Evidence from HP/UHP metasediment for recycling of isotopically heterogeneous potassium into the mantle

Ze-Zhou Wang1,2*, Fang-Zhen Teng1*, Vincent Busigny3,4, Sheng-Ao Liu2

1. Isotope Laboratory, Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA
2. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
3. Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
4. Institut Universitaire de France, Paris, France

Abstract: 257 words
Main text: 2688 words
References: 46
Figures: 5
Table: 1

Revised version 1
Submitted to \textit{American Mineralogist}
February 15, 2020

* Corresponding authors, emails: zzwang74@uw.edu; fteng@uw.edu

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
ABSTRACT

Potassium isotopes may provide a novel approach for fingerprinting recycled sediments in the mantle due to the significant differences in K abundance and isotopic ratio between subducting sediment and the mantle. However, the behavior of K isotopes in sediments during subduction zone metamorphism is still unknown. Here we investigate K isotopic composition of a set of well-characterized high- to ultrahigh-pressure metasediments from the Schistes Lustrés nappe (western Alps), which represents marine sediments subducted down to ~90 km depth in a cold subduction zone, and their protoliths from the Lavagna nappe (Apennines, Italy). The metasediments display δ⁴¹K_{SRM 3141a} values from -0.76‰ to -0.48‰, which are on average lower than the mantle value (-0.43‰) but similar to those of non-metamorphic equivalents (-0.79‰ to -0.49‰). No systemic variation of δ⁴¹K with metamorphic grade is observed, suggesting negligible K isotope fractionation in these sediments during prograde metamorphism. This is in accord with the limited loss of K during the entire metamorphic history as evidenced by the constancy of K/Rb and K/Cs ratios between metamorphic and non-metamorphic sediments and the absence of correlations of δ⁴¹K with K/Rb and K/Cs. The heterogeneous δ⁴¹K values of metasediments are most likely inherited from their protoliths, which experienced different degree of chemical weathering depending on their provenances. Our results demonstrate that the variable and light K isotopic signatures in subducting sediments could be preserved to depths of at least 90 km along a cold geotherm gradient, indicating that introduction of sediments into the mantle could produce K isotope heterogeneity in the source regions of mantle-derived lavas.

Keywords: potassium isotopes; metasediment; metamorphism; subduction zone
INTRODUCTION

Global subducting sediment (GLOSS) has an average K_2O content (2.21 wt.%; Plank, 2014) several orders of magnitude higher than that of the mantle (0.03 wt.%; McDonough and Sun, 1995). Accordingly, recycling of sediments into the mantle has been commonly invoked to explain the significant K enrichment observed in many mantle-derived lavas such as arc volcanic rocks and EM-type oceanic island basalts (OIBs) relative to mid-ocean ridge basalts (MORBs) (e.g., Plank and Langmuir, 1993; Tatsumi and Eggins, 1995; Elliott, 2003; Jackson andDasgupta, 2008; Rapp et al., 2008). Recent developments in high-precision K isotope measurements revealed that, compared with the mantle with a mean value of -0.43 defined by global oceanic basalts (Tuller-Ross et al., 2019), subducting sediments display an overall ~1.3‰ variation in $\delta^{41}\text{K}$ and commonly have $\delta^{41}\text{K}$ values (down to -1.31‰) lower than the mantle (Hu et al., 2020). Low $\delta^{41}\text{K}$ value of sediments were mainly ascribed to preferential leaching of heavy K isotopes during chemical weathering (Li et al., 2019a, 2019b; Chen et al., 2020; Hu et al., 2020; Huang et al., 2020; Teng et al., 2020) or incorporation of light K isotopes into authigenic clays during diagenesis (Santiago Ramos et al., 2018; Hu et al., 2020). By contrast, altered oceanic crust (AOC), another major K sink in subducting slabs, has an average $\delta^{41}\text{K}$ similar to or higher than the mantle due to interaction with isotopically heavy seawater (Parendo et al., 2017; Hille et al., 2019; Hu et al., 2020; Santiago Ramos et al., 2020). Hence, K isotopes have great potential to discriminate recycled sediments in the mantle. In this regard, the lighter K isotopic compositions relative to the mantle observed in some mantle-derived lavas have been explained to reflect recycled sediments in their mantle sources (e.g. $\delta^{41}\text{K}$ down to -0.81‰ for potassic basalts from Northeast China and $\delta^{41}\text{K}$ down to -0.60‰ for arc volcanic rocks from Lesser Antilles; Sun et al., 2020; Hu et al., 2021). However, this conclusion relies on the
assumption that K isotopes are not fractionated in sediments during slab subduction into deep mantle, which is still required to be verified.

To date, only one recent study investigated the K isotope behavior during dehydration of subducted oceanic crust. Based on data for eclogites from Tibet, Liu et al. (2020) proposed that dehydration of oceanic crust preferentially releases heavy K isotopes into fluids with an isotope fractionation factor of 1.0015, leaving the residual eclogites extremely enriched in light K isotopes (δ^{41}K down to -1.64‰). Nevertheless, the low-δ^{41}K eclogites are very depleted in K (<0.1 wt.%) and unlikely to be a major isotopically light K input to subduction zones. By contrast, subducting sediments that are highly concentrated in K make up the key isotopically light reservoir within subducting slabs (Plank, 2014; Hu et al., 2020). Moreover, trace elemental studies suggest that “sediment components” dominate the volcanic output of large ion lithophile elements (LILE, e.g., K, Rb, Sr, Ba, Cs) in subduction zones (Plank and Langmuir, 1993). Thus, understanding the behavior of K isotopes in subducting sediments during prograde metamorphism can provide important insights into the fate of sediments in subduction zones particularly on: (1) contribution of sediments to arc magmatism through metamorphic dehydration and/or partial melting and (2) the role of sediments in creating mantle heterogeneity beyond sub-arc regions.

Here we reported K isotopic data for metasediments from the Schistes Lustrés nappe (western Alps) and their protoliths from the Lavagna nappe (northern Apennines, Italy). This suite of samples comprises a continuous metamorphic sequence representative of oceanic sediments subducted at depths between 15 and 90 km along a cold subduction path (Agard et al., 2001; Busigny et al., 2003; Bebout et al., 2013) and thus provides an excellent opportunity to assess element mobility and isotope behavior during forearc devolatilization of sediments.
Previous studies have demonstrated impressive retention of many elements thought to be fluid-mobile (e.g., K, Rb, Cs, Li, B, N, H, C and Cl) and no discernible fractionation of N, H, Li and Cl isotopes in the Schistes Lustrés metasediments across a wide range of metamorphic grade (Busigny et al., 2003; Philippot et al., 2007; Bebout et al., 2013; Cook-Kollars et al., 2014; Barnes et al., 2019; Epstein et al., 2020). We explore the influence of metamorphism on K isotopic compositions of these sediments and evaluate the robustness of K isotopes as a tracer of sediment recycling in the mantle.

GEOLOGICAL BACKGROUND AND SAMPLES

The western Alps formed following the closure of the approximately north-south trending Valais and Liguro-Piemontese slow-spreading oceans from 100 Ma, through an eastward subduction zone below Apulia/Africa plate at rates of <20 mm/yr (e.g., Rosenbaum and Lister, 2005). The Schistes Lustrés nappe, located in the Piemonte-Ligurian domain of the western Alps (Fig. 1), is mostly composed of upper Mesozoic pelagic metasedimentary rocks that were originally deposited from the Alpine Ocean (e.g., Agard et al., 2009). The peak metamorphic conditions of metasediments from Lago Nero, Fraiteve, Assieta and Finestre continually increase from 0.8 GPa, < 300 °C to the west to 1.8-2.0 GPa, 450-500 °C to the east (Martin and Polino, 1984; Agard et al., 2001), which is indicated by the successive stability fields of lawsonite, chloritoid and garnet (Agard et al., 2001; Busigny et al., 2003). Samples from Lago di Cignana underwent ultrahigh-pressure (UHP) metamorphism (2.7-2.9 GPa and 630 °C; Reinecke, 1998), as exemplified by the occurrence of UHP minerals such as microdiamond and coesite (Reinecke, 1998; Frezzotti et al., 2011). Together, the Schistes Lustrés metasediments represent oceanic sediments that were subducted to variable depths down to ~90 km along a "cold slab" geothermal
In this study, we measured K isotopic compositions of 12 metasediments from the Schistes Lustrés nappe, covering all the metamorphic grades described above (Busigny et al., 2003). They mainly consist of quartz, carbonate, phengite, paragonite and chlorite with minor amounts of lawsonite, garnet, rutile, graphite and/or epidote (Busigny et al., 2003). The lithologies range from calc-schist to siliceous metapelite depending on the modal abundance of carbonate (0-49%). The petrology, major-trace element and C-H-O-N isotope geochemistry of these samples have been reported in Busigny et al. (2003), which found large variations in K₂O content (0.61-7.96 wt.%). For comparison, we also analyzed four non-metamorphic sediments from the Lavagna nappe lying within the internal Ligurid units of the Northern Apennines, Italy (Fig. 1), which were taken as protoliths of the Schistes Lustrés metasediments (Busigny et al., 2003). These samples include marls, calcareous and siliceous pelites, with variable proportions of calcite, clay minerals (mostly illite) and quartz, and experienced low-grade diagenetic alteration ($P < 0.17$ GPa and $T < 300$ °C) (Bonazzi et al., 1987; Reinhardt, 1991). Their K₂O contents vary from 1.20 to 4.75 wt.% (Fig. 2).

METHODS

Potassium isotopic analyses were carried out at the Isotope Laboratory of the University of Washington, Seattle, following a protocol reported in Hu et al. (2018) and Xu et al. (2019). Only a brief description is provided below. Approximately 10-15 mg whole-rock powders were dissolved in a mixture of Optima-grade HF-HNO₃-HCl to achieve complete dissolution. Afterwards, the solutions were evaporated to dryness and redissolved in 0.5N HNO₃. Sample solution in 1 ml 0.5 N HNO₃ was loaded onto a column filled with 2 ml Bio-Rad AG 50W-X8
cation exchange resin (200-400 mesh) to separate K from other matrix elements. The column chromatographic procedure was performed twice with the K yield approaching 100% and the total procedural K blank < 9 ng.

The K isotopic ratios were measured on a Nu Plasma II multicollector inductively coupled plasma mass spectrometer. To minimize the isobaric interference of ArH$^+$ on 41K$^+$, sample solution in 3% HNO$_3$ was introduced into a "cold plasma" via a CETAC Aridus II desolvating nebulizer system at the RF power of 700 W. The signals of 39K$^+$ and 41K$^+$ were measured simultaneously at the interference-free shoulder using pseudo-high resolution mode. Around 4-6 V signal of 39K$^+$ can be obtained for solutions containing 3 ppm of K. Instrumental mass bias was corrected using standard-sample bracketing method. The final results are reported in δ notation against the K standard NIST SRM 3141a:

$$\delta^{41}K (‰) = \left\{ \frac{\left(\frac{^{41}K}{^{39}K}\right)_{\text{sample}}}{\left(\frac{^{41}K}{^{39}K}\right)_{\text{SRM 3141a}}} - 1 \right\} \times 1000$$

A long-term external precision better than 0.06‰ (95% confidential interval) is routinely achieved based on repeated analysis of geostandards and pure K solutions (Hu et al., 2018). A shale standard SCo-1 and a granite standard G-2 analyzed in the course of this study yielded δ^{41}K values of -0.40 ± 0.04‰ and -0.46 ± 0.05‰ (Table 1), respectively, which are in good agreement with the results reported previously (Chen et al., 2019; Li et al., 2019b; Xu et al., 2019).

RESULTS

The K isotopic compositions of all samples investigated in this study are reported in Table 1. The Schistes Lustrés metasediments have δ^{41}K values from -0.76 ± 0.04‰ to -0.48 ±
0.03‰, averaging at -0.61 ± 0.15‰ (2SD, n = 12). No systematic variation in δ41K is observed with increasing metamorphic grade (Fig. 2). The Lavagna non-metamorphic rocks display a similar range in δ41K from -0.79 ± 0.04‰ to -0.49 ± 0.04‰, with a mean of -0.58 ± 0.28‰ (2SD, n = 4). Notably, most samples have K isotopic compositions lighter than the average mantle (δ41K = -0.43‰; Tuller-Ross et al., 2019) and upper continental crust (δ41K = -0.44‰; Huang et al., 2020). Such light K isotopic signatures have also been observed in sediments or sedimentary rocks reported previously (δ41K = -1.31‰ to -0.02‰; Li et al., 2019a, 2019b; Chen et al., 2020; Hu et al., 2020; Huang et al., 2020; Teng et al., 2020).

DISCUSSION

The significant K isotopic variation in metasediments might reflect isotope fractionation during metamorphism, protolith heterogeneity or both. Below, we first examine the effects of metamorphism and protolith heterogeneity on the observed K isotopic variation, then discuss the implications for K isotope geochemistry of arc magmatism and mantle heterogeneity.

Metamorphism

The K budget in the Schistes Lustrés metasediments is dominated by phengite, with minor K hosted in paragonite (Bebout et al., 2013), which is depicted by the whole rock data falling along a linear trend between bulk K\textsubscript{2}O content and K\textsubscript{2}O/(SiO\textsubscript{2} + Al\textsubscript{2}O\textsubscript{3}) defined by the phengite and paragonite (Fig. 3). Further support for the whole-rock K\textsubscript{2}O variations resulting from variable abundance of phengite in metasediments comes from the positive relationship between K\textsubscript{2}O and H\textsubscript{2}O (Fig. 4a). Therefore, the behaviors of K and its isotopes in metapelites during metamorphism are strictly controlled by metamorphic reactions involving phengite as it is
the main K host in our samples. Phengite breakdown will release H$_2$O and K into fluids, resulting in a decrease in H$_2$O and K$_2$O contents of the residual metasediments. However, H$_2$O and K$_2$O are not depleted in the majority of metasediments compared with their purported protoliths and their contents do not correlate with metamorphic grade either (Figs. 2, 4a), indicating limited breakdown of phengite and K loss during metamorphism.

To eliminate the potential impact of protolith heterogeneity on K$_2$O content, we employed K$_2$O/Rb and K$_2$O/Cs ratios as indicators of K loss. Because of the similar ionic radius among K, Rb and Cs, Rb and Cs are partitioned predominantly into K-bearing minerals (i.e., phengite in this study). Consequently, the K$_2$O/Rb and K$_2$O/Cs ratios of whole-rock reflect those of phengite. Based on this assumption, the extent of phengite breakdown (F) in an open system can be calculated through the Rayleigh distillation equation: $R^0 = R^1 \times (1-F)^{(1/K_D-1)}$ (Busigny et al., 2003), where R^0 and R^1 represent the K$_2$O/Rb and K$_2$O/Cs ratios in phengite before and after dehydration, respectively, and K_D refers to the Rb-K or Cs-K exchange coefficient between phengite and fluid. Using this method and the exchange coefficient determined by Melzer and Wunder (2000), Busigny et al. (2003) found that strong fractionation between K and Rb or Cs could be induced by a small degree of phengite dehydration (indicated by the dashed curves in Figs. 4b-c). However, almost all samples including metamorphic and non-metamorphic sediments display linear trends in the K$_2$O vs. Rb and K$_2$O vs. Cs diagrams and the maximum extent of phengite breakdown is below 5%. The above observations, together with previous studies of other fluid-mobile and volatile element systems (e.g., Ba, Li, B, N, H, C and Cl; Busigny et al., 2003; Philippot et al., 2007; Bebout et al., 2013; Cook-Kollars et al., 2014; Barnes et al., 2019; Epstein et al., 2020), strongly suggest that the Schistes Lustrés metasediments remained almost in closed systems at the bulk-rock scale during the entire metamorphic history.
Therefore, metamorphic overprinting of K isotopic systems in these metasediments is minimal, which is also evidenced by the same overall range in $\delta^{41}\text{K}$ as their protoliths (Fig. 2) and the lack of obvious correlations of $\delta^{41}\text{K}$ with H$_2$O, K$_2$O/Rb and K$_2$O/Cs (Figs. 4d-f).

Protolith heterogeneity

Both metamorphic and non-metamorphic samples studied here cover a range of lithologies from carbonate-rich to silicate-rich pelites (Busigny et al., 2003). The heterogeneous protoliths are likely responsible for the variation in K isotopic compositions of the Schistes Lustrés metasediments. This is particularly well illustrated by the most siliceous metamorphic sample (7-00), which has the lowest $\delta^{41}\text{K}$ value close to the most siliceous unmetamorphosed equivalent (00-Li7) (Fig. 5a).

Despite the lithological variation, recent studies revealed that varying intensity of chemical weathering exerts a fundamental control on producing the large $\delta^{41}\text{K}$ range of sediments (Li et al., 2019a, 2019b; Chen et al., 2020; Huang et al., 2020; Teng et al., 2020). During chemical weathering, heavy K isotopes are preferentially leached by fluids, as demonstrated by the high $\delta^{41}\text{K}$ values of river water and seawater (Hille et al., 2019; Li et al., 2019a; Teng et al., 2020; Wang et al., 2020, 2021). Correspondingly, the $\delta^{41}\text{K}$ values of weathered residues are shifted towards lower values with increasing intensity of weathering (Chen et al., 2020; Teng et al., 2020). Therefore, sediments sourced from highly weathered provenances often have low $\delta^{41}\text{K}$ values.

All metasediments in this study have very high chemical index of alteration values (CIA, defined in the footnote of Table 1) from 69 to 85, resembling those of the Lavagna unmetamorphosed sediments (73-83). Their $\delta^{41}\text{K}$ values overlap with those of sediments.
reported previously at similar CIA values (Fig. 5b). Although there is no correlation between CIA and δ^{41}K due to the narrow range of CIA and/or protolith heterogeneity, the variable and low δ^{41}K values of these metasediments likely inherited the signatures from surface weathering of their protoliths. This hypothesis is supported by the low Li isotopic ratios, a typical feature of weathered sediments (e.g., Penniston-Dorland et al., 2017), observed in the Schistes Lustrés metasediments with high CIA values similar to those of our samples (Barnes et al., 2019).

IMPLICATIONS

The absence of K isotope fractionation during prograde metamorphism documented in the Schistes Lustrés metasediments confirms that the variable K isotopic compositions of subducting sediments can be preserved to depths at least approaching those beneath volcanic fronts (~90 km) along a cold geotherm gradient typical for most modern subduction zones. Nevertheless, it remains unclear whether K isotopes are fractionated in sediments during warmer subduction. Experimental studies showed that aqueous fluids derived from slab dehydration even under P-T conditions of warm subduction zones contain limited amount of K (Johnson and Plank, 2000; Hermann and Spandler, 2008). Thus, limited K isotope fractionation induced by sediment dehydration along a hot subduction path may also be expected. The light K isotopic signatures of metasediments are distinct from the speculative 41K-enriched fluids released through dehydration of oceanic mafic crust (Liu et al., 2020). This makes K isotopes an effective tool to distinguish recycled sediments from fluids in the petrogenesis of arc magmas, as illustrated in studies of the Lesser Antilles arc lavas (Hu et al., 2021). Furthermore, sediments may survive from dehydration melting and transport substantial K into deeper mantle beyond sub-arc depths (Hermann and Spandler, 2008; Rapp et al., 2008; Grassi and Schmidt, 2011).
Indeed, two studies on deep mantle-derived lavas have revealed low δ^{41}K values in EM1-type intracontinental potassic basalts from northeast China (as low as -0.81‰; Sun et al., 2020) and some EM2-type OIBs from Society hotspot (as low as -0.57‰; Tuller-Ross et al., 2019), both of which might manifest the recycling of sediments into the mantle transition zone and even lower mantle.

ACKNOWLEDGEMENTS AND FUNDING

We dedicated this paper to Prof. John Valley, who has inspired us in many fields, in particular in stable isotope geochemistry and metamorphic petrology. We are grateful to Xin-Yang Chen, Yan Hu, Tian-Yi Huang and Kai-Chen Xing for their help during K isotopic analysis. This manuscript benefited from insightful comments from Dr. Danielle Santiago Ramos and one anonymous reviewer. The careful and efficient editorial handing by Dr. William Peck is highly appreciated. We acknowledge the financial support from the National Key R&D Program of China (2019YFA0708402) to S.-A.L and the Institut Universitaire de France (IUF#2017-2021) to V.B.

REFERENCES CITED

as tracers of fluid activities in serpentinites and metasediments during subduction.

Mineralogy and Petrology, 91, 11-24.

FIGURE CAPTIONS

Figure 1. Sketch tectonic map of the western Alps and northern Apennines (modified after Busigny et al., 2003). From south to north, internal crystalline massifs are Dora Maira, Grand Paradiso and Monte Rosa, respectively. The peak P-T condition of each sampling zone is from Busigny et al. (2003).

Figure 2. Variations of K_2O and $\delta^{41}K$ with increasing metamorphic grade. Symbols with different colors refer to different metamorphic grades. The grey horizontal bar represents the average $\delta^{41}K$ value of samples of each grade and the grey band refers to the 2SE range.

Figure 3. Variation of K_2O with $K_2O/(SiO_2+Al_2O_3)$ (symbols as in Fig. 3). The original data are from Busigny et al. (2003) and reported in Table 1. Data for the Schistes Lustrés metasediments (open diamonds) reported in Bebout et al. (2013) and Epstein et al. (2020) are also shown for comparison. Data for phengites and paragonites in the Schistes Lustrés metasediments are from Bebout et al. (2013). The black line refers to the least square line of best fit throughout all the studied samples.

Figure 4. Plots of (a) K_2O versus H_2O, (b) K_2O versus Rb, (c) K_2O versus Cs, (d) $\delta^{41}K$ versus H_2O, (e) $\delta^{41}K$ versus K_2O/Rb, and (f) $\delta^{41}K$ versus K_2O/Cs (symbols as in Fig. 3). Open diamonds in (b) and (c) are the Schistes Lustrés metasediments from Bebout et al. (2013) and Epstein et al. (2020). Data for phengites are from Bebout et al. (2013). The black lines in (b) and (c) are the least square lines of best fit throughout the studied metasediments. The dashed curves in (b) and (c) refer to the variations in K_2O, Rb and Cs concentrations of metasediments during
devolatilization, which are simulated using the same methods and parameters as those reported in Busigny et al. (2003). Numbers next to small black circles indicate the fraction of phengite broken down.

Figure 5. Plots of (a) δ⁴¹K versus SiO₂ and (b) δ⁴¹K versus CIA (chemical index of alteration, see definition in footnote of Table 1) (symbols as in Fig. 3). The grey squares represent sediments or sedimentary rocks reported in literature (Li et al., 2019a, 2019b; Chen et al., 2020; Hu et al., 2020; Huang et al., 2020; Teng et al., 2020). The average CIA (50.76) and δ⁴¹K value (-0.44‰) of upper continental crust are from Rudnick and Gao (2014) and Huang et al. (2020), respectively.
1 Table 1 Potassium isotopic compositions of the Lavagna sediments, the Schistes Lustrés metasediments and geostandards, together with selected major and trace elemental data.

<table>
<thead>
<tr>
<th>Sample</th>
<th>SiO$_2$ (wt.%</th>
<th>Al$_2$O$_3$ (wt.%</th>
<th>CaCO$_3$ (wt.%</th>
<th>K$_2$O (wt.%</th>
<th>Na$_2$O (wt.%</th>
<th>CaO (wt.%</th>
<th>H$_2$O (wt.%</th>
<th>Rb (ppm</th>
<th>Cs (ppm</th>
<th>CIA</th>
<th>δ^{11}K (‰</th>
<th>2SD (‰</th>
<th>95% c.i. (‰</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavagna (unmetamorphosed)</td>
<td></td>
</tr>
<tr>
<td>00Li10</td>
<td>40.98</td>
<td>16.66</td>
<td>17</td>
<td>2.44</td>
<td>0.66</td>
<td>11.49</td>
<td>4.82</td>
<td>117</td>
<td>6.4</td>
<td>82</td>
<td>-0.51</td>
<td>0.06</td>
<td>0.04</td>
<td>7</td>
</tr>
<tr>
<td>00Li88</td>
<td>58.99</td>
<td>20.58</td>
<td>1</td>
<td>4.75</td>
<td>1.36</td>
<td>0.85</td>
<td>4.10</td>
<td>229</td>
<td>15.6</td>
<td>74</td>
<td>-0.54</td>
<td>0.04</td>
<td>0.04</td>
<td>7</td>
</tr>
<tr>
<td>00Li9</td>
<td>22.91</td>
<td>7.90</td>
<td>68</td>
<td>1.20</td>
<td>0.16</td>
<td>32.06</td>
<td>3.20</td>
<td>62</td>
<td>3.8</td>
<td>83</td>
<td>-0.49</td>
<td>0.07</td>
<td>0.04</td>
<td>7</td>
</tr>
<tr>
<td>00-L17</td>
<td>79.10</td>
<td>8.90</td>
<td>0</td>
<td>2.22</td>
<td>0.53</td>
<td>0.20</td>
<td>2.08</td>
<td>97</td>
<td>6.1</td>
<td>73</td>
<td>-0.79</td>
<td>0.04</td>
<td>0.04</td>
<td>7</td>
</tr>
<tr>
<td>Lago Nero (0.8 GPa/300 °C)</td>
<td></td>
</tr>
<tr>
<td>C18</td>
<td>62.00</td>
<td>8.28</td>
<td>13</td>
<td>0.93</td>
<td>0.72</td>
<td>11.34</td>
<td>2.00</td>
<td>51</td>
<td>3.2</td>
<td>79</td>
<td>-0.56</td>
<td>0.07</td>
<td>0.04</td>
<td>13</td>
</tr>
<tr>
<td>Fraiteve (1.5 GPa/350 °C)</td>
<td></td>
</tr>
<tr>
<td>98SE3</td>
<td>38.41</td>
<td>11.33</td>
<td>19</td>
<td>1.36</td>
<td>0.31</td>
<td>19.56</td>
<td>4.36</td>
<td>72</td>
<td>4.4</td>
<td>85</td>
<td>-0.68</td>
<td>0.08</td>
<td>0.04</td>
<td>7</td>
</tr>
<tr>
<td>SL98-2P</td>
<td>54.49</td>
<td>19.80</td>
<td>2</td>
<td>2.48</td>
<td>0.48</td>
<td>4.99</td>
<td>5.96</td>
<td>126</td>
<td>7.4</td>
<td>85</td>
<td>-0.61</td>
<td>0.08</td>
<td>0.03</td>
<td>14</td>
</tr>
<tr>
<td>Assieta (1.8 GPa/400 °C)</td>
<td></td>
</tr>
<tr>
<td>98SE5</td>
<td>48.71</td>
<td>27.67</td>
<td>0</td>
<td>7.07</td>
<td>0.33</td>
<td>0.00</td>
<td>5.19</td>
<td>341</td>
<td>19.6</td>
<td>77</td>
<td>-0.48</td>
<td>0.08</td>
<td>0.03</td>
<td>7</td>
</tr>
<tr>
<td>98SE6</td>
<td>45.54</td>
<td>28.02</td>
<td>0</td>
<td>5.23</td>
<td>1.58</td>
<td>0.18</td>
<td>5.78</td>
<td>272</td>
<td>16.0</td>
<td>77</td>
<td>-0.57</td>
<td>0.06</td>
<td>0.03</td>
<td>7</td>
</tr>
<tr>
<td>SL98-3C</td>
<td>29.13</td>
<td>7.56</td>
<td>49</td>
<td>0.88</td>
<td>0.50</td>
<td>30.89</td>
<td>2.78</td>
<td>45</td>
<td>2.4</td>
<td>81</td>
<td>-0.52</td>
<td>0.06</td>
<td>0.03</td>
<td>7</td>
</tr>
<tr>
<td>SL98-3P</td>
<td>46.43</td>
<td>28.30</td>
<td>0</td>
<td>7.96</td>
<td>0.19</td>
<td>0.22</td>
<td>5.44</td>
<td>347</td>
<td>19.7</td>
<td>76</td>
<td>-0.63</td>
<td>0.04</td>
<td>0.03</td>
<td>7</td>
</tr>
<tr>
<td>Finestre (2.0 GPa/450 °C)</td>
<td></td>
</tr>
<tr>
<td>98SE7</td>
<td>39.80</td>
<td>4.04</td>
<td>44</td>
<td>0.61</td>
<td>0.19</td>
<td>29.13</td>
<td>1.24</td>
<td>39</td>
<td>2.4</td>
<td>81</td>
<td>-0.60</td>
<td>0.05</td>
<td>0.03</td>
<td>7</td>
</tr>
<tr>
<td>98SE8</td>
<td>66.06</td>
<td>13.24</td>
<td>2</td>
<td>3.52</td>
<td>0.17</td>
<td>1.93</td>
<td>2.80</td>
<td>151</td>
<td>9.0</td>
<td>76</td>
<td>-0.65</td>
<td>0.03</td>
<td>0.03</td>
<td>7</td>
</tr>
<tr>
<td>98SE9</td>
<td>43.75</td>
<td>17.54</td>
<td>21</td>
<td>2.94</td>
<td>0.64</td>
<td>12.27</td>
<td>3.88</td>
<td>127</td>
<td>7.3</td>
<td>81</td>
<td>-0.65</td>
<td>0.06</td>
<td>0.03</td>
<td>7</td>
</tr>
<tr>
<td>Lago di Cignana (2.9 GPa/630 °C)</td>
<td></td>
</tr>
<tr>
<td>90-25A</td>
<td>43.52</td>
<td>10.81</td>
<td>29</td>
<td>2.23</td>
<td>0.49</td>
<td>18.01</td>
<td>2.45</td>
<td>109</td>
<td>4.9</td>
<td>77</td>
<td>-0.63</td>
<td>0.04</td>
<td>0.04</td>
<td>7</td>
</tr>
<tr>
<td>7-00</td>
<td>79.79</td>
<td>8.80</td>
<td>0</td>
<td>2.08</td>
<td>0.99</td>
<td>0.54</td>
<td>1.16</td>
<td>94</td>
<td>5.9</td>
<td>69</td>
<td>-0.76</td>
<td>0.07</td>
<td>0.04</td>
<td>7</td>
</tr>
<tr>
<td>Geostandards</td>
<td></td>
</tr>
<tr>
<td>SCo-1</td>
<td></td>
</tr>
<tr>
<td>G-2</td>
<td></td>
</tr>
</tbody>
</table>

Note: Major and trace elemental data are from Busigny et al. (2003), except for Al$_2$O$_3$, Na$_2$O, and CaO, which are reported here for the first time and were determined by ICP-AES following the same method described in Busigny et al. (2003). CIA = molar ratio of 100*Al$_2$O$_3$/(Al$_2$O$_3$+Na$_2$O+K$_2$O+CaO*), where CaO* refers to the CaO content of silicate fraction only (Nesbitt and Young, 1982). 2SD refers to two standard deviation. 95% c.i. is 95% confidential interval, which is calculated using the equation of $t_{SD/Vn}$, where t is the Student’s t factor and N refers to number of measurements (see details in Hu et al., 2018a).
Figure 1

Sampling zones (★)
A-Lavagna (unmetamorphosed)
B-Lago Nero (0.8 GPa, 300 °C)
C-Fraiteve (1.5 GPa, 350 °C)
D-Assieta (1.8 GPa, 400 °C)
E-Finestre (2.0 GPa, 450 °C)
F-Lago di Cignana (2.9 GPa, 630 °C)

Internal Ligurid units (ophiolites and shaly-marly-limestones complexes)
Schistes Lustrés nappe
Flysh nappes (Helminthoid; siliciclastic)
Brainconnais domain
Austroalpine and southalpine continental units
Internal crystalline massifs
External crystalline massifs
Figure 2

The graph shows the relationship between K$_2$O content (wt.%) and δ41K (%) for two different sediment types: Lavagna sediments and Schistes Lustrés metasediments. The data points are plotted against temperature (°C) and pressure (GPa) during prograde metamorphism.

Lavagna sediments are represented by larger, darker gray circles, while Schistes Lustrés metasediments are shown with lighter, blue diamonds. The δ41K values range from -0.9 to 0.8‰, and the K$_2$O content ranges from below 0.17 to 6.30 wt.%.
Figure 3

![Graph showing the relationship between
K_2O (wt.%) and $K_2O/(SiO_2 + Al_2O_3)$ with data points for Lavagna sediments, Schistes Lustrés metasediments, and Paragonite. A line with $R^2 = 0.93$ is shown, indicating a strong correlation. Phengite is indicated as a separate data set.](image)

- Lavagna sediments
- Schistes Lustrés metasediments
- Paragonite
- Phengite

The graph illustrates the distribution of K_2O (wt.%) values across different samples, with a strong correlation indicated by $R^2 = 0.93$.
Figure 4
Figure 5

(a) δ⁴¹K (‰) vs. SiO₂ (wt. %) for Lavagna sediments and Schistes Lustrés metasediments.

(b) δ⁴¹K (‰) vs. CIA for Sediments (literature) and UCC, with an arrow indicating continental weathering.