Page | 1

1 Revision 2

2

Texture, geochemistry and geochronology of titanite and pyrite: Fingerprint of magmatic-hydrothermal fertile fluids in the Jiaodong Au province

7

8 Xing-Hui Li^{1,2}, Hong-Rui Fan^{1,2,3,*}, Ri-Xiang Zhu^{2,3,4}, Matthew Steele-

9 MacInnis⁵, Kui-Feng Yang^{1,2,3}, Cai-Jie Liu⁶

10

¹Key Laboratory of Mineral Resources, Institute of Geology and Geophysics,
 Chinese Academy of Sciences, Beijing 100029, China

- ¹³ ²Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing
 14 100029, China
- ³College of Earth and Planetary Science, University of Chinese Academy of
 Sciences, Beijing 100049, China
- ⁴State Key Laboratory of Lithospheric Evolution, Institute of Geology and
 Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- ⁵Department of Earth and Atmospheric Sciences, University of Alberta,
 Edmonton, AB T6G 2E3, Canada
- ⁶No. 6 Institute of Geology and Mineral Resources Exploration of Shandong
 Province, Zhaoyuan 265400, China

23

- ²⁴ *Corresponding author. Tel.: +86 10 82998218; fax: +86 10 62010846. E-mail
- address: fanhr@mail.iggcas.ac.cn (H.-R., Fan).

Page | **2**

2	~
/	h
_	-

ABSTRACT

The Au mineralization in the giant Jiaodong Au province is enigmatic and 27 difficult to fit current classic mineralization models, primarily because of 28 uncertainties as to the sources of ore-forming fluids and metals. The ca. 120 Ma 29 Au mineralization has been previously proposed to have occurred during a 30 magmatic lull, which would negate a magmatic-hydrothermal genetic model. 31 However, recent drilling has revealed a buried mineralized monzonite 32 equivalent in age to the Au mineralization, in the Linglong goldfield. Here, we 33 present comprehensive textural, geochemical (LA-(MC)-ICPMS trace element, 34 Nd and S isotopes) and geochronological (LA-ICPMS U-Pb dating) analyses of 35 titanite and pyrite from this previously unrecognized monzonite. Three types of 36 titanite were distinguished, including magmatic Ttn1 and hydrothermal Ttn2 37 and Ttn3, which show indistinguishable U-Pb ages $(120.7 \pm 3.1 \text{ Ma and } 120.9 \text{ mm})$ 38 \pm 2.6 Ma), REE patterns and Nd isotopes ($\varepsilon_{Nd}(t) = -14.7$ to -12.9), implying that 39 hydrothermal fluids were directly exsolved from the monzonitic magma, 40 contemporaneous with the large-scale Au mineralization at ca. 120 Ma. The Nd 41 isotopes of titanite potentially indicate a lower crustal source mixed with mantle 42 materials for the monzonite. Four types of pyrite were analyzed, including 43 magmatic Py1 from the fresh biotite monzonite, hydrothermal Py2 from the 44 altered biotite monzonite, hydrothermal Py3 from quartz-pyrite veins with a 45 monazite U-Pb age of 118.2 ± 4.6 Ma, and magmatic Py4 from mafic enclaves 46 of the Gushan granite at ca.120 Ma. The δ^{34} S values of magmatic Py1 and Py4 47

48	(+1.9 to +6.3 ‰, and +5.0 to +6.4 ‰, respectively) and hydrothermal Py2 and
49	Py3 (+6.4 to +9.5 ‰, and +6.5 to +7.6 ‰, respectively) are consistent with
50	sulfur isotopic fractionation between melt and fluid. Hydrothermal Py2 and Py3
51	also have higher Co, As, Ag, Sb and Bi contents and submicron gold inclusions,
52	implying that the magmatic-hydrothermal fluids were fertile for mineralization.
53	This study highlights the importance of monzonite magmatism and exsolved
54	fertile fluids in regional Au mineralization. Hydrous magmas at ca.120 Ma
55	probably extracted Au efficiently from the lower crustal-mantle sources and
56	released auriferous fluids at the late magmatic stage, leading to the formation
57	of Au deposits in the Jiaodong province.
58	Keywords: Titanite, pyrite, monazite, biotite monzonite, U-Pb geochronology,

- 59 magmatic-hydrothermal fluid
- 60

Page | 4

61

INTRODUCTION

The Early Cretaceous Au deposits in the Jiaodong Peninsula constitute the 62 largest Au province of China, containing more than 5000 tons of proven Au 63 resources. Mineralization in the Jiaodong Peninsula is considered unique 64 relative to the accepted model for orogenic Au deposits (e.g., Groves et al., 65 1998), in that Au mineralization postdates the Precambrian metamorphic 66 wallrocks by about 2 billion years (Goldfarb and Santosh 2014). Numerous 67 studies have defined the ore-controlling structures, hydrothermal alterations, 68 ore-fluid chemistry, hydrothermal processes and fluid evolution of both 69 disseminated- to stockwork-style and auriferous quartz-pyrite vein-type Au 70 deposits across the Jiaodong Peninsula (Fan et al. 2003, 2007; Li et al. 2012a; 71 Goldfarb and Santosh 2014; Mills et al. 2015; Deng et al. 2015, 2020b; Feng et 72 al. 2018, 2020; Li et al. 2018). The timing of Au mineralization has also been 73 well constrained to 120 \pm 5 Ma by Rb-Sr dating of pyrite, $^{40}\text{Ar}/^{39}\text{Ar}$ dating of 74 hydrothermal muscovite and U-Pb dating of hydrothermal monazite (Yang and 75 Zhou 2001; Ma et al. 2017; Li et al. 2018; Zhang et al. 2020; Deng et al. 2020a). 76 Nevertheless, the genesis of the Jiaodong Au province is contentious, given the 77 failure of current models of mineralization to account for its features. This 78 debate is primarily rooted in uncertainties as to the sources of ore-forming fluids 79 and metals, and particularly their genetic relationship(s) to Mesozoic 80 magmatism, Precambrian metamorphic host rocks, subducted slab and 81 sediment, and/or metasomatized lithosphere (Zhai et al. 2004; Chen et al. 2005; 82

Goldfarb and Santosh 2014; Zhu et al. 2015; Deng et al. 2015, 2020b; Wang et
al. 2020).

Two main problems obstruct linking Au mineralization to the widespread 85 granitic magmatism in the Jiaodong Au province. Firstly, a time gap of at least 86 ~8 million years separates the ages of mineralization and of known magmatism 87 (Li et al. 2019a; Deng et al. 2020a). Secondly, direct evidence for a genetic 88 affinity between magmatism and hydrothermal mineralization has been hitherto 89 lacking. However, recent deep drilling projects in the Linglong goldfield, one 90 of the largest Au-producing districts in the Jiaodong Au province, discovered a 91 buried mineralized biotite monzonite that shows petrographic features distinct 92 from those of the exposed Mesozoic granitoids (Linglong, Luanjiahe, 93 Guojialing and Aishan granites). Shen et al. (2016) constrained the 94 emplacement age of the monzonite to ca. 124 Ma by ⁴⁰Ar/³⁶Ar dating of biotite, 95 and suggested a temporal relationship between the monzonite and Au 96 mineralization. The monzonite is nearly contemporaneous with the regional 97 Gushan granite, which has a zircon U-Pb age of 120-119 Ma (Li et al. 2012b). 98 Thus, this newly discovered monzonite suggests a potentially extensive episode 99 of magmatism during this period. Moreover, the mineralized monzonite shows 100 distinctive hydrothermal features, suggesting a relationship between magmatic-101 hydrothermal fluids and mineralization. As such, the mineralized monzonite 102 provides a good opportunity to evaluate the role of magmatism and magmatic-103 hydrothermal fluid release in the ore-forming process, and to explore the 104

sources of ore-forming fluids and metals, in the Jiaodong Au province.

Several magmatic-hydrothermal minerals are present in the monzonite, 106 including titanite, monazite, pyrite, pyrrhotite and magnetite. Titanite 107 commonly contains sufficient uranium contents for precise U-Pb dating and has 108 been widely used to date magmatic and hydrothermal events (Frost et al. 2001; 109 Li et al. 2010; Xiao et al. 2021). Incorporation of minor and trace elements, such 110 as V, Mn, Cu, Zr, REE, Hf, Pb, Th and U, in titanite is sensitive to temperature, 111 pressure, oxygen fugacity, and melt and fluid compositions. As such, titanite 112 can be a valuable indicator of magmatic and hydrothermal conditions (Hayden 113 et al. 2008; Xie et al. 2010; Cao et al. 2015; Xiao et al. 2021). The trace elements 114 and sulfur isotopes of pyrite and pyrrhotite can be used to discriminate different 115 sulfur sources and genetic environments, and to understand the 116 physicochemical conditions of sulfide deposition (Deditius et al. 2014; Peterson 117 and Mavrogenes 2014; Tanner et al. 2016; Li et al. 2018). Similarly, magnetite 118 is stable over a wide range of magmatic-hydrothermal conditions and has been 119 used to derive insights on petrogenetic discrimination, physicochemical 120 conditions, and the magma fertility (Dare et al. 2014; Zhi et al. 2019; Dora et 121 al. 2020). The geochemistry of these magmatic-hydrothermal minerals, when 122 integrated with detailed microtextural studies, is useful in fingerprinting 123 magmatic and hydrothermal processes. 124

Here, we document results of detailed textural studies, *in situ* U-Pb geochronology and trace-element and isotope geochemistry of magmatic-

127	hydrothermal titanite, monazite, pyrite, pyrrhotite and magnetite from the
128	mineralized biotite monzonite, as well as pyrite in mafic enclaves from the
129	Gushan pluton. Our results provide insight into: (1) the temporal relationship
130	between the monzonite and Au mineralization; (2) the link between magmatic
131	and hydrothermal events; (3) the mineralization potential of the monzonite; and
132	(4) the sources of the ore-forming fluids and metals in the Jiaodong Au province.

133

GEOLOGIC BACKGROUND

134 **Regional geology**

The Jiaodong Peninsula is located at the southeastern margin of the North 135 China Craton (NCC), bounded by the crustal-scale Tancheng-Lujiang (Tan-Lu) 136 fault to the west. The peninsula comprises the Jiaobei Terrane in the northwest 137 and the Sulu ultrahigh-pressure metamorphic (UHP) belt in the southeast, which 138 are separated by the Wulian-Yantai Fault (Zhou et al. 2008; Fig. 1). The 139 northern Jiaobei Uplift on the Jiaobei Terrane is dominated by Precambrian 140 metamorphic basement, including the Neoarchean Jiaodong Group, the 141 Paleoproterozoic Jingshan and Fenzishan Groups, and the Neoproterozoic 142 Penglai Group. These rocks were intruded by widespread middle-late Mesozoic 143 granitoids (the Jurassic Linglong and Luanjiahe granite at 160-159 Ma, the 144 Cretaceous Guojialing granodiorite at 130-126 Ma, Gushan granite at 120-119 145 Ma and Aishan-Sanfoshan granite at 118-115 Ma; Miao et al. 1997; Goss et al. 146 2010; Li et al. 2012b; Yang et al. 2012; Li et al. 2019a; Fig. 1), whereas the 147

southern Jiaolai Basin is filled with Cretaceous sedimentary and volcanic rocks 148 (Liu et al. 2009; Xie et al. 2012). The Sulu UHP belt mainly consists of 149 Neoproterozoic granitic gneisses, Triassic UHP metamorphic rocks and 150 Jurassic-Cretaceous granitoids (Zheng 2008; Xu et al. 2016). Structurally, the 151 Jiaodong Peninsula is dominated by NE- to NNE-trending brittle-ductile shear 152 zones with sinistral-oblique-reverse movements in the Late Jurassic, followed 153 by late reactivation and development of brittle normal faults in the Early 154 Cretaceous (Sun et al. 2007; Deng et al. 2015). 155

Deposits in the Jiaodong Au province are divided into three belts from west 156 to east: the Zhaoyuan-Laizhou, Penglai-Qixia and Muping-Rushan belts. The 157 deposits are distributed along regional second- or third- order NE- to NNE-158 trending faults of the Tan-Lu fault system, particularly the Sanshandao-159 Cangshang, Jiaojia-Xincheng, Zhaoyuan-Pingdu, Qixia and Muping-Rushan 160 faults (Fig. 1; Fan et al. 2007). The majority of Au deposits, dated at 120 ± 5 161 Ma, are hosted within the widespread Jurassic Linglong, Luanjiahe and 162 Kunyushan granites, Cretaceous Guojialing granodiorite and Precambrian 163 metamorphic rocks (e.g., Yang and Zhou 2001; Fan et al. 2003; Li et al. 2012a, 164 2018; Zhang et al. 2020; Deng et al. 2020a). Quartz-sulfide vein-type and 165 disseminated/stockwork-type Au mineralization account for most of the Au 166 resources in the Jiaodong Au province. These deposits are thought to have 167 formed within the same tectonic setting, but under different local stress fields 168 (Qiu et al. 2002; Yang et al. 2018). Of the three belts, the Zhaoyuan-Laizhou 169

belt is the most significant in terms of endowment, hosting over 85% of Auresources in the district.

172 Ore geology and petrography

The Linglong goldfield, which contains several large Au deposits such as 173 Linglong, Jiuqu and Dongfeng, is located to the east of the Zhaoyuan-Laizhou 174 Au belt and at the northern tip of the Zhaoyuan-Pingdu fault (Fig. 1). This 175 goldfield is typified by the quartz-sulfide vein-type mineralization, with minor 176 disseminated sulfide replacements and stockworks. Hundreds of auriferous 177 quartz veins are present in this goldfield, occurring in steeply dipping, NE- to 178 NNE-trending fractures in the hanging wall of the Zhaoyuan-Pingdu fault. The 179 mineralized veins are mainly hosted in the Jurassic Linglong and Luanjiahe 180 granites, with fewer in the Cretaceous Guojialing granodiorite (Wen et al. 2015). 181 The Zhaoyuan-Pingdu fault is intersected by the NEE-trending Potouging fault 182 and crosscut by the NNE-trending Linglong fault, both of which control the 183 occurrence of ore bodies and the widespread emplacement of intermediate to 184 mafic dykes. 185

The mineralized biotite monzonite was found in drill cores 72ZK1 and 72ZK2, at depths of 2070 m and 2374 m separately in the Linglong goldfield, and was suggested as a buried intrusion into the Jurassic Linglong and Luanjiahe granite (Fig. 2; Shen et al. 2016). The biotite monzonite is dark gray to light grayish green, massive, and medium-to-fine grained. Pyrite, pyrrhotite and magnetite are evenly distributed in the monzonite, with some grains occurring as clusters (Fig. 3a-d, g). The mineral assemblage of the monzonite
mainly comprises K-feldspar (35-40%), plagioclase (20-25%) and biotite (1520%) (Fig. 3g, h). Other minerals include quartz (5-10%), amphibole (<5%),
titanite, and minor zircon, allanite, apatite. Some coarse grains of K-feldspar
and plagioclase have been altered to clay minerals, sericite and chlorite (Fig.
3h).

Silicification, sericitization and carbonation occurred in the biotite monzonite near the intrusive contact with the overlying Jurassic Luanjiahe granite, whereas unaltered rocks were present at greater depth. The alteration is characterized mostly by addition of quartz, sericite, chlorite and calcite. Several quartz-pyrite veinlets are observed in the overlying Luanjiahe granite (Fig. 3e), suggesting a hydrothermal event probably related to the emplacement and degassing of the monzonitic magma.

The Gushan granite, located in the southwest of the Linglong goldfield, approximately 35 km away from the drill core 72ZK1 (Fig. 1), intrudes the Jurassic Luanjiahe granite and carries mafic microgranular enclaves (MMEs, Fig. 3f). The MMEs are generally fine grained and contain dominantly hornblende, plagioclase, biotite, K-feldspar and quartz, with minor apatite and titanite. Some pyrite crystals, coexisting with magnetite and chalcopyrite, are found in the MMEs.

212 SAMPLES AND ANALYTICAL METHODS

Representative samples were collected from the drill core 72ZK1 in the

214	Linglong goldfield, including quartz-pyrite veinlets (19ZY09), silicified-
215	sericitized-carbonated monzonite (19ZY01, 19ZY07, 19ZY13, 19ZY15) and
216	fresh to weakly-altered biotite monzonite (19ZY03, 19ZY14) at depths 2056-
217	2153 m. Samples of MMEs from the Gushan pluton were also analyzed.
218	Petrographic studies were carried out on thin sections using field emission
219	scanning electron microscope (FESEM). Titanite and hydrothermal monazite
220	were analyzed for geochronology, major and trace element contents, and Nd
221	isotopes using EPMA, LA-ICPMS and LA-MC-ICPMS. Pyrite, pyrrhotite and
222	magnetite were selected for in situ trace elemental and/or sulfur isotopic
223	analyses using LA-ICPMS and LA-MC-ICPMS. Except for FESEM and EPMA
224	analyses, which were done at the Institute of Geology and Geophysics, Chinese
225	Academy of Sciences (IGGCAS), other measurements were all conducted at
226	the Wuhan Sample Solution Analytical Technology Co., Ltd., China.

227 In situ titanite U-Pb dating and geochemical analyses

The major element compositions of titanite were determined using a JEOL-JXA8100 electron microprobe. The operating conditions were 15 kV accelerating voltage, 10 nA beam current and 5 µm probe beam. Calibration standards used were diopside for Ca and Si, jadeite for Al and Na, garnet for Fe, bustamite for Mn, K-feldspar for K, tugtupite for Cl, and fluorite for F. The data were corrected using the atomic number-absorption-fluorescence (ZAF) method.

Prior to analytical works, titanite grains were carefully examined using

transmitted and reflected light microscopy and backscatter electron (BSE) 236 images so as to avoid fractures, inclusions and U-rich domains. In addition, 237 magmatic and hydrothermal titanites were distinguished preliminarily based on 238 their occurrence, texture (oscillatory versus core-rim and irregular zoning) and 239 mineral association. In situ U-Pb isotopes and trace elements of titanite were 240 analyzed simultaneously by LA-ICPMS employing an Agilent 7900 ICP-MS 241 with a Geolas HD laser ablation system. A spot size of 44 µm was used with 242 pulse rate of 3 Hz and laser energy of 80 mJ. The Pb/U ratios were calibrated 243 against the zircon standard 91500 (Wiedenbeck et al. 1995) and monitored 244 according to the titanite standard MKED1 (Spandler et al. 2016). NIST 610 was 245 used as an external standard, and average CaO concentrations of titanite 246 determined by EPMA were used as the internal standard. Each analysis 247 incorporated a background acquisition of approximately 20 s followed by 50 s 248 of data acquisition. Details of the operating conditions, analytical method and 249 data reduction process can be found in Liu et al. (2008). A Microsoft Excel-250 based spreadsheet ICPMSDataCal was used to perform off-line selection and 251 integration of background and analyzed signal, time-drift correction and 252 quantitative calibration for U-Pb dating and trace element analysis (Liu et al. 253 2008). Tera-Wasserburg Concordia diagrams and weighted mean calculations 254 were made using Isoplot/Ex ver3 (Ludwig 2003). 255

In situ Nd isotopes of titanite were measured on spots previously analyzed
for U-Pb dating using a Neptune Plus multi-collector ICPMS, coupled with a

258	Geolas HD exciter ArF laser ablation system. A laser pulse energy of ~ 90 mJ,
259	repetition rate of 8 Hz and spot size of 32 μm were used. The mass
260	discrimination factor for ¹⁴³ Nd/ ¹⁴⁴ Nd was determined using ¹⁴⁶ Nd/ ¹⁴⁴ Nd (0.7219)
261	with an exponential fractionation law. The ¹⁴⁹ Sm signal was used to correct the
262	remaining ¹⁴⁴ Sm interference on ¹⁴⁴ Nd, using the ¹⁴⁴ Sm/ ¹⁴⁹ Sm ratio of 0.2301.
263	The mass fractionation of ¹⁴⁴ Sm/ ¹⁴⁹ Sm was corrected by the ¹⁴⁷ Sm/ ¹⁴⁹ Sm
264	normalization, using the interference-free ${}^{147}\text{Sm}/{}^{149}\text{Sm} = 1.08680$ and
265	exponential law (Xu et al. 2015). The $\epsilon_{Nd}(t)$ values were calculated relative to
266	the chondritic uniform reservoir (CHUR) parameters of Jacobsen and
267	Wasserburg (1980) (present-day ${}^{143}Nd/{}^{144}Nd = 0.512638$ and ${}^{147}Sm/{}^{144}Nd =$
268	0.1967) with ¹⁴³ Nd/ ¹⁴⁴ Nd renormalized to ¹⁴⁶ Nd/ ¹⁴⁴ Nd = 0.7219 (Hamilton et al.
269	1983; Bouvier et al. 2008).

270

In situ monazite U-Pb dating

In situ U-Pb dating of monazite was conducted using the same instruments and analytical methods described above for the titanite analyses. The spot size and frequency of the laser for U-Pb dating were set to 16 μ m and 2 Hz. Monazite standard 44069 (Aleinikoff et al. 2006) and glass NIST610 were used as external standards for U-Pb dating and trace element calibration, respectively.

276 In situ trace element analyses of pyrite and magnetite

Trace element concentrations of pyrite and magnetite were analyzed by LA-ICPMS. Detailed operating conditions and data reduction are similar to description by Liu et al. (2008). An Agilent 7900 ICP-MS instrument equipped

280	with a Geolas HD laser ablation system was used to acquire ion signal
281	intensities. A "wire" signal smoothing device is included in the laser ablation
282	system (Hu et al. 2015). For trace element analyses of pyrite, the spot size and
283	frequency of the laser were set to 32 μm and 5 Hz, respectively. The sulfide
284	reference material of MASS-1 (USGS) was used as an external bracketing
285	standard. The data quality was monitored by analyzing the NIST 610 reference
286	glass and the MASS-1 as unknowns interspersed with the measurements of the
287	samples. For magnetite, the spot size and frequency of the laser were set to 44
288	μ m and 5 Hz, respectively. Trace element compositions were calibrated against
289	various reference materials (BHVO-2G, BCR-2G and BIR-1G) without using
290	an internal standard (Liu et al. 2008). Each analysis incorporated a background
291	acquisition of approximately 20-30 s followed by 50 s of data acquisition. An
292	Microsoft Excel-based spreadsheet ICPMSDataCal was used in the identical
293	fashion as indicated for trace element measurements above (Liu et al. 2008).

294 In situ S isotope analyses of pyrite and pyrrhotite

In situ sulfur isotope analyses of pyrite and pyrrhotite were performed on a Neptune Plus MC-ICPMS equipped with a Geolas HD excimer ArF laser ablation system. Pyrite and pyrrhotite were both ablated using a large spot size (44 μ m) and slow pulse frequency (2 Hz) to avoid the down-hole fractionation effect (Fu et al., 2016). 100 laser pulses were completed in one analysis. The laser fluence was kept constant at ~5 J/cm². The Neptune Plus was equipped with nine Faraday cups fitted with 10¹¹ Ω resistors. Isotopes ³²S, ³³S and ³⁴S

were collected in Faraday cups using static mode. A standard-sample bracketing 302 method was employed to correct for instrumental mass fractionation. To avoid 303 matrix effects, a pyrite standard PPP-1 (Gilbert et al. 2014) was chosen as a 304 reference material for correcting the natural pyrite and pyrrhotite (Fu et al. 305 2016). In addition, the in-house reference pyrite SP-Py-01 (δ^{34} S_{VCDT} = 2.0 ‰ ± 306 0.5 ‰) and pyrrhotite SP-Po-01 (δ^{34} S_{VCDT} = 1.4 ‰ ± 0.4 ‰) were analyzed 307 repeatedly as unknown samples to verify the accuracy of the calibration method. 308 Standard errors for PPP-1, SP-Py-01 and SP-Po-01 are ± 0.2 ‰ (2 σ ; N = 54), \pm 309 $0.2 \ \text{\%} (2\sigma; N = 20) \text{ and } \pm 0.2 \ \text{\%} (2\sigma; N = 4), \text{ respectively.}$ 310

311

RESULTS

312 **Textures and chemical compositions of titanite**

Titanite crystals are ubiquitous in the biotite monzonite, showing a wide range of textures. These crystals are about 100-400 µm in length, euhedral to anhedral in shape. Three types of titanite were identified based on their occurrence, petrographic features and chemical compositions (Figs. 4, 5, and Supplementary Fig. A1). The titanite compositional data obtained during this study are provided in Supplementary Table 1.

Type 1 titanite (Ttn1) typically displays discrete, euhedral-subhedral and rhombus-shaped grains, and occurs as intergrowths with plagioclase, K-feldspar and biotite in the matrix. Oscillatory zoning is the most common and characteristic internal texture of Ttn1, consisting of alternating light and dark bands observed in BSE images (Fig. 4a, b). In some cases, Ttn1 also shows

324	sector zoning consisting of patchy dark, light and/or oscillatory zones (Fig. 4a).
325	These features suggest that Ttn1 is of magmatic origin. Ttn1 shows limited
326	ranges of CaO (27.7-29.1 wt.%), TiO ₂ (34.6-37.9 wt.%) and SiO ₂ (30.2-31.8
327	wt.%), and low contents of Al_2O_3 (0.94-2.23 wt.%), FeO (0.59-1.57 wt.%) and
328	MnO (0.03-0.24 wt.%) (Fig. 5). Trace element data show that Ttn1 has low
329	concentrations of total REE ($\Sigma REE = 862-9228$ ppm, average 4431 ppm) and
330	HFSE (Nb + Ta + Zr + Hf = 227-4964 ppm, average 1733 ppm), together with
331	slight enrichment of Light REE over Heavy REE (LREE/HREE = 2.8-17.8,
332	average 8.5), low Lu/Hf ratios (0.1-0.6, average 0.3), and weakly negative Eu
333	anomalies (Eu _N /Eu _N * = 0.5-0.9, average 0.8) (Fig. 5, Supplementary Fig. A1).
334	Ttn1 shows large variations in the contents of Pb (0.4-12.7 ppm, average 2.2
335	ppm), Th (1.8-398.8 ppm, average 94.0 ppm), U (0.3-518.2 ppm, average 57.6
336	ppm) and Y (60-2420 ppm).

Type 2 titanite (Ttn2) occurs as subhedral to anhedral crystals characterized 337 by simple zoning comprising irregular bright cores and light-gray contrasting 338 rims under BSE (Fig. 4c-e). This type of titanite commonly shares planar 339 contacts with pyrite. Ttn2 tends to have lower CaO (24.6-28.6 wt.%), TiO₂ 340 (31.1-37.1 wt.%) and SiO₂ (28.4-30.8 wt.%), but higher FeO (0.83-2.41 wt.%) 341 and MnO (0.13-0.33 wt.%) relative to Ttn1 (Fig. 5). Ttn2 also shows 342 significantly higher concentrations of REE (3221-37648 ppm, average 20766 343 ppm), HFSE (531-5040 ppm, average 2529 ppm), Y (633-4960 ppm, average 344 2643 ppm), Pb (0.7-12.9 ppm, average 5.6 ppm), Th (39.1-738.6 ppm, average 345

346	376.7 ppm), and U (4.8-291.5 ppm, average 86.0 ppm), but broadly similar
347	enrichment of LREE over HREE with slightly higher ratios of LREE/HREE
348	(11.7-30.3, average 21.4) and Lu/Hf (0.1-2.9, average 0.9) (Fig. 5,
349	Supplementary Fig. A1). In addition, Ttn2 displays more prominent negative
350	Eu anomalies (Eu _N /Eu _N * = 0.3-0.7, average 0.50) than Ttn1.

Type 3 titanite (Ttn3) occurs as fine, irregular veins penetrating and 351 overgrowing Ttn2 (Fig. 4f-h). Ttn3 commonly occurs together with calcite and 352 displays dark gray color under BSE. Ttn3 has similar ranges of CaO (27.3-28.9 353 wt.%), TiO₂ (34.7-37.8 wt.%), SiO₂ (30.3-31.3 wt.%) and Al₂O₃ (0.98-2.05 354 wt.%) to Ttn1, but slightly higher contents of FeO (0.67-2.23 wt.%) and MnO 355 (0.05-0.23 wt.%) (Fig. 5). The contents of trace elements of Ttn3 lie mostly 356 between those of Ttn1 and Ttn2, with REE ($\Sigma REE = 1173-28457$ ppm, average 357 10144 ppm), HFSE (123-8136 ppm, average 2344 ppm), Pb (0.5-6.8 ppm, 358 average 2.8 ppm), Th (14.8-511.2 ppm, average 157.4 ppm), U (1.7-197.0 ppm, 359 average 36.3 ppm) and Y (197-5389 ppm, average 2049 ppm). Ttn3 also 360 displays moderate Lu/Hf ratios (0.2-1.5, average 0.5), and a slight enrichment 361 of LREE relative to HREE (LREE/HREE = 6.2-18.6, average 13.0), showing 362 flat chondrite-normalized REE patterns with negative Eu anomalies (Eu_N/Eu_N* 363 = 0.2-1.1, average 0.6), similar to that of Ttn1 and Ttn2 (Supplementary Fig. 364 A1). 365

Geochronology of the biotite monzonite and hydrothermal event

367 Titanite U-Pb ages

368	In situ titanite U-Pb isotopic data are provided in Table 1. Locations of
369	representative points for U-Pb dating are shown in Fig. 4. The uncorrected data
370	were plotted on Tera-Wasserburg Concordia diagrams (Fig. 6a, b), and a
371	regression through these data yielded a lower-intercept age. The y-intercept
372	represents the initial ²⁰⁷ Pb/ ²⁰⁶ Pb ratio which can be used to conduct ²⁰⁷ Pb-
373	correction to calculate the corrected 206 Pb/ 238 U age (Aleinikoff et al. 2002). The
374	magmatic titanites (Ttn1) define a lower-intercept age of 120.7 ± 3.1 Ma (2σ , n
375	= 18, MSWD = 1.8) with initial 207 Pb/ 206 Pb = 0.8516. With this common Pb
376	composition, a ²⁰⁷ Pb-correction was conducted. Ten points yield a weighted
377	average ${}^{206}\text{Pb}/{}^{238}\text{U}$ age of 118.8 ± 2.2 Ma (MSWD = 1.3) (Fig. 6a), consistent
378	within error with the lower-intercept age. However, eight points exhibit lower
379	U and Pb with higher percentage of common Pb, plotting away from the lower
380	intercept and resulting in greater experimental errors. They cannot yield
381	convincing ²⁰⁶ Pb/ ²³⁸ U ages based on ²⁰⁷ Pb-correction, thus the lower-intercept
382	age (120.7 \pm 3.1 Ma) is used as the magmatic titanite age. The hydrothermal
383	titanites (Ttn2 and Ttn3) give a lower-intercept age of 120.9 \pm 2.6 Ma (2 σ , n =
384	19, MSWD = 1.4) with initial 207 Pb/ 206 Pb = 0.8530. Fifteen points define a 207 Pb-
385	corrected weighted average ${}^{206}\text{Pb}/{}^{238}\text{U}$ age of 117.9 ± 2.2 Ma (MSWD = 1.1)
386	which is consistent with the lower-intercept age (Fig. 6b). The other four points,
387	plotting away from the lower intercept, were failed to produce convincing
388	206 Pb/ 238 U ages, thus the lower-intercept age (120.9 ± 2.6 Ma) is used as the
389	hydrothermal titanite age. It is noteworthy that the ²⁰⁶ Pb/ ²³⁸ U ages for Ttn2 and

- Ttn3, as well as cores and rims in Ttn2, are indistinguishable, thus they were regarded as a whole during age analysis.
- 392 Monazite U-Pb ages

The *in situ* U-Pb data of 19 spots on monazite grains are presented in Table 393 1. All the analyzed monazite grains are associated or intergrown with pyrite in 394 the quartz-pyrite veinlets (Fig. 4i), thus their crystallization ages represent the 395 timing of the hydrothermal (vein-forming) event. The U-Pb data give a lower-396 intercept age of 119.0 \pm 5.8 Ma (2 σ , n = 19, MSWD = 1.1) on the Tera-397 Wasserburg Concordia diagram. The initial ²⁰⁷Pb/²⁰⁶Pb value is 0.7373. The 398 ²⁰⁷Pb-corrected weighted average ²⁰⁶Pb/²³⁸U age is 118.2 ± 4.6 Ma (MSWD = 399 0.2) which is consistent with the lower intercept age (Fig. 6c). 400

401 Nd isotopic composition of titanite

In situ Nd isotopic compositions of titanite are shown in Supplementary Table 1. The analyzed Ttn1, Ttn2 and Ttn3 show restricted and indistinguishable $\epsilon_{Nd}(t = 121 \text{ Ma})$ values of -14.7 to -13.0, -14.7 to -13.5, and -14.3 to -12.9 (Fig. 7).

Classification, trace-element and sulfur isotopic compositions of pyrite, magnetite and pyrrhotite

Based on occurrence, optical characteristics and mineral assemblages, four types of pyrite were recognized. The complete dataset of trace element concentrations and sulfur isotopes is given in Supplementary Table 2.

411 Type 1 pyrite (Py1) occurs in the fresh biotite monzonite. It is characterized

412	by isolated euhedral-anhedral crystals coexisting with magnetite, and contains
413	inclusions of plagioclase, quartz and titanite (Fig. 8a, e). The Py1 contains
414	uniformly low concentrations of Co (3-374 ppm), Ni (3-41 ppm), Cu (0-7.9
415	ppm), Zn (0-4.1 ppm), As (0.2-0.9 ppm), Ag (0-0.05 ppm), Sb (0-0.09 ppm), Au
416	(0-0.03 ppm, with two outliers at 0.1 ppm and 0.14 ppm), Pb (0-8.5 ppm) and
417	Bi (0-6.1 ppm) (Fig. 9). It commonly displays homogeneous textures on BSE
418	images (Fig. 8e), contrasting with heterogeneous compositional textures of Py2
419	and Py3 (Fig. 8f, g). The δ^{34} S values of Py1 are relatively low with a large
420	variation from +1.9 to +6.3 ‰ (average +4.7 ‰) (Fig. 10). The coexisting
421	magnetite grains mostly plot within the magmatic magnetite region on the Ti vs.
422	Ni/Cr diagram (Dare et al., 2014) with low Ni/Cr ratios (0.02-0.93)
423	(Supplementary Fig. A2).

Type 2 pyrite (Py2) mostly occurs as anhedral clusters in the altered 424 monzonite which shows significant sericitization and carbonation. The Py2 is 425 commonly enclosed within and crosscut by pyrrhotite (Fig. 8b, f), suggesting 426 that Py2 formed earlier than pyrrhotite. It is likely partly replaced by pyrrhotite, 427 resulting in corroded grain boundaries and metasomatic-relict texture (Fig. 8b). 428 Trace element data show that the contents of Co (0.1-4837 ppm), Ni (0-87.6 429 ppm), As (0.3-86.4 ppm), Ag (0-0.4 ppm), Sb (0-4.5 ppm), Au (0-0.09 ppm, 430 with one outlier of 18.7 ppm), Pb (0-218 ppm) and Bi (0-9.9 ppm, with an 431 outlier of 16.8 ppm) in Py2 have large variations and are higher than Py1 (Fig. 432 9). The δ^{34} S values of Py2 are +6.4 to +9.5 ‰ (average +8.4 ‰) (Fig. 10), which 433

434	are higher than Py1 but similar to the δ^{34} S values of pyrite from other deposits
435	in the Jiaodong Au province (+6 to +10 ‰; Mao et al. 2008; Feng et al. 2018;
436	Li et al. 2018; Deng et al. 2020b). The pyrrhotite has a δ^{34} S range of +6.9 to
437	+8.8 ‰ (average $+7.9$ ‰) that overlaps with range of Py2.
438	Type 3 pyrite (Py3) occurs as subhedral, rounded crystals in the quartz-
439	pyrite veins (Fig. 8c, g). The Py3 contains low concentrations of Co (0-98.6
440	ppm), Ni (0-116 ppm), Cu (0-0.5 ppm), Zn (0.4-0.9 ppm), Ag (0-0.3 ppm), Sb
441	(0-0.1 ppm), Au (0-0.01 ppm, with an outlier of 0.1 ppm), Pb (0-2.2 ppm) and
442	Bi (0-1.0 ppm, with an outlier of 19.9 ppm), but markedly high contents of As
443	(325-852 ppm) (Fig. 9). The δ^{34} S values of Py3 are +6.5 to +7.6 ‰ (average
444	+7.2 ‰), which is entirely with the range of Py2 (Fig. 10).
445	Another type of pyrite (Py4) was sampled from the mafic enclaves of the
446	Gushan granite. It occurs as euhedral to anhedral crystals in the matrix and
447	commonly coexists with magnetite and minor chalcopyrite (Fig. 8d, h). Most of
448	the trace elements, including Co, Cu, Zn, As, Sb, Au, Pb and Bi, show low
449	concentrations (mostly below detection limits), but the contents Ag (0-2.85 ppm)
450	and Ni (227-3407 ppm) are relatively high and vary widely. The Py4 displays a
451	low and narrow range of δ^{34} S values from +5.0 to +6.4 ‰ (average +5.9 ‰)

453

452

(Fig. 10).

DISCUSSION

454 Origins of the different generations of titanite

455 Distinct origins of titanite can be discriminated by their textures,

paragenetic mineral assemblages and chemical compositions (Cao et al. 2015; 456 Fu et al. 2016). The Ttn1 grains are mostly euhedral and rhombus-shaped, show 457 oscillatory and sector zoning under BSE, and occur as intergrowths with 458 igneous plagioclase, K-feldspar and biotite in the matrix of the biotite 459 monzonite, implying a magmatic origin. In contrast, the Ttn2 and Ttn3 grains 460 are mostly subhedral to anhedral, show core-rim texture and penetrating 461 relationship under BSE, and commonly show planar contacts with hydrothermal 462 pyrite, sericite and calcite, suggesting a hydrothermal origin. This conclusion is 463 further supported by the chemical compositions of the titanite grains. As 464 demonstrated in Fig. 5, Ttn1 shows low Fe, Mn, REE and high Ti, Ca. The Ttn1 465 data fall in relatively restricted portions of these four diagrams, resembling 466 typical magmatic titanite. In contrast, Ttn2 and Ttn3 are much more 467 compositionally diverse, with relatively higher Fe, Mn, REE and lower Ti, Ca 468 contents: all characteristics of hydrothermal titanite (Morad et al. 2009; Fu et al. 469 2016). The high Fe and Mn contents of Ttn2 and Ttn3 are consistent with Fe-470 rich hydrothermal fluids from which pyrite and pyrrhotite formed. Overall, Fig. 471 5a and 5c show negative correlations between TiO₂ and FeO, CaO and REE, 472 respectively, indicating that appreciable amounts of Fe and REE substitute for 473 Ti and Ca in the titanite structure, which is common in hydrothermal titanite 474 (Cao et al. 2015; Li et al. 2020). The dominant substitution mechanisms are 475 likely to be: $(AI, Fe)^{3+} + (F, OH)^{-} = Ti^{4+} + O^{2-}$, in which the substitution of Fe 476 for Ti predominates, and $REE^{3+} + (Al, Fe)^{3+} = Ca^{2+} + Ti^{4+}$ (Olin and Wolff 2012; 477

478 Xie et al. 2010).

Our results indicate that the concentrations of trace elements, including REE, 479 HFSE, Th, U and Pb, are quite distinct between magmatic (Ttn1) and 480 hydrothermal (Ttn2 and Ttn3) titanites (Fig. 5). These differences in trace 481 elements are strongly affected by the formation conditions, such as T, fO_2 , fS_2 482 and composition of melt or fluid (Tiepolo et al. 2002; Cao et al. 2015; Xiao et 483 al. 2021). Hydrothermal Ttn2 and Ttn3 show higher HFSE concentrations and 484 Lu/Hf ratios than the magmatic Ttn1, similar to hydrothermal titanites from 485 other regions documented by Fu et al. (2016) and Xiao et al. (2021). Enrichment 486 of HFSE in hydrothermal titanite suggests that HFSE can be mobile in 487 hydrothermal fluids during silicification, sericitization and carbonation. 488 However, in contrast to other studies, the hydrothermal titanites (Ttn2 and Ttn3) 489 have higher ΣREE compared with magmatic titanite (Ttn1). This implies that 490 the hydrothermal fluids were relatively enriched in REE. This interpretation is 491 also consistent with the ubiquitous presence of monazite in the quartz-pyrite 492 veins. 493

⁴⁹⁴ Despite the differences in REE contents, the magmatic and hydrothermal ⁴⁹⁵ titanites show similar chondrite-normalized REE patterns (Supplementary Fig. ⁴⁹⁶ A1), which suggest that the hydrothermal fluids that precipitated Ttn2 and Ttn3 ⁴⁹⁷ were most likely exsolved from the same monzonitic magma that crystallized ⁴⁹⁸ Ttn1. This conclusion is further supported by the overlapping crystallization ⁴⁹⁹ ages of magmatic Ttn1 (120.7 \pm 3.1 Ma) and hydrothermal Ttn2 and Ttn3 (120.9 ± 2.6 Ma), and by the indistinguishable $\varepsilon_{Nd}(t)$ values of the three titanite types (Fig. 7). The latter also implies the same Nd isotope composition of the monzonitic magma and hydrothermal fluids, further suggesting the co-genetic origin between magma and fluid.

Given its high Nd content, magmatic titanite could shed light on the Nd 504 isotope composition of the magma (e.g., Xie et al. 2010; Cao et al., 2015). The 505 homogeneous $\varepsilon_{Nd}(t)$ values (-14.7 to -13.0) of magmatic Ttn1 are higher than 506 the whole-rock $\varepsilon_{Nd}(t)$ values of the lower crustal-sourced Linglong granite (-507 21.6 to -19.2), Gushan granite (-18.9 to -18.6) and Aishan granite (-17.9 to -508 16.2) (Yang et al. 2012; Li et al. 2012b; Li et al. 2019a), but within the range of 509 the Guojialing granodiorite (-16.8 to -11.5), which has been interpreted as 510 deriving from a mixture of mantle and lower crustal sources (Yang et al. 2012; 511 Li et al. 2019a). Additionally, early Cretaceous mafic dikes in the Jiaodong area 512 have $\varepsilon_{Nd}(t)$ that overlap with range of Ttn1 (-18.1 to -13.6; Cai et al. 2013) (Fig. 513 7). Taken as a whole, these data support a mixed mantle and lower crustal source 514 for the monzonitic magma (Fig. 11a). 515

516 Interpretation of pyrite geochemistry

Trace elements and S isotopes of pyrite record valuable information about the source and properties (pH, redox, temperature) of the fluids from which the pyrite formed (Pokrovski et al. 2002; Deditius et al. 2014; Peterson and Mavrogenes 2014; Li et al. 2018). Four types of pyrite identified in this study have been characterized for trace elements and S isotopes, and the implications 522 of these results are discussed here.

The isolated Py1 grains show features consistent with a magmatic origin, 523 including: disseminated occurrence in fresh monzonite; coexistence with 524 magmatic magnetite, plagioclase, quartz and titanite; homogeneous BSE 525 response; and low concentrations of trace metals (Co, Ni, Cu, Zn, As, Ag, Sb, 526 Pb and Bi). The Py1 grains also show several similarities with Py4 grains found 527 in the fresh mafic enclaves from the Gushan granite. The Py4 occurs as euhedral 528 to anhedral crystals in the matrix and coexists with magnetite and allanite (Fig. 529 8d, h). Both Py1 and Py4 are therefore interpreted as being of magmatic origin. 530 Both Py1 and Py4 also have broadly similar and relatively low values of δ^{34} S 531 $(+1.9 \text{ to } +6.3 \text{ \low and } +5.0 \text{ to } +6.4 \text{ \low , respectively})$, which represent the sulfur 532 isotopic compositions of the magma. Previous research has suggested that the 533 mafic enclaves from the Gushan granite were formed by mixing between mafic 534 and felsic magmas (Li et al. 2012b), during which both chemical and isotopic 535 compositions tend to reach homogenization. The felsic magma was sourced 536 from the ancient NCC lower crust at ca. 120 Ma, and the mafic magma was 537 derived from an enriched lithospheric mantle source beneath eastern NCC (Li 538 et al. 2012b). Similarly, the above results of Nd isotopes in titanite suggest a 539 potentially mixed mantle/lower crustal source for the monzonitic magma at ca. 540 121 Ma. Thus, we interpret that the sulfur isotopic compositions of Py1 and Py4 541 represent the products of isotopic exchange between lower crust-derived felsic 542 magma and lithospheric mantle-derived mafic magma. 543

544	In contrast to Py1 and Py4, Py2 and Py3 show features typical of
545	hydrothermal origin. Py2 occurs mostly as anhedral clusters in the altered
546	monzonite, coexists with sericite, calcite, and pyrrhotite, and displays
547	heterogeneous textures under BSE (Fig. 8f). In addition, Py2 shows variable
548	and relatively high concentrations of minor and trace metals (especially Co, As,
549	Ag, Sb and Bi). Significantly, extremely high contents of Au (18.7 ppm) and Bi
550	(16.8 ppm) suggest the presence of gold as submicron inclusions in Py2. The
551	latter implies that the hydrothermal fluids that deposited Py2 had potential for
552	forming precious-metal mineralization. Py3 occurs in the quartz-pyrite veins,
553	and thus is unambiguously of hydrothermal origin. Py3 shows various broad
554	similarities with pyrite from the Jiaodong Au province, especially high As
555	contents and δ^{34} S values of +6.5 to +7.6 ‰.

Pyrrhotite grains commonly occur as rims on or fracture fill within the Py2 556 grains, implying that pyrrhotite formed later than Py2. However, the pyrrhotite 557 and Py2 display similar δ^{34} S values (δ^{34} S_{po} = +6.9 to +8.8 ‰, δ^{34} S_{Py2} = +6.4 to 558 +9.5 ‰), which are indicative of natural sulfur isotopic fractionation between 559 pyrite and pyrrhotite precipitated from hydrothermal fluids with the same sulfur 560 ratios (δ^{34} S) (e.g., Li et al. 2017). The precipitation of early pyrite transitioning 561 to later pyrrhotite suggests a decrease of sulfur fugacity in the evolving 562 hydrothermal fluid, probably due to the consumption of sulfur by pyrite, or 563 perhaps by effervescence of H₂S. 564

565 Considering that the hydrothermal sulfides disseminated in the monzonite

566	are dominated by pyrite and pyrrhotite, isotopic fractionation between sulfide
567	pairs is negligible, thus the sulfur isotopic signature of pyrite can reasonably
568	represent the bulk sulfur isotopic composition of the hydrothermal fluid
569	(Ohmoto 1972). Sulfur isotopes of pyrite have been widely used to trace the
570	sources of fluids (e.g., Peterson and Mavrogenes 2014; Chen et al. 2015). Based
571	on the sulfur isotopic ratios of Py2 and Py3, we suggest that the corresponding
572	hydrothermal fluids have a narrow range of $\delta^{34}S$ values (+6.4 to +9.5 ‰),
573	similar to those from the Au deposits in the Jiaodong province (+6 to +10 $\%$;
574	Li et al. 2018; Feng et al. 2018; Deng et al. 2020b), but slightly heavier than the
575	monzonitic magma which was represented by the $\delta^{34}S$ of Py1 (+1.9 to +6.3 ‰)
576	(Fig. 10). The textural, geochemical and geochronological observations of the
577	magmatic-hydrothermal titanite indicate a role of magmatic-hydrothermal
578	fluids that exsolved from the monzonitic magma. These magmatic-
579	hydrothermal fluids are likely to have contributed to the precipitation of Py2
580	and Py3, as well as to silicification, sericitization and carbonation of the biotite
581	monzonite. Experimental data from Fiege et al. (2014) revealed that the
582	hydrothermal fluids released by magma degassing can have heavier S isotopes
583	than the source magma (with $\delta^{34}S$ ~6.7‰ higher) when the sulfur occurs as $S^{2\text{-}}$
584	or H ₂ S. This is compatible with the slightly heavier $\delta^{34}S$ values of the
585	hydrothermal Py2 and Py3 compared to the magmatic Py1. In addition, the age
586	of hydrothermal monazite (118.2 \pm 4.6 Ma) is consistent with the age of biotite
587	monzonite (120.7 \pm 3.1 Ma), further implying an intimate relationship between

the monzonitic magma and hydrothermal fluids. In general, we propose that the
hydrothermal fluids that precipitated Py2 and Py3 were directly exsolved from
the monzonitic magma, which had previously crystallized igneous Py1 grains.

591 Constraints on magmatism and hydrothermal processes

The deposition of titanite and pyrite in the biotite monzonite clearly spans the magmatic and hydrothermal stages (Fig. 11). Our results regarding the occurrence and geochemistry of titanite and pyrite provide insights into the melt/fluid composition, the conditions under which they formed, and the magmatic-hydrothermal processes in the monzonite system.

Magmatic Ttn1 formed as discrete euhedral grains intergrown with K-597 feldspar, magnetite and quartz. This assemblage indicates that the monzonitic 598 magma crystallization occurred at a relatively high oxygen fugacity and H₂O-599 rich environment (Frost and Lindsley 1992; Piccoli et al. 2000; Xiao et al. 2021). 600 The high oxygen fugacity is supported by the negative Eu anomaly of Ttn1. 601 High oxygen fugacity and H₂O contents could lead to a preferential transfer of 602 Au into the magma from its source (Botcharnikov et al. 2011; Wang et al. 2020), 603 resulting in Au enrichment, which is reflected by two analyses of magmatic Py1 604 that showed relatively high Au contents (0.1 ppm and 0.14 ppm). Since the Nd 605 isotopes of Ttn1 and S isotopes of Py1 are proposed to be likely the result of 606 mixing between magmas from lower crust and lithospheric mantle, the Au could 607 be derived from both sources (Fig. 11a). 608

In the later hydrothermal stages, fluids were directly exsolved from the late-

610	stage monzonitic magma. The complex textures and geochemistry of Ttn2 and
611	Ttn3 suggest that formation of these minerals was a dynamic process involving
612	different hydrothermal stages (Fig. 11b). The initial hydrothermal fluid was
613	characterized by high REE contents (especially LREE), which resulted in back-
614	scatter bright cores of Ttn2. With further degassing, the hydrothermal fluid
615	precipitated back-scatter gray rims of Ttn2 with moderate REE contents (e.g.,
616	Fu et al. 2016; Xiao et al. 2021), as well as Py2 with relatively high metal
617	contents (Co, As, Ag, Au, Sb and Bi). This implies that Au, together with Co,
618	As, Ag, Sb and Bi, were pre-enriched in the monzonitic magma and were
619	furthermore favorably partitioned into the exsolved fluids (Pokrovski et al.
620	2013). In the late hydrothermal stage, the fluid became less oxidized -
621	evidenced by the variable negative-positive Eu anomalies (Eu _N /Eu _N * = 0.2-1.1,
622	average 0.6) of Ttn3 - and contained lower total REE contents. The Ttn3
623	precipitated at this stage overgrew on the rims of Ttn2, and partly penetrated in
624	Ttn2 (Fig. 11b). The pyrrhotite grains were likely precipitated during the late
625	hydrothermal stages (Fig. 11b), due to the consumption of sulfur by deposition
626	of Py2 and less oxidizing conditions. Multiple stages of hydrothermal fluid
627	exsolution from the monzonitic magma show the same Nd and S isotopic
628	compositions. The hydrothermal fluids led to distinct alteration in the biotite
629	monzonite, including silicification, sericitization and carbonation. We surmise
630	that these same fluids then migrated along faults and fractures, forming quartz-
631	pyrite (Py3) veins in the overlying Luanjiahe granite.

A potential magmatic-hydrothermal model for the Jiaodong Au mineralization

The source(s) of ore-forming fluids and Au, the mechanism(s) for Au 634 enrichment, and the genetic model for the Jiaodong Au deposits have long been 635 debated (Fan et al. 2003; Zhai et al. 2004; Chen et al. 2005; Goldfarb and 636 Santosh 2014; Zhu et al. 2015; Deng et al. 2020b). The possible sources for the 637 ore components include (1) a crustal source from Precambrian metamorphic 638 rocks and/or Mesozoic granite (Chen et al. 2005), (2) a subcrustal source from 639 volatile- and Au-fertilized metasomatized mantle lithosphere (Zhu et al. 2015; 640 Deng et al. 2020a, b), or (3) a mixed crustal plus mantle source (Zhai et al. 641 2004). Various models have been postulated to explain the nature of Au 642 mineralization in different settings, including the orogenic Au deposits (Zhou 643 et al. 2002; Goldfarb and Santosh 2014), intrusion-related Au deposits (Sillitoe 644 and Thompson 1998; Nie et al. 2004), magmatic-hydrothermal Au deposits 645 related to mafic dikes (Wang et al. 2020), decratonic Au deposits (Zhu et al. 646 2015), and "Jiaodong-type" Au deposits (Deng et al. 2015; Li et al. 2015). All 647 these genetic models have advantages and problems, which have been reviewed 648 by Deng et al. (2020b), and are still highly contentious. One critical factor 649 hindering universal acceptance of a single model is the uncertainty of genetic 650 relationship between magmatism and Au mineralization. Ultimately, this 651 uncertainty is underpinned by the question of whether exsolution and degassing 652 of auriferous magmatic-hydrothermal fluid took place. The information 653

provided by magmatic-hydrothermal titanites and pyrites in this study
highlights the exsolution of auriferous hydrothermal fluids from the monzonitic
magma, and thus supports a magmatic-hydrothermal model for the genesis of
the Jiaodong Au province, as discussed below.

Titanite and monazite that formed from the monzonitic magma (Ttn1) and 658 exsolved hydrothermal fluids (Ttn2, Ttn3 and monazite) yielded consistent U-659 Pb ages (121-118 Ma) overlapping within error with the large-scale Au 660 mineralization age at Jiaodong (120-119 Ma; Ma et al. 2017; Li et al. 2018; 661 Yang et al. 2018; Deng et al. 2020a; Zhang et al. 2020). Spatially, the biotite 662 monzonite intruded at depth beneath the Linglong goldfield, and is connected 663 with the surface and Au deposits by the Zhaoyuan-Pingdu fault which hosts 664 hundreds of auriferous quartz veins (Fig. 2b). Hence, our results suggest that 665 the monzonitic magmatism and its accompanying hydrothermal fluids were 666 both temporally and spatially linked to the Au mineralization. Magmatic pyrite 667 (Py1) from the monzonite has relatively high Au contents (up to 0.14 ppm), 668 suggesting that the magma was fertile for Au. Hydrothermal fluids precipitating 669 Py2 have higher Au contents, as reflected by the presence of submicron 670 inclusions of Au and Bi in Py2, again corroborating a genetic relationship with 671 the Au mineralization. Quantitatively, the biotite monzonite may be part of a 672 large-scale magmatic event at ca. 121 Ma in the Jiaodong Au province, 673 consistent with contemporaneous intermediate-felsic rocks, including the 674 Gushan granite located ~35 km to the southwest of the drill core (120-119 Ma; 675

676	Li et al. 2012b), the widespread intermediate-mafic (130-120 Ma; Ma et al.
677	2017; Wang et al. 2020) and felsic dikes (123-118 Ma; Li et al. 2019b).
678	Extensive magmatism has the potential to produce hydrothermal fluids forming
679	giant Au deposits. Although many researchers proposed that the ore-forming
680	fluids were sourced from the volatile-enriched metasomatized mantle
681	lithosphere (e.g., Goldfarb and Santosh 2014; Deng et al. 2015, 2020a, b),
682	analyses of mantle xenoliths have suggested relatively low Au contents of the
683	metasomatized mantle lithosphere (Wang et al., 2020), casting doubt on that
684	interpretation. Wang et al. (2020) underscored the high Au contents of hydrous
685	magmas that were sourced from the metasomatized mantle. These findings
686	consistently reveal a genetic relationship between biotite monzonite, which
687	potentially involves mantle components, and Au mineralization in the Jiaodong
688	Au province.

Previous studies have established that the Jiaodong Peninsula experienced 689 a transition of tectonic regime from regional compression to transpression or 690 transtension prior to peak extension since 125-120 Ma, as a far-field response 691 to the change of subduction direction and roll-back of the paleo-Pacific Plate 692 (Sun et al. 2007; Yang et al. 2018; Deng et al. 2020b). The mantle lithosphere 693 under the eastern NCC at this stage had been metasomatized during Triassic and 694 Late Jurassic to Early Cretaceous subduction events (Chen et al. 2005; Liang et 695 al. 2019; Deng et al. 2020a, b). The extension-induced thinning of lithosphere 696 and accompanying asthenospheric upwelling at 130-120 Ma (Zhai et al. 2004; 697

698	Li et al. 2019a; Wu et al. 2019) triggered partial melting of the metasomatized
699	mantle lithosphere and the lower crust of the NCC, producing hydrous mafic
700	and felsic magmas, respectively (Fig. 11a). These magmas probably extracted
701	Au efficiently from their sources (Wang et al. 2020). Distinct degrees of mixing
702	occurred between the mafic and felsic magmas, forming the biotite monzonite
703	and Gushan granite (Fig. 11a), with distinct ranges of $\varepsilon_{Nd}(t)$, which likely
704	represent two different intrusives formed by the same magmatism. Attributing
705	to the more involved mafic magmas, higher $\epsilon_{Nd}(t)$ values were yielded in the
706	biotite monzonite than the Gushan granite. With further magmatic evolution,
707	hydrothermal fluids were exsolved from these crystallizing magmas (Fig. 11a),
708	preferentially concentrating Au, As, Sb, Bi, S, Cl and C into the fluids by a
709	factor of hundreds (Pokrovski et al. 2013). The auriferous fluids ascended along
710	the translithospheric faults into second-order fault systems, and precipitated
711	gold, quartz and sulfides. This model favors a magmatic-hydrothermal origin,
712	and explains the intimate spatial and temporal association of Au deposits with
713	mafic-felsic magmatism.

714

IMPLICATIONS

The biotite monzonite buried in the Linglong goldfield formed at ca. 121 Ma based on titanite U-Pb dating, and displays distinctive petrographic features indicative of hydrothermal alteration and mineralization, containing ubiquitous magmatic-hydrothermal titanite and pyrite. Three types of titanite with different textures and geochemistry were identified, including magmatic Ttn1 with

720	oscillatory and sector zoning under BSE, and hydrothermal Ttn2 and Ttn3
721	which show core-rim or irregular textures, and higher Fe, Mn, REE, HFSE, but
722	lower Ti, Ca contents than Ttn1. Hydrothermal fluids that precipitated Ttn2 and
723	Ttn3 were sourced from the monzonitic melt that crystallized Ttn1, evidenced
724	by similar chondrite-normalized REE patterns, indistinguishable Nd isotopes
725	$(\epsilon_{Nd}(t)$ = -14.7 to -12.9) and U-Pb ages (120.7 \pm 3.1 Ma for Ttn1, 120.9 \pm 2.6
726	Ma for Ttn2 and Ttn3).

Four types of pyrite were analyzed, including magmatic Py1 from the fresh 727 biotite monzonite, hydrothermal Py2 from the altered biotite monzonite, 728 hydrothermal Py3 from the quartz-pyrite veins, and magmatic Py4 from the 729 mafic enclaves of the Gushan granite. The Py1 and Py4 have low concentrations 730 of trace metals, while the Py2 and Py3 have high Co, As, Ag, Au, Sb and Bi 731 contents which corresponds to fertile hydrothermal fluids. Magmatic Py1 has 732 broadly similar δ^{34} S values (+1.9 to +6.3 ‰) to Py4 (+5.0 to +6.4 ‰), but 733 relatively lighter than hydrothermal Py2 and Py3 (+6.4 to +9.5 ‰), consistent 734 with sulfur isotopic fractionation between melt and fluid. U-Pb dating of 735 monazite (118.2 \pm 4.6 Ma) from the quartz-pyrite veins indicate that the 736 auriferous hydrothermal fluids are synchronous to the monzonitic magma. 737

In this contribution, evidences from the titanite and pyrite corroborate the exsolution of fertile hydrothermal fluids from the monzonitic magma, suggesting a magmatic-hydrothermal genetic model for the giant Jiaodong Au mineralization. We infer that primary Au was efficiently extracted from the

742	metasomatized mantle lithosphere and the lower crust of the NCC by hydrous
743	magmas at ca. 120 Ma.

ACKNOWLEGMENTS AND FUNDING 744 We thank Dapeng Li and Guijun Wen for their helps during fieldworks, 745 Lihui Jia, Jiakang Kong and Zheng Liu for their technical supports in running 746 the EPMA, LA-ICPMS and LA-MC-ICPMS analyses. We are grateful to two 747 anonymous reviewers for their constructive feedback that helped to improve an 748 earlier manuscript, and associate editor Paul Tomascak for valuable suggestions 749 and efficient editorial handling. This work is funded by the National Key 750 Research and Development Program (No. 2016YFC0600105), China National 751 Postdoctoral Program for Innovative Talents (No. BX20190327), and China 752 Postdoctoral Science Foundation (No. 2019M660788). 753

754

Page | **36**

755	REFERENCES CITED
756	Aleinikoff, J.N., Wintsch, R.P., Fanning, C.M., and Dorais, M.J. (2002) U-Pb
757	geochronology of zircon and polygenetic titanite from the Glastonbury
758	Complex, Connecticut, USA: an integrated SEM, EMPA, TIMS, and
759	SHRIMP study. Chemical Geology, 188, 125–147.
760	Aleinikoff, J.N., Schenck, W.S., Plank, M.O., Srogi, L., Fanning, C.M., Kamo,
761	S.L., and Bosbyshell, H. (2006) Deciphering igneous and metamorphic
762	events in highgrade rocks of the Wilmington Complex, Delaware:
763	Morphology, cathodoluminescence and backscattered electron zoning, and
764	SHRIMP U-Pb geochronology of zircon and monazite. Geological Society
765	of America Bulletin, 118, 39–64.
766	Botcharnikov, R.E., Linnen, R.L., Wilke, M., Holtz, F., Jugo, P.J., and Berndt,
767	J. (2011) High gold concentrations in sulphide-bearing magma under
768	oxidizing conditions. Nature Geoscience, 4, 112–115.
769	Bouvier, A., Vervoort, J.D., and Patchett, P.J. (2008) The Lu-Hf and Sm-Nd
770	isotopic composition of CHUR: Constraints from unequilibrated
771	chondrites and implications for the bulk composition of terrestrial planets.
772	Earth and Planetary Science Letters, 273, 48–57.
773	Cai, Y.C., Fan, H.R., Santosh, M., Liu, X., Hu, F.F., Yang, K.F., Lan, T.G., Yang,
774	Y.H., and Liu, Y.S. (2013) Evolution of the lithospheric mantle beneath the
775	southeastern North China Craton: constraints from mafic dikes in the
776	Jiaobei terrain. Gondwana Research, 24, 601–621.

777	Cao, M.J., Qin, K.Z., Li, G.M., Evans, N.J., and Jin, L.Y. (2015) In situ LA-
778	(MC)-ICP- MS trace element and Nd isotopic compositions and genesis of
779	polygenetic titanite from the Baogutu reduced porphyry Cu deposit,
780	Western Junggar, NW China. Ore Geology Reviews, 65, 940–954.
781	Chen, L., Li, X.H., Li, J.W., Hofstra, A.H., Liu, Y., and Koenig, A.E. (2015)
782	Extreme variation of sulfur isotopic compositions in pyrite from the
783	Qiuling sediment-hosted gold deposit, West Qinling orogen, central China:
784	an in situ SIMS study with implications for the source of sulfur.
785	Mineralium Deposita, 50, 643–656.
786	Chen, Y.J., Pirajno, F., and Qi, J.P. (2005) Origin of gold metallogeny and
787	sources of ore-forming fluids, Jiaodong Province, Eastern China.
788	International Geology Review, 47, 530–549.
789	Dare, S.A.S., Barnes, S.J., Beaudoin, G., Méric, J., Boutroy, E., and Potvin-
790	Doucet, C. (2014) Trace elements in magnetite as petrogenetic indicators.
791	Mineralium Deposita, 49, 785–796.
792	Deditius, A.P., Reich, M., Kesler, S.E., Utsunomiya, S., Chryssoulis, S.L.,
793	Walshe, J., and Ewing, R.C. (2014) The coupled geochemistry of Au and
794	As in pyrite from hydrothermal ore deposits. Geochimica et
795	Cosmochimica Acta, 140, 644–670.
796	Deng, J., Wang, C., Bagas, L., Carranza, E.J.M., and Lu, Y. (2015) Cretaceous-
797	Cenozoic tectonic history of the Jiaojia Fault and gold mineralization in
798	the Jiaodong Peninsula, China: constraints from zircon U-Pb, illite K-Ar,

799	and apatite	fission	track	thermochronometry.	Mineralium	Deposita,	50,
800	987–1006.						

Deng, J., Qiu, K.F., Wang, Q.F., Goldfarb, R.J., Yang, L.Q., Zi, J.W., Geng, J.Z.,
and Ma, Y. (2020a) In-situ dating of hydrothermal monazite and
implications on the geodynamic controls of ore formation in the Jiaodong
gold province, eastern China. Economic Geology, 115, 671–685.

Deng, J., Yang, L.Q., Groves, D.I., Zhang, L., Qiu, K.F., and Wang, Q.F. (2020b)
 An integrated mineral system model for the gold deposits of the giant
 Jiaodong province, eastern China. Earth-Science Reviews, 208, 103274.

Dora, M.L., Upadhyay, D., Randive, K.R., Shareef, M., Baswani, S.R., and
Ranjan, S. (2020) Trace element geochemistry of magnetite and pyrite and
sulfur isotope geochemistry of pyrite and barite from the Thanewasna Cu(Au) deposit, western Bastar Craton, central India: Implication for ore
genesis. Ore Geology Reviews, 117, 103262.

Fan, H.R., Zhai, M.G., Xie, Y.H., and Yang, J.H. (2003) Ore-forming fluids
associated with granite-hosted gold mineralization at the Sanshandao
deposit, Jiaodong gold province, China. Mineralium Deposita, 38, 739–
750.

Fan, H.R., Hu, F.F., Yang, J.H., and Zhai, M.G. (2007) Fluid evolution and
large-scale gold metallogeny during Mesozoic tectonic transition in the
Jiaodong Peninsula, eastern China. Geological Society London Special
Publications, 280, 303–316.

821	Feng, K., Fan, H.R., Hu, F.F., Yang, K.F., Liu, X., Shangguan, Y.N., and Jiang,
822	P. (2018) Involvement of anomalously As-Au-rich fluids in the
823	mineralization of the Heilan'gou gold deposit, Jiaodong, China: evidence
824	from trace element mapping and in-situ sulfur isotope composition.
825	Journal of Asian Earth Sciences, 160, 304–321.
826	Feng, K., Fan, H.R., Groves, D.I., Yang, K.F., Hu, F.F., Liu, X., and Cai, Y.C.
827	(2020) Geochronological and sulfur isotopic evidence for the genesis of
828	the post-magmatic, deeply sourced, and anomalously gold-rich Daliuhang
829	orogenic deposit, Jiaodong, China. Mineralium Deposita, 55, 293–308.
830	Fiege, A., Holtz, F., Shimizu, N., Mandeville, C.W., Behrens, H., and Knipping,
831	J.L. (2014) Sulfur isotope fractionation between fluid and andesitic melt:
832	An experimental study. Geochimica et Cosmochimica Acta, 142, 501–521.
833	Frost, B.R., and Lindsley, D.H. (1992) Equilibria among Fe-Ti oxides,
834	pyroxenes, olivine, and quartz: part II. Application. American Mineralogist,
835	77, 1004–1020.
836	Frost, B.R., Chamberlain, K.R., and Schumacher, J.C. (2001) Sphene (titanite):
837	phase relations and role as a geochronometer. Chemical Geology, 172,
838	131–148.
839	Fu, J.L., Hu, Z.C., Zhang, W., Yang, L., Liu, Y.S., Li, M., Zong, K.Q., Gao, S.,
840	and Hu, S.H. (2016) In situ, sulfur isotopes (δ^{34} S and δ^{33} S) analyses in
841	sulfides and elemental sulfur using high sensitivity cones combined with
842	the addition of nitrogen by Laser Ablation MC-ICP-MS. Analytica

843	Chimica Acta, 911, 14–26.
844	Gilbert, S.E., Danyushevsky, L.V., Rodemann, T., Shimizu, N., Gurenko, A.,
845	Meffre, S., Thomas, H., Large, R.R., and Death, D. (2014) Optimisation of
846	laser parameters for the analysis of sulphur isotopes in sulphide minerals
847	by laser ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 29,
848	1042–1051.
849	Goldfarb, R.J., and Santosh, M. (2014) The dilemma of the Jiaodong gold
850	deposits: Are they unique? Geoscience Frontiers, 5, 139–153.
851	Goss, S.C., Wilde, S.A., Wu, F.Y., and Yang, J.H. (2010) The age, isotopic
852	signature and significance of the youngest Mesozoic granitoids in the
853	Jiaodong Terrain, Shandong Province, North China Craton. Lithos, 120,
854	309–326.
854 855	309–326. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., and Robert,
854 855 856	309–326. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., and Robert, F. (1998) Orogenic gold deposits: a proposed classification in the context
854 855 856 857	 309–326. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., and Robert, F. (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types.
854 855 856 857 858	 309–326. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., and Robert, F. (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13, 7–27.
854 855 856 857 858 859	 309–326. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., and Robert, F. (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13, 7–27. Hamilton, P.J., O'Nions, R.K., Bridgwater, D., and Nutman, A. (1983) Sm-Nd
854 855 856 857 858 859 860	 309–326. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., and Robert, F. (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13, 7–27. Hamilton, P.J., O'Nions, R.K., Bridgwater, D., and Nutman, A. (1983) Sm-Nd studies of Archaean metasediments and metavolcanics from West
854 855 856 857 858 859 860 861	 309–326. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., and Robert, F. (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13, 7–27. Hamilton, P.J., O'Nions, R.K., Bridgwater, D., and Nutman, A. (1983) Sm-Nd studies of Archaean metasediments and metavolcanics from West Greenland and their implications for the Earth's early history. Earth and
 854 855 856 859 860 861 862 	 309–326. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., and Robert, F. (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13, 7–27. Hamilton, P.J., O'Nions, R.K., Bridgwater, D., and Nutman, A. (1983) Sm-Nd studies of Archaean metasediments and metavolcanics from West Greenland and their implications for the Earth's early history. Earth and Planetary Science Letters, 62, 263–272.
 854 855 856 859 860 861 862 863 	 309–326. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., and Robert, F. (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13, 7–27. Hamilton, P.J., O'Nions, R.K., Bridgwater, D., and Nutman, A. (1983) Sm-Nd studies of Archaean metasediments and metavolcanics from West Greenland and their implications for the Earth's early history. Earth and Planetary Science Letters, 62, 263–272. Hayden, L.A., Watson, E.B., Wark, D.A. (2008) A thermobarometer for sphene

865	Hu, Z.C., Zhang, W., Liu, Y.S., Gao, S., Li, M., Zong, K.Q., Chen, H.H., and
866	Hu, S.H. (2015) "Wave" signal-smoothing and mercury-removing device
867	for laser ablation quadrupole and multiple collector ICPMS analysis:
868	application to lead isotope analysis. Analytical Chemistry, 87, 1152–1157.
869	Jacobsen, S.B., and Wasserburg, G.J. (1980) Sm-Nd isotopic evolution of
870	chondrites. Earth and Planetary Science Letters, 50, 139–155.
871	Li, J., Xu, L.L., Bi, X.W., Tang, Y.Y., Sheng, X.Y., Yu, H.J., Liu, G., and Ma, R.
872	(2020) New titanite U–Pb and molybdenite Re–Os ages for a hydrothermal
873	vein-type Cu deposit in the Lanping Basin, Yunnan, SW China: constraints
874	on regional metallogeny and implications for exploration. Mineralium
875	Deposita. https://doi.org/10.1007/s00126-020-00973-x.
876	Li, J.W., Deng, X.D., Zhou, M.F., Liu, Y.S., Zhao, X.F., and Guo, J.L. (2010)
877	Laser ablation ICP-MS titanite U-Th-Pb dating of hydrothermal ore
878	deposits: a case study of the Tonglushan Cu-Fe-Au skarn deposit, SE
879	Hubei Province, China. Chemical Geology, 270, 56–67.
880	Li, J.W., Bi, S.J., Selby, D., Chen, L., Vasconcelos, P., Thiede, D., Zhou, M.F.,
881	Zhao, X.F., Li, Z.K., and Qiu, H.N. (2012a) Giant Mesozoic gold
882	provinces related to the destruction of the North China craton. Earth and
883	Planetary Science Letters, 349, 26–37.
884	Li, L., Santosh, M., and Li, S.R. (2015) The 'Jiaodong type' gold deposits:
885	characteristics, origin and prospecting. Ore Geology Reviews, 65, 589-
886	611.

887	Li, R.C., Chen, H.Y., Xia, X.P., Yang, Q., Li, L., Xu, J., Huang, C., and
888	Danyushevsky, L.V. (2017) Ore fluid evolution in the giant Marcona Fe-
889	(Cu) deposit, Perú: Evidence from in-situ sulfur isotope and trace element
890	geochemistry of sulfides. Ore Geology Reviews, 86, 624-638.
891	Li, X.C., Fan, H.R., Santosh, M., Hu, F.F., Yang, K.F., Lan, T.G., Liu, Y., and
892	Yang, Y.H. (2012b) An evolving magma chamber within extending
893	lithosphere: an integrated geochemical, isotopic and zircon U-Pb
894	geochronological study of the Gushan granite, eastern North China Craton.
895	Journal of Asian Earth Sciences, 50, 27–43.
896	Li, X.H., Fan, H.R., Yang, K.F., Hollings, P., Liu, X., Hu, F.F., and Cai, Y.C.
897	(2018) Pyrite textures and compositions from the Zhuangzi Au deposit,
898	southeastern North China craton: Implication for ore-forming processes.
899	Contributions to Mineralogy and Petrology, 73, 73.
900	Li, X.H., Fan, H.R., Hu, F.F., Hollings, P., Yang, K.F., and Liu, X. (2019a)
901	Linking lithospheric thinning and magmatic evolution of late Jurassic to
902	early cretaceous granitoids in the Jiaobei Terrane, southeastern North
903	China Craton. Lithos, 324, 280–296.
904	Li, X.H., Fan, H.R., Santosh, M., Yang, K.F., Peng, H.W., Hollings, P., and Hu,
905	F.F. (2019b) Mesozoic felsic dikes in the Jiaobei Terrane, southeastern
906	North China Craton: Constraints from zircon geochronology and
907	geochemistry, and implications for gold metallogeny. Journal of
908	Geochemical Exploration, 201, 40–55.

909	Liang, Y.Y., Deng, J., Liu, X., Wang, Q., Ma, Y., Gao, T., Zhao, L. (2019) Water
910	contents of Early Cretaceous mafic dikes in the Jiaodong Peninsula,
911	eastern North China Craton: insights into an enriched lithospheric mantle
912	source metasomatized by paleo-Pacific Plate subduction-related fluids.
913	The Journal of Geology, 127, 343–362.
914	Liu, S., Hu, R.Z., Gao, S., Feng, C.X., Yu, B.B., Qi, Y.Q., Wang, T., Feng, G.Y.,
915	and Coulson, I.M. (2009) Zircon U-Pb age, geochemistry and Sr-Nd-Pb
916	isotopic compositions of adakitic volcanic rocks from Jiaodong, Shandong
917	Province, Eastern China: constraints on petrogenesis and implications.
918	Journal of Asian Earth Sciences, 35, 445–458.
919	Liu, Y.S., Hu, Z.C., Gao, S., Günther, D., Xu, J., Gao, C.G., and Chen, H.H.
920	(2008) In situ analysis of major and trace elements of anhydrous minerals
921	by LA-ICP-MS without applying an internal standard. Chemical Geology,
922	257, 34–43.
923	Ludwig, K.R. (2003) ISOPLOT 3.00: A Geochronological Toolkit for Microsoft
924	Excel. Berkeley Geochronology Center, California, Berkeley, pp 39.
925	Ma, W.D., Fan, H.R., Liu, X., Pirajno, F., Hu, F.F., Yang, K.F., Yang, Y.H., Xu,
926	W.G., and Jiang, P. (2017) Geochronological framework of the Xiadian
927	gold deposit in the Jiaodong province, China: implications for the timing
928	of gold mineralization. Ore Geology Reviews, 86, 196–211.
929	Mao, J.W., Wang, Y.T., Li, H.M., Pirajno, F., Zhang, C.Q., and Wang, R.T. (2008)
930	The relationship of mantle-derived fluids to gold metallogenesis in the

931	Jiaodong Peninsula: evidence from D-O-C-S isotope systematics. Ore
932	Geology Reviews, 33, 361–381.
933	Miao, L.C., Luo, Z.K., Huang, J.Z., Guan, K., Wang, L.G., McNaughton, N.J.,
934	and Groves, D.I. (1997) Zircon Sensitive High Resolution Ion Microprobe
935	(SHRIMP) study of granitoid intrusions in Zhaoye Gold Belt of Shandong
936	Province and its implication. Science in China (Series D), 40, 361–369.
937	Mills, S.E., Tomkins, A.G., Weinberg, R.F., and Fan, H.R. (2015) Implications
938	of pyrite geochemistry for gold mineralisation and remobilisation in the
939	Jiaodong gold district, northeast China. Ore Geology Reviews, 71, 150-
940	168.
941	Morad, S., El-Ghali, M.A.K., Caja, M.A., Al-Ramadan, K., and Mansurbeg, H.
942	(2009) Hydrothermal alteration of magmatic titanite: evidence from
943	Proterozoic granitic rocks, Southeastern Sweden. Canadian Mineralogist,
944	47, 801–811.
945	Nie, F.J., Jiang, S.H., and Liu, Y. (2004) Intrusion-related gold deposits of North
946	China Craton, People's Republic of China. Resource Geology, 54, 299-
947	324.
948	Ohmoto, H. (1972) Systematics of sulfur and carbon isotopes in hydrothermal
949	ore deposits. Economic Geology, 67, 551–578.
950	Olin, P.H., and Wolff, J.A. (2012) Partitioning of rare earth and high field
951	strength elements between titanite and phonolitic liquid. Lithos, 128–131,
952	46–54.

P	eterson, E., and Mavrogenes, J. (2014) Linking high-grade gold mineralization
	to earthquake-induced fault-valve processes in the Porgera gold deposit,
	Papua New Guinea. Geology, 42, 383–386.
P	iccoli, P., Candela, P., and Rivers, M. (2000) Interpreting magmatic processes
	from accessory phases: titanite-a small-scale recorder of large-scale
	processes. Transactions of the Royal Society of Edinburgh Earth Sciences,
	91, 257–267.
P	okrovski, G.S., Kara, S., and Roux, J. (2002) Stability and solubility of
	arsenopyrite, FeAsS, in crustal fluids. Geochimica et Cosmochimica Acta,
	66, 2361–2378.
P	okrovski, G.S., Borisova, A.Y., and Bychkov, A.Y. (2013) Speciation and
	transport of metals and metalloids in geological vapors: Reviews in
	Mineralogy and Geochemistry, 76, 165–218.
Q	iu, Y.M., Groves, D.I., McNaughton, R.J., and Phillips, G.N. (2002) Nature,
	age, and tectonic setting of granitoid-hosted, orogenic gold deposits of the
	Jiaodong Peninsula, eastern North China Craton, China. Mineraliun
	Deposita, 37, 283–305.
S	hen, Y.K., Guo, T., Yang, Y.Q., Chen, Z.L., Wei, C.S., and Sun, H.S. (2016)
	Discovery of biotite monzonite and Ar-Ar thermochronology significance

- in Linglong gold field. Journal of Geomechanics, 22, 778–793 (in Chinese
- 973 with English abstract).
- 974 Sillitoe, R.H., and Thompson, J.F. (1998) Intrusion–related vein gold deposits:

975	types, tectono-magmatic settings and difficulties of distinction from
976	orogenic gold deposits. Resource Geology, 48, 237–250.
977	Spandler, C., Hammerli, J., Sha, P., Hilbert-Wolf, H., Hu, Y., Roberts, E., and
978	Schmitz, M. (2016) MKED1: A new titanite standard for in situ analysis
979	of Sm-Nd isotopes and U-Pb geochronology. Chemical Geology, 425,
980	110–126.
981	Sun, W.D., Ding, X., Hu, Y.H., and Li, X.H. (2007) The golden transformation
982	of the Cretaceous plate subduction in the west Pacific. Earth and Planetary
983	Science Letters, 262, 533–542.
984	Tanner, D., Henley, R.W., Mavrogenes, J.A., and Holden, P. (2016) Sulfur
985	isotope and trace element systematics of zoned pyrite crystals from the El
986	Indio Au-Cu-Ag deposit, Chile. Contributions to Mineralogy and
987	Petrology, 171, 33.
988	Tiepolo, M., Oberti, R., and Vannucci, R. (2002) Trace-element incorporation
989	in titanite: constraints from experimentally determined solid/liquid
990	partition coefficients. Chemical Geology, 191, 105–119.
991	Wang, Z.C., Cheng, H., Zong, K.Q., Geng, X.L., Liu, Y.S., Yang, J.H., Wu, F.Y.,
992	Becker, H., Foley, S., and Wang, C.Y. (2020) Metasomatized lithospheric
993	mantle for Mesozoic giant gold deposits in the North China craton.
994	Geology, 48, 169–173.
995	Wen, B.J., Fan, H.R., Santosh, M., Hu, F.F., Pirajno, F., Yang, K.F. (2015)
996	Genesis of two different types of gold mineralization in the Linglong gold

997	field, China: constrains from geology, fluid inclusions and stable isotope.
998	Ore Geology Reviews, 65, 643–658.
999	Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Quadt,
1000	A.V., Roddick, J.C., and Spiegel, W. (1995) Three natural zircon standards
1001	for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandards and
1002	Geoanalytical Research, 19, 1–23.
1003	Wu, F.Y., Yang, J.H., Xu, Y.G., Wilde, S.A., and Walker, R.J. (2019) Destruction
1004	of the North China craton in the Mesozoic. Annual Review of Earth and
1005	Planetary Sciences, 47, 173–195.
1006	Xiao, X., Zhou, T.F., White, N.C., Zhang, L.J., Fan, Y., and Chen, X.F. (2021)
1007	Multiple generations of titanites and their geochemical characteristics
1008	record the magmatic-hydrothermal processes and timing of the
1009	Dongguashan porphyry-skarn Cu-Au system, Tongling district, Eastern
1010	China. Mineralium Deposita, 56, 363–380.
1011	Xie, L., Wang, R.C., Chen, J., and Zhu, J.C. (2010) Mineralogical evidence for
1012	magmatic and hydrothermal processes in the Qitianling oxidized tin
1013	bearing granite (Hunan, South China): EMP and (MC)-LA-ICPMS
1014	investigations of three types of titanite. Chemical Geology, 276, 53-68.
1015	Xie, S.W., Wu, Y.B., Zhang, Z.M., Qin, Y.C., Liu, X.C., Wang, H., Qin, Z.W.,
1016	Liu, Q., and Yang, S.H. (2012) U-Pb ages and trace elements of detrital
1017	zircons from Early Cretaceous sedimentary rocks in the Jiaolai Basin,
1018	north margin of the Sulu UHP terrain: provenances and tectonic

1019	implications.	Lithos, 15	54, 346–360.
		,	,

1034

- Xu, H.J., Zhang, J.F., Wang, Y.F., and Liu, W.L. (2016) Late triassic alkaline
 complex in the Sulu UHP terrane: implications for post-collisional
 magmatism and subsequent fractional crystallization. Gondwana Research,
 35, 390–410.
- 1024 Xu, L., Hu, Z., Zhang, W., Yang, L., Liu, Y., Gao, S., Luo, T., and Hu, S. (2015)

In situ Nd isotope analyses in geological materials with signal enhancement and non-linear mass dependent fractionation reduction using laser ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 30, 232–244.

- Yang, J.H., and Zhou, X.H. (2001) Rb-Sr, Sm-Nd, and Pb isotope systematics
 of pyrite: Implications for the age and genesis of lode gold deposits.
 Geology, 29, 711–714.
- 1032 Yang, K.F., Fan, H.R., Santosh, M., Hu, F.F., Wilde, S.A., Lan, T.G., Lu, L.N.,
- and Liu, Y.S. (2012) Reactivation of the Archean lower crust: implications

for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry

- of late Mesozoic granitoids from northwestern Jiaodong Terrain, the North
 China Craton. Lithos, 146, 112–127.
- Yang, K.F., Jiang, P., Fan, H.R., Zuo, Y.B., and Yang, Y.H. (2018) Tectonic
 transition from a compressional to extensional metallogenic environment
 at ~120 Ma revealed in the Hushan gold deposit, Jiaodong, North China
 Craton. Journal of Asian Earth Sciences, 160, 408–425.

1041	Zhai, M.G., Fan, H.R., Yang, J.H., and Miao, L.C. (2004) Large-scale cluster of
1042	gold deposits in east Shandong: anorogenic metallogenesis. Earth Science
1043	Frontiers, 11, 85–98 (in Chinese with English abstract).
1044	Zhang, L., Weinberg, R.F., Yang, L.Q., Groves, D.I., Sai, S.X., Matchan, E.,
1045	Phillips, D., Kohn, B.P., Miggins, D.P., Liu, Y., and Deng, J. (2020)
1046	Mesozoic orogenic gold mineralization in the Jiaodong Peninsula, China:
1047	a focused event at 120 ± 2 Ma during cooling of pre-gold granite intrusions.
1048	Economic Geology, 115, 415–441.
1049	Zheng, Y.F. (2008) A perspective view on ultrahigh-pressure metamor- phism
1050	and continental collision in the Dabie-Sulu orogenic belt. Chinese Science
1051	Bulletin, 53, 3081–3104.
1052	Zhi, Z.Y., Li, L., Li, S.R., Santosh, M., Yuan, M.W., and Alam, M. (2019)
1053	Magnetite as an indicator of granite fertility and gold mineralization: A
1054	case study from the Xiaoqinling gold province, North China Craton. Ore
1055	Geology Reviews, 115, 103159.
1056	Zhou, J.B., Wilde, S.A., Zhao, G.C., Zhang, X.Z., Zheng, C.Q., Jin, W., and
1057	Cheng, H. (2008) SHRIMP U-Pb zircon dating of the Wulian complex:
1058	defining the boundary between the North and South China Cratons in the
1059	Sulu Orogenic Belt, China. Precambrian Research, 162, 559–576.
1060	Zhou, T.H., Goldfarb, R.J., and Phillips, G.N. (2002) Tectonics and distribution
1061	of gold deposits in China: an overview. Mineralium Deposita, 37, 249–282.

1062 Zhu, R.X., Fan, H.R., Li, J.W., Meng, Q.R., Li, S.R., and Zeng, Q.D. (2015)

Decratonic gold deposits. Science China Earth Sciences, 58, 1523–1537.

1064

1065 **Figure captions**

- Fig. 1 Geological map showing the distribution of basement rocks, UHP
 metamorphic rocks, Mesozoic igneous rocks and Au deposits in the three
 Au belts of the Jiaodong Au province. Modified after Yang et al. (2012).
 Fig. 2 (a) Geologic map of the Linglong goldfield, showing the distribution of
- 1070 the orebodies, modified after Wen et al. (2015). (**b**) Cross-section of the 1071 Line 72 in the Linglong goldfield and sample location.
- Fig. 3 Photographs of hand specimen and thin section cross-polarized
 illumination of biotite monzonite, containing disseminated pyrite. (a, c)
 Fresh-weakly altered biotite monzonite. (b, d) Silicified-sericitized biotite
 monzonite. (e) Quartz-pyrite veins in Luanjiahe granite. (f) Mafic enclave
 in Gushan granite. (g, h) Photomicrographs of biotite monzonite. *Qtz*quartz, *Kfs* k-feldspar, *Pl* plagioclase, *Bt* biotite, *Cal* calcite, *Py* pyrite.
- Fig. 4 BSE images of three types of titanite and monazite. (a, b) Ttn1 with 1078 euhedral-subhedral shape and oscillatory zones. (c-e) Ttn2 with euhedral-1079 subhedral shape and core-rim texture, coexisting with pyrite and pyrrhotite. 1080 (f-h) Dark-grey BSE Ttn3 penetrating and/or overgrowing Ttn2 and 1081 coexisting with calcite. (i) Hydrothermal monazite for U-Pb dating, from 1082 quartz-sulfide veins. Red circles show the location of points for LA-1083 ICPMS U-Pb dating, together with ²⁰⁷Pb-corrected ²⁰⁶Pb/²³⁸U ages. Ttn 1084 titanite, Py pyrite, Po pyrrhotite, Mt magnetite, Cal calcite, Bt biotite, Otz 1085 quartz, Mnz monazite, Rt rutile. 1086

1087	Fig. 5 Selected binary plots showing the geochemical characteristics of three
1088	types of titanite. Plots of (a) TiO ₂ versus FeO, (b) TiO ₂ versus MnO, (c)
1089	CaO versus REE, (d) CaO versus LREE/HREE, (e) Eu_N/Eu_N^* versus
1090	Lu/Hf, (f) Th versus Pb.
1091	Fig. 6 Tera-Wasserburg diagrams and corresponding weighted mean plots of
1092	age data for (a) magmatic titanite (Ttn1), (b) hydrothermal titanite (Ttn2,
1093	Ttn3) from the biotite monzonite, and (c) hydrothermal monazite from the
1094	quartz-pyrite veins.
1095	Fig. 7 $\epsilon_{Nd}(t)$ values of titanite from the biotite monzonite, and comparison with
1096	whole-rock $\epsilon_{Nd}(t)$ values of Mesozoic magmatic rocks in the Jiaodong
1097	Peninsula. Data are from Li et al. (2012); Yang et al. (2012); Cai et al.
1098	(2013); Li et al. (2019); and this study.
1099	Fig. 8 Reflected light photomicrographs and BSE images of four types of pyrite.
1100	(a, e) Py1 with homogeneous texture under BSE is from the fresh to
1101	weakly altered biotite monzonite, coexisting with magnetite, enclosing
1102	magmatic titanite and plagioclase. (b, f) Py2 occurs with pyrrhotite and
1103	shows heterogeneous texture under BSE, from silicified-sericitized biotite
1104	monzonite. (c, g) Py3 is from the quartz-pyrite veins, showing systematic
1105	zones. (d, h) Py4 is from the mafic enclave in the Gushan granite,
1106	occurring with magnetite, chalcopyrite and allanite. Py pyrite, Po
1107	pyrrhotite, Mt magnetite, Ccp chalcopyrite, Ttn titanite, Pl plagioclase,
1108	Mnz monazite, Aln allanite.

1109	Fig. 9 Trace elements of four types of pyrite. Note that some data with a value
1110	of 0 are not plotted on the diagram, and the contents of Sb and Au for Py4
1111	are below the detection limit.

- Fig. 10 *In situ* sulfur isotopes of four types of pyrite and pyrrhotite. The δ^{34} S peak of pyrite from the Jiaodong Au province is from Mao et al. (2008), Feng et al. (2018), Li et al. (2018), and Deng et al. (2020b).
- **Fig. 11** Schematic diagram showing (**a**) the formation of the biotite monzonite,

and the contribution of magmatic-hydrothermal fluids to Au deposits in the

- Jiaobei Terrane; (b) titanite and pyrite fingerprint of hydrothermal fluids
- exsolved from the monzonitic magma. The monzonite formed by partial
- melting of the lower crust of the NCC with involvement of mantle
- materials at ca. 120 Ma, probably leading to preconcentration of Au,
- releasing auriferous magmatic-hydrothermal fluids at late stage.
- 1122

1116

Table Captions

- 1124 **Table 1** Results of *in situ* LA-ICPMS U-Pb dating on titanite and monazite
- 1125

1126 Electronic Supplementary materials

- Supplementary Table 1 *In situ* major, trace elements and Nd isotopes of
 magmatic and hydrothermal titanite
- 1129 Supplementary Table 2 In situ trace elements and/or sulfur isotopes of pyrite,
- 1130 pyrrhotite and magnetite

1131 Supplementary Figures Including Fig. A1 Chondrite-normalized REE

distribution patterns for three types of titanite from the biotite monzonite;

- **Fig. A2** Discrimination of magnetite from the monzonite based on Ti vs.
- 1134 Ni/Cr, after Dare et al. (2014)

Spot			Isoto	pic ratios				²⁰⁷ Pb-corr. A	.ge/Ma
No.	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	rho	206Pb/238U	1σ
				Magma	tic Ttn1				
1	0.1598	0.0208	0.3634	0.0221	0.0211	0.0008	0.61	116.1	4.9
2	0.2606	0.0235	0.6647	0.0403	0.0234	0.0009	0.65	110.1	5.8
3	0.1633	0.0274	0.6964	0.0738	0.0234	0.0019	0.75	128.3	11.8
4	0.0729	0.0044	0.1717	0.0086	0.0182	0.0005	0.50	112.7	2.9
5	0.2633	0.0319	0.6636	0.0451	0.0243	0.0014	0.86	113.7	8.9
6	0.0766	0.0048	0.1939	0.0102	0.0192	0.0004	0.42	118.5	2.7
7	0.1197	0.0086	0.3036	0.0164	0.0208	0.0006	0.54	120.9	3.9
8	0.0627	0.0024	0.1663	0.0058	0.0195	0.0003	0.44	122.4	1.9
9	0.0921	0.0056	0.2367	0.0107	0.0197	0.0004	0.47	119.1	2.7
10	0.2415	0.0223	0.7310	0.0459	0.0243	0.0012	0.77	117.7	7.4
11	0.1194	0.0243	1.1518	0.1443	0.0287	0.0027	0.76	166.9	17.1
12	0.0866	0.0265	7.4754	1.3708	0.0813	0.0131	0.88	485.7	78.0
13	0.4009	0.0605	33.8111	3.6589	0.2907	0.0282	0.89	1002.1	140.6
14	0.2696	0.0315	6.4758	0.4805	0.0707	0.0051	0.98	323.7	30.9
15	0.2094	0.0407	4.5784	0.6724	0.0599	0.0062	0.70	303.0	37.5
16	0.2757	0.0431	16.8791	1.9652	0.1484	0.0133	0.77	662.4	74.4
17	0.1520	0.0297	2.6638	0.2484	0.0382	0.0033	0.92	211.3	20.4
18	0.3438	0.0383	4.1160	0.2788	0.0578	0.0037	0.95	232.0	22.6
-			Н	vdrothermal	Ttn2 and Ttn3				
1	0.2123	0.0221	0.4920	0.0286	0.0224	0.0010	0.79	114.0	6.5
2	0.2795	0.0168	0.8772	0.0412	0.0249	0.0008	0.68	113.5	5.0
3	0.1340	0.0066	0.3677	0.0143	0.0208	0.0005	0.58	118.8	2.9
4	0 1493	0.0062	0.4139	0.0138	0.0208	0.0004	0.60	116.1	2.6
5	0.3672	0.0403	1 6644	0.1172	0.0315	0.0019	0.86	121.6	12.0
6	0.3558	0.0225	1 1918	0.0577	0.0279	0.0012	0.86	110.0	73
7	0.4104	0.0223	1.7262	0.0935	0.0328	0.0012	0.60	115.3	67
8	0.1584	0.0244	0.4712	0.0157	0.0220	0.00011	0.66	121.2	3.0
9	0.2281	0.0000	0.7052	0.0224	0.0220	0.0005	0.00	121.2	3.0
10	0.2201	0.0174	0.0036	0.0224	0.0245	0.0000	0.63	117.3	5.7
10	0.2814	0.01/4	1.0547	0.1622	0.0239	0.0009	0.05	100.2	11.2
11	0.4307	0.0301	1.5347	0.1023	0.0330	0.0010	0.00	109.2	7.5
12	0.4134	0.0277	0.4884	0.0032	0.0318	0.0012	0.91	111.0	7.5
13	0.1050	0.0080	0.4884	0.0188	0.0229	0.0003	0.01	125.1	3.4 4.1
14	0.2304	0.0104	0.7500	0.0231	0.0244	0.0007	0.72	107.2	4.1
10	0.2455	0.0192	1.05((0.0320	0.0222	0.0008	0.09	107.2	4.0
10	0.4707	0.0237	1.9300	0.0717	0.0333	0.0010	0.80	101.1	0.5
1/	0.4220	0.0347	1.2847	0.0570	0.0290	0.0012	0.89	99.4	1.2
18	0.4063	0.0502	3.0899	0.2263	0.0416	0.0026	0.80	147.4	10.2
19	0.6842	0.0661	3.9290	0.1/8/	0.0524	0.0024	0.99	/0.4	14.5
	0.1.665	0.0050	0 4005	Hydrotherm	al monazite	0.0010		1150	- (
1	0.1665	0.0250	0.4325	0.0443	0.0216	0.0012	0.55	117.3	/.6
2	0.1043	0.0149	0.2680	0.0294	0.0203	0.0007	0.30	120.6	4.2
3	0.5016	0.0710	2.0192	0.2391	0.0380	0.0033	0.73	102.8	20.4
4	0.4416	0.0742	1.9995	0.2439	0.0360	0.0026	0.60	114.9	16.4
5	0.6665	0.0535	6.8691	0.4026	0.0806	0.0038	0.81	110.1	22.8
6	0.5684	0.0582	3.6402	0.3118	0.0542	0.0030	0.65	117.1	18.4
7	0.5088	0.0335	3.0583	0.1813	0.0454	0.0019	0.72	120.0	12.0
8	0.2305	0.0216	0.7186	0.0597	0.0241	0.0011	0.56	118.1	7.0
9	0.6125	0.0599	3.9060	0.2581	0.0598	0.0029	0.73	107.9	17.5
10	0.2241	0.0256	0.8614	0.1738	0.0234	0.0020	0.42	116.0	12.6
11	0.4499	0.0262	2.3441	0.1800	0.0387	0.0018	0.62	120.9	11.4
12	0.4165	0.0691	1.7802	0.4106	0.0365	0.0039	0.47	124.1	24.4
13	0.2326	0.0330	0.8270	0.1462	0.0261	0.0016	0.35	127.4	10.0
14	0.2546	0.0323	0.8865	0.1923	0.0253	0.0020	0.36	119.0	12.5
15	0.2728	0.0438	0.7743	0.0685	0.0248	0.0011	0.50	113.4	6.9
16	0.3956	0.0681	1.5283	0.1612	0.0322	0.0021	0.62	114.9	13.1
17	0.2882	0.0314	1.1070	0.1890	0.0273	0.0021	0.45	121.1	13.0
18	0.5109	0.0831	2.0165	0.2047	0.0396	0.0032	0.79	104.3	19.8
19	0.6057	0.1017	3.6096	0.3799	0.0574	0.0056	0.92	106.8	33.9

Table 1 Results of in-situ LA-ICPMS U-Pb dating on titanite and monazite

mafic enclave

开究所

and Geophysics

G

1cm

Ttn2 rim core 150µm -21 109.2±11.3 Ma Ttn3 Ttn2 100µm R Py 150µm .

Fig. 6

Fig. 7

Fig. 9

Ag

Sb

Au

Bi

Fig. 10

