1	Revision 2						
2	A high-pressure, clinopyroxene-structured polymorph of albite in highly						
3	shocked terrestrial and meteoritic rocks						
4 5 6 7	CHI MA ^{1,} *, Oliver Tschauner ² , Mihye Kong ^{3,†} , John R. Beckett ¹ , Eran Greenberg ⁴ , Vitali B. Prakapenka ⁴ , Yongjae Lee ³						
8	¹ Division of Geological and Planetary Sciences, California Institute of Technology,						
9	Pasadena, CA 91125, USA						
10	² Department of Geoscience, University of Nevada, Las Vegas, NV 89154, USA						
11	³ Department of Earth System Sciences, Yonsei University, Seoul 03722, Republic of Kore						
12	⁴ GSECARS, University of Chicago, Argonne National Laboratory, Chicago, IL 60637, USA						
13	[†] Present address: Interdisciplinary Materials Measurement Institute, Korea Research Institute						
14	of Standards and Science, Daejeon 34113, Republic of Korea						
15							
16							
17	ABSTRACT						
18	Clinopyroxenes with excess Si have been described in run products from						
19	high-pressure experiments and inferred to have existed in nature from retrograde						
20	transformation phases. Here, we present the discovery of albitic jadeite,						
21	(Na,Ca, \Box_{4})(Al,Si)Si ₂ O ₆ - the first natural, sodic clinopyroxene with excess Si						
22	occupying the octahedral cation site, M1, and a corresponding 1/4 vacancy on the						
23	M2-site in the Ries impact structure and in a suite of L6 ordinary chondrites, EET						
24	13014, EET 13052, NWA 1662, and TIL 08001. Garnet compositions in these						
25	samples indicate shock pressures of 18 - 22 GPa. Based on our survey, albitic						
26	jadeite is likely to be rather common in terrestrial and meteoritic shock-						
27	metamorphic environments. Shock-generated jadeite should be reexamined with						
28	respect to excess Si.						
29							
30	Keywords: albitic jadeite, (Na,Ca, 1/4)(Al,Si)Si2O6, high-pressure clinopyroxene, shock-						
31	induced phase, Ries impact structure, L6 ordinary chondrites.						
32	*E-mail: <u>chima@caltech.edu</u>						
33							

34

INTRODUCTION

35 At low pressures, Si exclusively occupies tetrahedral sites in clinopyroxene. A 36 compositional analysis that indicates more Si than can be accomodated in tetrahedral 37 coordination generally reflects a poor analysis or contamination of the analytical volume 38 by some other phase. However, clinopyroxenes that were synthesized in high-pressure 39 experiments clearly exhibit Si, not only on the tetrahedral, but also on the octahedral M1 site. Charge-balancing of excess Si is usually achieved through compensating vacancies on 40 41 the M2 site (e.g., Angel et al. 1988; Liou et al. 1998), although octahedral vacancies at 42 high pressure can also be mediated by Al (e.g., Wood and Henderson 1978; Ma et al. 43 2015). Regardless of the actual mechanism, increasing vacancies on the M2 site with 44 increasing depth has been proposed to play an important role in the distribution water in 45 the sublithospheric mantle (e.g., Bell and Rossman 1992; Warren and Hauri 2014). 46 The presence of octahedral Si in clinopyroxene equilibrated at high pressures is 47 well established by direct observations on synthetic clinopyroxenes (e.g., Angel et al. 48 1988; Yang et al. 2009). The case for octahedral Si in natural pyroxenes is less direct. 49 There is no evidence, for example, that omphacite, the dominant pyroxene in subducted 50 slabs, contains octahedrally coordinated Si. Omphacite phenocrysts from some exhumed 51 ultahigh-pressure metamorphic terrains do, however, exhibit orientated lamellae of quartz 52 or coesite and these lamellae are often interpreted to be the exsolution products of a 53 former excess Si component upon exhumation and indicative of the high peak pressures 54 experienced by these rocks (e.g., Zhang et al. 2005). 55 In static high-pressure, high-temperature experiments, albite (NaAlSi $_{3}O_{8}$) breaks 56 down to form jadeite (NaAlSi₂O₆) and a dense SiO₂ phase, either coesite or stishovite (e.g., 57 Liu 1978). On Earth, the formation of jadeite (NaAlSi₂O₆) through dissociation of albitic 58 plagioclase in metapelites or basalt marks the onset of eclogitization in high-pressure

59 metamorphic environments. The same reaction has also been reported from shocked ordinary

60 chondrites (e.g., Tropper et al. 1999, Miyahara et al. 2013). Here, we report a new vacancy-

61 stabilized, high-pressure, high-temperature clinopyroxene with Si on the M1 site and a

62 composition essentially equivalent to that of albitic plagioclase. This clinopyroxene is formed

63 by shock metamorphic transformation of albite in terrestrial impactites and ordinary

64 chondrites. It has not been previously observed or synthesized and, therefore, it provides

65 potential new insights into shock conditions and impact processes.

66	We examined an amphibolite xenolith from suevite of the Ries impact structure and
67	the L6 ordinary chondrites EET 13014, EET 13052, TIL 08001, and NWA 1662 with
68	advanced electron-beam and synchrotron techniques, and discovered a highly-defective,
69	shocked-induced, high-pressure albitic jadeite (Figs. 1-2). The new phase is an Na-analog of
70	tissintite ((Ca,Na, $\Box_{1/4}$)Al(Si,Al) ₂ O ₆), and has a structural formula of (Na,Ca, $\Box_{1/4}$)(Al,Si)Si ₂ O ₆ .
71	Its composition ranges from $(Na_{0.75}\Box_{0.25})(Al_{0.75}Si_{0.25})Si_2O_6$ to $(Na_{0.50}Ca_{0.25}\Box_{0.25})AlSi_2O_6$,
72	which corresponds to plagioclase with An0-An33 compositions. A clinopyroxene with this
73	structure exhibits a high concentration of excess Si on the octahedral cation M1 site and an
74	M2 site with ¹ / ₄ vacancy. This clinopyroxene is a new high-pressure phase, a polymorph of
75	albite, but it is still a "jadeite" - not a new mineral - according to the dominant-constituent
76	and dominant-valency rules of the IMA-CNMNC (Hatert and Burke 2008). In particular, it is
77	a supersilicic jadeite with albite composition, which we label as "albitic jadeite" in reference
78	to its formation via solid-solid transformation of precursor albite and to distinguish it from
79	synthetic jadeites with excess Si. Ma et al. (2020) give a preliminary description of albitic
80	jadeite, which is expanded on in this study.
81	
82	SAMPLES AND ANALYTICAL METHODS
83	A thin section of amphibolite xenolith ZLN100 from the Ries impact structure and a
84	thin section of the L6 chondrite NWA 1662 are from the Museum für Naturkunde Berlin,
85	those of EET 13014 and EET 13052 from Yonsei University, and TIL 08001 from the Korea
86	Polar Research Institute. Field-emission scanning electron microscope (FE-SEM), energy-
87	dispersive X-ray spectroscopy (EDS), electron back-scatter diffraction (EBSD), electron
88	probe microanalysis (EPMA), and synchrotron X-ray diffraction were used to characterize
89	the composition, structure and petrography of albitic jadeite and associated phases. Back-
90	scatter electron (BSE) imaging was performed using a ZEISS 1550VP FE-SEM. EBSD
91	analyses were carried out using an HKL EBSD system on a ZEISS 1550VP SEM, operated at
92	20 kV and 6 nA in focused-beam mode with a 70° tilted stage and variable pressure mode (25
93	Pa). Chemical analyses were carried out using a JEOL 8200 electron probe at 15 kV and 10
94	nA with a probe diameter of \sim 150 nm and an Oxford X-Max SDD EDS on the ZEISS
95	1550VP SEM at 10 kV and 15 kV.
96	Synchrotron diffraction data were collected at the undulator beamline 16-IDB

97 (HPCAT, APS, Argonne National Laboratory) using a beam of wavelength 0.31856 Å,

98 focused with elliptical mirrors to $2 \times 3 \mu m^2$ vertical and horizontal dimensions. A PILATUS 99 1M hybrid pixel array detector was used for data acquisition. Diffraction patterns were 100 collected in forward scattering geometry over a grid across regions with albitic jadeite (e.g., Figs. 1-2) with 10 μ m steps; the sample was oscillated by $\pm 20^{\circ}$ around the ϕ -axis during data 101 acquisition of 10 s. The diffraction patterns of albitic jadeite are powder-like with smooth 102 103 Debye fringes. Patterns from EET 13014, EET 13052 and TIL 08001 exhibited strong 104 contributions from coarse-grained, host rock mineral phases underneath the albitic material 105 exposed at the surface of the thin section and were not suitable for structural analysis but 106 contained some evidence for the presence of albitic jadeite. Patterns from the Ries xenolith 107 ZLN100 showed varying contributions of fine-grained garnet and albitic jadeite and were 108 used for Rietveld refinement. Diffraction frames were calibrated and integrated with the DIOPTAS software (Prescher and Prakapenka 2015). A diffraction frame without noticeable 109 110 orientation of crystallites was choosen for Rietveld refinement (Fig. 3). The starting model 111 of clinopyroxene was generated from jadeite (Table S1) but, initially, with full occupancy of 112 the M2 site. For garnet, site occupancies were initially adjusted to match the EPMA 113 composition and unit cell dimensions were manually adjusted to match the observed 114 reflections prior to refinement. No deviation from the cubic metric was resolvable. Validity of the structure models was checked for both phases through reversed Monte Carlo modeling 115 116 based on extracted |F(hkl)|. For garnet, the average electron densities of the X- and Y-sites 117 were examined by local optimization using procedures described in Huang et al. (2020). The relative electron density per site was partitioned among the elements present and this site 118 distribution was used in the Rietveld refinement. The rMC modeling converged to $R_F =$ 119 120 13.8% and Rietveld refinement (Kraus and Nolze 1996) converged to R_{wp} =12.61, R_p =9.54. The examined pattern gave 24 ± 3 vol.% clinopyroxene and 76 ± 3 vol.% garnet (Fig. 3). 121 122 The Le Bail extraction converged to R_p =5.95. Gaussian profile terms for clinopyroxene and garnet were U = 0.655, V = 0.010, W = 0.0065 and U = 0.530, V = 0.0079, W = 0.0025, 123 124 respectively, with an initial Lorentzian mixing term converging to zero for each phase. An 125 additional Rietveld refinement of the three added patterns of textured material with GSAS (Larson and Von Dreele 2004) converged to $R_{wp} = 10.06\%$, $R_p = 7.4$, $\chi^2 = 2.2$ for 1414 126 127 observation and the R_{F2} were 16.7 and 11.2% for clinopyroxene and garnet, respectively. 128

129	RESULTS
130	Albitic jadeite occurs as aggregates crystallized from maskelynite within, or in
131	contact with, shock melt veins (Figs. 1-2). The amphibolite xenolith ZLN100 from the Ries
132	suevite has been characterized by Stähle et al. (2011, 2017). It consists of pargasitic
133	amphibole (Stähle et al. 2011) and maskelynite (An ₆₆ Ab ₃₃ Or ₁ and An ₄ Ab ₉₄ Or ₁), with minor
134	titanite, clinozoisite, and rare magnetite, apatite, and Fe-sulfide and is crosscut by a 50-500
135	μ m thick melt vein. In section, albitic jadeite occurs within ~5-10 μ m of a contact between
136	sodic maskelynite and the shock melt vein (note that the observed distances in section are
137	maxima because the plane of a thin section generally doesn't capture the closest approach
138	between two objects). It also forms aggregates of subhedral 100-800 nm crystals within the
139	shock melt vein, surrounded by euhedral garnet (Fig. 1). Here, the albitic jadeite grains are
140	pseudomorphs after clasts of albite that were trapped in the melt but not digested.
141	Unit cell parameters of albitic jadeite with the $C2/c$ diopside-type structure in Ries
142	ZNL100 were refined by synchrotron X-ray diffraction to $a = 9.442 \pm 2$ Å, $b = 8.606 \pm 2$ Å, c
143	= 5.253 ± 1 Å and β = 107.47 $\pm 2^{\circ}$, where quoted errors are 1 σ , and found to range between
144	9.424 - 9.455 Å, 8.589 - 8.606 Å, 5.216 - 5.253 Å, and 107.72° - 107.45°, for all analyzed
145	data from ZLN100. The unit cell length of the garnet was $a = 11.632 \pm 0.001$ Å. Fractional
146	atomic coordinates, site fractional occupancies, and isotropic thermal displacement factors of
147	albitic jadeite and garnet from Ries are given in Table S2. The composition of clinopyroxene
148	in the shock melt vein from Ries (Table 1) yields an empirical formula based on 6 O apfu of
149	$(Na_{0.65}Ca_{0.04}K_{0.04}Mg_{0.01}\square_{0.25})(Al_{0.80}Si_{0.19}Fe_{0.01})Si_2O_6$ with a general formula of
150	$(Na,Ca,\Box_{1/4})(Al,Si)Si_2O_6$, a composition that is also consistent with an albite precursor
151	$(Na_{0.87}Ca_{0.05}K_{0.05}Mg_{0.01}Fe_{0.01})(Si_{2.92}Al_{1.07})O_8$ (i.e., this is an albitic jadeite). Vacancies
152	occupy about 25% of the Na-dominant M2-site and excess Si \sim 20% of the Al-dominant
153	octahedral M1-site. Trace K occurs along with Na and Ca on the M2-site. Albitic jadeite is
154	electron beam sensitive (analysis invariably produces a mark/hole), likely due to
155	metastability of excess Si in the M1 site under ambient conditions. This makes the
156	acquisition of an EBSD pattern difficult to obtain, although not impossible. Figure 4 shows
157	one of the best EBSD patterns we obtained for albitic jadeite (NWA 1662). Beam sensitivity
158	also provides an important identifying contrast with natural jadeites that contain no excess Si,
159	which are rather insensitive to the electron beam.

160 The surrounding euhedral garnet of the melt vein in ZLN100 (Table 1; Fig. 1) has an empirical formula based on 12 O apfu of 161 162 $(Mg_{0.94}Ca_{0.82}Fe_{0.74}Na_{0.34}K_{0.03}Mn_{0.01})(Al_{1.49}Si_{0.48}Ti_{0.05})Si_{3}O_{12}$ with excess Si on the octahedral 163 Y-site and pyrope (Pyr), almandine (Alm), grossular (Gro) and hypothertical 164 (Na₂Ca)Si₂Si₃O₁₂ (NSS) as the main components, i.e., ~Pyr₃₁Alm₂₅NSS₂₅Gro₁₉. TIL 08001, EET 13014, EET 13052 and NWA 1662 are L6 ordinary chondrites that 165 166 experienced S3-S6 level shock metamorphism (Meteoritical Bulletin Database), which led to 167 undulose extinction in olivine, albite transformed into maskelynite, and the presence of wadsleyite, majoritic garnet, and albitic jadeite as high-pressure minerals (Fig. 2); the shock-168 produced phases were identified through BSE imaging, EDS, and EBSD. 169 170 In TIL 08001, albitic jadeite crystallizes in albitic maskelynite adjacent to shock-melt 171 veins (Fig. 2a), similar to the growth of tissintite in maskelynite of much more calcic 172 plagioclase composition in the Tissint martian meteorite (Ma et al. 2015). The empirical 173 formula of albitic jadeite in TIL 08001 by EDS is \sim (Na_{0.54}Ca_{0.08}K_{0.04} $\square_{0.32}$)(Al_{0.8}Si_{0.2})Si₂O₆, where \sim is used to emphasize the approximate nature of the alkali content, with $> \frac{1}{4}$ 174 175 vacancies in M2 due to apparent Na-diffusion away from the electron beam. The composition 176 of wadsleyite in TIL 08001 is (Mg_{1.49}Fe_{0.51})SiO₄. We observed an occurrence of albitic jadeite formed in albitic maskelynite within one 177 178 shock melt vein in EET 13014 (Fig. 2b) with a composition of 179 ~ $(Na_{0.59}Ca_{0.08}K_{0.06})(Al_{0.82}Si_{0.16}Fe_{0.03})Si_2O_6$. The composition of associated majoritic garnet is $(Mg_{2.03}Fe_{0.65}Na_{0.25}Ca_{0.07})(Al_{0.81}Si_{0.68}Mg_{0.51})Si_3O_{12}$ and the compsition of ferropericlase is 180 181 $(Mg_{0.56}Fe_{0.44})O$. The composition of wadsleyite is $(Mg_{1.45}Fe_{0.54}Mn_{0.01})SiO_4$. 182 In EET 13052, albitic jadeite, which formed from maskelynite within one shock melt 183 vein (Fig. 2c), has a composition of \sim (Na_{0.59}Ca_{0.08}K_{0.04})(Al_{0.77}Si_{0.23})Si₂O₆. The compositions 184 of associated majoritic garnet and wadslevite are 185 $(Mg_{2,0}Fe_{0,78}Na_{0,15}Ca_{0,06})(Al_{0,68}Si_{0,72}Mg_{0,60})Si_{3}O_{12}$ and $(Mg_{1,17}Fe_{0,83})SiO_{4}$, respectively. 186 Albitic jadeite in maskelynite at the edge of a shock melt vein in NWA 1662 (Fig. 2d) 187 has a composition of \sim (Na_{0.57}Ca_{0.08}K_{0.03})(Al_{0.84}Si_{0.16})Si₂O₆. The composition of wadsleyite is 188 $(Mg_{1.48}Fe_{0.50}Mn_{0.01})SiO_4.$ 189

190	DISCUSSION
191	Shock-induced phases and their compositions can be used to constrain the conditions
192	of a shock event. For example, the pressure experienced by the Ries amphibolite ZNL100
193	can be estimated from the majorite-component of the garnet (see Collerson et al. 2010),
194	which yields a pressure range of $18 - 22$ GPa. This pressure range is consistent with the
195	solid-solid transformation of amphibole at the rim of the melt vein (19 - 21 GPa), the
196	observed polymorphs of titania (Tschauner et al. 2019; ~20 GPa), and the formation of
197	stöfflerite (Tschauner et al. 2021; ~20 GPa). It is also in agreement with the fact that about
198	half of the host-rock plagioclase is fully transformed to maskelynite (Stähle et al. 2017). In
199	contrast, compositions of garnets in the chondrites EET 13014, EET 13052, and NWA 1662
200	indicate pressures of formation of \sim 22 Gpa, using Collerson et al. (2010), whereas the
201	presence of wadsleyite suggests shock pressures to 14 - 18 GPa. This is consistent with a
202	generally observed wide range of apparent shock levels within individual meteorites (Sharp
203	and DeCarli 2006).
204	Albitic jadeite is a new high-pressure polymorph of albite joining lingunite, which is
205	NaAlSi ₃ O ₈ in the hollandite-type structure and it forms under similar conditions (Gillet et al.
206	2000). Under static high pressures, these phases may only exist in the form of minor
207	components in jadeite, but in terrestrial impactites and shocked meteorites, such pyroxenes
208	may be common. Albitic jadeite forms through the reaction:
209	$3 \text{ NaAlSi}_{3}\text{O}_{8} \rightarrow 4 \text{ (Na}_{0.75}\square_{0.25}\text{)}(\text{Al}_{0.75}\text{Si}_{0.25}\text{)}\text{Si}_{2}\text{O}_{6}.$
210	The endmember formula is conventionally broken down to $3/4$ NaAlSi ₂ O ₆ (jadeite) + $1/4$
211	\Box SiSi ₂ O ₆ (hypothetical clinopyroxene endmember with octahedral Si). Since the jadeite
212	component dominates, this phase is an albitic jadeite and does not define a new mineral.
213	Nevertheless, albitic jadeite adds an important limiting case to the Na ₂ O-Al ₂ O ₃ -SiO ₂ phase
214	diagram at high pressure and accounts for excess Si components in sodic high-pressure
215	pyroxenes.
216	Albitic jadeite is $\sim 21\%$ denser than albite and lingunite is $\sim 11\%$ denser than albitic
217	jadeite. The geometry of the T site of albitic jadeite is the same as in endmember jadeite. The
218	structure refinement of albitic jadeite from Ries, however, suggests that the M2 site is slightly
219	contracted and the M1 site expanded due to the incorporation of Si. M2 contraction is mostly
220	along the longest M2-O2 bond vector, whereas it is nearly equal for the other bond vectors
221	(Table S3).

222

223

IMPLICATIONS

Albitic jadeite occurs in terrestrial and meteoritic shock-metamorphic parageneses at pressures between 18 and 22 Gpa, formed under conditions similar to lingunite. The larger molar volume of albitic jadeite compared to lingunite suggests that it forms along a transformation sequence controlled by the Ostwald step rule: albitic maskelynite \rightarrow albitic jadeite \rightarrow lingunite. The value of the Ostwald step rule for interpreting shock metamorphic phase transitions has been pointed out previously (e.g., Tschauner et al. 2021).

Albitic jadeite does not occur in the matrix of shock-melt veins other than as clasts. Figure 1 shows that the melt vein matrix contains only garnet with a sodic component in accordance with the substitution mechanism Na + Si \rightarrow Mg + Al, corresponding to a hypothetical endmember (Na₂Ca)Si₂Si₃O₁₂. Hence, clinopyroxene within shock-melt vein matrices is generally expected to be jadeite and not albitic jadeite. On the other hand, it is likely that maskelynite of albite-rich composition transforms around shock melt veins or pockets into the vacancy-stabilized clinopyroxenes described here.

The molar volume of albitic jadeite is 73.63 ± 1.09 cm³/mol for the composition range 237 $(Na_{0.75}\square_{0.25})(Al_{0.75}Si_{0.25})Si_2O_6$ to $(Na_{0.50}Ca_{0.25}\square_{0.25})AlSi_2O_6$, which is substantially larger than 238 the volume of the decompositon products of the reaction albite \rightarrow jadeite + coesite (V = 239 $69.65 \text{ cm}^3/\text{mol}$). The difference of 4 cm³/mol likely accounts for the stability of jadeite + 240 241 coesite over albitic jadeite. However, there is a more fundamental point that can be taken 242 from the volume difference: Albitic jadeite falls within a distinct trend of pressure-induced 243 volume relations which involve metastable high-pressure phases or significant configurational entropy and which follow the relation $\Delta V \approx 3 \cdot \exp[(\Delta V'/15)]$. In the present 244 case, ΔV is the volume difference between albite and clinopyroxene and $\Delta V'$ the difference 245 246 between albite and lingunite, respectively, all taken at ambient reference conditions 247 (Tschauner 2020). The relation gives $\Delta V = 16.87 \pm 1.1$ (observed) ~ 15.9 ± 1.7 (calculated) 248 cm³/mol. Neither albitic jadeite nor lingunite has a stability field, which is consistent with the 249 underlying causes of this relation (Tschauner 2020). In contrast, tissintite exhibits a 10% smaller volume than the decomposition products grossular, zagamiite, and kyanite (Liu et al. 250 251 2012, Tschauner 2020). The Ca-Eskola component, which characterizes tissintite, is found as a minor component in eclogitic clinopyroxene (McCormick 1986), whereas the albitic 252 253 pyroxene component is preferrentially dissolved in garnet in subducted MORB at pressures

- where albitic jadeite forms in impactites. These garnets were originally described as garnets
- with excess pyroxene component (Moore and Gurney 1985) based on their composition.
- 256 Structurally, they are characterized by a majoritic component and Na on the X-site, both
- 257 clearly correlated with pressure (Collerson et al. 2010, Wijbrans et al. 2016).
- 258
- 259

ACKNOWLEDGEMENTS

260 SEM, EDS, EBSD and EPMA analyses were carried out at the Caltech GPS Division 261 Analytical Facility, which is supported, in part, by NSF Grants EAR-0318518 and DMR-262 0080065. OT acknowledges support by NSF EAR-1838330. YL thanks the supports by the 263 Leader Researcher program (NRF-2018R1A3B1052042) of the Korean Ministry of Science, 264 ICT and Planning and PE20200 funded by the Korea Polar Research Institute. GSECARS is 265 supported through DOE Award DESC0005278, and NSF awards EAR-1128799,-0318518, DE-FG02-94ER14466, and DMR-0080065. The Advanced Photon Source, a DOE Office of 266 267 Science User Facility, is operated by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We thank V. Stähle and M. Trieloff for providing material of the Ries 268 269 xenolith thin section ZLN100 for this study, Chang-kun Park of Korea Polar Research 270 Institute for providing TIL 08001, and D. Stöffler for stimulating discussions.

271 272

REFERENCES

- Angel, R.J., Gasparik, T., Ross, N.L., Finger, L.W., Prewitt, C.T., and Hazen, R.M. (1988) A
 silica-rich sodium pyroxene phase with six-coordinated silicon. Nature, 335, 156–158.
- Bell, D.R. and Rossman, G.R. (1992) Water in the Earth's mantle: the role of nominally
 anhydrous minerals. Science, 255, 1391–1397.
- 277 Collerson, K.D., Williams, Q., Kamber, B.S., Omori, S., Arai, H., and Ohtani, E. (2010).
- 278 Majoritic garnet: A new approach to pressure estimation of shock events in meteorites
- and the encapsulation of sub-lithospheric inclusions in diamond. Geochimica et
- 280 Cosmochimica Acta, 74, 5939–5957.
- 281 Gillet, P., Chen, M., Dubrovinsky, L., and El Goresy, A. (2000) Natural NaAlSi₃O₈-
- hollandite in the shocked Sixiangkou meteorite. Science, 287, 1633–1636.
- 283 Hatert, F. and Burke E.A.J. (2008) The IMA-CNMNC dominant-constituent rule revisited
- and extended. Canadian Mineralogist, 46, 717–728.

- Huang, S., Tschauner, O., Yang, S., Humayun, M., Liu, W., Gilbert Corder, S.N., Hans A.
- Bechtel, H.A., and Tischler, J. (2020) HIMU geochemical signature originating from the
 transition zone. Earth and Planetary Science Letters, 542, 116323.
- Larson, A.C. and von Dreele R.B. (2004) General Structure Analysis System (GSAS), Los
 Alamos National Laboratory Report LAUR 86-748.
- Liou, J.G. Zhang, R.Y., Ernst, W.G., Rumble III, D. and Maruyama, S. (1998) High-pressure
 minerals from deeply subducted metamorphic rocks. In R.J. Hemley, Ed., Ultrahigh-
- 292 pressure Mineralogy, Physics and Chemistry of the Earth Deep Interior, 37, 33–196.
- 293 Reviews in Mineralogy, Mineralogical Society of America, Washington, D.C.
- Liu, L.-G. (1978) High-pressure phase transformations of albite, jadeite and nepheline. Earth
 and Planetary Science Letters, 37, 438–444.
- Liu, X., Ohfuji, H., Nishiyama, N., He, Q., Sanehira, T., and Irifune, T. (2012) High-P
- behavior of anorthite composition and some phase relations of the CaO-Al₂O₃-SiO₂
- system to the lower mantle of the Earth, and their geophysical implications. Journal ofGeophysical Research Solid Earth, 117, Article Number: B09205.
- 300 Ma, C., Tschauner, O., Beckett, J.R., Liu, Y., Rossman, G.R., Zhuravlev, K., Prakapenka, V.,
- Dera, P., and Taylor, L.A. (2015) Tissintite, (Ca,Na,□)AlSi₂O₆, a highly-defective,
- 302 shock-induced, high-pressure clinopyroxene in the Tissint martian meteorite. Earth and
 303 Planetary Science Letters, 422, 194–205.
- 304 Ma, C., Tschauner, O., Kong, M., Beckett, J.R., Greenberg, E., Prakapenka, V.B., Lee, Y.
- 305 (2020) Discovery of a highly-defective, shock-induced, high-pressure albitic jadeite,
- 306 (Na,Ca, $\Box_{1/4}$)(Al,Si)Si₂O₆: Natural occurrence of a clinopyroxene with excess Si. 51st
- 307 Lunar and Planetary Science Conference, Abstract no. 1712.
- McCormick, T.C. (1986) Crystal-chemical aspects of nonstoichiometric pyroxenes.
 American Mineralogist, 71, 1434–1440.
- 310 Miyahara, M., Ozawa, S., Ohtani, E., Kimura, M., Kubo, T., Sakai, T., Nagase, T., Nishijima,
- M., and Hirao, N. (2013) Jadeite formation in shocked ordinary chondrites. Earth and
 Planetary Science Letters, 373, 102–108.
- Moore, R.O. and Gurney, J.J. (1985) Pyroxene solid solution in garnets included in diamond.
 Nature, 318, 553-555.

315 Prescher, C. and Prakapenka, V.B. (2015) DIOPTAS: a program for reduction of two-316 dimensional X-ray diffraction data and data exploration. High Pressure Research, 35, 317 223-230. 318 Sharp, T.G. and DeCarli, P.S. (2006) Shock effects in meteorites. In Meteorites and the early 319 solar system II, edited by Lauretta D. S. and McSween H. Y. Jr. Tucson, Arizona: 320 University of Arizona Press. pp. 653-677. 321 Stähle, V., Altherr, R., Nasdala, L., and Ludwig, T. (2011) Ca-rich majorite derived from 322 high-temperature melt and thermally stressed hornblende in shock veins of crustal rocks 323 from the Ries impact crater (Germany). Contributions to Mineralogy and Petrology, 161, 324 275-291. 325 Stähle, V., Altherr, R., Nasdala, L., Trieloff, M., and Varychev, A. (2017) Majoritic garnet 326 grains within shock-induced melt veins in amphibolites from the Ries impact crater 327 suggest ultrahigh crystallization pressures between 18 and 9 GPa. Contributions to 328 Mineralogy and Petrology, 172, Article number: 86; DOI 10.1007/s00410-017-1404-7. Tropper, P., Essene, E.J., Sharp, Z.D., and Hunziker, J.C. (1999) Application of K-feldspar-329 330 jadeite-quartz barometry to eclogite facies metagranites and metapelites in the Sesia 331 Lanzo Zone (Western Alps, Italy). Journal of metamorphic Geology, 17, 195–209. 332 Tschauner, O., Ma, C., Lanzirotti, A. and Newville, M.G. (2019) Riesite, a new high pressure 333 polymorph of TiO₂ from the Ries impact structure. 10, 78; doi:10.3390/min10010078. 334 Tschauner, O. (2020) Empirical constraints on volume changes in pressure-induced solid 335 state transformations. High Pressure Research, 40, 511-524. 336 Tschauner, O., Ma, C., Spray, J.G., Greenberg, E. and Prakapenka, V.B. (2021) Stöfflerite, 337 $(Ca,Na)(Si,Al)_4O_8$ in the hollandite structure: A new high-pressure polymorph of 338 anorthite from martian meteorite NWA 856. American Mineralogist, 106, 650-655. 339 Warren, J.M. and Hauri, E.H. (2014) Pyroxenes as tracers of mantle water variations. Journal 340 of Geophysical Research - Solid Earth, 119, 1851–1881. 341 Wijbrans, C.H., Rohrbach A., and Klemme, S. (2016) An experimental investigation of the stability of majoritic garnet in the Earth's mantle and an improved majorite 342 343 geobarometer. Contributions to Mineralogy and Petrology, 171, 50. 344 Wood, B.J. and Henderson, C.M.B. (1978) Compositions and unit-cell parameters of 345 synthetic non-stoichiometric tschermakitic clinopyroxenes. American Mineralogist, 63, 346 66-72.

- 347 Yang, H., Konzett, J., Frost, D.J., and Downs, R.T. (2009) X-ray diffraction and Raman
- 348 spectroscopic study of clinopyroxenes with six-coordinated Si in the
- 349 $Na(Mg_{0.5}Si_{0.5})Si_2O_6$ -NaAlSi₂O₆ system. American Mineralogist, 94, 942–949.
- 350 Zhang, L., Song, S., Liou, J.G., Ai, Y., and Li, X. (2005) Relict coesite exsolution in
- 351 omphacite from Western Tianshan eclogites, China. American Mineralogist, 90,
- 352 181–186.
- 353
- 354
- 355

Constituent	albitic jadeite		garnet		albite	
wt%	n=7 ^a	SD ^c	n=5	SD	n=4	SD
SiO ₂	65.97	1.99	45.99	1.35	67.95	0.31
TiO ₂	b.d. ^b		0.93	0.12	b.d.	
Al ₂ O ₃	20.51	0.77	16.65	1.65	20.09	0.23
FeO	0.51	0.15	11.70	1.39	0.45	0.04
MgO	0.14	0.12	8.35	0.76	0.02	0.02
CaO	1.11	0.19	10.15	2.08	0.83	0.28
Na ₂ O	10.05	0.96	2.29	0.42	11.10	0.16
K ₂ O	0.85	0.25	0.27	0.04	0.19	0.12
Cr ₂ O ₃	b.d.		b.d.		b.d.	
MnO	b.d.		0.19	0.02	b.d.	
Total	99.16		96.53		100.63	
No. O atoms	6		12		8	
Si	2.19		3.48		2.96	
Ti			0.05			
Al	0.80		1.49		1.03	
Fe	0.01		0.74		0.02	
Mg	0.01		0.94		0.00	
Са	0.04		0.82		0.04	
Na	0.65		0.34		0.94	
К	0.04		0.03		0.01	
Cr						
Mn			0.01			
Cation sum	3.74		7.90		5.00	

356 357 Table 1. EPMA data for albitic jadeite and garnet in a melt vein and nearby albite from Ries.

358

^a n = number of analyses. ^b b.d. = below detection limit, 0.02 wt% for Ti, 0.03 wt% for Cr, and 0.02 wt% for Mn. 359

^c SD = standard deviation. Errors are one standard deviation of the mean based on all of the 360 361 analyses.

362

Figure 1. Backscatter electron (BSE) image showing albitic jadeite with euhedral garnet 365 within a shock-melt vein in an amphibolite xenolith from Ries impact crater.

366

371372

373 374 375

Figure 2. BSE images showing albitic jadeite formed from maskelynite in shock-melt veins
from the L6 ordinary chondrites (a) TIL 08001, (b) EET 13014, (c) EET 13052, and (d)
NWA 1662.

389

Figure 3. Powder X-ray diffraction pattern of albitic jadeite and garnet in the shock-melt vein
of section ZLN100 from the Ries impact crater (Fig. 1). Black crosses: observed pattern, red
line: Rietveld refinement, green line: residual. Blue and red tickmarks are the positions of the
observable reflections of albitic jadeite and garnet, respectively. The X-ray wavelength was
0.31856 Å.

- 395
- 396
- 397 398

401 **Figure 4**. (a) EBSD pattern of an albitic jadeite crystal in NWA 1662, (b) indexed to a C2/c402 diopside-type structure.