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ABSTRACT 28 

Sedimentary records suggest that the mid-Proterozoic (ca. 1.8–0.8 Ga) was persistently 29 

characterized by a greenhouse climate despite significantly lower solar luminosity compared 30 

to modern levels. To maintain greenhouse conditions, the partial pressure of carbon dioxide 31 

(pCO2) must have remained elevated, possibly indicative of key differences in the 32 

complexities of the carbon cycle compared to the modern. Numerical modeling approaches 33 

have been used to suggest that high pCO2 was likely maintained by elevated rates of ‘reverse 34 

weathering’: marine authigenic clay formation, a process that consumes alkalinity and 35 

generates CO2. This process is kinetically slow in modern marine environments, yet is 36 

hypothesized to have been enhanced during the mid-Proterozoic due to the greater 37 

availability of important species for clay authigenesis such as silica and ferrous iron. This 38 

hypothesis is directly testable using the geological record, as enhanced reverse weathering 39 

would lead to the formation of abundant, marine authigenic clays. However, the distribution 40 

of marine authigenic clays in the Proterozoic sedimentary record has not been paid sufficient 41 

attention. In this study, we report the presence of authigenic clays (glauconite and berthierine) 42 

from the Xiamaling Formation (ca. 1.4 Ga), North China. The glauconite-berthierine horizons 43 

occur as millimeter- to centimeter-thick laminae interbedded with muddy siltstone, and 44 

feature detrital grains supported by the clay matrix. In places, these layers were partially 45 

reworked to form soft and cohesive intraclastic sands, suggesting a syndepositional origin. 46 

We hypothesize that marine iron cycling in the iron- and silica-rich mid-Proterozoic oceans 47 

may have facilitated authigenic iron-rich clay formation in the depositional basin of the 48 

Xiamaling Formation. The accumulation of iron-hydroxides on the seafloor—and the local 49 

increase in pH caused by subsequent dissimilatory iron reduction—could have resulted in the 50 

absorption of SiO2, Al(OH)3 and Fe(OH)2 to form soft, cohesive and noncrystalline Fe(OH)3-51 

SiO2-Al(OH)3-Fe(OH)2 gels. These gels would have subsequently converted to glauconite / 52 
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berthierine through ageing. The transformation from glauconite-rich layers to berthierine-rich 53 

laminae was likely facilitated by a greater availability of Fe(II), and therefore higher 54 

Fe(II)/TFe and Fe/Si ratios. We suggest that the relatively rapid formation of syndepositional, 55 

seafloor berthierine and glauconite layers in the basal Xiamaling Formation is the result of 56 

enhanced reverse weathering during this time. This study provides an important geological 57 

support for carbon cycle models that invokes enhanced reverse weathering rates in the mid-58 

Proterozoic that may have helped to maintain a high baseline pCO2 during this time. 59 

Keywords: Ferruginous condition, dissimilatory iron reduction, Xiamaling Formation, 60 

berthierine, glauconite, reverse weathering 61 

 62 

INTRODUCTION 63 

Solar luminosity has been consistently increasing through Earth’s history, and was only 64 

80–95% of modern levels throughout the Proterozoic Eon (2.5–0.54 Ga) (Gough 1981). Earth 65 

system modeling shows that at this low solar radiation, global glaciation should be common 66 

unless carbon dioxide (CO2) was much higher than pre-industrial atmospheric levels (280 67 

ppmv) (Kasting 1987; Sheldon 2006; Kanzaki and Murakami 2015; Fiorella and Sheldon 68 

2017), even if other greenhouse gases such as methane (Pavlov et al. 2003; Kasting 2005; 69 

Olson et al. 2016) and nitric oxide (Roberson et al. 2011; Stanton et al. 2018) were elevated. 70 

However, the sedimentary record suggests that only a small fraction of the Proterozoic was 71 

characterized by icehouse climate (Hambrey and Harland 1981; Chumakov and Elston 1989).  72 

Geochronological constraints show that Neoproterozoic Era experienced two intensive 73 

intervals of global glaciation during the Cryogenian Period—referred to as the Sturtian (ca. 74 

720–660 Ma) and Marinoan (ca. 640–635 Ma) glaciations (e.g., Rooney et al. 2015; Zhou et 75 

al. 2019)—as well as a comparatively short-lived ice age during the Ediacaran ca. 580 Ma 76 

(e.g., De Alvarenga et al. 2007; Pu et al. 2016). The Paleoproterozoic Era also featured 77 
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multiple ice ages (e.g., Coleman 1907; Visser 1971; Hambrey and Harland 1981) that were 78 

dated to be the Siderian Period (2.50–2.30 Ga) (e.g., Caquineau et al. 2018; Warke et al. 79 

2020). However, there are few, if any, unambiguously glacial deposits that have robust age 80 

constraints and were indicative of deposition in the mid-Proterozoic. Some glaciomarine 81 

sedimentary rocks have been suspected to be Tonian (1.00–0.72 Ga) (Hartley et al. 2020) and 82 

Stenian (1.2–1.0 Ga) (Geboy et al. 2013) in age, however, none of these is well-constrained 83 

in geochronology and globally distributed. Other possible geological evidence of glaciation 84 

has been used to argue for a glacial event in the Statherian Period (2.05–1.80 Ga) (Williams 85 

2005; Kuipers and van der Wateren 2013), though this remains contentious. As such, glacial 86 

features are either absent or near-absent between the extreme ice ages of the Siderian and the 87 

Cryogenian, suggesting that a greenhouse climate was persistently maintained during the 88 

mid-Proterozoic. 89 

Over geological timescales, atmospheric CO2 levels are partly controlled by silicate 90 

weathering (Walker et al. 1981) and reverse weathering (e.g., Mackenzie and Garrels 1966; 91 

Isson and Planavsky 2018; Krissansen-Totton and Casting 2020). The weathering of silicates 92 

on continents and seafloor is a CO2-consuming process (e.g., CO2 + 2H2O + CaSiO3  93 

CaCO3 + H4SiO4); this reaction is temperature-dependent, which buffers the Earth’s climate 94 

against increasing solar luminosity over time (Walker et al. 1981). In contrast, reverse 95 

weathering is a CO2-producing process, and includes a variety of clay-forming reactions (i.e., 96 

amorphous Al silicate + cation + H4SiO4 + HCO3
−  cation Al silicate + CO2 + H2O, or 97 

cation + H4SiO4 + HCO3
−  cation silicate + CO2 +H2O). This process consumes alkalinity 98 

without carbon, thereby retaining CO2 in the atmosphere-ocean system (Mackenzie and 99 

Kump 1995; Michalopoulos and Aller 1995; Isson and Planavsky 2018; Isson et al. 2020). 100 

Recently, geochemical and modeling studies have suggested that the sluggish kinetics of 101 

reverse weathering likely maintains an icehouse climate (e.g., Dunlea et al. 2017), while 102 
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enhanced reverse weathering would favor a greenhouse climate (Isson and Planavsky 2018; 103 

Isson et al. 2020; Krissansen-Totton and Catling 2020). 104 

The authigenic formation of iron-rich clay minerals such as glauconite 105 

[(K,Na)(Fe,Al,Mg)2(Si,Al)4O10(OH)2] and berthierine 106 

[(Fe2+,Mg,Fe3+,Al)3(Si,A1,Fe3+)2O5(OH)4] may have been important reverse weathering 107 

processes in deep time. Glauconite is a phyllosilicate mineral of the dioctahedral mica group 108 

with 2:1 + interlayer ion structures (McRae 1972; Odin and Létolle 1980; Odin and Matter 109 

1981; Banerjee et al. 2015, 2016). Authigenic glauconite precipitation (0.55K+ + 0.05Na+ + 110 

1.4Fe3+ + 0.2Fe2+ + 0.5Mg2+ + 3.8H4SiO4 + 0.2Al(OH)3 + 6.2HCO3
−  111 

K0.55Na0.05Fe3+
1.4Mg0.5Fe2+

0.2Al0.2Si3.8O10(OH)2 + 6.2CO2 + 10H2O) is interpreted to occur in 112 

marine environments with low clastic sedimentation rates (Amorosi 1995, 1997; Banerjee et 113 

al. 2015; Tang et al. 2017a), and is often associated with fecal pellets (e.g., Giresse and Odin, 114 

1973). Berthierine is a dark green to brown iron-rich serpentine with a chemical composition 115 

similar to chamosite, but has a trioctahedral 1:1 layered silicate structure that has a basal 116 

spacing of 0.7 nm (serpentine group) (Brindley 1982; Bhattacharyya 1983; Hornibrook and 117 

Longstaffe 1996; Rivas-Sanchez et al. 2006). Berthierine (and its high temperature alteration 118 

product chamosite) is common in oolitic ironstones deposited in marginal marine 119 

environments (Kimberley 1979, 1980; Van Houten and Purucker 1984). Many Phanerozoic 120 

ironstones were deposited in shallow marine settings for which Fe(II) availability is 121 

interpreted to have been low (e.g., Maynard 1986; Cotter 1992). Therefore, the precipitation 122 

of berthierine (2Fe2+ + H4SiO4 + 2Al(OH)3 + 4HCO3
−  Fe2Al2SiO5(OH)4 + 4CO2 + 5H2O) 123 

is generally considered to be a diagenetic process for these ironstones (e.g., Curtis and Spears 124 

1968; Harder 1978; Taylor and Curtis 1995). 125 

The authigenesis of berthierine and glauconite is kinetically slow in modern surface 126 

aqueous environments due to low concentrations of dissolved silica and iron. In contrast, the 127 
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authigenesis of these minerals may have been enhanced in Precambrian oceans, owing to 128 

pervasive ferruginous (e.g., Canfield et al. 2008; Planavsky et al. 2011; Poulton and Canfield 129 

2011; Tang et al. 2016, 2017a, 2017b, 2018, 2020; Lin et al. 2019) and Si-rich seawater 130 

conditions (Maliva et al. 2005). In this context, a warm mid-Proterozoic climate could be 131 

maintained even though solar luminosity was lower than today (Isson and Planavsky 2018; 132 

Isson et al. 2020; Krissansen-Totton and Catling 2020). However, obtaining direct geological 133 

evidence for an enhanced reverse weathering during the mid-Proterozoic is difficult largely 134 

due to the low preservation potential of deep marine sediments on geological timescales, and 135 

the fact that many authigenic clays are susceptible to post-deposition alteration. Isson and 136 

Planavsky (2018) document sedimentary occurrences of authigenic, Fe-bearing clays such as 137 

greenalite, minnesotaite and stilpnomelane throughout geological history. However, the 138 

possibility that the authigenic formation of glauconite and berthierine on the seafloor (e.g., 139 

Tang et al. 2017b; Johnson et al. 2020) could have played an important role in reverse 140 

weathering has not been fully explored. Here, we report layered glauconite and berthierine-141 

rich deposits from the ca. 1.4 Ga Xiamaling Formation, North China (Fig. 1), which features 142 

textural evidence for enhanced reverse weathering during their deposition. 143 

 144 

GEOLOGICAL SETTING 145 

In North China, the Xiamaling Formation (~1.40–1.35 Ga) represents the last 146 

sedimentary record before the final breakup of supercontinent Nuna (Columbia) (Zhao et al. 147 

2003, 2004, 2011; Zhang et al. 2009, 2012b, 2017), which is marked by the widespread ~1.35 148 

Ga diabase sills and ~1.33 Ga bimodal magmatic rocks shortly after the deposition of this 149 

formation (Zhang et al. 2009, 2012a, 2015, 2017). The Xiamaling Formation is interpreted to 150 

have been deposited in an extensional basin of the Yanliao Rift (Zhang et al. 2009, 2012b, 151 

2017), although a back-arc setting has also been suggested based on a study of volcanic ash 152 
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beds in the formation (Meng et al. 2011). Paleogeographic studies indicate that this formation 153 

was deposited in an open marine setting, with the northern part of the Yanliao basin 154 

connected with the open ocean (Wang et al. 1985), although transient basin restriction may 155 

have existed (Diamond et al. 2018). 156 

The Xiamaling Formation lies disconformably between the underlying Tieling 157 

Formation of Jixian Group and the overlying Changlongshan Formation of Qingbaikou 158 

Group (Fig. 2). The Xiamaling Formation is dominantly composed of dark shales and 159 

siltstone, which can be subdivided into four members (Member I to IV) in ascending order 160 

(Fig. 2; Tang et al. 2017b, 2018). These units are interpreted to have been deposited during a 161 

large transgressive-regressive cycle, with the black shales of Member III deposited during 162 

peak transgression (Fig. 2; Zhang et al. 2015, 2016; Tang et al. 2017b, 2018; Wang et al. 163 

2017). 164 

We studied the Xiamaling glauconite-berthierine precipitates near the Tielingzi village in 165 

Jixian (North China; Fig. 1). Only Member I outcrops at this locality (Fig. 3a). Member I is 166 

dominated by alternating reddish mudstone and green to gray muddy siltstone in the 167 

lowermost part (Fig. 3b–f), gray to black silty shale with abundant siderite concretions and 168 

siderite packstone bands in the lower part (Fig. 3g–l), and green silty shale in the middle to 169 

upper part (Fig. 3m). Storm influenced cross bedding, coarser-grained horizons of pebble 170 

conglomerates and quartz sandstone lenticles are common (Fig. 3f, i and l), indicative of a 171 

low-energy offshore transitional zone frequently influenced by storms. In other areas of 172 

North China, the lowermost part of this member is commonly characterized by purplish 173 

gravel-bearing sandstone (Tang et al. 2017b), particularly in the Zhaojiashan section (Hebei 174 

Province), which may represent lag deposits along a marine transgressive surface above the 175 

disconformity at the top of the Tieling Formation limestone. Glauconite-rich but berthierine-176 

poor siltstones occur in the lowermost part of the member (Fig. 3b–f), while berthierine-rich 177 
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but glauconite-poor siltstones occur in the overlying layers (Fig. 3g–i). 178 

Based on the zircon U-Pb ages of 1384.4 ± 1.4 and 1392.2 ± 1.0 Ma from the middle 179 

Xiamaling Formation (Fig. 2; Zhang et al. 2015), and zircon and baddeleyite Pb-Pb ages of 180 

1345 ± 12 and 1353 ± 14 Ma from diabase sills in the upper part (Zhang et al. 2009), the 181 

duration of deposition of the Xiamaling Formation can be constrained between ~1.40 and 182 

~1.35 Ga (Tang et al. 2018). This formation unconformably overlies the Tieling Formation, 183 

and is overlain by the Changlongshan Formation with a significant hiatus of ca. 400 Myr (Fig. 184 

2; Gao et al. 2009; Tang et al. 2017b). 185 

The Xiamaling Formation in most areas of North China is well preserved, and the 186 

organic matter extracted from this formation are thermally immature to early thermally 187 

mature, indicating a relatively low thermal evolution with burial temperatures of ≤90°C for 188 

this formation (Luo et al. 2015; Zhang et al. 2015). In addition, a study of the Xiamaling 189 

chamosite polytypes also suggests a burial depth of <2000 m, consistent with a burial 190 

temperature of <80°C (Tang et al. 2017b). Paleomagnetic studies suggest that during the 191 

deposition of the Xiamaling Formation, the North China Platform was located between 10°N 192 

and 30°N (Evans and Mitchell 2011; Zhang et al. 2012b). 193 

 194 

SAMPLES AND METHODS 195 

Samples analyzed in this study were collected from the basal part of the Xiamaling 196 

Formation at a freshly excavated quarry near Tielingzi village (40°05'22.30"N, 197 

117°24"31.39"E), Jixian county, North China (Fig. 1). Collected samples were cut into chips 198 

and only the fresh, central parts were used for mineralogical and geochemical analyses. For 199 

geochemical analyses, fresh sample chips were cleaned, dried, and then glauconite-200 

berthierine-rich parts were drilled using a micro-drill with diamond bit. 201 

Petrographic analysis was conducted on thin sections with a Stereo Discovery V20 202 
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microscope for large scope and a Zeiss Axio Scope A1 microscope for high magnification. 203 

Ultra-structures were investigated on smoothed surface of chips using a Zeiss Supra 55 field 204 

emission scanning electron microscope (FESEM) under 20 kV accelerating voltage with a 205 

working distance of ~15 mm, in the FESEM Laboratory, China University of Geosciences 206 

(Beijing). Secondary electron imaging detector was used to characterize topographic features, 207 

and an AsB detector was used to reveal compositional difference (backscattered electron, 208 

BSE, image). Samples were coated with 8 nm thick carbon for electric conduction before 209 

analysis. Smooth sample surfaces for electron microscopy were further polished using ion 210 

milling with GATAN Ilion 697 ion mills. Element concentrations of micron-sized spots were 211 

quantitatively analyzed by an Oxford energy-dispersive X-ray spectrometer (EDS) connected 212 

to the FESEM, operated at 20 kV with a working distance of ~15 mm and beam diameter of 213 

~2 μm (Tang et al. 2017b, 2020). Duplicate analyses of individual points showed analytical 214 

error of less than 3%. The mineralogy was determined by electron backscatter diffraction 215 

(EBSD) using a Zeiss Supra 55 FESEM equipped with an Oxford NordlysNano EBSD 216 

acquisition camera following the method described in Tang et al. (2020). Only measurements 217 

with mean angular deviation (MAD) values below 1.0° were accepted for analyses, and the 218 

indexing rate is about 80%. 219 

Sixteen purified glauconite- or berthierine-rich powder samples were chosen for X-ray 220 

diffraction (XRD) analysis. Purified clay mineral samples were separated from 200-mesh 221 

bulk rock powder through sedimentation and centrifuge. The purified random samples were 222 

scanned after air-drying, using nickel filter copper radiation in a SmartLab X-Ray 223 

Diffractometer at China University of Geosciences (Beijing) following the methods described 224 

in Tang et al. (2017b). Four representative samples were selected for Transmission Electron 225 

Microscopy (TEM) observation to identify the interstratification of different iron-bearing clay 226 

minerals at China University of Geosciences (Beijing). The procedure of sample preparation 227 
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followed that described in Tang et al. (2017b). The sample powder on the copper mesh was 228 

analyzed using a Hitachi H-8100 TEM, equipped with a tungsten filament electron source 229 

(operated at 200 kV), and an EDAX X-ray analyzer with an ultrathin window. 230 

For major element analysis, the same purified powder samples as those for the XRD 231 

analysis were used. About 50 mg sample powder was dissolved in 250 mg lithium metaborate 232 

at 990 °C for 20 min and then diluted to 100 ml by 18.25 MΩ Milli-Q water before element 233 

measurement using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) 234 

at China University of Geosciences (Beijing). Fe(II)/Fe(III) ratio of samples was determined 235 

by ICP-OES and classical titration technique. In this method, HF/H4SO4/H3BO3 was used to 236 

dissolve samples, K2Cr2O7 was used to titrate the solution, and sodium diphenylamine 237 

sulfonate solution was used as color indicator. The accuracy of all ICP-OES analyses is better 238 

than 5% (relative) for analyzed elements. Trace element analyses of clay minerals were 239 

conducted at the National Research Center of Geoanalysis in Beijing, following the method 240 

described in Zhou et al. (2018) using a LA-ICP-MS. The accuracy of LA-ICP-MS analysis is 241 

better than 10% (relative) for the analyzed elements. Cerium (Ce) anomalies were calculated 242 

using the equation CeSN/CeSN* = CeSN/(PrSN
2/NdSN) as suggested by Lawrence et al. (2006) in 243 

order to avoid the potential influence of positive La anomalies; where the subscript SN 244 

represents REE normalized by PAAS (Post-Archean Australian Shale). Europium (Eu) 245 

anomalies were calculated as EuSN/EuSN* = EuSN/(0.66SmSN + 0.33TbSN) in order to avoid 246 

the potential influence from the seawater positive Gd anomaly (Planavsky et al. 2010). 247 

 248 

RESULTS 249 

Two types of iron clay-rich rocks were identified in the studied interval: (1) glauconite-250 

rich muddy siltstone (Fig. 4a and b) and (2) berthierine-rich muddy siltstone (Fig. 4c and d). 251 

Glauconite-rich muddy siltstone is yellow-green to brown in color (Fig. 4a and b). These 252 
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siltstones contain horizons of pebble- and sand-sized glauconite grains (Fig. 3f). The 253 

association of these pebble and sand-sized glauconite grains with the underlying glauconite-254 

rich siltstone laminae suggests that these glauconite grains are intraclastic in origin, which 255 

likely formed during storm events (Fig. 4a and b). The berthierine-rich muddy siltstones are 256 

gray in color and feature alternating muddy and silty laminae (Fig. 4c and d)—which can be 257 

cross-laminated (Fig. 4e)—with berthierine being more abundant in the silty laminae. Siderite 258 

concretions that deflect siltstone laminae are common (Fig. 4f), with larger siderite nodules 259 

(Fig. 4g) and beds predominantly composed of siderite sands (Fig. 4h) becoming more 260 

abundant in the overlying interval of Member I. 261 

The results of XRD analysis shows that gray and green siltstones have similar 262 

mineralogical compositions, but varying in their relative abundance of iron-bearing clays. 263 

The air-dried samples exhibit strong reflections of (002) and (004) at 0.710 (12.50°) and 264 

0.355 nm (25.18°), and relatively weak reflections of (001), (003) and (005) at 1.420 (6.24°), 265 

0.472 (18.86°), and 0.284 nm (31.60°), respectively, indicating the presence of chamosite. 266 

The reflection of (100) at 0.467 nm (19.04°) suggests the presence of berthierine (Fig. 5a; 267 

Kozłowska and Maliszewska 2015). The wide (005) peak at 2.840 nm (31.48°) but narrow 268 

(004) peak at 0.354 nm (25.20°) suggests that a large amount of berthierine is preserved and 269 

has not been transformed into chamosite (Fig. 5a; Ryan and Reynolds Jr. 1996; Tang et al. 270 

2017b). The intense basal reflection (001) at 1.00 nm d-spacing (8.86°) and weak basal 271 

reflections (003) at 0.33 nm (26.68°), (004) at 0.25 nm (35.84°) and (005) at 0.20 nm d-272 

spacing (45.42°) are the characteristic peaks of glauconite (Fig. 5a; Tang et al. 2016). The 273 

occurrences of berthierine (Fig. 5b), interstratification of berthierine and chamosite (Fig. 5c), 274 

glauconite (Fig. 5d), and interstratification of glauconite and chamosite (Fig. 5e) are also 275 

confirmed by TEM observations. 276 

The glauconite-rich layers within the Xiamaling Formation siltstones are commonly 277 
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several centimeters in thickness and feature isolated detrital grains within the glauconite 278 

matrix (Fig. 6a–c). The berthierine-rich laminae are thinner (typically 0.5–2 mm; Fig. 6d and 279 

e), and contain coarser detrital grains than those in adjacent muddy laminae (Fig. 6d and e). 280 

Under high magnification, the berthierine structure can be observed as radiating fans 281 

resembling a "bowtie". These berthierine “bowties” are randomly distributed and closely 282 

interwoven with each other (Fig. 6f). Berthierine intraclasts can also be observed (Fig. 6g): in 283 

places, these have undergone soft sediment deformation (Fig. 6h). Berthierine-poor, muddy 284 

laminae penetrate into berthierine-rich layers as flame structures (Fig. 6i). In the berthierine-285 

rich laminae, detrital grains (commonly quartz, feldspar and mica) are supported by the 286 

berthierine matrix (Figs. 6j–l and 7), including some grains oriented with subvertical long 287 

axes (Fig. 6k). These detrital grains are well preserved without obvious re-dissolution or 288 

replacement textures (Fig. 6l). Hematite relics are rare in the berthierine-rich or glauconite-289 

rich siltstones, but can be observed occasionally in siderite concretions (Fig. 6m–o). 290 

The major element contents of green and gray muddy siltstone are shown in Table S1. 291 

The total Fe oxide (TFe2O3) contents are similar for the green (22.30  5.52 wt%; n = 9) and 292 

gray muddy siltstones (22.70  2.27 wt%; n = 7); however, the Fe(II)/TFe ratios are distinct 293 

(0.44  0.11 and 0.74  0.10 respectively). It is difficult to precisely determine the chemical 294 

composition of the berthierine or glauconite in the Xiamaling Formation, because they are 295 

commonly interstratified on the nanometer scale (Fig. 5). Based on the quantitative EDS 296 

analytical results (Table S2), however, the berthierine and glauconite endmembers can be 297 

identified (Fig. 8a–d). The berthierine endmember comprises 37–44 wt% TFe2O3, 25–30 wt% 298 

SiO2, 4–7 wt% MgO, and 21–26 wt% Al2O3 with negligible content of K2O, while the 299 

glauconite endmember consists of lower TFe2O3, higher SiO2 and K2O, and similar MgO and 300 

Al2O3. The glauconite-berthierine samples (n = 11) have total rare earth element (ΣREE) 301 

contents of 38–372 μg/g. The Pr(SN)/Yb(SN) ratios are typically of 0.70  0.31 for the 302 
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glauconite-berthierine, indicative of a minor depletion in the light REEs (Fig. 8e and f, Table 303 

S3). These samples commonly show positive Ce anomalies (CeSN/CeSN*  1.67; see Methods 304 

for formulae), and lack Eu anomalies (average EuSN/EuSN* = 0.99  0.20; Table S3). The 305 

Xiamaling Formation glauconite and berthierine are of low Y/Ho ratios (average Y/Ho = 25) 306 

compared to modern seawater (Y/Ho > 44; Bau 1996). 307 

 308 

DISCUSSION 309 

Textural evidence for marine reverse weathering 310 

The fine lamination of glauconite and berthierine in the Xiamaling Formation siltstones 311 

(Figs. 3e, f, h, i, 6d and e) suggests that they were formed essentially at the sediment–312 

seawater interface with a primary to very early diagenetic origin. Fine lamination can also be 313 

preserved in early diagenetic nodules, either due to replacement of preexisting clastic laminae 314 

or due to displacive crystallization forcing apart sedimentary beds below the sediment–315 

seawater interface (cf. Gaines and Vorhies 2016; Liu et al. 2019). However, the extensive 316 

reworking and soft deformation observed in glauconite-berthierine layers (Fig. 6g–i), and the 317 

intraclastic glauconite-berthierine pebble-bearing sands (Figs. 4a, b, 6g and h), are supportive 318 

of the formation of glauconite and berthierine either on the seafloor or near the sediment–319 

seawater interface prior to significant burial compaction. Flame and ball-and-pillow 320 

structures observed at the boundary between berthierine layers and underlying mudstone 321 

laminae (Fig. 6i) also support the interpretation that the berthierine beds were likely 322 

deposited prior to burial and compaction. Isolated detrital grains suspended within the 323 

glauconite and berthierine matrix (Figs. 6a–c, j–l and 7)—including grains with apparently 324 

unstable orientations (Fig. 6k)—likely indicate that the detrital particles were deposited on 325 

pre-existing, unsolidified glauconite/berthierine layers on seafloor. The presence of randomly 326 

distributed and interwoven, radiating fans of "bowtie" berthierine in the berthierine laminae 327 
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(Fig. 6f) is supportive of an authigenic origin for the berthierine, and suggests crystallization 328 

of berthierine from precursor gels. Thus, both the sedimentological and petrographic features 329 

of the ferrous clay-rich strata of the Xiamaling Formation support the interpretation that the 330 

glauconite and berthierine layers formed authigenically at the sediment–seawater interface. 331 

 332 

Insights from modern and Phanerozoic berthierine and glauconite 333 

Modern glauconite commonly forms in relatively deep marine settings (i.e., greater than 334 

50 m water depth) (Odin and Matter 1981; Logvinenko 1982; Odin 1988), and middle to 335 

outer shelf settings (~50–500 m depth) are the most favorable depositional environments 336 

suggested for Phanerozoic glauconite (Odin and Matter 1981; Banerjee et al. 2016). These 337 

glauconite deposits are typically present as peloids (typically interpreted as fecal pellets) or as 338 

infills in the voids within bioclasts (Giresse and Odin 1973; Odin and Matter 1981; 339 

Baldermann et al. 2012; Banerjee et al. 2016). These porous substrates are considered to 340 

favor glauconite authigenesis by facilitating ferruginous conditions in porewaters, possibly 341 

coupled with the degradation of organic matter (Meunier and El Albani 2007; Baldermann et 342 

al. 2012). 343 

In geological record, berthierine is most obviously represented by Phanerozoic ironstone 344 

deposits (Young 1989), which are often considered to be formed during stratigraphic 345 

condensation (Bhattacharyya 1983; Bayer 1989). However, berthierine authigenesis is rare to 346 

absent in modern marine environments (Odin 1988), with a possible example of peloidal 347 

berthierine documented in a temperate basin in Scotland (Rohrlich et al. 1969). More 348 

commonly reported from Holocene marine environments is odinite (Bailey 1988), a kind of 349 

dioctahedral-trioctahedral clay similar to berthierine that is typically Fe(III)-rich, and some 350 

deposits of ancient berthierine have been suggested to be formed via the diagenetic 351 

replacement of odinite (Odin 1988; Velde 1995). Odinite formation is largely restricted to 352 
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tropical, estuarine mud banks (e.g., Porrenga 1967; Giresse and Odin 1973) with an abundant 353 

supply of continental iron (Aller et al. 1986). As with most glauconite deposits, Holocene 354 

odinite is near-exclusively infilling porous grains or skeletal fragments, or associated with 355 

fecal pellets (Bailey 1988; Odin 1988; Hornibrook and Longstaffe 1996). In sum, it appears 356 

that warm seawater, reducing conditions and active iron cycling have facilitated the 357 

authigenesis of Fe-rich clays such as glauconite, odinite and berthierine. 358 

 359 

Mechanisms for berthierine and glauconite authigenesis 360 

The pathway of berthierine formation in sedimentary environments remains contentious. 361 

Several possible pathways for its formation have been proposed (Harder 1978; Bhattacharyya 362 

and Kakimoto, 1982; Iijima and Matsumoto 1982; Bhattacharyya 1983; Odin 1988; Mücke 363 

2006; Fu et al. 2015; Tang et al. 2017b), including: (1) crystallization from noncrystalline 364 

precursor gels (such as SiO2-Al(OH)3-Fe(OH)3 precipitates) under reducing conditions, (2) 365 

transformation from kaolinite, odinite or glauconite, (3) dissolution of argillaceous sediments 366 

and reprecipitation, and (4) replacement of calcareous oolites. Glauconite is suggested to 367 

form through the transformation pre-existing clay minerals, the replacement of feldspar 368 

during early digenesis, or precipitate as an authigenic phase (e.g., Banerjee et al. 2015, 2016; 369 

Tang et al. 2017a). In this study, the preservation of detrital minerals including illite, mica, 370 

feldspar and quartz without obvious dissolution features (Fig. 6l) suggests that the majority of 371 

the Xiamaling berthierine and glauconite was not directly transformed from detrital clay 372 

minerals. Further, we see no evidence for the partial transformation of precursor minerals into 373 

glauconite or berthierine in the Xiamaling Formation, although glauconite could transform 374 

into berthierine (Tang et al. 2017b). In addition, primary carbonates have not been observed 375 

in the Member I of the Xiamaling Formation, implying that the berthierine is unlikely formed 376 

through replacement of carbonate minerals. Therefore, we suggest that the glauconite and 377 
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berthierine-rich strata in the Xiamaling Formation formed due to the early diagenetic 378 

crystallization of a primary Fe-rich gel (such as noncrystalline Fe(OH)3-SiO2-Al(OH)3-379 

Fe(OH)2) generated under reducing conditions at the sediment–seawater interface. 380 

In this scenario, the requisite elements could be supplied by iron cycling (in both the 381 

water column and sediment pile). The rapid dissolution and transformation of smectite to 382 

illite by microbial dissimilatory reduction is the most likely process to provide sufficient Al 383 

for the formation of other authigenic clay minerals (cf. Kim et al. 2004; Hodgskiss et al. 384 

2018). Laboratory experiments have proved that this is a rapid process with 43% smectite 385 

being converted to illite within 14 days (Kim et al. 2004). The formation of Fe-bearing clay 386 

minerals requires the availability of Fe(II), which enables an octahedral layer of the brucite-387 

gibbsite type to be formed, and is necessary for the bidimensional orientation of SiO4-388 

tetrahedra leading to clay mineral formation (Harder 1978). Because Fe(II) is readily 389 

oxidized to Fe(III) under oxic conditions (forming Fe(III) hydroxide-silica gels that age to 390 

goethite, hematite and quartz; e.g., Harder and Flehmig 1970), the formation of Fe-rich clays 391 

such as berthierine and glauconite requires anoxic–suboxic conditions (e.g., Curtis 1985; Van 392 

Houten and Purucker 1985; Glenn and Arthur 1988; Taylor 1990). Fe(II) at the sediment–393 

seawater interface may be supplied from benthic porewater flux (supplied from the local 394 

reduction of ferric minerals in the underlying sediment pile), or from upwelling ferruginous 395 

seawater enriched in Fe(II) from distal sources such as hydrothermal fluids. Importantly, the 396 

lack of iron-rich detrital minerals or their relics, such as hematite and biotite, in the associated 397 

strata suggests that redox cycling of direct continental Fe(III) input is not the major source of 398 

Fe(II) for the glauconite and berthierine deposits of the Xiamaling Formation. However, deep 399 

marine waters are considered to have been dominantly ferruginous during the mid-400 

Proterozoic (Planavsky et al. 2011). The impinging of ferruginous waters onto the shallow 401 

shelf was likely a common process during the deposition of the lower Xiamaling Formation. 402 
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This process is interpreted to have facilitated the transformation of glauconite to chamosite in 403 

the lower Member II of the Xiamaling Formation (Tang et al. 2017), and led to the formation 404 

of siderite iron formation in the lower Member II (Canfield et al. 2018; Tang et al. 2018). 405 

Ferruginous seawater may have also led to the deposition of marine red beds in the middle 406 

Member II (Tang et al. 2020). Therefore, we suggest that the wide presence of glauconite and 407 

berthierine in the Xiamaling Formation implies that ferruginous waters impinged onto the 408 

shallow shelf in North China during the deposition of Member I. Vigorous iron cycling near 409 

the basinal redoxcline may have facilitated the authigenesis of glauconite and berthierine-rich 410 

strata. 411 

We suggest that the formation of the berthierine gel precursor during the Xiamaling 412 

deposition was favored by ferruginous conditions near the sediment–seawater interface. 413 

Previous studies indicate that higher pH and more negative Eh values are more favorable for 414 

and lead to a better crystallization of authigenic iron-bearing clays in shorter times (Harder 415 

1978; Baldermann et al. 2013; Francisco et al. 2020). Di- and tri-octahedral iron clay 416 

minerals were preferably formed from solutions with elevated pH over 7, mostly between 8 417 

and 9 (Harder 1978; Rasmussen et al. 2017; Francisco et al. 2020). In addition, adsorption of 418 

Si onto Fe and Al oxides increases with increasing pH, and reaches a maximum at pH 9 419 

(Hingston and Raupach 1967; Huang 1975; Sigg and Stumm 1981). The anoxic bottom 420 

waters in the Yanliao Basin would also favor dissimilatory iron reduction [4Fe(OH)3 + CH2O 421 

 FeCO3 + 3Fe2+ + 6OH− + 4H2O], therefore increasing the micro-environmental pH and 422 

supplying Fe(II), which is also consistent with the early diagenetic origin of siderite in the 423 

berthierine-bearing layers (Fig. 4f; Tang et al. 2018). The supply of ferrihydrite to the 424 

seafloor due to the oxidation of Fe(II) in upwelling ferruginous seawater, coupled with 425 

reducing bottom waters and elevated pH, could lead to the generation of sufficient SiO2-426 

Al(OH)3-Fe(OH)2 to form gels, which could subsequently be transformed to berthierine 427 
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during ageing (Fig. 9). 428 

The Fe(II)/TFe ratios in glauconite-rich or berthierine-rich muddy siltstones are lower 429 

than unity (1/1) but hematite is rare in these muddy siltstones, implying that large amount of 430 

Fe(II) was oxidized around the redoxcline in shallower seawater, then precipitated as 431 

ferrihydrite in the water column, which was subsequently reduced (likely via dissimilatory 432 

iron reduction) and incorporated into ferrous phases such as glauconite and/or berthierine. 433 

This explanation is consistent with evidence for a weakly oxygenated surface seawater during 434 

the time, as supported by the positive Ce anomaly in glauconite-berthierine precipitates. In an 435 

oxic water column, Ce is preferably removed by Mn–oxyhydroxides (e.g., German and 436 

Elderfield 1990; Bau and Dulski 1999; Haley et al. 2004; Gutjahr et al. 2007; Planavsky et al. 437 

2010). The Ce absorbed or scavenged to Mn–oxyhydroxides can be subsequently released 438 

below the Mn redoxcline, positive Ce anomalies will be resulted in the chemical sediments 439 

precipitated at or near this redoxcline (e.g., de Baar et al. 1988; German et al. 1991; Bau et al. 440 

1997; De Carlo and Green 2002; Planavsky et al. 2010). Thus, the presence of positive Ce 441 

anomaly likely reflects active Mn redox cycling in the water column and porewaters, which 442 

has been recorded by the authigenic glauconite-berthierine (cf. Liu et al. 2019). 443 

We suggest that the glauconite of the Xiamaling Formation likely formed through a 444 

similar pathway as that of berthierine but under higher Eh, as berthierine and glauconite are 445 

intimately associated in Member I. The alternation between glauconite and berthierine 446 

authigenesis is likely controlled by the Si/Fe and Fe(II)/TFe ratios in the noncrystalline 447 

precursor of Fe(OH)3-SiO2-Al(OH)3-Fe(OH)2 gel. Very low Si/Fe ratio in the precipitates 448 

would inhibit clay mineral formation (Harder 1978). High Si/Fe molar ratios (i.e., ~3:1 to 449 

10:1) would facilitate the formation of three-layer clay minerals such as nontronite or 450 

glauconite, whereas moderately Si/Fe molar ratios (i.e., ~1:2 to 2:1) favor the formation of 451 

two-layer clay minerals such as greenalite and berthierine, at low temperature (Harder 1978; 452 
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Tosca et al. 2016; Francisco et al. 2020). The elevated flux of Fe(II) from ferruginous 453 

seawater to shallow settings would result in the accumulation of more total iron in the gels 454 

and the formation of more reducing seawater conditions above storm wave base. These 455 

processes would, in turn, lead to lower Si/Fe but higher Fe(II)/TFe ratios, thus favoring the 456 

formation of berthierine over glauconite (Fig. 9). 457 

 458 

IMPLICATIONS 459 

Authigenic formation of glauconite and berthierine are two common reverse weathering 460 

(CO2 producing) processes that were likely more favorable in Precambrian oceans due to the 461 

higher availability of marine silica and ferrous iron (Isson and Planavsky 2018). In modern 462 

oceans, glauconite authigenesis is typically a slow process, and commonly requires 0.1–1 463 

Myr for the formation of highly evolved glauconite (Odin and Létolle 1980; Baldermann et al. 464 

2013), and evolved glauconitic horizons in the Phanerozoic stratigraphic record are often 465 

associated with condensed sections (Banerjee et al. 2016). The formation of berthierine is 466 

considered to largely take place in ferruginous porewater (Taylor 1990), because this process 467 

is inhibited in oxic bottom waters (Harder 1978). However, the emerging consensus that the 468 

Proterozoic was characterized by dominantly ferruginous oceans (e.g., Sperling et al. 2015) 469 

presents the intriguing possibility that authigenic Fe-bearing clay formation was rapid and 470 

facilitated by Fe(II)- and Si-rich seawater conditions (Isson and Planavsky 2018). 471 

Petrographic evidence shows that the formation of glauconite in mid-Proterozoic oceans 472 

could be a comparatively rapid process. For instance, highly evolved glauconite formed in 473 

environment with high precipitation rates has been reported from the stromatolite reefs of the 474 

Mesoproterozoic Tieling Formation (Tang et al. 2017a), and is also supported by the 475 

petrographic and sedimentological evidence for the rapid accumulation of authigenic 476 

glauconite layers on the seafloor in this study. It seems that the formation of syndepositional 477 
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berthierine was likely also a fast process in the ferruginous mid-Proterozoic oceans (Johnson 478 

et al. 2020).  479 

In mid-Proterozoic shallow seawater, the relatively rapid formation of iron-bearing clay 480 

minerals (such as glauconite and berthierine) through reverse weathering was likely a 481 

common phenomenon as documented by well-preserved examples in North China (Tang et al. 482 

2017a, 2017b) and the Roper Basin (north Australia) (Johnson et al. 2020). The formation of 483 

greenalite (e.g., Rasmussen et al. 2017; Isson and Planavsky 2018; Johnson et al. 2020; 484 

Muhling and Rasmussen 2020), stilpnomelane and minnesotaite (Isson and Planavsky 2018) 485 

has also been widely documented in mid-Proterozoic marine deposits. Therefore, there is a 486 

growing body of geological evidence that supports extensive reverse weathering in the mid-487 

Proterozoic oceans. We suggest that the geological distribution of berthierine and glauconite 488 

in Precambrian strata should be reassessed in light of its potential evidence for reverse 489 

weathering. 490 

It is difficult to give a precise estimation on the amount of authigenic glauconite and 491 

berthierine that was deposited in the Yanliao basin, because the real volume of the original 492 

Xiamaling deposits and the preserved proportion in relative to this sedimentary succession 493 

are not know at present. Assuming that the glauconite and berthierine were precipitated in the 494 

whole area of 60,000 km2 as the Xiamaling Formation distribution (cf. Canfield et al. 2018) 495 

with a total thickness of 1 m, a total product of 160 Gt glauconite or 182 Gt berthierine could 496 

be estimated. With such a huge amount of glauconite or berthierine precipitates, the amount 497 

of CO2 produced in this process would be approximately 14 ppmv or 13 ppmv CO2 498 

respectively (i.e., approximately 5% of pre-industry levels). In fact, the glauconite-berthierine 499 

deposits observed in the Xiamaling Formation possibly extend for at least 200 km across the 500 

North China Platform (from Jixian section to Huailai section) (Tang et al., 2017b). This 501 

would imply that the Xiamaling glauconite-berthierine was substantial at its original 502 
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deposition. Therefore, we think that the estimated glauconite-berthierine precipitation is 503 

likely in the right order of magnitude. 504 

Given that the early ocean was likely ferruginous and Si-rich for much of the mid-505 

Proterozoic history (e.g., Planavsky et al. 2011; Poulton and Canfield 2011; Sperling et al. 506 

2015), the authigenic formation of berthierine, glauconite and other clay minerals may have 507 

played an important role in maintaining a high baseline pCO2 and keeping a warm climate 508 

during the time (Isson and Planavsky 2018). Although the glauconite and berthierine-rich 509 

strata of the Xiamaling Formation represent only a local record of authigenic clay formation 510 

in the mid-Proterozoic, and their potential impacts on the global carbon cycle are difficult to 511 

assess, this study supports the hypotheses of enhanced reverse weathering during this time 512 

(e.g., Isson and Planavsky 2018). We think that as more research into the geological records 513 

of authigenic Fe-rich clays, the possible influence of enhanced reverse-weathering on the 514 

climate during Precambrian could be elucidated in a more quantitative way. 515 
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 865 

FIGURE AND TABLE CAPTIONS 866 

Figure 1. Geological setting. (a) Major tectonic subdivisions of China showing the location 867 

of the study area. (b) Simplified paleogeographic map of North China during 868 

Mesoproterozoic, showing the location of the studied area (modified after Wang et al. 1985). 869 

(c) Simplified geological map of the studied section (modified after the 1:200,000 Geological 870 

Map of China, The China Geological Survey, 2013). 871 

 872 

Figure 2. Stratigraphic columns of the Xiamaling Formation at Zhaojiashan village, Huailai 873 

County and Tielingzi village, Jixian county, North China, showing the studied glauconite-874 

berthierine-rich interval. The boundary between the siliciclastic-dominated Xiamaling 875 

Formation and the carbonate-dominated Tieling Formation is shown. In the Jixian section, the 876 

upper part of Member I of the Xiamaling formation is not preserved, so the correlation 877 
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between Jixian and Huailai section is estimated. The geochronological constrains were 878 

adopted from Zhang et al. (2015). 879 

 880 

Figure 3. Field photographs showing major depositional facies in Member I of the Xiamaling 881 

Formation at Jixian. (a) Black and green silty shales of the lower Xiamaling Formation. (b) 882 

Disconformity between Tieling and Xiamaling formations. The upper Tieling Formation is 883 

characterized by argillaceous limestone, while the basal Xiamaling Formation is composed of 884 

iron-rich silty mudstone and siltstone. (c) Close view of alternating iron-rich silt mudstone 885 

and siltstone (arrows) in the basal of the Xiamaling Formation. (d) Close view of the iron-886 

rich silty mudstone. (e) Close view of the dark green, iron-rich (glauconite-rich) siltstones. (f) 887 

A polished slab showing the green sands and pebbles detached from muddy (glauconite-rich) 888 

siltstone. (g) Field photographs showing black to gray silty shales. (h) Close view of muddy 889 

(berthierine-rich) siltstone. (i) A polished slab of berthierine-rich siltstone showing gray and 890 

white lamination. (j) Gray silty shale interbedded with siderite-concretion-rich layers (the 891 

lower arrow) and siderite packstone bands (the upper arrow). (k) Siderite concretion 892 

surrounded by silty shale laminae. (l) A sandstone band with cross-bedding (arrows). (m) 893 

Green silty shale with abundant quartz sandstone bands (arrows). 894 

 895 

Figure 4. Microscopic features of layered berthierine and glauconite from the Xiamaling 896 

Formation, North China. (a) A photomicrograph showing that upper glauconite sands and 897 

pebbles were detached from lower muddy siltstone layers (Gl = glauconite, Q = quartz). (b) 898 

Pebble-bearing sandstone layer, showing glauconite sands and pebbles detached from muddy 899 

siltstone (Gl = glauconite, Q = quartz). (c) Alternation of berthierine rich siltstone layer (SL) 900 

and detrital clay mineral rich silty mudstone layer (ML). (d) Close view of lamination in 901 

panel c, SL = berthierine rich siltstone layer, ML = detrital clay mineral rich silty mudstone 902 
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layer. (e) Cross bedding in berthierine rich siltstone. (f) Siderite grains trapped by siltstone 903 

laminae (arrows). (g) Siderite grains in a siderite concretion (e.g., Figure 3k). (h) Siderite 904 

sands in a packstone band (e.g., Figure 3j). 905 

 906 

Figure 5. Results of XRD and TEM analyses of gray and green siltstone from the Xiamaling 907 

Formation, North China. (a) XRD analysis results showing that gray siltstone is rich in 908 

berthierine but poor in glauconite, while green siltstone is the reverse. (b) TEM images of 909 

berthierine stratification showing lattice fringe with ~0.73 nm periodicity. (c) TEM images of 910 

berthierine-chamosite stratification showing lattice fringes with ~14.4 and ~0.73 nm 911 

periodicities, respectively. (d) TEM images of glauconite stratification showing lattice fringes 912 

with ~1.03 nm periodicity. (e) TEM images of berthierine-glauconite interstratification 913 

showing lattice fringes with ~0.70 and ~1.0 nm periodicities, respectively. 914 

 915 

Figure 6. Results of SEM and EBSD analyses of green and gray siltstone from the Xiamaling 916 

Formation, North China. (a) Glauconite-rich layer, showing detrital grains within glauconite 917 

matrix. (b) Higher magnification BSE image of panel a. (c) Higher magnification BSE image 918 

of glauconite-rich matrix surrounding detrital grains. (d) Sand-bearing berthierine-rich layers 919 

(light) alternation with berthierine-poor muddy layers (dark). (e) Sand-bearing berthierine-920 

rich layers (light) alternation with berthierine-poor muddy layers (dark), showing berthierine-921 

rich layers rich in detrital sands. (f) Radiating fans of "bowtie" berthierine in a berthierine-922 

rich layer. (g) Berthierine sands detached from berthierine-rich layers. (h) Berthierine sand 923 

with curved shape (arrows). (i) Flame structures caused by berthierine-poor mudstone layer 924 

penetrating into berthierine-rich siltstone layer (arrows). (j) Detrital grains within berthierine 925 

matrix. (k) A vertically oriented (unstable) quartz grain (arrow) preserved in a berthierine 926 

matrix. (l) BSE image showing that detrital quartz, feldspar, and mica in berthierine matrix 927 
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are not obviously re-dissolved. (m) A subhedral hematite nanoparticle in a siderite concretion. 928 

(n) Aggregated globular hematites in a siderite concretion. (o) EBSD analysis of 929 

nanoparticles, confirming their hematite composition. F = feldspar, G = glauconite, B = 930 

berthierine, M = mica, Q = quartz. 931 

 932 

Figure 7. Element mapping analysis results, showing detrital quartz and feldspar grains 933 

hosted in the berthierine matrix. 934 

 935 

Figure 8. Geochemical analysis results of berthierine-rich and glauconite-rich layers from the 936 

Xiamaling Formation, North China. (a) Cross plot of K2O vs. TFe2O3; (b) Cross plot of SiO2 937 

vs. TFe2O3; (c) Cross plot of MgO vs. TFe2O3; (d) Cross plot of Al2O3 vs. TFe2O3. (e) 938 

REE+Y patterns of glauconite-rich layer, showing the positive Ce anomalies and low Y/Ho 939 

ratios. (f) REE+Y patterns of berthierine-rich layer, showing the positive Ce anomalies and 940 

low Y/Ho ratios. 941 

 942 

Figure 9. A proposed depositional model for the Xiamaling berthierine-rich and glauconite-943 

rich layers. Fe(II) is transported from deep seawater to shallow seawater above storm wave 944 

base, and subsequently oxidized by O2 around the redoxcline, resulting in the precipitation of 945 

Fe(OH)3. The accumulation of Fe(OH)3 on the seafloor, and the subsequent increase in pH 946 

caused by the dissimilatory reduction (DIR) of this iron, could result in the enrichment of 947 

SiO2(aq), Al(OH)3, and Fe(OH)2 near the sediment–seawater interface and the formation of a 948 

Fe(OH)3-SiO2-Al(OH)3-Fe(OH)2 gel. The ageing of this gel results in the formation of 949 

berthierine and glauconite. The transformation of glauconite-rich layers to berthierine-rich 950 

laminae is likely caused by an increased Fe(II) supply (due to upwelling), which increases the 951 

Fe/Si and Fe(II)/TFe ratios. 952 
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