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Abstract 13 

A new organic mineral species, lazaraskeite, ideally Cu(C2H3O3)2 with two structural 14 

forms (designated as form-1 and form-2 hereafter) was discovered in the high elevation of the 15 

Santa Catalina Mountains, north of Tucson, Arizona, U.S.A. Both lazaraskeite form-1 and form-16 

2 occur as euhedral individual crystals (up to 0.20  0.20  0.80 mm) or aggregates, with the 17 

former forming more equant crystals and the latter bladed crystals elongated along the c axis. 18 

Associated minerals include chrysocolla, malachite, wulfenite, mimetite, hydroxylpyromorphite, 19 

hematite, microcline, muscovite, and quartz. Both forms of lazaraiskeite are greenish blue in 20 

transmitted light, transparent with white streak and vitreous luster. They are brittle and have a 21 

Mohs hardness of ~2; cleavage is perfect on {101}. No parting or twinning was observed. The 22 

measured and calculated densities are 2.12(2) and 2.138 g/cm3, respectively, for lazaraskeite 23 

form-1 and 2.10(2) and 2.086 g/cm3 for lazaraskeite form-2. Optically, lazaraskeite form-1 is 24 

biaxial (), with α =1.595(3), β = 1.629(8), γ = 1.645(5), 2Vmeas. = 69(2), 2Vcal. = 67. 25 

Lazaraskeite form-2 is also biaxial (), with α =1.520 (5), β = 1.578 (6), γ = 1.610 (5), 2Vmeas. = 26 

73(2), 2Vcal. = 70. Lazaraskeite is insoluble in water or acetone. An electron microprobe 27 

analysis for Cu and an Elemental Combustion System equipped with mass spectrometry for C 28 

yielded an empirical formula, based on 6 O apfu, Cu1.01(C1.99H2.99O3)2 for lazaraskeite form-1 29 
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and Cu1.01(C1.98H3.00O3)2 for lazaraskeite form-2. The measured δ13C ‰ values are -37.7(1) and -30 

37.8(1) for lazaraskeite form-1 and form-2, respectively. 31 

Both lazaraskeite form-1 and form-2 are monoclinic with the same space group P21/n. 32 

The unit-cell parameters are a = 5.1049(2), b = 8.6742(4), c = 7.7566(3) Å, β = 106.834(2), V = 33 

328.75(2) Å3 for form-1 and a = 5.1977(3), b = 7.4338(4), c = 8.8091(4) Å, β = 101.418(2), V = 34 

333.64(3) Å3 for form-2. Lazaraskeite form-1 is the natural analogue of synthetic 35 

bis(glycolato)copper(II), Cu(C2H3O3)2. Its crystal structure is characterized by layers made of 36 

octahedrally-coordinated Cu2+ cations and glycolate (C2H3O3)- anionic groups. These layers, 37 

parallel to (101), are linked together by the strong hydrogen bonds (O-H…O = 2.58 Å). The 38 

CuO6 octahedron is highly distorted, with four equatorial Cu-O bonds between 1.92 and 1.94 Å 39 

and two axial bonds at 2.54 Å. Lazaraskeite form-2 has the same topology as lazaraskeite form-2 40 

and possesses all structural features of the low-temperature phase transformed from lazaraskeite 41 

form-1 at 220 K (Yoneyama at al. 2013). The major differences between the two structural forms 42 

of lazaraskeite include: (1) form-1 has b > c, with β = 106.8, whereas form-2 has b < c, with β = 43 

101.4; (2) the CuO6 octahedron in form-1 is more elongated and distorted than in form-2; and 44 

(3) there is a relative change in the molecular orientation between the two structures.  45 

Lazaraskeite represents the first organic mineral that contains glycolate. Not only does its 46 

discovery imply that more glycolate minerals may be found, but also suggests that glycolate 47 

minerals may serve as a potential storage for biologically-fixed carbon.  48 

 49 

Key words: lazaraskeite, organic mineral, glycolate, crystal structure, X-ray diffraction 50 

 51 

Introduction 52 

The commonly named “organic minerals” include simple and complex salts of different 53 

organic acids (such as formic, acetic, citric, mellitic, methanesulfonic and oxalic acids), as well 54 

as numerous crystalline hydrocarbons, some amides, imides, porphyrines, triazolate complexes 55 

and other compounds (e.g., Mills et al. 2009; Echigo and Kimata 2010). Among minerals derived 56 
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from organic acids, oxalates are the most abundant class. In this study, we report a new organic 57 

mineral species, lazaraskeite, ideally Cu(C2H3O3)2, found in the high elevation of the mountains 58 

just north of Tucson, Arizona, U.S.A. Lazaraskeite possesses two structure forms, which are 59 

designated as form-1 and form-2 hereafter for the simplicity of discussion. Lazaraskeite is the 60 

first organic mineral that contains glycolate. It is named after its finders, Mr. Warren G. Lazar 61 

and Ms. Beverly Raskin Ross. Both Mr. Lazar and Ms. Raskin Ross enjoy prospecting, meteorite 62 

and mineral hunting. The new mineral and its name have been approved by the Commission on 63 

New Minerals, Nomenclature and Classification (CNMNC) of IMA (IMA 2018-137). Part of the 64 

cotype samples have been deposited at the University of Arizona Mineral Museum (Catalogue # 65 

22052 and 22381 for lazaraskeite form-1 and form-2, respectively) and the RRUFF Project 66 

(deposition # R180026 and R190015).  67 

Metal-glycolate solids have been an attractive subject of numerous studies. They are 68 

mostly prepared as intermediates of chemically and structurally controlled oxide particles (Day 69 

et al., 1996; Ksapabutr et al., 2004; Yu et al., 2007; Ng et al., 2008; Das et al., 2009; Pan et al., 70 

2015; Takase et al., 2017, 2018) or metals (Chakroune et al., 2005; Anzlovar et al., 2008; 71 

Abdallah et al., 2015, 2018; Takahashi et al., 2016). They have also been investigated as intrinsic 72 

functional materials due to their lightness and various physico-chemical properties. For example, 73 

their magnetocaloric properties at low temperatures make them valuable for cryogenic magneto-74 

refrigeration applications (Chen et al., 2014) and their chelating properties for an enhanced 75 

reactivity in certain catalytic reactions, such as those involved in the polycondensation of 76 

ethylene glycol with bis-(hydroxyethyl)terephthalate for the production of poly(ethylene 77 

terephthalate) – an important thermoplastic material (Biros et al., 2002). Moreover, because of 78 

many coordination possibilities of glycolate molecules (such as bridging, chelating, and terminal 79 

modes) (Hubert-Pfalzgraf, 1998), metal-glycolate compounds may exhibit different lattice 80 

dimensionalities (zero-, one-, two-, or three-dimensional) formed by metal polyhedra. Thus, 81 

structures based on isolated nanoclusters, chains, layers or three-dimensional polymers, 82 

including three-dimensional lattices containing shape-controlled cages, can be obtained and their 83 
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open structures can be used for gas storages or separations (Abdallah et al. 2018). This paper 84 

describes the physical and chemical properties of two forms of lazaraskeite and their crystal 85 

structures determined from the single-crystal X‑ray diffraction data, demonstrating that 86 

lazaraskeite form-1 is the natural analogue of synthetic bis(glycolate)copper(II) Cu(C2H3O3)2 87 

(e.g., Prout et al. 1968; Ye et al. 2010; Yoneyama et al. 2013, 2016) and lazaraskeite form-2 the 88 

low-temperature phase of lazaraskeite form-1 below 220 K (Yoneyama et al. 2013). 89 
 90 

Sample Description and Experimental Methods 91 

Occurrence, physical and chemical properties, and Raman spectra 92 

Both lazaraskeite form-1 and form-2 were found on the western end of Pusch Ridge in 93 

the high elevation (975 m) of the Santa Catalina Mountains (32 21 42 N, 110 57 30 W), 94 

north of Tucson, Pima County, Arizona, USA. They occur in a heavily fractured leucogranite, 3 95 

to 5 feet below the rock surface (Figure 1), with lazaraskeite form-2 found in the relatively 96 

deeper area. Crystals of lazaraskeite form-1 and form-2 occur as individuals (up to 0.20 x 0.20 x 97 

0.80 mm) or aggregates, but the former usually are found with a more equant morphology, and 98 

the latter as bladed crystals elongated along the c axis (Figure 2). Associated minerals include 99 

chrysocolla, malachite, wulfenite, mimetite, hydroxylpyromorphite, hematite, microcline, 100 

muscovite, and quartz. Lazaraskeite is a secondary mineral believed to have formed through the 101 

interaction of fluids containing glycolic acid (C2H4O3) with copper produced by the oxidation of 102 

primary and secondary minerals. 103 

Both lazaraskeite form-1 and form-2 are greenish blue in transmitted light, transparent 104 

with white streak and vitreous luster, but crystals of lazaraskeite form-2 appear to be relatively 105 

more pale-blue than those of lazaraskeite form-1. They are brittle and have a Mohs hardness of 106 

~2; cleavage is perfect on {101}. No parting or twinning was observed. The measured (by 107 

flotation in heavy liquids) and calculated densities for the two forms are given in Table 1. 108 

Optically, lazaraskeite form-1 is biaxial (), with α =1.595(3), β = 1.629(8), γ = 1.645(5), 2Vmeas. 109 

= 69(2), 2Vcal. = 67, and the orientation X ^c= 42, Y = b. The pleochroism is X = Z = light blue 110 
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green and Y = blue green, and the dispersion v > r (weak). Lazaraskeite form-2 is also biaxial (), 111 

with α =1.520 (5), β = 1.578 (6), γ = 1.610 (5), 2Vmeas. = 73(2), 2Vcal. = 70 and the orientation X 112 

^c= 36, Y = b. The pleochroism is X = Z = pale blue and Y = greenish blue, and the dispersion v 113 

> r (weak). Lazaraskeite is insoluble in water or acetone. The compatibility indices for the two 114 

forms were not calculated because of the lack in a k-value for the glycolate group. 115 

The chemical compositions of lazaraskeite form-1 and form-2 were determined using a 116 

CAMECA SX-100 electron microprobe (WDS mode, 10 kV, 6 nA, and 5 μm beam diameter, 2s 117 

counting) for Cu and an Elemental Combustion System equipped with mass spectrometry for C 118 

(Table 2), as well as δ13C ‰. The resultant empirical chemical formula, calculated on the basis 119 

of 6 O apfu (from the structure determination), is Cu1.01(C1.99H2.99O3)2 for lazaraskeite form-1 120 

and Cu1.01(C1.98H3.00O3)2 for lazaraskeite form-2, both of which can be simplified to 121 

Cu(C2H3O3)2. The measured δ13C ‰ values are -37.7(1) and -37.8(1) for lazaraskeite form-1 and 122 

form-2, respectively. According to O’Leary (1988), such a value would result from C3-type 123 

plants with limiting carboxylation but fast diffusion. The predicted δ13C ‰ value for such plants 124 

is -38. For the comparison, we also measured the δ13C ‰ value from the roots that were 125 

intimately associated with lazaraskeite, which is -23.4(1), consistent with δ13CVPDB ‰ values of 126 

−20 to −37‰ for C3-type plants (Kohn 2010). 127 

The Raman spectra of two lazaraskeite forms were collected from randomly oriented 128 

crystals on a Thermo Almega microRaman system, using a solid-state laser with a frequency of 129 

532 nm and a thermoelectric cooled CCD detector. The laser is partially polarized with 4 cm-1 130 

resolution and a spot size of 1 µm. 131 

 132 

X-ray crystallography 133 

The X-ray powder diffraction data of lazaraskeite were collected with a Rigaku D/Max 134 

2500 diffractometer using CuKα radiation (Table 3). Unit cell parameters refined from the 135 

powder data are a = 5.1041(4), b = 8.6705(8), c =7.7508(6) Å, β = 106.747(5)º, and V = 136 
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328.46(3) Å3 for lazaraskeite form-1, and a  = 5.1916 (2), b = 7.4048 (4), c = 8.8036 (5) Å, β = 137 

101.462 (4)º, and V = 331.69 (1) Å3 for lazaraskeite form-2. 138 

Single-crystal X-ray diffraction data for lazaraskeite were collected on a Bruker X8 139 

APEX2 CCD X-ray diffractometer equipped with graphite-monochromatized MoK radiation 140 

from nearly equidimensional crystals (0.05 x 0.04 x 0.04 mm for lazaraskeite form-1 and 0.06 x 141 

0.06 x 0.05 mm for lazaraskeite form-2) with frame widths of 0.5 in  and 30 s counting time 142 

per frame. All reflections for two forms of lazaraiskeite were indexed on the basis of a 143 

monoclinic unit-cell (Table 1). The intensity data were corrected for X-ray absorption using the 144 

Bruker program SADABS. The systematic absences of reflections suggest the unique space 145 

group P21/n for both forms. Their structures were solved and refined using SHELX2018 146 

(Sheldrick 2015a, 2015b). All H atoms were located from the difference Fourier maps. The ideal 147 

chemistry was assumed during the refinements. The positions of all atoms were refined with 148 

anisotropic displacement parameters, except those for the H atoms, which were refined only with 149 

isotropic parameters. Final coordinates and displacement parameters of atoms in lazaraskeite are 150 

listed in cif (supplemental material), and selected bond-distances in Table 4.  151 

Discussion 152 

Crystal structures 153 

Lazaraskeite form-1 is the natural analogue of synthetic bis(glycolato)copper(II), 154 

Cu(C2H3O3)2, which has been extensively studied for both its scientific and industrial interests 155 

(e.g., Prout et al. 1968; Ye et al. 2010; Yoneyama et al. 2013, 2016). Its crystal structure is 156 

characterized by layers of Cu2+ cations that are octahedrally coordinated to glycolate (C2H3O3)- 157 

anionic groups (Figures 3 and 4). These layers are parallel to (101), accounting for the perfect 158 

cleavage of the mineral, and are linked together by the relatively strong hydrogen bonding (O2-159 

H1…O3 = 2.58 Å) (Figure 5). Due to the Jahn-Teller effect, the CuO6 octahedron is highly 160 

distorted, with four equatorial Cu-O bonds between 1.92 and 1.94 Å and two axial bonds at 2.54 161 

Å.  162 
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Lazaraskeite form-2 has the same topology as lazaraskeite form-1 (Figures 3, 4, and 5). 163 

However, the two forms also exhibit some noticeable structural differences. For example, 164 

lazaraskeite form-1 has b > c, with β = 106.8, whereas lazaraskeite form-2 has b < c, with β = 165 

101.4 (Table 1). Moreover, the CuO6 octahedron in lazaraskeite form-1 is more elongated than 166 

that in lazaraskeite form-2 (2.54 vs. 2.44 Å for the axial Cu-O bonds) (Table 4). There is also a 167 

relative change in the molecular orientation between the two structures, as shown in Figures 3 168 

and 4. 169 

By means of both single-crystal X-ray diffraction and magnetic measurements, 170 

Yoneyama et al. (2013) observed an isosymmetric structural transformation [or so-called “type 171 

0” transition according to Christy (1995)] of synthetic lazaraskeite form-1 at 220 K to a low-172 

temperature phase. This phase transition, which is reversible and shows a large hysteresis (220-173 

270 K), is marked by a discontinuous change in the paramagnetic susceptibility, unit-cell 174 

parameters (from b > c to c > b), and axial Cu-O bonds in the elongated CuO6 octahedra (from 175 

2.54 to 2.44 Å). Isosymmetric structural phase transitions have been observed in a number of 176 

compounds, such as (Mg0.75Fe0.25)2Si2O6 orthopyroxene (Yang and Ghose 1995), 177 

C13H22N+·ClO4
−  (Wu and Jin 2013), and LaGaO3 (Tang et al. 2018). Remarkably, the crystal 178 

structure of the low-temperature phase of lazaraskeite form-1 at 150 K determined by Yoneyama 179 

et al. (2013) is identical to that of lazaraskeite form-2 if the thermal effects due to the 180 

temperature difference are taken into account (Tables 1 and 4). Nonetheless, it is unclear why the 181 

two structure forms of lazaraskeite can occur in the same place. The chemical analyses on two 182 

form crystals did not detect other elements except Cu and C. Perhaps, the different Eh or/and pH 183 

environments might play a role, as lazaraskeite form-2 was found in a relatively deeper place 184 

(below 5 feet) than lazaraskeite form-1. The obvious difference in crystal morphologies of two 185 

forms appears to rule out the possibility that one structure form was transformed directly from 186 

the other. Interestingly, the co-existence of two polymorphs with the same symmetry and similar 187 

unit-cell parameters has been reported for the Cu-bearing organic compound (α-pic)2Cu(NO3)2 188 

(α-pic = 2-methylpyridine) (Cameron et al. 1972). Both forms of this material are monoclinic, 189 
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space group P21/c, with unit-cell parameters a = 8.31, b = 14.81, c = 14.14 Å, β = 123.9 (Form 190 

I) and a = 8.57, b = 14.39, c = 14.20 Å, β = 119.5 (Form II). 191 

 192 

Raman spectra 193 

The Raman spectra of the two forms of lazaraskeite are shown in Figure 6. The strong 194 

resemblance between the two spectra is expected, as the structures of the two forms are similar. 195 

The difference in peak intensities between the two spectra principally results from the different 196 

crystal orientations when the data were collected. The tentative assignments of major Raman 197 

bands were made (Table 5) based on both experimental and theoretical spectroscopic studies on 198 

synthetic compounds containing the glycolic group (C2H3O3)- (e.g., Medina et al. 2001; Silva et 199 

al. 2013; Gomes et al. 2014; do Nascimento et al. 2017). In particular, the bands between 1200-200 

1670 cm-1 are attributed to the C-O and C-C stretching vibrations in the C2H3O3
- glycolic group 201 

and those from 840 to 1100 cm-1 to the C-OH stretching vibrations, as well as the O-C-O 202 

bending vibrations in C2H3O3
- glycolic group.  203 

 204 

Sources of glycolate 205 

Many plants are known to produce glycolate during photorespirations in reactions 206 

catalyzed by glycolate oxidase or isocitrate lyase (Igamberdiev and Eprintsev 2016; Claassens et 207 

al. 2020 and references therein). However, whether such glycolate produced within plants can 208 

become available directly to form lazaraskeite in rocks several feet below the surface is 209 

unknown. Nevertheless, root exudates of many plants consist of a complex mixture of organic 210 

acid anions (including glycolic), phytosiderophores, sugars, vitamins, amino acids, purines, 211 

nucleosides, inorganic ions (e.g. HCO3
−, OH−, H+), gaseous molecules (CO2, H2), and enzymes 212 

(e.g., Dakora and Phillips 2002; Engqvist et al. 2015). Plants take up most mineral nutrients 213 

through the rhizosphere where root exudates interact with microorganisms in soils and rocks. 214 

Thus, a possible formation mechanism for lazaraskeite occurs when plant root exudates 215 
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containing glycolic acid encounter Cu-bearing minerals, such as chrysocolla, (Cu2-xAlx)H2-216 

xSi2O5(OH)4·nH2O, and malachite, Cu2(CO3)(OH)2.  217 

Numerous studies have demonstrated that glycolate can also be produced through the 218 

biodegradation of a number of organic matters by microorganisms under aerobic conditions 219 

(e.g., van Ginkel 1996; Liu et al. 2018; Fujiwara et al. 2020). In particular, Hunkeler and 220 

Aravera (2000) showed that glycolate is generated during the metabolic pathway of 1,2-221 

dichloroethane (DCA) degradation (from ethane  ethanol  glycolate  glyoxylate) by the 222 

aerobic bacterium Xanthobacter autotrophicus GJ10. Furthermore, they found that this 223 

degradation process is accompanied by a strong carbon isotope fractionation, with the produced 224 

inorganic carbon depleted significantly in 13C (δ13C = -46.2‰) and the biomass enriched in 13C 225 

(δ13C = -17.2‰), as compared to the initially added 1,2-DCA (δ13C = -30.6‰). If we assume that 226 

aerobic microbial degradation of root exudates was involved in the formation of lazaraskeite, 227 

then, the observation by Hunkeler and Aravera (2000) may render an explanation for the δ13C 228 

value of -37.7‰ we measured for lazaraskeite,   229 

 Some microorganisms are also capable of producing glycolate (e.g., Burnap et al. 2015; 230 

Dellero et al. 2016; Taubert et al. 2019). For example, according to Eisenhut et al. (2008), the 231 

cyanobacterium Synechocystis has established three different routes for the metabolism of 232 

glycolate. One is similar to the bacterial glycolate metabolism, the second resembles the 233 

photorespiratory cycle found in higher plants, and the third involves the complete oxidation of 234 

glycolate to CO2. As microorganisms are ubiquitous in nature, their contributions as a potential 235 

glycolate source for the formation of lazaraskeite should not be excluded.  236 

Glycolate can be converted from oxalate, or vice versa, through the redox reactions 237 

either biotically or abiotically. In human bodies, the conversion between glycolate and oxalate 238 

is intimately associated with obesity and subsequent development of chronic diseases, as well as 239 

the formation of kidney stones (Knight et al. 2010). The conversion between glycolate and 240 

oxalate in metabolic pathways of plants is the key to the accumulations of biologically-fixed 241 

carbon (Igamberdiev and Eprintsev 2016). Recently, the abiotic transition between glycolate and 242 
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oxalate as a redox couple has attracted considerable attention because it demonstrates a carbon-243 

neutral or CO2-free energy circulation with the help of some metals or oxides as catalysts 244 

(Fukushima et al. 2018 and references therein). In Arizona, several oxalate minerals, such as 245 

weddellite (CaC2O4·2H2O), whewellite (CaC2O4·H2O), and glushinskite (MgC2O4·2H2O), are 246 

abundant in decaying plants, especially cacti (e.g., Franceschi and Horner 1980; Horner and 247 

Wagner 1995; Prychid and Rudall 1999; Garvie 2003). These oxalate minerals are formed from 248 

elements released from the decaying plants by microorganisms. The δ13CVPDB values of the 249 

monohydrocalcite and calcite transformed from weddellite in the decaying Saguaro Cactus range 250 

from –1.65 to + 0.76‰, indicating that the carbon in weddellite was derived from atmospheric 251 

CO2 (Garvie 2003). Accordingly, the possibility for oxalate in these minerals to be eventually 252 

converted abiotically to glycolate in lazaraskeite can be precluded, as the δ13CVPDB value we 253 

measured for lazaraskeite is -37.7‰. 254 

 255 

Implications 256 

A great number of glycolate compounds containing Mn+ cations (n = 1, 2, 3, or 4) have 257 

been synthesized in laboratories, including lazaraskeite form-1, Ni(C2H3O3)2, Co(C2H3O3)2, and 258 

[Mg(C2H3O3)(H2O)4]NO3 (e.g., Prout et al. 1968; Medina et al. 2000; Melikyan et al. 2000; 259 

Kang et al. 2004; Ye et al. 2010; Liu et al. 2011; Lin et al. 2013; Silva et al. 2013; Yoneyama et 260 

al. 2013; Gomes et al. 2014; Song and Hirato 2015; do Nascimento et al. 2017; Abdallah et al. 261 

2018). In nature, glycolic acid (C2H4O3) is a common and abundant organic matter that can be 262 

generated from several biological sources (see above). It is a product of fixed carbon 263 

accumulated in the conversion process of carbon compounds in metabolic pathways. The 264 

discovery of lazaraskeite, therefore, not only leads to the postulation that more glycolate 265 

minerals may be found, but also implies that glycolate minerals may serve as a potential storage 266 

for biologically-fixed carbon. Because glycolate is more stable in the reduced environments than 267 

oxalate, which usually forms various minerals on the ground surface or in decaying plants, we 268 

would expect more glycolate minerals, like lazaraskeite, to be found from the subsurface.     269 
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In addition to lazaraskeite form-1 and lazaraskeite form-2, the compound Cu(C2H3O3)2 270 

appears to have another polymorph (designated as phase A for the simplicity of discussion) (Lin 271 

et al. 2013), which is dark blue in color and monoclinic with the same space group (P21/n) as 272 

lazaraskeite, but has a unit-cell volume twice that of lazaraskeite. The crystal structure of phase 273 

A exhibits many features similar to those in lazaraskeite, such as the coordination environments 274 

around Cu2+ cations and the layers formed by Cu2+ and (C2H3O3)-, which are linked together by 275 

hydrogen bonds. However, the CuO6 octahedron in phase A is the most distorted and elongated 276 

of all three forms, with one axial Cu-O bond at 2.843 Å and the other at 2.642 Å. Compared to 277 

synthetic lazaraskeite form-1, which can be obtained with solution reactions between 60-80 C 278 

(Ye et al. 2010; Yoneyama et al. 2013), phase A was synthesized at a much higher temperature 279 

(120 C) (Lin et al. 2013). Because lazaraskeite form-1 transforms to lazaraskeite form-2 at low 280 

temperature (Yoneyama et al. 2013), which is characterized by a significant shortening of the 281 

axial Cu-O bonds in the CuO6 octahedron, it then begs the question whether phase A can be 282 

attained by heating lazaraskeite form-1, as the axial Cu-O bonds in phase are markedly longer 283 

than those in lazaraskeite form-1.    284 

Synthetic glycolate compounds Ni(C2H3O3)2 and Co(C2H3O3)2 have been regarded 285 

isostructural with lazaraskeite form-1 (e.g., Medina et al. 2000; Kang et al. 2004; Nakane et al. 286 

2019, 2020). However, a detailed structural comparison reveals that the NiO6 and CoO6 287 

octahedra in Ni(C2H3O3)2 and Co(C2H3O3)2, respectively, are much less distorted than the CuO6 288 

octahedra in lazaraskeite form-1, with all Ni-O bonds between 2.00 and 2.10 Å (Kang et al. 289 

2004; Nakane et al. 2020) and Co-O bonds between 2.05 and 2.12 Å (Medina et al. 2000; 290 

Nakane et al. 2019). Moreover, the relative orientations between NiO6/CoO6 octahedra and 291 

glycolic groups in Ni(C2H3O3)2 and Co(C2H3O3)2 are more similar to those in lazaraskeite form-292 

2, rather than in lazaraskeite form-1. Given these structural features, together with the fact that, 293 

like lazaraskeite form-2, both Ni(C2H3O3)2 and Co(C2H3O3)2 have the unit-cell parameters c > b 294 

(Medina et al. 2000; Kang et al. 2004; Nakane et al. 2019, 2020), not b > c (like those for 295 

lazaraskeite form-1), we suggest that these two Ni and Co compounds are better considered as 296 
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analogues of lazaraskeite form-2, instead of lazaraskeite form-1. This consideration may also 297 

provide an explanation (at least in part) as to why no structural transformation was observed for 298 

Ni(C2H3O3)2 between 299 and 96 K (Nakane et al. 2020) or Co(C2H3O3)2 between 298 and 5 K 299 

(Nakane et al. 2019), in contrast to lazaraskeite form-1, which undergoes a first-order phase 300 

transformation to lazaraskeite form-2 at 220 K (Yoneyama et al. 2013).  301 
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Table 1. Comparison of crystallographic data between lazaraskeite-M1 and lazaraskeite-M2  
============================================================================================ 
                                     lazaraskeite-M1 Synthetic  lazaraskeite-M2   Synthetic, at 150K        
============================================================================================ 
Ideal chemical formula   Cu(C2H3O3)2 Cu(C2H3O3)2 Cu(C2H3O3)2 Cu(C2H3O3)2  
Crystal symmetry        Monoclinic Monoclinic  Monoclinic Monoclinic  
Space group  P21/n P21/n   P21/n P21/n  
a (Å)  5.1049(2)         5.1095(9)  5.1977(3)          5.178(4)  
b (Å)  8.6742(4) 8.677(2)  7.4338(4) 7.208(5)  
c (Å)  7.7566(3) 7.746(1)  8.8091(4) 8.889(7)  
β ()  106.834(2) 106.841(2)  101.418(2) 100.840(9)  
V(Å3)   328.75(2) 328.7  333.64(3) 325.8(5)  
 
a:b:c  0.59 : 1 : 0.89 0.60 : 1 : 0.89  0.70 : 1 : 1.19 0.72 : 1 : 1.23  
Z                                      2 2  2 2  
ρmeas(g/cm3)  2.12(2)          2.10(2)          
ρcal(g/cm3)  2.138        2.138  2.086        2.177  
 
2θ range for data collection  ≤65.12  ≤54.94 ≤65.13 ≤54.84      
No. of reflections collected  4454  1978 4849 2356   
No. of independent reflections  1192  747 1218 732   
No. of reflections with I > 2σ(I)  899   648 987  530   
No. of parameters refined  64   62 64  64   
R(int)  0.026   0.024 0.068   
Final R1, wR2 factors [I > 2σ(I)]  0.027, 0.061  0.026, 0.070 0.024, 0.062  0.046, 0.117  
Goodness-of-fit  1.010   1.064 1.118    
 
Reference  (1) (2) (1)  (3)  
============================================================================================ 
References: (1) This study; (2) Ye et al. (2010); (3) Yoneyama et al. (2013). 
 



Table 2. Determined chemical compositions (in wt.%) for lazaraskeite-M1 and lazaraskeite-M2 
===================================================================== 
 Constituent        lazaraskeite-M1                       lazaraskeite-M2                      Standard          
                           (average of 6 analyses)        (average of 7 analyses) 
===================================================================== 
Cu                         30.17(21)                                    29.98(22)                              Chalcopyrite CuFeS2  
C                           22.6(2)                                        22.2(2)                              (1)   
H                             2.84                                      2.83                                       (2)   
O                           45.23                                    44.94                              (2)   
 
Total                     100.84                              99.95 
===========================================================================  
Note:  
(1): The C contents of 22.6(2) and 22.2(2) wt.% for lazaraskeite-M1 and lazaraskeite-M2, respectively, obtained from an Elemental 
Combustion System equipped with mass spectrometry, agree well with the ideal value of 22.49 wt.%. The determined δ13C ‰ value  
is -37.7(1) for lazaraskeite-M1 and -37.8(1) for lazaraskeite-M2.  
(2): The H and O contents were calculated based on the stoichiometry verified by the crystal structure determination.  
(3): The electron microprobe analysis data points for the two polytypes were obtained from several crystals because they were easily 
damaged by the electron beam, even with the moving stage and large electron beam size. 



Table 3a.  Powder X-ray diffraction data of lazaraskeite-M1. 
I% dmeas dcal h k l 
100 5.640  5.638  0 1 1 

51.9 4.771  4.760  1 0 -1 

2.5 4.324  4.335  0 2 0 
21.1 4.252  4.258  1 1 0 
10.9 3.747  3.743  0 2 1 
15.2 3.627  3.630  1 0 1 
8.2 3.417  3.412  0 1 2 

63.2 3.344  3.348  1 1 1 

25.2 3.230  3.227  1 1 -2 

16.3 3.206  3.205  1 2 -1 
10.7 2.818  2.819  0 2 2 
7.5 2.784  2.783  1 2 1 
4.5 2.692  2.693  0 3 1 

21.7 2.501  2.504  1 1 2 
4.7 2.422  2.419  1 1 -3 
4.4 2.382  2.380  2 0 -2 

11.2 2.296  2.295  2 1 -2 
25.3 2.223  2.223  1 3 -2 

11.5 2.179  2.178  1 2 -3 
4.8 2.125  2.129  2 2 0 

22.2 2.086  2.086  2 2 -2 

6.6 2.004  2.005  2 1 -3 
6 1.972  1.973  1 4 -1 

11.8 1.912  1.912  2 3 -1 
8 1.881  1.879  0 3 3 

4.2 1.858  1.856  0 0 4 
5 1.808  1.807  1 2 3 

2.8 1.705  1.706  0 2 4 
5.5 1.675  1.674  2 2 2 
4.3 1.644  1.643  1 4 -3 

3 1.632  1.634  1 5 0 
4.6 1.614  1.614  2 2 -4 
12 1.603  1.604  1 3 -4 

3.1 1.491  1.492  1 2 4 
3.5 1.453  1.453  3 3 -2 
4.7 1.431  1.434  2 5 -1 
2.6 1.348  1.347  0 6 2 

 
 
 
 
 



Table 3b. Powder X-ray diffraction data of lazaraskeite-M2. 
I% dmeas dcal h k l 

100.0  5.622  5.633  0 1 1 

32.6  4.816  4.829  1 0 -1 

4.6  4.313  4.323  0 0 2 
22.5  4.190  4.203  1 1 0 

1.9  4.042  4.056  1 0 1 
5.1  3.727  3.736  0 1 2 

30.2  3.550  3.560  1 1 1 

1.5  3.410  3.411  0 2 1 
20.4  3.289  3.293  1 1 -2 

2.9  2.993  3.001  1 2 0 
5.5  2.940  2.943  1 2 -1 
7.9  2.813  2.817  0 2 2 

10.3  2.788  2.795  1 1 2 
14.3  2.732  2.739  1 2 1 

9.5  2.576  2.581  1 1 -3 
2.1  2.411  2.414  2 0 -2 

11.6  2.338  2.341  1 2 2 
4.3  2.294  2.296  2 1 -2 

24.2  2.209  2.218  2 1 1 

7.9  2.095  2.102  2 2 0 
2.3  2.049  2.053  1 3 -2 

14.0  2.022  2.024  2 2 -2 
3.4  1.965  1.970  2 2 1 
9.1  1.912  1.914  1 3 2 
2.8  1.874  1.878  0 3 3 
6.0  1.857  1.859  1 2 -4 
1.4  1.834  1.837  2 0 -4 
2.9  1.804  1.807  1 1 4 
5.3  1.785  1.789  2 3 -1 
1.8  1.733  1.734  3 0 -1 
1.7  1.696  1.706  0 4 2 
2.6  1.679  1.684  0 1 5 
2.3  1.654  1.657  1 4 -2 
3.6  1.643  1.647  2 2 -4 
4.3  1.611  1.614  2 3 -3 
1.8  1.576  1.581  1 4 2 
1.2  1.567  1.572  3 1 1 

 



Table 4. Selected bond distances and angles in lazaraskeite. 
=================================================================== 
                  Lazaraskeite form-1   Lazaraskeite form-1   Lazaraskeite form-2  Lazaraskeite form-2 at 150K 
                         (This study)             (Ye et al. 2010)    (This study)                (Yoneyama et al. 2013) 
------------------------------------------------------------------------------------------------------------------ 
           Distance (Å) Distance (Å)    Distance (Å)             Distance (Å)  
------------------------------------------------------------------------------------------------------------------- 
Cu- O1  2  1.9199(12)   1.920    1.9248(10)    1.934(4)  
      -O2  2 1.9341(12)  1.936    1.9634(11)         1.959(4)  
      -O3  2  2.5423(12)  2.546    2.4375(11)        2.432(4)  
Average 2.1321  2.133    2.1085   2.109   
 
C1-O1   1.265(2)   1.265      1.2623(18)    1.261(6)   
     -O3   1.248(2)         1.245       1.2506(17)         1.248(6)     
 
C1-C2   1.510(2) 1.514    1.515(2)  1.516(9)  
   
C2-H2   0.92(3)   0.91      0.98(3)    0.97(6)    
     -H3   0.94(2)         0.93       0.94(3)          0.83(5)    
     -O2  1.415(2)      1.421    1.4214(18)       1.431(7)  
 
O2-H1  0.71(3)  0.76    0.93(2)  0.78(7)   
   
<O1-C1-O3 123.34(14) 123.38    123.45(13)  123.4(5)  
<O1-C1-C2 118.07(14) 118.10    118.77(13)  118.4(5)  
<O3-C1-C3 118.57(14) 118.51     118.53(13)   118.2(5)  
<O2-C2-C1 108.53(14) 108.48    108.80(12)             108.4(5)  
 
O2…O3        2.5821(17) 2.579        2.5920(14)  2.604(6) 
<O2-H1…O3   172(3)       174.47   172(2)        167(4)  
================================================================= 
 

 

 

 

 

 

 

 

 

 



Table 5. Tentative assignments of major Raman bands for lazaraskeite   
=============================================================== 
Bands (cm-1) Assignment 
----------------------------------------------------------------------------------------------------------- 
2760-3100   C-H and O-H stretching vibrations.  
2230-2650   O-H…O interaction. 
1200-1670  C-O and C-C stretching vibrations in the C2H3O3

- glycolic group.  
840-1100      C-OH stretching vibrations, as well as and O-C-O bending vibrations in  

C2H3O3
- glycolic group. 

400-800  Cu-O stretching vibrations, H-C-H bending vibrations, and C-C-O  
   bending vibrations in C2H3O3

- glycolic group. 
<400  Lattice and O-Cu-O bending vibrational modes. 
=============================================================== 
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