2). Compositions of the outermost
385	parts of the Amp (O) and Amp (Q), which contact plagioclase (cf. Figs. 4a-6a), were
386	used for the P/T calculations. On the other hand, average compositions were employed
387	for plagioclase and Amp (S). The pairs of Amp (O)/Amp (Q)/Amp (S) and plagioclase
388	showed similar equilibrium conditions with each other and those of samples are as
389	follows: 0.87 (6)–0.97 (4) GPa/674 (16)–675 (4) °C for JDQ03; 0.83 (2)–0.92 (2)
390	GPa/686 (10)-701 (6) °C for 91CHXX; and 1.28 (18)-1.33 (20) GPa/694 (14)-729
391	(22) °C for 91CH08, where the number in parentheses indicates the standard deviation
392	$(1\sigma \text{ level})$ (Table 2).
393	The Donghai eclogites are considered to have experienced nearly isothermal
394	decompression at the beginning of exhumation, and their P/T conditions at peak
395	metamorphic and/or early exhumation stages were estimated at around 3.2-3.6
396	GPa/680-840 °C (Zhang et al., 1995, 2005; Frezzotti et al., 2007; Li et al., 2011; Curetti
397	et al., 2018; Li et al., 2018). The estimated formation temperatures of the aluminous
398	amphibole-plagioclase pairs are within the range of those reported during UHP
399	metamorphism, and are consistent with the exhumation P-T path of nearly isothermal
400	decompression discussed by many authors (Fig. 12).
401	
402	DISCUSSION
403	Stability of aluminous amphibole
404	Sadanagaite and related aluminous calcium amphibole generally occur in
405	SiO ₂ -undesaturated lithologies as summarized in Mogessie et al. (1986), Hawthorne and

406 Harlow (2008), and the current study. These limited modes of occurrences might indicate

16

407	that the Si-undersaturated system strongly promotes the formation of aluminous
408	amphibole. However, aluminous amphibole phases occasionally occur in retrograde
409	coesite and/or quartz-bearing eclogites as described in this study and reported in
410	additional work, for example, Mogessie et al. (1986). Total Al, ^C Al, and Al/Si values of
411	calcium amphibole coexisting with plagioclase systematically increase with increasing
412	pressure, at least up to 1.2–1.5 GPa (Molina et al., 2015); thus, relatively high-pressure
413	conditions might contribute to the stabilization of the aluminous calcium amphibole in
414	plagioclase-bearing assemblage.
415	Stable amphibole phases of the eclogite facies stage are generally sodium-calcium
416	amphibole of the barroisite-taramite/katophorite series (e.g., Massonne, 2012; Yamasaki
417	et al., 2018). In contrast, aluminous amphibole phases were generally reported as
418	retrograde products (e.g., Palin et al., 2014; Chatterjee and Jagoutz, 2015; O'Brien, 2019),
419	although those with \sim 5.8 Si apfu and \sim 3.3 Al apfu were also reported as inclusions in the
420	garnet of eclogites from the Western Gneiss Region (e.g., Medaris et al., 2018). These
421	data likely suggest that relatively high-pressure environments might be a necessary
422	condition, but are not sufficient for the formation of aluminous amphibole in eclogites
423	and their retrograde lithologies.
424	The aluminous amphibole in the Donghai eclogites exhibits several different textures
425	and compositional zonings, which are key to understanding the origin of aluminous
426	amphibole in the coesite/quartz-bearing eclogites. The mantle amphibole around garnet
427	[Amp (O) and Amp (Q)] and crack-filling amphibole [Amp (G)] exhibit different
428	interface textures that are closely related to the phase they contacted. A set of thin bands
429	of plagioclase and aegirine-diopside develops between the Amp (Q) and quartz (Fig. 6a).
430	However, no other phase was observed at the boundaries between the Amp (O) and

17

431	symplectite and between the Amp (G) and garnet (Figs. 4a–6a). The Amp (O) and Amp
432	(Q) consist of the inner garnet-side and outer matrix-side zones, which are
433	compositionally homogeneous and monotonically zoned, respectively (Figs. 4b, 5b, and
434	6b, c). The Amp (G), on the other hand, is homogeneous and has a chemical
435	composition similar to that of the inner zone of the Amp (O) and Amp (Q). The
436	coexistence of these three types of amphibole was observed to have occurred at the
437	varying parts of a garnet grain (Figs. 6a and 9). These textural and compositional
438	differences suggest that the recrystallizations of aluminous amphibole replacing garnet
439	was controlled by individual reactions that proceeded locally in each domain.
440	
441	Formation process of amphibole in the Donghai eclogite
442	Figure 13 shows a possible formation model of the aluminous amphibole in the
443	Donghai eclogites. Although a minor calcium amphibole occurs as inclusions in garnet,
444	and the matrix phase in the eclogite facies and early exhumation stages, the initial major

445 mafic phases were garnet and omphacite (Fig. 13a), which have eventually been

446 replaced by calcium amphibole through subsequent hydration reactions.

447

Formations of crack-filling and mantle amphiboles: The compositional similarity of
the inner zones of the Amp (O) and Amp (Q) to the Amp (G) indicates that these zones
are considered to have formed as pseudomorphs after garnet, similarly to the Amp (G).
However, the following characteristics could be observed between the Amp (O)/Amp
(Q) and Amp (G): (1) The CPO pattern is discontinuous at the boundaries between them
(Figs. 10b and 11b, c), and (2) the Amp (G) is texturally cut or partly surrounded by the
Amp (O) or Amp (Q) (Figs. 9, 10a, and 11a). These textural characteristics likely

18

455 suggest that the Amp (G) first replaced garnet along cracks (Fig. 13b), and then the 456 Amp (O)/Amp (Q) formed slightly later. The Amp (G) was probably formed in 457 connection with the hydraulic fracturing process in the early stages of hydration, while 458 the Amp (O) and Amp (Q) were subsequently formed by hydration reactions caused by 459 subsequent grain-boundary processes. 460 Two models of 1 and 2 are assumed for the formation process of the Amp (O) and 461 Amp (Q). Model 1 interprets that: (1) the end of the Amp (G) stretch direction [point X: 462 boundary between the Amp (G) and Amp (Q) of Fig. 10a, c] was an initial surface of a 463 garnet porphyroblast before formation of the Amp (O) and Amp (Q), and (2) the Amp 464 (O) and Amp (Q) have been initially nucleated at the interface between garnet and 465 omphacite/quartz, and then grew to replace the garnet (inward) and symplectite/quartz 466 (outward), respectively (Fig. 13d1). This model suggests that (1) the boundary between 467 the inner and outer zones of Amp(O) and Amp(Q) is almost identical to the initial 468 surface of the garnet porphyroblast (white broken line in Fig. 13d1) and thus, the inner 469 zone is a pseudomorph after garnet and the outer zone occupies the original matrix part. 470 In contrast, model 2, assumes that the Amp (O) and Amp (Q) are pseudomorphs after 471 garnet in their entirety (Fig. 13c), and that their outer zones represent parts whose 472 chemical composition has been modified by later re-equilibration (Fig. 13d2). In this 473 model, the textural relationships between the Amp (G) and Amp (O)/Amp (Q) shown in 474 Figs. 9, 10a, and 11a are explained as a partial resetting of the chemical composition 475 and COP of Amp(G) during the formation of the outer zone. However, this 476 interpretation does not well explain why the chemical composition and CPO of the Amp 477 (G) were not modified at the stage when the Amp(O)/Amp(Q) were initially formed 478 (Fig. 13c). In addition to this issue, the singular value decomposition (SVD) analysis of

19

the reaction zone at the Amp (Q)–Qz boundary indicates that the volume of Amp (Q)
formed by the assumed hydration reaction was likely to have been larger than that of the
consumed garnet, as described later. Therefore, the model 1 seems to better explain the
formation process of the inner and outer zones of mantle amphibole.

483

484 Formations of Amp (S) and Amp (O): The amphibole phases in symplectite [Amp 485 (S)] form domains of 300–700 μ m in size, in which they share similar crystallographic 486 orientation (Figs. 8a, c and 11). These domains contain sodic diopside particles with 487 similar crystallographic orientation in each domain (Fig. 8b, d). Furthermore, the Amp 488 (S) and sodic diopside characteristically show almost the same CPO pattern in each domain (Fig. 8c, d). The sodic diopside + plagioclase symplectite was considered to 489 490 have formed by the replacement of omphacite at early exhumation stage, and the Amp 491 (S) was subsequently grown under the strong control by the crystal orientation of the 492 symplectitic sodic diopside with progressive infiltration of metamorphic fluid (Fig. 493 13c). 494 A set of the Amp (O) and Amp (S) in contact shares a similar CPO pattern, and thus, 495 several Amp (O) segments occurring around a symplectite domain all share a common

496 CPO (e.g., set of domains 8 and 9 and set of domains 11 and 12 in Fig. 11). These CPO

497 data indicate that the Amp (S) in symplectite domain served to have linked the

498 crystallographic orientations of the several Amp (O) domains around the symplectite.

499 The recrystallizations of the Amp (O) and Amp (S) likely began almost simultaneously,

- and the Amp (O) grew in synchronization with the crystallographic orientation of the
- 501 Amp (S) (Fig. 13c or d1). The Amp (Q) may also have formed at a similar stage as the
- 502 Amp(O) and Amp(S).

20

503	The textural and CPO relationships suggest that the (1) sodic diopside + plagioclase
504	symplectite had probably formed before the Amp (S), (2) the Amp (G) formed slightly
505	earlier than the Amp (O) and Amp (Q), and (3) the Amp (O) and Amp (Q) formed at
506	about the same stage as Amp (S). However, it is unclear whether the formation of
507	symplectitic sodic diopside preceded that of the Amp (G), or if these phenomena were
508	nearly simultaneous (Fig 13b). The Amp (G) was probably formed in connection with
509	hydraulic micro-fracturing process in the early stages of hydration, while Amp (O),
510	Amp (Q), and possibly Amp (S) were subsequently formed by hydration reactions
511	caused by grain-boundary processes (e.g., Putnis and Austrheim, 2010).
512	
513	Formation of aluminous calcium amphibole in SiO ₂ -saturated rocks
514	The inner zones of the Amp (O) and Amp (Q), which are pseudomorphs after garnet,
515	are compositionally homogeneous and their Al/Si values are significantly similar to
516	those of garnet (Fig. 4b, 5b, and 6b, c). The Al/Si value of the Amp (G) is also similar
517	to that of garnet (Fig. 6d). Additionally, the FIB-TEM and EMPA observations of the
518	amphibole-garnet interface in micro- and nano-scales demonstrated that Amp (O), Amp
519	(Q), and Amp (G) are single phase and contain no other phases. These data may indicate
520	that the inner zone of the Amp (O), Amp (Q), and Amp (G) would grow by simple
521	substitution of garnet, using tetrahedral and octahedral cations (Si and Al) of the garnet
522	as the basic framework.
523	Diffusion coefficients of major elements in amphibole are not well understood.
524	However, in the case of pyroxene, which has similar crystal structure of inosilicates to

- amphibole, diffusion coefficients of Ca, Al, and Si are one to three orders of magnitude
- 526 lower than those of Mg and Fe^{2+} (Cherniak and Dimanov, 2010). Considering these

21

527 diffusion coefficients of pyroxene as a reference, the inner zones of the Amp (O) and Amp (Q) might have been formed by the preferential diffusion of Mg, Fe^{2+} , and alkali 528 529 elements between garnet and the matrix. Whereas, Si and Al, which have smaller 530 diffusion coefficients, likely did not migrate much, and contributed to the growth of 531 amphibole with little change in their ratio from the garnet value. This process, coupled 532 with hydration and a significantly local reaction, may have allowed the formation of 533 aluminous calcium amphibole in the quartz-bearing eclogites from the Donghai area, 534 Sulu UHP metamorphic belt. 535 In JDQ03 and 91CHXX, the Ca/Si values of the aluminous amphibole are also 536 similar to those of garnet (Figs. 4b and 5b). Calcium, in addition to Si and Al, did not 537 diffuse much during the inner zone growth in these samples. The Ca/Si value of the 538 aluminous amphibole in 91CH08 are lower than those of garnet (Fig. 6a, b, c), unlike 539 JDO03 and 91CHXX. The garnet grains in 91CH08 are richer in the Grs component 540 [34.9 (1.0) mol.%] than those in JDQ03 [27.5 (1.8) mol%] and 91CHXX [33.0 (0.5) 541 mol%]. Therefore, small Grs-rich garnet grains were nucleated during the hydration stage 542 of garnet, which would have decreased the Ca/Si value of the aluminous amphibole. 543 544 Numerical examination of mantle amphibole formation: Textural characteristics 545 suggest that the Amp (Q) with aggirine-diopside and plagioclase at the boundary between 546 garnet and quartz were formed by infiltration of metamorphic fluid dissolving sodium, 547 potassium, and some other elements in the following qualitative reaction: 548 $Grt + Qz + Na_2O + O_2 + H_2O = Amp(Q) + Aeg-di + Pl$ (R4) 549 The possibility of deriving the reaction R4 was investigated using the SVD method 550 (Fisher, 1989; Nishiyama et al., 2017) based on the assumption of conservation of SiO₂,

22

551 Al_2O_3 , and CaO and considering discussions in the previous section. Other components 552 such as FeO, MgO, MnO, NaO_{1/2}, KO_{1/2}, and H₂O are treated as mobile components. The 553 cation proportions and molar volumes of the minerals in 91CH08 employed for the SVD 554 calculation are listed in Table 3. The volume of the outer zone of Amp (Q) is distinctly 555 smaller than that of the inner zone (cf. Fig. 6c), and thus, the average composition of the 556 inner zone was adopted as the composition of the product Amp (Q) for the calculation. 557 The sample does not contain any Fe-oxide phase, and garnet and quartz assumed as 558 reactants do not contain Fe_2O_3 as a major component. Therefore, in the calculations, 559 Fe₂O₃ contents in the products of Amp (Q) and aegirine-diopside were assumed to not 560 have been supplied from outside the system, instead, primarily by oxidation of FeO in 561 the reactant garnet during the reaction progress. 562 We constructed a matrix of mineral compositions given in the atomic proportions per 563 formula unit in the system SiO₂-Al₂O₃-CaO as shown by superscript a in Table 3. The 564 SVD of the matrix gives the following two reactions: 565 -0.704 Grt - 0.477 Qz + 0.416 Amp + 0.299 Aeg-di - 0.119 Pl = 0(R5) 566 and 567 -0.342 Grt + 0.771 Qz + 0.314 Amp - 0.173 Aeg-di - 0.401 Pl = 0.(R6) 568 Both the R5 and R6 do not represent the proper reaction relation that explains the texture 569 of Amp (Q) and related phases. However, the linear combination of these two reactions, 570 (R5) - a(R6), can represent the proper reaction relation in some range of the value of 571 parameter $a = \xi_6/\xi_5$, where ξ_5 and ξ_6 represent the reaction extents of R5 and R6, 572 respectively. We get 573 (-0.704 + 0.342a) Grt + (-0.477 - 0.771a) Qz + (0.416 - 0.314a) Amp 574 + (0.299 + 0.173a) Aeg-di + (-0.119 + 0.401a) Pl = 0 $(\mathbf{R7})$

575 The stoichiometric coefficients of minerals give proper signs, positive for products (Amp, Aeg-di, and Pl) and negative for reactants (Grt and Qz), when $0.30 \le a \le 1.33$. 576 577 Figure 14 shows the volume changes of minerals based on the calculated 578 stoichiometric coefficients of minerals as functions of the parameter a and their molar 579 volumes listed in Table 3. Although the volume of the product amphibole and the reactant 580 garnet both decrease as the parameter a increases, the decreasing ratio is greater for the 581 amphibole (Fig. 14a). Thus, when the parameter a is less than 0.68, the volume of the 582 product amphibole exceeds that of the consumed garnet, and this relationship is reversed 583 at a > 0.68. Figure 14b shows the relationship between parameter a and the volume 584 proportions of Amp(Q), aggirine-di, and plagioclase in the reaction zone calculated by 585 SVD method. This figure also indicates the range of parameter a that can simulate the 586 volume proportions of these minerals for the four grains in 91CH08 estimated by image 587 processing. As the parameter a increases, the Amp (Q) volume proportion in the reaction 588 zone systematically decreases, and those of arginine-diopside and plagioclase increase. 589 Thus, the abundance ratios of amphibole, aegirine-diopside, and plagioclase become 590 similar to each other as the parameter *a* increases, and they become almost equal when the 591 parameter a is about 1.0. The estimated volume range of Amp (Q) for four grains 592 (56–63% and 61% in average) gives a relatively narrow range of parameter a 593 (0.58-0.69). On the other hand, the ranges of parameter *a* assumed from the volumes of 594 aegirine-diopside (21-28% and 25% in average) and plagioclase (10-21% and 15% in 595 average) are 0.34-0.70 and 0.55-0.79, respectively, which are wider than those 596 estimated by Amp (Q). This is due to that the rate of change of volume of 597 aegirine-diopside and plagioclase for parameter a is significantly smaller than that of 598 Amp (Q). Therefore, it would be appropriate to discuss the range of parameter a from

24

599	the volume estimate of Amp (Q), rather than referring to that of aegirine-diopside and
600	plagioclase (Fig. 14b). The reaction zone seems to be best simulated by assuming that
601	the parameter a is around 0.6. The range of parameter a estimated from the average
602	volumes of Amp (Q), aegirine-diopside, and plagioclase is 0.53-0.65, which is almost
603	identical to the value estimated from Amp (Q). These data suggest that the reaction zone
604	probably formed under conditions where the volume of product Amp (Q) was larger
605	than that of consumed garnet. Consequently, the SVD analysis also indicates that the
606	model 1 shown in Fig. 13 is appropriate to explain the formation process of aluminous
607	amphibole.
608	Stoichiometric coefficients of mobile components are also calculated by combining the
609	stoichiometric coefficients of minerals and the mineral compositions (Fig. 14c). The
610	conspicuous feature is that all mobile components are added from the exterior to form the
611	Amp (Q) – (Aeg-di) - Pl reaction zone. The results by SVD analysis suggest that under
612	certain conditions with infiltration of the metamorphic fluid, the R4 reaction can
613	proceed to form the mineral combination observed in 91CH08.
614	
615	IMPLICATIONS
616	The formation process of retrograde amphiboles replacing garnet in the Donghai
617	eclogites strongly depends on the mineral phases in contact with the garnet, and is an
618	extremely local phenomenon. The range of chemical equilibrium was narrow and
619	probably less than several tens of micrometers in size. Hacker et al. (2009) compiled
620	chronological data of their new analyses and those published in literature, and pointed out
621	the rapid exhumation of Sulu UHP terrane to a crustal level (0.5–2.5 cm/yr) and a
622	relatively short duration of subsequent amphibolite facies metamorphism with rapid

25

623	cooling (50–200 °C/Myr). Liu and Liou (2011) estimated the exhumation rate of the
624	Dabie-Sulu UHP metamorphic belt as $0.5 - 1.13$ cm/yr based on the U-Pb SHRIMP ages
625	of zircon grains. Taguchi et al. (2018) reported the amorphous SiO ₂ phase containing
626	nanocrystalline quartz in pseudomorphs after coesite from the Yangzhuang area near the
627	Donghai area, and suggested a rapid cooling during amphibolite facies and subsequent
628	stages. These rapid cooling processes might have maintained a very local and limited
629	element transfer and advanced the crystallization of aluminous amphiboles in the
630	Donghai eclogites.
631	The rapid exhumation and cooling of HP-UHP eclogites were also reported from
632	other continent-continent collision zones, such as the Alps metamorphic region (1.6–3.4
633	and >3.6 cm/yr and 85–100 °C/Myr: e.g.,Gebauer et al., 1997; Rubatto and Hermann,
634	2001; Glodny et al., 2005) and Kokchetav Massif, Kazakhstan (several
635	millimeters-several centimeters/yr: e.g., Katayama et al., 2001; Hacker et al., 2003;
636	Dobretsov and Shatsky, 2004). Aluminous amphibole pseudomorphs after garnet, which
637	show texture similar to the case of the Donghai eclogite, were reported from retrograde
638	eclogites in Central Oetztal, the eastern Alps (Mogessie et al., 1986) and Tso Morari
639	Massif, Himalaya (e.g., Palin et al., 2014; Chatterjee and Jagoutz, 2015). The aluminous
640	calcium amphiboles might have widely formed during rapid exhumation as a retrograde
641	product even in SiO ₂ -saturated eclogites, especially as a pseudomorph after garnet.
642	
643	ACKNOWLEDGEMENTS AND FUNDING
644	We would like to thank A. Miyake and Y. Igami for their help with the FIB-TEM
645	analysis, D. Mainprice for providing the original software to analyze the CPO data. The
646	constructive comments by D. Waters, an anonymous reviewer, and handling editor D.

26

- 647 Dolejš were helpful in improving the manuscript. The study samples from Caihu were
- 648 collected as a part of a co-operative project among Kyoto University, Nagoya
- 649 University, Kanazawa University, and the Institute of Geology, Academia Sinica in
- 650 1991. This research was partially supported by JSPS KAKENHI Grant Number,
- 651 JP17K05705 to M.E.

652

653	REFERENCES CITED
654	
655	Appleyard, E.C. (1975) Silica-poor hastingsitic amphiboles from metasomatic alkaline
656	gneisses at Wolfe, eastern Ontario. Canadian Mineralogist, 13, 342-351.
657	Banno, Y., Miyawaki, R., Matsubara, S., Makino, K., Bunno, M., Yamada, S., and
658	Kamiya, T. (2004) Magnesiosadanagaite, a new member of the amphibole group
659	from Kasuga-mura, Gifu Prefecture, central Japan. European Journal of
660	Mineralogy, 16, 177-183.
661	Blundy, J.D., and Holland, T.J.B. (1990) Calcic amphibole equilibria and a new
662	amphibole plagioclase geothermometer. Contributions to Mineralogy and
663	Petrology, 104, 208-224.
664	Chatterjee, N., and Jagoutz, O. (2015) Exhumation of the UHP Tso Morari eclogite as a
665	diapir rising through the mantle wedge. Contributions to Mineralogy and
666	Petrology, 169, 3.
667	Cherniak, D.J., and Dimanov, A. (2010) Diffusion in pyroxene, mica and amphibole.
668	Reviews in Mineralogy and Geochemistry, 72, 641-690.
669	Curetti, N., Bonadiman, C., Compagnoni, R., Nodari, L., Corazzari, I., and Pavese, A.
670	(2018) Phengite megacryst quasi-exsolving phlogopite, from Sulu ultra-high
671	pressure metamorphic terrane, Qinglongshan, Donghai County (eastern China):
672	New data for P-T-X conditions during exhumation. Lithos, 314, 156-164.
673	Deer, W.A., Howie, R.A., and Zussman, J. (1997) Double-Chain Silicates. 764 p. The
674	Geological Society, London.
675	Dobretsov, N.L., and Shatsky, V.S. (2004) Exhumation of high-pressure rocks of the
676	Kokchetav Massif; facts and models. Lithos, 78, 307-318.

28

677	Droop, G.T.R. (1987) A general equation for estimating Fe^{3+} concentrations in
678	ferromagnesian silicates and oxides from microprobe analyses, using
679	stoichiometric criteria. Mineralogical Magazine, 51, 431-435.
680	Enami, M., and Zang, Q. (1988) Magnesian staurolite in garnet-corundum rocks and
681	eclogite from the Donghai district, Jiangsu province, east China. American
682	Mineralogist, 73, 48–56.
683	Enami, M., Zang, Q., and Yin, Y. (1993) High-pressure eclogites in northern
684	Jiangsu-southern Shandong province, eastern China. Journal of Metamorphic
685	Geology, 11, 589-603.
686	Ferrando, S., Frezzotti, M.L., Dallai, L., and Compagnoni, R. (2005) Fluid-rock
687	interaction in UHP phengite-kyanite-epidote eclogite from the Sulu Orogen,
688	eastern China. International Geology Review, 47, 750-774.
689	Fisher, G.W. (1989) Matrix analysis of metamorphic mineral assemblages and
690	reactions. Contributions to Mineralogy and Petrology, 102, 69-77.
691	Frezzotti, M.L., Ferrando, S., Dallai, L., and Compagnoni, R. (2007) Intermediate
692	alkali-alumino-silicate aqueous solutions released by deeply subducted
693	continental crust; fluid evolution in UHP OH-rich topaz-kyanite quartzites from
694	Donghai (Sulu, China). Journal of Petrology, 48, 1219-1241.
695	Gebauer, D., Schertl, HP., Brix, M., and Schreyer, W. (1997) 35 Ma old
696	ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the
697	Dora Maira Massif, Western Alps. Lithos, 41, 5-24.
698	Glodny, J., Ring, U., Kuhn, A., Gleissner, P., and Franz, G. (2005) Crystallization and
699	very rapid exhumation of the youngest Alpine eclogites (Tauern Window,
700	Eastern Alps) from Rb/Sr mineral assemblage analysis. Contributions to

29

701 Mineralogy and Petrology, 14), 699-712.	
----------------------------------	-------------	--

- 702 Hacker, B.R., Liou, J.G., Calvert, A., Zhang, R.Y., and Ernst, W.G. (2003) Ultrarapid
- exhumation of ultrahigh-pressure diamond-bearing metasedimentary rocks of
- the Kokchetav Massif, Kazakhstan? Lithos, 70, 61-75.
- Hacker, B.R., Wallis, S.R., McWilliams, M.O., and Gans, P.B. (2009) ⁴⁰Ar/³⁹Ar
- 706 Constraints on the tectonic history and architecture of the ultrahigh-pressure
- Sulu orogen. Journal of Metamorphic Geology, 27, 827-844.
- 708 Hawthorne, F.C., and Harlow, G.E. (2008) The crystal chemistry of Al-rich amphiboles:
- Sadanagaite and potassic-ferrisadanagaite. Canadian Mineralogist, 46, 151-162.
- 710 Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher,
- 711 J.C., and Welch, M.D. (2012) Nomenclature of the amphibole supergroup.
- 712 American Mineralogist, 97, 2031-2048.
- 713 Hirajima, T., Ishiwatari, A., Cong, B., Zhang, R., Banno, S., and Nozaka, T. (1990)
- Coesite from Mengzhong eclogite at Donghai country, northeastern Jiangsu
 province, China. Mineralogical Magazine, 54, 579-583.
- 716Holland, T.J.B. (1989) Dependence of entropy on volume for silicate and oxide
- 717 minerals; a review and predictive model. American Mineralogist, 74, 5-13.
- 718 Holland, T.J.B., and Blundy, J. (1994) Non-ideal interactions in calcic amphiboles and
- 719 their bearing on amphibole-plagioclase thermometry. Contributions to
- 720 Mineralogy and Petrology, 116, 433-447.
- 721 Holland, T.J.B., and Powell, R. (1998) An internally consistent thermodynamic data set
- for phases of petrological interest. Journal of Metamorphic Geology, 16,
- **723** 309-343.
- Hoschek, G. (1995) Stability relations and Al content of tremolite and talc in CMASH

725	assemblages with kyanite + zoisite + quartz + H ₂ O. European Journal of
726	Mineralogy, 7, 353-362.
727	Katayama, I., Maruyama, S., Parkinson, C.D., Terada, K., and Sano, Y. (2001) Ion
728	micro-probe U-Pb zircon geochronology of peak and retrograde stages of
729	ultrahigh-pressure metamorphic rocks from the Kokchetav Massif, northern
730	Kazakhstan. Earth and Planetary Science Letters, 188, 185-198.
731	Kato, T. (2005) New accurate Bence-Albee α -factors for oxides and silicates calculated
732	from the PAP correction procedure. Geostandrds and Geoanalytical Research,
733	29, 83-94.
734	Li, X.F., Rusk, B., Wang, R.C., Morishita, Y., Watanabe, Y., and Chen, Z.Y. (2011)
735	Rutile inclusions in quartz crystals record decreasing temperature and pressure
736	during the exhumation of the Su-Lu UHP metamorphic belt in Donghai, East
737	China. American Mineralogist, 96, 964-973.
738	Li, Z.Y., Li, Y.L., Wijbrans, J.R., Yang, Q.J., Qiu, H.N., and Brouwer, F.M. (2018)
739	Metamorphic P-T Path differences between the two UHP terranes of Sulu
740	Orogen, Eastern China: Petrologic comparison between eclogites from Donghai
741	and Rongcheng. Journal of Earth Science, 29, 1151-1166.
742	Liu, F.L., Xu, Z., Katayama, I., Yang, J., Maruyama, S., and Liou, J.G. (2001) Mineral
743	inclusions in zircons of para- and orthogneiss from pre-pilot drillhole
744	CCSD-PP1, Chinese Continental Scientific Drilling Project. Lithos, 59, 199-215.
745	Liu, F.L., and Liou, J.G. (2011) Zircon as the best mineral for P-T-time history of UHP
746	metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of
747	zircons from the Dabie-Sulu UHP rocks. Journal of Asian Earth Sciences, 40,
748	1-39.

31

749	Liu, J.B., Liu, W.Y., Ye, K., and Mao, Q. (2009) Chlorine-rich amphibole in Yangkou
750	eclogite, Sulu ultrahigh-pressure metamorphic terrane, China. European Journal
751	of Mineralogy, 21, 1265-1285.
752	Locock, A.J. (2014) An Excel spreadsheet to classify chemical analyses of amphiboles
753	following the IMA 2012 recommendations. Computers & Geosciences, 62,
754	1–11.
755	Martin, R.F. (2007) Amphiboles in the igneous environment. Reviews in Mineralogy
756	and Geochemistry, 67, 323-358.
757	Massonne, H.J. (2012) Formation of amphibole and clinozoisite-epidote in eclogite
758	owing to fluid Infiltration during exhumation in a subduction channel. Journal of
759	Petrology, 53, 1969-1998.
760	Messiga, B., Tribuzio, R., and Caucia, F. (1991) Amphibole evolution in Variscan
761	eclogite-amphibolites from the Savona crystalline massif (Western Ligurian
762	Alps, Italy); controls on the decompressional P-T-t path. Lithos, 27, 215-230.
763	Medaris Jr, L.G., Brueckner, H.K., Cai, Y., Griffin, W.L., and Janák, M. (2018)
764	Eclogites in peridotite massifs in the Western Gneiss Region, Scandinavian
765	Caledonides: Petrogenesis and comparison with those in the Variscan
766	Moldanubian Zone. Lithos, 322, 325–346.
767	Mogessie, A., Purtscheller, F., and Tessadri, R. (1986) High alumina calcic amphiboles
768	(alumino pargasite-magnesio sadanagaite) from metabasites and metacarbonates
769	of Central Oetztal, Eastern Alps (Northern Tyrol, Austria). Neues Jahrbuch für
770	Mineralogie-Abhandlungen, 154, 21-39.
771	Molina, J.F., Moreno, J.A., Castro, A., Rodriguez, C., and Fershtater, G.B. (2015)
772	Calcic amphibole thermobarometry in metamorphic and igneous rocks: New

773	calibrations based on plagioclase/amphibole Al-Si partitioning and
774	amphibole/liquid Mg partitioning. Lithos, 232, 286-305.
775	Nagasaki, A., and Enami, M. (1998) Sr-bearing zoisite and epidote in ultra
776	high-pressure (UHP) metamorphic rocks from the Su-Lu province, eastern
777	China: an important Sr-reservoir under UHP conditions. American Mineralogist,
778	83, 240-247.
779	Nishiyama, T., Yoshida-Shiosaki, C., Mori, Y., and Shigeno, M. (2017) Interplay of
780	irreversible reactions and deformation: a case of hydrofracturing in the
781	rodingite-serpentinite system. Progress in Earth and Planetary Science, 4, 1.
782	O'Brien, P.J. (2019) Tso Morari coesite eclogite: pseudosection predictions v. the
783	preserved record and implications for tectonometamorphic models. In Zhang, L.,
784	Zhang, Z., Schertl, H.P., and Wei, C., Eds. HP-UHP Metamorphism and
785	Tectonic Evolution of Orogenic Belts, 474, p. 5-24.
786	Palin, R.M., St-Onge, M.R., Waters, D.J., Searle, M.P., and Dyck, B. (2014) Phase
787	equilibria modelling of retrograde amphibole and clinozoisite in mafic eclogite
788	from the Tso Morari massif, northwest India: constraining the P-T-M(H ₂ O)
789	conditions of exhumation. Journal of Metamorphic Geology, 32, 675-693.
790	Poli, S. (1991) Reaction spaces and p-t paths: from amphibole eclogite to greenschist
791	facies in the Austroalpine domain (Oetztal Complex). Contributions to
792	Mineralogy and Petrology, 106, 399-416.
793	Powell, R., and Holland, T.J.B. (1988) An internally consistent dataset with
794	uncertainties and correlations: 3. Applications to geobarometry, worked
795	examples and a computer program. Journal of Metamorphic Geology, 6,
796	173-204.

33

Putnis, A., and Austrheim, H. (2010) Fluid-induced processes: metasomatism and

798	metamorphism. Geofluids, 10, 254-269.
799	Rubatto, D., and Hermann, J. (2001) Exhumation as fast as subduction? Geology, 29,
800	3-6.
801	Savel'eva, V.B., and Korikovskii, S.P. (1998) A sadanagaite in the
802	biotite-corundum-margarite-spinel-anorthite crystalline schists from the West
803	Pribaikal'e. Doklady Earth Sciences, 360, 477–479.
804	Sawaki, T. (1989) Sadanagaite and subsilicic ferroan pargasite from thermally
805	metamorphosed rocks in the Nogo-Hakusan area, central Japan. Mineralogical
806	Magazine, 53, 9-106.
807	Schumacher, J.C. (2007) Metamorphic amphiboles: Composition and coexistence
808	Reviews in Mineralogy and Geochemistry, 67, 359-416.
809	Shimazaki, H., Bunno, M., and Ozawa, T. (1984) Sadanagaite and
810	magnesio-sadanagaite, new silica-poor members of calcic amphibole from
811	Japan. American Mineralogist, 69, 465-471.
812	Shiraishi, K., Oba, T., Suzuki, M., and Ishikawa, K. (1994) Subsilicic magnesian
813	potassium-hastingsite from the Prince Olav Coast, East Antarctica.
814	Mineralogical Magazine, 58, 621-627.
815	Suwa, K., Enami, M., and Horiuchi, T. (1987) Chlorine-rich potassium hastingsite from
816	West Ongul island, Lützow-Holm bay, east Antarctica. Mineralogical Magazine,
817	51, 709-714.
818	Taguchi, T., Miyake, A., Enami, M., and Igami, Y. (2018) Significance of an
819	amorphous SiO_2 phase in a pseudomorph after coesite enclosed in garnet from
820	ultrahigh-pressure eclogite, Su-Lu Belt, eastern China. Journal of Metamorphic
	34 Enami and others

821	Geology,	36,	843-	·854.

822	Whitney, D.L., and Evans, B.W. (2010) Abbreviations for names of rock-forming
823	minerals. American Mineralogist, 95, 185-187.
824	Yamasaki, S., Nakamura, D., and Hirajima, T. (2018) Amphibole in UHP eclogite from
825	the Sulu region, eastern China. Journal of Mineralogical and Petrological
826	Sciences, 113, 135–151.
827	Yang, T.N. (2004) Retrograded textures and associated mass transfer; evidence for
828	aqueous fluid action during exhumation of the Qinglongshan eclogite, southern
829	Sulu ultrahigh pressure metamorphic terrane, eastern China. Journal of
830	Metamorphic Geology, 22, 653-669.
831	Zhang, R.Y., Hirajima, T., Banno, S., Cong, B.L., and Liou, J.G. (1995) Petrology of
832	ultrahigh-pressure rocks from the southern Su-Lu region, Eastern China. Journal
833	of Metamorphic Geology, 13, 659-675.
833 834	of Metamorphic Geology, 13, 659-675. Zhang, R.Y., Liou, J.G., and Zheng, J.P. (2004) Ultrahigh-pressure corundum-rich
833 834 835	of Metamorphic Geology, 13, 659-675. Zhang, R.Y., Liou, J.G., and Zheng, J.P. (2004) Ultrahigh-pressure corundum-rich garnetite in garnet peridotite, Sulu terrane, China. Contributions to Mineralogy
833 834 835 836	of Metamorphic Geology, 13, 659-675. Zhang, R.Y., Liou, J.G., and Zheng, J.P. (2004) Ultrahigh-pressure corundum-rich garnetite in garnet peridotite, Sulu terrane, China. Contributions to Mineralogy and Petrology, 147, 21-31.
833 834 835 836 837	of Metamorphic Geology, 13, 659-675. Zhang, R.Y., Liou, J.G., and Zheng, J.P. (2004) Ultrahigh-pressure corundum-rich garnetite in garnet peridotite, Sulu terrane, China. Contributions to Mineralogy and Petrology, 147, 21-31. Zhang, R.Y., Liou, J.G., and Ernst, W.G. (2009) The Dabie-Sulu continental collision
833 834 835 836 837 838	of Metamorphic Geology, 13, 659-675. Zhang, R.Y., Liou, J.G., and Zheng, J.P. (2004) Ultrahigh-pressure corundum-rich garnetite in garnet peridotite, Sulu terrane, China. Contributions to Mineralogy and Petrology, 147, 21-31. Zhang, R.Y., Liou, J.G., and Ernst, W.G. (2009) The Dabie-Sulu continental collision zone; a comprehensive review. Gondwana Research, 16, 1-26.
833 834 835 836 837 838 838	 of Metamorphic Geology, 13, 659-675. Zhang, R.Y., Liou, J.G., and Zheng, J.P. (2004) Ultrahigh-pressure corundum-rich garnetite in garnet peridotite, Sulu terrane, China. Contributions to Mineralogy and Petrology, 147, 21-31. Zhang, R.Y., Liou, J.G., and Ernst, W.G. (2009) The Dabie-Sulu continental collision zone; a comprehensive review. Gondwana Research, 16, 1-26. Zhang, Z.M., Xu, Z.Q., and Xu, H.F. (2000) Petrology of ultrahigh-pressure eclogites
833 834 835 836 837 838 839 840	of Metamorphic Geology, 13, 659-675. Zhang, R.Y., Liou, J.G., and Zheng, J.P. (2004) Ultrahigh-pressure corundum-rich garnetite in garnet peridotite, Sulu terrane, China. Contributions to Mineralogy and Petrology, 147, 21-31. Zhang, R.Y., Liou, J.G., and Ernst, W.G. (2009) The Dabie-Sulu continental collision zone; a comprehensive review. Gondwana Research, 16, 1-26. Zhang, Z.M., Xu, Z.Q., and Xu, H.F. (2000) Petrology of ultrahigh-pressure eclogites from the ZK703 drillhole in the Donghai, eastern China. Lithos, 52, 35-50.
833 834 835 836 837 838 839 840 841	 of Metamorphic Geology, 13, 659-675. Zhang, R.Y., Liou, J.G., and Zheng, J.P. (2004) Ultrahigh-pressure corundum-rich garnetite in garnet peridotite, Sulu terrane, China. Contributions to Mineralogy and Petrology, 147, 21-31. Zhang, R.Y., Liou, J.G., and Ernst, W.G. (2009) The Dabie-Sulu continental collision zone; a comprehensive review. Gondwana Research, 16, 1-26. Zhang, Z.M., Xu, Z.Q., and Xu, H.F. (2000) Petrology of ultrahigh-pressure eclogites from the ZK703 drillhole in the Donghai, eastern China. Lithos, 52, 35-50. Zhang, Z.M., Xiao, Y., Liu, F., Liou, J.G., and Hoefs, J. (2005) Petrogenesis of UHP
833 834 835 836 837 838 839 840 841 841	of Metamorphic Geology, 13, 659-675. Zhang, R.Y., Liou, J.G., and Zheng, J.P. (2004) Ultrahigh-pressure corundum-rich garnetite in garnet peridotite, Sulu terrane, China. Contributions to Mineralogy and Petrology, 147, 21-31. Zhang, R.Y., Liou, J.G., and Ernst, W.G. (2009) The Dabie-Sulu continental collision zone; a comprehensive review. Gondwana Research, 16, 1-26. Zhang, Z.M., Xu, Z.Q., and Xu, H.F. (2000) Petrology of ultrahigh-pressure eclogites from the ZK703 drillhole in the Donghai, eastern China. Lithos, 52, 35-50. Zhang, Z.M., Xiao, Y., Liu, F., Liou, J.G., and Hoefs, J. (2005) Petrogenesis of UHP metamorphic rocks from Qinglongshan, southern Sulu, east-central China.

844 Zhang, Z.M., Shen, K., Xiao, Y.L., Hoefs, J., and Liou, J.G. (2006) Mineral and fluid

35

845	inclusions in zircon of UHP metamorphic rocks from the CCSD-main drill hole;
846	a record of metamorphism and fluid activity. Lithos, 92, 378-398.
847	Zhang, Z.M., Shen, K., Sun, W., Liu, Y., Liou, J.G., Shi, C., and Wang, J. (2008) Fluids
848	in deeply subducted continental crust; petrology, mineral chemistry and fluid
849	inclusion of UHP metamorphic veins from the Sulu Orogen, eastern China.
850	Geochimica et Cosmochimica Acta, 72, 3200-3228.
851	Zhang, Z.M., Dong, X., Liou, J.G., Liu, F., Wang, W., and Yui, F. (2011)
852	Metasomatism of garnet peridotite from Jiangzhuang, southern Sulu UHP belt:
853	constraints on the interactions between crust and mantle rocks during subduction
854	of continental lithosphere. Journal of Metamorphic Geology, 29, 917-937.
855	

Enami and others

856 Figure captions

857	Figure 1. (a) Simplified map of the Sulu region showing major tectonic units and the
858	position of the Donghai area (slightly modified Fig. 1 from Zhang et al., 2008). (b)
859	Schematic geological map showing the distribution of eclogites in the Donghai
860	area and sample localities (slightly modified Fig. 2 from Zhang et al., 1995).
861	Abbreviations: WQY fault, Wulian–Qingdao-Yantai fault; JX fault,
862	Jiashan-Xiangshui fault.
863	Figure 2. (a), (b), and (d) Polarizing microscope photographs (plane polarized light) and
864	(c) back-scattered electron (BSE) image of quartz-bearing eclogites from the
865	Donghai area, Sulu UHP metamorphic belt. CaK α X-ray and electron
866	back-scattered diffraction (EBSD) pattern maps of the area of (d) are shown in
867	Fig. 6a and 9, respectively. Abbreviations: Symp, symplectite after omphacite.
868	Figure 3. Compositional ranges of amphibole in eclogites of (a) JDQ03, (b) 91CHXX,
869	and (c) 91CH08 from the Donghai area, Sulu UHP metamorphic belt, on the C (Al
870	+ Fe^{3+} + Cr + $2Ti)-^{A}(Na + K)$ and $Si-^{B}Na$ diagrams. * Some ferro-sadanagaite
871	and ferro-taramite grains belong to potassic category with $K > Na$ in the A site.
872	Figure 4. (a) Back-scattered electron (BSE) image showing textural relationship of garnet
873	porphyroblast, Amp (O), and Amp (S) in an eclogite (JDQ03) from the Donghai
874	area, Sulu UHP metamorphic belt. (b) Step-scan analysis of the amphibole around
875	garnet along the line A-A' in Fig. 4a, and comparison of its compositional range
876	with those in symplectite and the matrix. Abbreviations are: av, average; max,
877	maximum; med, median: min, minimum. * Outliers are not plotted.
878	Figure 5. (a) Back-scattered electron (BSE) image showing textural relationship of garnet
879	porphyroblast, Amp (O), and Amp (S) in an eclogite (91CHXX) from the

Enami and others

880	Donghai area, Sulu UHP metamorphic belt. (b) Step-scan analysis of the
881	amphibole around garnet along the line B-B' in Fig. 5a, and comparison of its
882	compositional range with those in symplectite and the matrix. * Outliers are not
883	plotted.
884	Figure 6. (a) CaK α X-ray map showing textural relationship of garnet porphyroblast and
885	amphibole [Amp (O), Amp (Q), Amp (G), and Amp (S)] in an eclogite (91CH08)
886	from the Donghai area, Sulu UHP metamorphic belt. Step-scan analyses of the
887	amphibole segments between (b) garnet and symplectite and between (c) garnet
888	and quartz along the lines C-C' and D–D' in Fig. 6a, respectively. Figure 6b
889	compares the compositional range of the Amp (O) segment with those in
890	symplectite [Amp (S)]. (d) Step-scan analysis of crack-filling amphibole
891	segments [Amp (G)] between garnet segments along the line E-E' in Fig. 6a. *
892	Outliers are not plotted.
893	Figure 7. (a) High-angle annular dark field scanning TEM (HAADF-STEM) image and
894	(b) bright-field (BF)-TEM image of subsilicic amphibole-garnet interface in an
895	eclogite (91CHXX) from the Donghai area, Sulu UHP metamorphic belt.
896	Bright-field TEM image of the interface structures was viewed along the [001]
897	zone axis of aluminous amphibole.
898	Figure 8. Electron back-scattered diffraction (EBSD) pattern maps of (a) Amp (O) and
899	Amp (S) and (b) symplectitic sodic diopside in an eclogite (91CHXX: 1 μ m grid
900	step). Pole figures for crystallographic orientations of (100), (010), and [001] of
901	the (c) Amp (S) and (d) sodic diopside particles in the selective domains 1–4 of
902	symplectite. Data N indicates the number of analysis particles. Circles in (a)
903	indicate direct connection between Amp (O) and Amp (S).

38

904	Figure 9. Electron back-scattered diffraction (EBSD) pattern map of Amp (O), Amp (Q),
905	Amp (G), and Amp (S) in an eclogite (91CH08: 2 µm grid step) from the Donghai
906	area, Sulu UHP metamorphic belt.

- Figure 10. (a) Electron back-scattered diffraction (EBSD) pattern map (1 µm grid step) of
 Amp (O) and Amp (G) in an eclogite (91CH08) from the Donghai area. Sulu UHP
- 908 Amp (Q) and Amp (G) in an eclogite (91CH08) from the Donghai area, Sulu UHP
- 909 metamorphic belt. (b) Equal-area and lower hemisphere projection showing
- 910 crystallographic orientations of the Amp (Q) and Amp (G) segments. Data n
- 911 indicates the number of analysis points. (c) Step-scan analysis of the boundary
- 912 between the Amp (Q) and Amp (G) segments along the line F-F' in Fig. 10a.
- **913** Figure 11. (a) Electron back-scattered diffraction (EBSD) pattern map (1 μm grid step) of
- 914 Amp (O), Amp (G), and Amp (S) in an eclogite (91CH08) from the Donghai area,
- 915 Sulu UHP metamorphic belt. Equal-area and lower hemisphere projection
- 916 comparison of crystallographic orientations of the Amp (O) and Amp (S)
- 917 segments in the sets of (b) domains 8, 9, and 10 and (c) domains 11, 12, and 13.
- 918 Data n indicates the number of analysis points. Circles in (a) indicate a direct
- 919 connection between Amp (O) and Amp (S).
- 920 Figure 12. Comparison of the estimated equilibrium P-T conditions of aluminous
- 921 calcium amphiboles + plagioclase (this study) and the exhumation P-T path of
- 922 Donghai eclogites reported in literature. Abbreviations for references are: C18,
- 923 Curetti et al. (2018); F07, Frezzotti et al. (2007); L11, Li et al. (2011); L18, Li et
- 924 al. (2018); Z95, Zhang et al. (1995); Z05, Zhang et al. (2005). Geothermometer
- 925 (HB94) and geobarometer (M15) are from Holland and Blundy (1994) and
- 926 Molina et al. (2015), respectively. The univariant lines of Dia-Gr, Coe-Qz,
- 927 Ab-Jd+Qz, and Al₂SiO₅ phases were calculated using THERMOCALC software

39

928	v	ver. 3.33 (Powell and Holland, 1988), internally consistent thermodynamic data
929	5	set (Holland and Powell, 1998; updated June 2009), and program AX_2
930	((https://filedn.com/lU1GlyFhv3UuXg5E9dbnWFF/TJBHpages/ax.html).
931	Figure 1	13. Conceptual diagram of growth scenarios (Models 1 and 2) of retrograde
932	ć	amphiboles in the Donghai eclogites, Sulu UHP metamorphic belt during the
933	e	exhumation and hydration stage. (a) Eclogite facies and early exhumation stage.
934	((b) Formations of sodic diopside + plagioclase symplectite and crack-filling
935	ć	amphibole [Amp (G)] at the early exhumation and hydration stage, although it is
936	1	not clear which of these phenomena proceeded first, or if they were nearly
937	5	simultaneous. (c) Formations of mantle amphibole around garnet [Amp (O) and
938	1	Amp (Q)] and symplectitic amphibole [Amp (S)] (Model 2). (d1) Initial
939	1	nucleation of amphibole at the interface between garnet and symplectite of sodic
940	(diopside + plagioclase, and subsequent growth of Amp (S) and Amp (O)/Amp
941	((Q). The inner and outer zones of Amp (O) and Amp (Q) grew inward and
942	(outward from the initial surface of the garnet (dashed line), respectively (Model
943		1). (d2) The formation of the inner and outer zones of Amp (O) and Amp (Q) by
944	1	modification of the chemical composition of their outer parts due to
945	1	re-equilibration (Model 2).
946	Figure 1	14. Volume change of minerals $[(a) \text{ in } \text{cm}^3 \text{ and } (b) \%]$ based on the calculated
947	S	stoichiometric coefficients of minerals as a function of $a = \xi_6/\xi_5$, where ξ_5 and ξ_6
948	1	represent the reaction extents of R5 and R6 in the text, respectively. The mineral
949	,	volumes were estimated using the molar volumes listed in Table 3. The
950	6	estimated volume proportions (%) of Amp (Q), aegirine-diopside, and
951	1	plagioclase in the reaction zone are plotted in Fig. 14b for discussion on the

Enami and others

- 952 possible range of the parameter *a*. (c) Stoichiometric coefficients of mobile
- 953 components as a function of the parameter *a*.

954

955

Table 1. Representative chemical compositions of retrograde amphibole in SiO_2 phase-bearing eclogites from the Donghai area, Su-Lu UHP metamorphic belt.

Sample JDQ03					91CHXX				91CH08							
Texture Inclusior Matrix			Amp (O)		Amp (S)	Inclusion	Matrix	Amp (O)		Amp (S)	Amp (O)		Amp (Q)		Amp (G)Amp (S)	
Zone		Inner	Outer	-		-	Inner	Inner Outer	-	Inner	Outer	Inner	Outer	-		
Mineral	Ftrm	Fsdg	Sdg	Prg	Prg	Fsdg	Prg	Fsdg	Prg	Prg	Fsdg	Fsdg	Fsdg	Ftrm	Fsdg	Trm
wt%																
SiO_2	39.29	38.50	37.20	40.15	42.87	38.64	37.82	36.39	40.17	41.00	36.22	37.93	35.70	38.26	36.01	41.82
TiO ₂	0.83	0.16	0.03	0.07	0.17	0.15	0.11	0.06	0.13	0.23	0.07	0.07	0.01	0.01	0.08	0.34
Al_2O_3	17.32	19.77	20.35	15.73	12.84	18.77	17.10	20.40	14.96	14.15	20.16	16.28	19.89	17.26	20.14	18.79
Cr_2O_3	0.00	0.15	0.01	0.00	0.03	0.00	0.00	0.01	0.03	0.05	0.01	0.01	0.00	0.00	0.02	0.00
FeO ^a	18.32	19.01	16.26	14.34	12.83	17.81	16.98	17.35	16.79	17.12	21.30	21.12	21.91	22.16	21.48	12.77
MnO	0.12	0.23	0.21	0.19	0.13	0.16	0.19	0.17	0.18	0.19	0.44	0.36	0.45	0.39	0.46	0.24
MgO	6.63	5.37	7.41	10.69	12.65	7.09	8.74	7.23	9.42	10.12	3.97	5.88	3.79	4.33	4.33	9.74
CaO	8.94	9.26	10.42	10.82	10.95	9.19	11.73	11.19	11.34	11.60	9.47	9.07	9.36	8.36	9.60	7.63
Na ₂ O	4.73	3.95	3.64	3.24	3.29	4.49	3.57	3.32	3.18	3.19	3.64	3.63	3.46	3.53	4.36	6.02
K ₂ O	0.67	1.08	0.78	1.17	0.88	0.08	0.05	0.06	0.11	0.08	1.69	2.04	1.98	2.32	0.33	0.43
F	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d	b.d.	b.d	. b.d.	b.d.
Cl	1.32	1.60	0.02	0.04	0.04	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d	. b.d.	b.d.
O=F, Cl	-0.30	-0.36	0.00	-0.01	-0.01											
Total	97.87	98.72	96.33	96.43	96.67	96.38	96.29	96.18	96.31	97.73	96.97	96.39	96.55	96.62	96.81	97.78
Formula	e [24 (O	H, F, Cl,	O)]													
Si	5.969	5.836	5.638	6.030	6.374	5.845	5.758	5.552	6.095	6.126	5.597	5.876	5.558	5.944	5.541	6.074
Ti	0.095	0.018	0.003	0.008	0.019	0.017	0.013	0.007	0.015	0.026	0.008	0.008	0.001	0.001	0.009	0.037
Al	3.101	3.532	3.635	2.784	2.251	3.346	3.069	3.669	2.675	2.492	3.672	2.973	3.650	3.160	3.653	3.216
Cr	0.000	0.018	0.001	0.000	0.004	0.000	0.000	0.001	0.004	0.006	0.001	0.002	0.000	0.000	0.002	0.000
Fe ^{3+b}	0.508	0.287	0.405	0.424	0.267	0.492	0.503	0.354	0.341	0.464	0.565	0.768	0.673	0.569	0.685	0.452
Fe ^{2+b}	1.820	2.123	1.656	1.378	1.329	1.761	1.659	1.859	1.789	1.676	2.188	1.969	2.180	2.310	2.079	1.099
Mn	0.016	0.030	0.027	0.024	0.016	0.020	0.024	0.022	0.023	0.024	0.058	0.047	0.059	0.051	0.060	0.030
Mg	1.502	1.213	1.674	2.393	2.804	1.599	1.984	1.645	2.131	2.254	0.915	1.358	0.880	1.003	0.993	2.109
Ca	1.455	1.504	1.692	1.741	1.745	1.489	1.914	1.829	1.844	1.857	1.568	1.506	1.561	1.392	1.583	1.187
Na	1.393	1.161	1.070	0.944	0.948	1.317	1.054	0.982	0.935	0.924	1.090	1.090	1.044	1.063	1.301	1.696
Κ	0.130	0.209	0.151	0.224	0.167	0.015	0.010	0.012	0.021	0.015	0.333	0.403	0.393	0.460	0.065	0.080
Total	15.989	15.931	15.952	15.950	15.924	15.901	15.988	15.932	15.873	15.864	15.995	16.000	15.999	15.953	15.971	15.980
X _{Mg}	0.452	0.364	0.503	0.635	0.678	0.476	0.545	0.469	0.544	0.574	0.295	0.408	0.288	0.303	0.323	0.657

^a Total iron as FeO.

^b Calculated value (see text)

Abbreviations: Amp (O), amphibole segment between garnet and symplectite; Amp (S), amphibole in symplectite after omphacite; Amp (Q), amphibole segment between garnet and matrix quartz; Amp (G), crack-filling amphibole; b.d., below the detection limit.

Table 2. Pressure-temperature conditions of amphibole-plagioclase sets estimated using amphibole-plagioclase geothermobarometers.

Sample	JDQ03	$(An_{10})^{a}$	91CHX	$X(An_{16})$	91CH08 (An ₁₁)			
	$T(^{\circ}C)^{b}$	$P(GPa)^{c}$	T (°C)	P (GPa)	T (°C)	P (GPa)		
Amp (O)	675 (4) ^d	0.97 (4)	686 (10)	0.92 (2)	696 (33)	1.28 (18)		
Amp (Q)					694 (14)	1.32 (14)		
Amp (S)	674(16)	0.86(6)	701 (6)	0.83 (2)	729 (22)	1.33 (20)		

^a Average anorthite content employed for the calculations.

^b Amp-Pl geothermometer B of Holland and Blundy (1994).

^c Pl-Amp Al/Si partitioning geobarometer of Molina et al. (2015).

^d Number in parentheses indicates standard deviation (1σ level), which corresponds to the last digit of the average value, estimated based on the calculations using several data sets of amphibole-plagioclase compositions.

Abbreviations: Amp (O), amphibole segment between garnet and symplectite; Amp (Q), amphibole segment between garnet and matrix quartz; Amp (S), amphibole in symplectite after omphacite.

Table 3. Chemical compositions and molar volumes of Amp (Q) and related minerals for the SVD analysis.

	Si ^a	Al ^a	Fe ^b	Mn	Mg	Ca ^a	Na	K	Total	Volume (cm ³ /mol) ^c
Reactants										
Grt	3.00	1.96	1.52	0.05	0.40	1.07	0.00	0.00	8.00	118.5
Qz	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	22.7
Products										
Amp (Q)	5.61	3.59	2.86	0.06	0.88	1.54	1.04	0.40	15.98	277.4
Aeg-di	2.00	0.06	0.75	0.02	0.17	0.42	0.58	0.00	4.00	65.5
Pl	2.89	1.11	0.00	0.00	0.00	0.11	0.89	0.00	5.00	100.1

^a Matrix of mineral compositions used for the SVD analysis.

^b $Fe^{2+} + Fe^{3+}$.

^c Calculated using end-member data of Holland (1989) and Holland and Powell (1998).

Figure 1. (a) Simplified map of the Sulu region showing major tectonic units and the position of the Donghai area (slightly modified Fig. 1 from Zhang et al., 2008) . (b) Schematic geological map showing the distribution of eclogites in the Donghai area and sample localities (slightly modified Fig. 2 from Zhang et al., 1995). Abbreviations: WQY fault, Wulian–Qingdao-Yantai fault; JX fault, Jiashan-Xiangshui fault.

Fig. 1 (Enami and others)

Figure 2. (a), (b), and (d) Polarizing microscope photographs (plane polarized light) and (c) back-scattered electron (BSE) image of quartz-bearing eclogites from the Donghai area, Sulu UHP metamorphic belt. CaK α X-ray map and electron back-scattered diffraction (EBSD) pattern map of the area of (d) are shown in Fig. 6a and 9, respectively. Abbreviations: Symp, symplectite after omphacite.

Fig. 2 (Enami and others)

Figure 3. Compositional ranges of amphibole in eclogites of (a) JDQ03, (b) 91CHXX, and (c) 91CH08 from the Donghai area, Sulu UHP metamorphic belt, on the $^{[C]}(AI + Fe^{3+} + Cr + 2Ti)-^{[A]}(Na + K)$ and Si- $^{[B]}Na$ diagrams.

* Some ferro-sadanagaite and ferro-taramite grains belong to potassic category with K > Na in the [A] site.

Fig. 3 (Enami and others)

Figure 4. (a) Back-scattered electron (BSE) image showing textural relationship of garnet porphyroblast, Amp (O), and Amp (S) in an eclogite (JDQ03) from the Donghai area, Sulu UHP metamorphic belt. (b) Step-scan analysis of the amphibole around garnet along the line A-A' in Fig. 4a, and comparison of its compositional range with those in symplectite and the matrix. Abbreviations are: av, average; max, maximum; med, median: min, minimum. * Outliers are not plotted.

Fig. 4 (Enami and others)

Figure 5. (a) Back-scattered electron (BSE) image showing textural relationship of garnet porphyroblast, Amp (O), and Amp (S) in an eclogite (91CHXX) from the Donghai area, Sulu UHP metamorphic belt. (b) Step-scan analysis of the amphibole around garnet along the line B-B' in Fig. 5a, and comparison of its compositional range with those in symplectite and the matrix. * Outliers are not plotted.

Fig. 5 (Enami and others)

Figure 6. (a) CaKα X-ray map showing textural relationship of garnet porphyroblast and amphibole [Amp (O), Amp (Q), Amp (G), and Amp (S)] in an eclogite (91CH08) from the Donghai area, Sulu UHP metamorphic belt. Step-scan analyses of the amphibole segments between (b) garnet and symplectite and between (c) garnet and quartz along the lines C-C' and D–D' in Fig. 6a, respectively. Figure 6b compares the compositional range of the Amp (O) segment with those in symplectite [Amp (S)]. (d) Step-scan analysis of crack-filling amphibole segments [Amp (G)] between garnet segments along the line E-E' in Fig. 6a.

Fig. 6 (Enami and others)

Figure 7. (a) High-angle annular dark field scanning TEM (HAADF-STEM) image and (b) bright-field (BF)-TEM image of aluminous amphibole–garnet interface in an eclogite (91CHXX) from the Donghai area, Sulu UHP metamorphic belt. Bright-field TEM image of the interface structures was viewed along the [001] zone axis of aluminous amphibole.

Fig. 7 (Enami and others)

Figure 8. Electron back-scattered diffraction (EBSD) pattern maps of (a) Amp (O) and Amp (S) and (b) symplectitic sodic diopside in an eclogite (91CHXX: 1 μ m grid step). Pole figures for crystallographic orientations of (100), (010), and [001] of the (c) Amp (S) and (d) sodic diopside particles in the selective domains 1–4 of symplectite. Data N indicates the number of analysis particles. Circles in (a) indicate a direct connection between Amp (O) and Amp (S).

Fig. 8 (Enami and others)

Figure 9. Electron back-scattered diffraction (EBSD) pattern map of Amp (O), Amp (Q), Amp (G), and Amp (S) in an eclogite (91CH08: 2 µm grid step) from the Donghai area, Sulu UHP metamorphic belt.

Fig. 9 (Enami and others)

Figure 10. (a) Electron back-scattered diffraction n (EBSD) pattern map (1 µm grid step) of Amp (Q) and Amp (G) in an eclogite (91CH08) from the Donghai area, Sulu UHP metamorphic belt. (b) Equal-area and lower hemisphere projection showing crystallographic orientations of the Amp (Q) and Amp (G) segments. Data n indicates the number of analysis points. (c) Step-scan analysis of the boundary between the Amp (Q) and Amp (G) segments along the line F-F' in Fig. 10a.

Fig. 10 (Enami and others)

Figure 11. (a) Electron back-scattered diffraction (EBSD) pattern map (1 µm grid step) of Amp (O), Amp (G), and Amp (S) in an eclogite (91CH08) from the Donghai area, Sulu UHP metamorphic belt. Equal-area and lower hemisphere projection comparison of crystallographic orientations of the Amp (O) and Amp (S) segments in the sets of (b) domains 8, 9, and 10 and (c) domains 11, 12, and 13. Data n indicates the number of analysis points. Circles in (a) indicate a direct connection between Amp (O) and Amp (S).

Fig. 11 (Enami and others)

Figure 12. Comparison of the estimated equilibrium P-T conditions of aluminous calcium amphiboles + plagioclase (this study) and the exhumation P-T path of Donghai eclogites reported in literature. Abbreviations for references are: C18, Curetti et al. (2018); F07, Frezzotti et al. (2007); L11, Li et al. (2011); L18, Li et al. (2018); Z95, Zhang et al. (1995); Z05, Zhang et al. (2005). The univariant lines of Dia-Gr, Coe-Qz, Ab-Jd+Qz, and Al₂SiO₅ phases were caluculated using THERMOCALC software ver. 3.33 (Powell and Holland, 1988), internally consistent thermodynamic data set (Holland and Powell, 1998; updated June 2009), and program AX_2 (https://filedn.com/IU1GlyFhv3UuXg5E9dbnWFF/TJBHpages/ax.html).

Fig. 12 (Enami and others)

Figure 13. Conceptual diagram of growth scenarios (Models 1 and 2) of retrograde amphiboles in the Donghai eclogites, Sulu UHP metamorphic belt during the exhumation and hydration stage. (a) Eclogite facies and early exhumation stage. (b) Formations of sodic diopside + plagioclase symplectite and crack-filling amphibole [Amp (G)] at the early exhumation and hydration stage, although it is not clear which of these phenomena proceeded first, or if they were nearly simultaneous. (c) Formations of mantle amphibole around garnet [Amp (O) and Amp (Q)] and symplectitic amphibole [Amp (S)] (Model 2). (d1) Initial nucleation of amphibole at the interface between garnet and symplectite of sodic diopside + plagioclase, and subsequent growth of Amp (S) and Amp (O)/Amp (Q). The inner and outer zones of Amp (O) and Amp (Q) grew inward and outward from the initial surface of the garnet (dashed line), respectively (Model 1). (d2) The formation of the inner and outer zones of Amp (Q) by modification of the chemical composition of their outer parts due to re-equilibration (Model 2).

Fig. 13 (Enami and others)

Figure 14. Volume change of minerals [(a) in cm³ and (b) in %] based on the calculated stoichiometric coefficients of minerals as a function of $a = \xi_6/\xi_5$, where ξ_5 and ξ_6 represent the reaction extents of R5 and R6 in the text, respectively. The mineral volumes were estimated using the molar volumes listed in Table 3. The estimated volume proportions (%) of Amp (Q), aegirine-diopside, and plagioclase in the reaction zone are plotted in Fig. 14b for discussion on the possible range of the parameter *a*. (c) Stoichiometric coefficients of mobile components as a function of the parameter *a*.

Fig. 14 (Enami and others)