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Abstract 10 

Iron-bearing mineral assemblages and their distribution patterns directly reflect the redox 11 

environment in sediments, which plays a decisive role in the migration and precipitation of U. The 12 

Dongsheng sandstone-type U deposit hosted in fluvial and/or deltaic sandstones of the lower 13 

member of the Middle Jurassic Zhiluo Formation in the northeastern Ordos Basin has experienced 14 

multiple fluid events that impacted the redox conditions. Highly enriched in barren grey sandstones, 15 

pre-ore U (Umean = 12.05 ppm) associated with Fe-Ti oxides, clay minerals and organic matter is 16 

likely one of the key sources of U for the mineralization. Different contents of Fe-bearing minerals 17 

including biotite, Fe-Ti oxides, pyrite, hematite, goethite, and chlorite that were formed or altered 18 

under different redox conditions, resulted in sandstone units with distinct colors. The red sandstone 19 

is hematite-rich, indicating a highly oxidizing environment. The green sandstone is chlorite-rich 20 
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and formed because of reducing hydrocarbon-rich fluids that overprinted the hematite-rich 21 

sandstone. The barren and mineralized grey sandstones consist of pyrite (with a higher content in 22 

mineralized sandstones), Fe-Ti oxide minerals, and carbonaceous debris, which are indicators of a 23 

reducing environment. Based on the paragenetic relationship and sulfur isotopic compositions of 24 

ore-stage pyrite, bacterial sulfate reduction was responsible for the formation of framboidal pyrite 25 

(δ34S = -31.2 to -3.8‰), and the sulfur of this pyrite mainly came from the oxidation of pre-ore 26 

pyrite (δ34S = -19.1 to +20.3‰). Euhedral and cement pyrite overprinting framboids were 27 

produced via Ostwald ripening with δ34S values ranging from -56.9 to -34.3‰, lower than any 28 

values of framboidal pyrite. Therefore, these mineralogical and geochemical characteristics of the 29 

Dongsheng deposit suggest U mineralization involved both biogenic and abiogenic redox 30 

processes. 31 

Keywords: Pyrite, δ34S, Fe-bearing minerals, alteration, sandstone-type U deposit, Ordos Basin 32 

Introduction 33 

Large-scale sandstone-type U deposits in China are mainly distributed in sedimentary basins 34 

generally parallel to the Central Asian Orogenic Belt (Chen 2002; Huang and Huang 2005; Zhang 35 

et al. 2010; Jiao et al. 2015; Zhu et al. 2018). The Dongsheng U deposit, located at the southeastern 36 

margin of the Central Asia Uraniferous Province (CAUP; OECD-NEA, IAEA 2010), has 37 

experienced multiple low-temperature fluid events responsible for multi-stage mobilization and 38 

fixation of U (e.g., Miao et al. 2010; Zhang et al. 2019). Having simple fluid histories quite 39 

different from the complex fluid history in the Dongsheng deposit, the ore-forming process of 40 
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other sandstone-type U deposits in the CAUP (e.g., the Bayinwula deposit in the Erlian basin, 41 

Bonnetti et al. 2015; the Kuji’ertai and Mengqiguer deposits in the Yili basin, Zhang and Liu 2019), 42 

is similar to the roll front reported by Shawe and Granger (1965) and Warren (1971). However, 43 

the genesis of the Dongsheng deposit remains controversial, with two models proposed including 44 

biogenic processes due to confirmed existence of bacteria (Cai et al. 2007a, 2007b; Jiang et al. 45 

2012) and hydrothermal mineralization (Xiao et al. 2004; Zhang et al. 2017). 46 

It has been widely accepted that U mineralization of sandstone-type deposits occurs during 47 

infiltration of the low-temperature surface-derived oxygenated groundwater into permeable 48 

sandstones. Containing abundant intrinsic or extrinsic reductants (e.g., organic matter, H2S and 49 

FeS2; Granger and Warren 1969; Goldhaber et al. 1983; Jiao et al. 2018a; Hough et al. 2019; 50 

Bonnetti et al. 2020), those permeable sandstones are confined by non- to semi-permeable 51 

aquitards (e.g., coal seams and mudstones). In this process, soluble U (Ⅵ) is reduced to insoluble 52 

U (Ⅳ). Additionally, iron is a redox-sensitive element with a high abundance in natural 53 

environments (e.g., Soliman and Goresy 2012; Mahoney et al. 2019). The mobilization, migration 54 

and fixation of U are often accompanied by variations in the existing forms of Fe species (i.e., 55 

different Fe-bearing minerals; Reynolds and Goldhaber 1978; Bonnetti et al. 2015; Rong et al. 56 

2016). Therefore, the distribution and alteration characteristics of Fe-bearing minerals, in turn, 57 

reveal the geochemical zoning of the host sandstones, thus helping to decipher the genesis of U 58 

deposits. The changes of redox environment can also be indicated by the distribution 59 

characteristics of organic materials (e.g., total organic carbon; Spirakis 1996). It is known that 60 
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organic materials can not only provide energy for microbial activities involved in the alteration of 61 

Fe-bearing minerals (Reynolds et al. 1982; Reynolds and Goldhaber 1983), but also adsorb U 62 

under reducing conditions (Douglas et al. 2011; Zhang et al. 2020). Although the metallogenic 63 

model for the Dongsheng U deposit is well established, and in outcrops, U anomalies mainly 64 

associated with carbonaceous debris (CD) in the yellow sandstone have been reported by Jiao et 65 

al. (2018b) and Zhang et al. (2019a), the distribution characteristics of Fe-bearing minerals in 66 

different geochemical zones of host sandstones, especially the alteration of these minerals, are 67 

poorly understood. 68 

The purpose of this paper is to characterize the role of Fe-bearing minerals in the mobilization 69 

and fixation of U in the Dongsheng deposit in the Ordos Basin. Mineralogical, chemical, and sulfur 70 

isotopic data are used to evaluate their alteration processes and to characterize the genetic link 71 

between Fe-bearing and U-bearing minerals. Here, we propose that biogenic activities and the 72 

following abiogenic processes were involved in the U mineralization in the Dongsheng deposit, 73 

thereby providing a better understanding for the genesis of U deposits in northern China. 74 

Geological background 75 

The Ordos Basin 76 

The Ordos Basin is a rectangular, NNE-trending basin located in north-central China (Fig. 1a), 77 

covering an approximate area of 250, 000 km2 (Deng et al. 2005). Based on the current tectonic 78 

configuration, the basin can be divided into six structural domains (Fig. 1a): the Yimeng uplift, the 79 

Western fault-folded zone, the Tianhuan depression, the Shanbei slope, the Jinxi folded zone, and 80 
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the Weibei uplift (Guo and Jiao 2002). 81 

The Ordos Basin developed during five main stages (Sun et al. 1985; Li et al. 1992; Zhang et al. 82 

1995; Zhao et al. 1996; Zhang and Liao 2006; Jiao et al. 2015; Peng et al. 2019): (1) an aulacogen 83 

stage characterized by Mesoproterozoic to Neoproterozoic metamorphic rocks, including phyllites, 84 

marbles, greenschists and metamorphosed volcanic rocks (Zhang et al. 1980; Jia et al. 1997; Yang 85 

et al. 2005); (2) an epicontinental sea stage marked by early Paleozoic limestone, evaporite and 86 

gas-rich carbonate rocks of neritic platform facies (Sun et al. 1986; Zhai et al. 2002); (3) a 87 

depression stage characterized by late Paleozoic to early Mesozoic coal, limestone, and gas- and 88 

oil-bearing sandstone and mudstone (Li et al. 1995; Liu and Yang 2000); (4) an independent intra-89 

continental basin stage characterized by deposition of middle to late Mesozoic sedimentary units 90 

dominated by fluvial, deltaic and lacustrine environments, and containing various energy resources 91 

including (from oldest to youngest in Jurassic sediments) oil in the Fuxian Formation, oil and coal 92 

in the Yan’an Formation, and U in the Zhiluo Formation (Qu et al. 2003; Yang et al. 2005; Zhang 93 

et al. 2006; Cai et al. 2007a); and (5) a fault depression stage characterized by generation of a 94 

series of grabens in the Cenozoic around the basin, thereby destroying the integrity of the basin 95 

(Zhao, Z.Y. 1990; Zhao, M.W., et al. 1996; He 2003). 96 

Several NW- and NNE-trending faults are developed in the northern Ordos Basin (Fig. S1; Han 97 

et al. 2008), some of which cut through the early Paleozoic to middle Mesozoic sediments (Chen 98 

et al. 2005; Deng et al. 2005; Liu et al. 2009). Based on thermal and tectonic history analyses 99 

reported by Zhao et al. (1996), the Ordos Basin has undergone a short-lived thermal event in 100 
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Middle Jurassic (170-160 Ma), and this event was attributed to the subsurface magmatic intrusion 101 

related to the early Yanshanian movement and resulted in the initial formation of hydrocarbons in 102 

Paleozoic sediments and migration from them. In addition, the differential uplift and erosion 103 

between the eastern and western parts of the basin since 23 Ma led to a regional upward migration 104 

of hydrocarbons (Zhao et al. 1996; Zhang et al. 2018), which was indicated by carbon isotope 105 

values and fluid inclusion compositions in calcite cement in the Zhiluo Formation (e.g., Cai et al. 106 

2007b). 107 

The Dongsheng uranium deposit 108 

The Dongsheng U deposit, located in the northeastern Ordos Basin (Fig. 1a), is hosted in the 109 

sandstone of the Middle Jurassic Zhiluo Formation (J2z) deposited as climate changed from semi-110 

humid to semi-arid (Miao et al. 2010; Sun et al. 2017; Jiao et al. 2018a). The Zhiluo Formation 111 

unconformably overlying the Middle Jurassic coal-bearing strata of the Yan’an Formation (J2y) is 112 

composed of lowstand, transgressive and highstand systems tracts, and the lowstand systems tract 113 

consists of two parasequence sets (Jiao et al. 2005a, 2005b). The lower parasequence set (J2z1–1) 114 

originated from a braided river (delta) is the primary ore-bearing stratum. The upper parasequence 115 

set (J2z1–2) originated from a meandering river (delta) is the secondary ore-bearing stratum. Two 116 

main tabular orebodies have been delineated based on their different horizons (i.e., J2z1–1, J2z1–2; 117 

Fig. 1b), showing 0.5 to 5 m in thickness and dip direction of northwest-southeast with a burial 118 

depth decreasing from 800 to 100 m. The orebodies extend for over 100 km along the redox front 119 

and are a few hundred meters to a kilometer wide (Peng et al. 2019). The inferred and indicated 120 
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resources total more than 50 kt at 0.03 to 0.1% U (Akhtar et al. 2017; Zhu et al. 2018; Peng et al. 121 

2019). The U mineralization is mainly hosted in coarse to medium-grained sandstones in the 122 

middle and upper parts of the fluvial facies (Figs. 1 and 2). Uranium minerals mainly occur as 123 

coffinite and uraninite and are associated with CD and pyrite (Jiao et al. 2018a; Yue et al. 2019). 124 

Four facies displaying different colors are identified in the deposit: red sandstone (Figs. 1b-1d 125 

and 2a), green sandstone (Figs. 1b-1d and 2b-2c), grey sandstone (Figs. 1b-1d and 2d-2h) and 126 

yellow sandstone (Fig. 1c and 1d), classified into: (1) oxidized zone, consisting of red, green and 127 

yellow sandstones, (2) mineralized zone hosted by grey sandstones, and (3) reduced zone with 128 

barren grey sandstones (Fig. 2). Clay minerals are composed of an assemblage of smectite-129 

kaolinite-chlorite-illite in the sandbodies, with a higher content of chlorite in the green sandstone 130 

and a higher content of kaolinite in the mineralized grey sandstone (e.g., Zhang et al. 2019). 131 

Sampling and analytical methods 132 

A total of 109 sandstone samples from three regional stratigraphic drill holes (DSA, DSB and 133 

DSC) and three drill holes through the Dongsheng U deposit (DS1, DS2 and DS3), and 21 outcrop 134 

sandstone samples from Shenshangou area were collected. Detailed sample locations and 135 

descriptions are shown in Figures S1-S3 and Tables S1-S2. 136 

Ninety-nine drill core samples (27 red, 33 green and 39 barren grey sandstone samples; Fig. S2) 137 

combined with 7 yellow outcrop sandstone samples (Fig. S3) were analyzed for their U and Th 138 

contents (Table S1). Three drill holes DSA-DSC were used as a reference to determine the 139 

petrographic, mineralogical and geochemical characteristics of the host sandstone before U 140 
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mineralization. Thirty-five different colored samples (7 red, 7 green, 7 mineralized grey, 7 barren 141 

grey and 7 yellow sandstone samples; Figs. S2 and S3; Table S2) were analyzed for redox-sensitive 142 

indicators (i.e., Fe3+, Fe2+, S2-, Stotal, TOC, ΔEh and pH). The ΔEh and pH of the sandstones were 143 

tested with international standards, i.e., ISO11271:2002 and ISO10390:2005, respectively. The 144 

analyses of U, Th and redox-sensitive indicators were carried out, by using a HD3025 laser 145 

analyzer for U (relative standard deviation (RSD) = 4.18%), a modal 721 spectrophotometer for 146 

Th (RSD = 2.60%), a 5mL acid burette for Fe3+ (RSD = 0.10 to 1.24%), Fe2+ (RSD = 0.22 to 1.35%) 147 

and TOC (RSD = 0.10 to 1.30%), a HCS-140 high frequency infrared ray carbon-sulphur analyzer 148 

for Stotal (RSD = 0.24 to 1.65%), a ESJ200-4 electronic balance for S2- (RSD = 0.18 to 1.40%), an 149 

electronic potentiometer for ΔEh (RSD = 0.30 to 1.50%) and a PHS-3C acidimeter for pH (RSD 150 

= 0.12 to 1.50%) at the Analyses and Testing Center in No.208 Geological Party, China Nuclear 151 

Geology, Chinese National Nuclear Corporation, Baotou, China. 152 

Thirty-five samples (Table S2) were prepared as polished thin sections and characterized, by 153 

using a Nikon ME600POL optical microscope and a Zeiss EVO LS 15 scanning electron 154 

microscope (SEM) at the Key Laboratory of Tectonics and Petroleum Resources Ministry of 155 

Education, China University of Geosciences, Wuhan. Observations were focused on the U-bearing 156 

and Fe-bearing minerals to determine their textural and paragenetic relationships. Electron probe 157 

microanalysis (EPMA) was chosen to quantify the chemistry of U-bearing and Fe-bearing minerals 158 

at the University of Manitoba, Winnipeg, Canada, by using a Cameca SX100 universal electron 159 

probe microanalyzer. The EPMA beam size was adjusted between 1 and 10 µm, which depended 160 
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on the detail required. The acceleration voltage was 15 kV and the current was 20 nA. 161 

Twenty-two thin sections (5 red, 5 green, 5 mineralized grey, 2 barren grey and 5 yellow 162 

sandstone samples; Table S2) were selected for pyrite sectional area counts within a 2 cm2 area by 163 

SEM. The percentage area covered by pyrite grains in the photomicrographs is measured, by using 164 

the software named Image-Pro Plus 6.0. We tried to approximate the average content of pyrite in 165 

sandstones using the ratio of cross-sectional area of pyrite to 2 cm2 in thin sections (Fig. S4). 166 

In order to preserve isotopic values in their paragenetic context, eleven polished thin sections 167 

from grey sandstones (GY-1~GY-9, DSC-08 and DSC-14; Table S2) were prepared for in situ 168 

sulfur isotope analyses, conducted with a Cameca 7f secondary ion mass spectrometer (SIMS) at 169 

the University of Manitoba, Winnipeg, Canada. Procedures similar to those documented by Hough 170 

et al. (2019) were used. All samples were gold coated to prevent surface charging. Sulfur isotope 171 

ratios (34S/32S) were measured, by using a ~1-nA Cs+ primary beam accelerated at 10 kV with a 172 

spot size of ~15 µm filtered through a 247 µm entrance slit. The sulfur isotope values are reported 173 

in per mil relative to V-CDT standards with an analytical uncertainty (1σ) of ± 0.3‰ for δ34S. 174 

Results 175 

Uranium and thorium contents 176 

Average U contents for red, green and yellow sandstones are 1.55 ppm, 1.32 ppm and 1.81 ppm, 177 

whereas the content for barren grey sandstones is 12.05 ppm (Tables S1 and S3). The oxidized and 178 

reduced sandstones have similar Th contents but differ in their Th/U ratios (Fig. S5). The mean 179 

ratio of Th/U in red, green and yellow sandstones are 7.68, 9.20 and 6.94, whereas the ratio in 180 
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barren grey sandstones is 1.06 (Table S3). 181 

Redox-sensitive indicators of host sandstones 182 

In contrast to those in red and yellow sandstones, the Fe3+/Fe2+ ratios are less than 1.0 in both 183 

green and grey sandstones (Fig. 3a). The mean ratio of Stotal/S2- in red sandstones (mean > 6) is 184 

much higher than that in yellow sandstones (mean = 1.80), and the mean value in grey sandstones 185 

(mean = 1.40) is lower than that in green sandstones (mean = 3.74; Fig. 3a; Table S4). Both the 186 

average values of S2- and total organic carbon (TOC) are highest in mineralized grey sandstones, 187 

followed by those in barren grey sandstones and yellow sandstones, and decreasing gradually from 188 

those in green sandstones to those in red sandstones (Fig. 3b). Notably, there is a positive 189 

correlation between TOC and S2- in grey sandstones (Fig. 3b). There are relatively higher values 190 

of ΔEh but lower pH in mineralized grey sandstones, and the pH values in all four colored 191 

sandstone units are more than 7 (Fig. 3c). 192 

Occurrence and paragenesis of Fe-bearing minerals 193 

Macroscopically, the Fe-bearing minerals that can be found mainly include pyrite, limonite and 194 

hematite (Fig. 4). Pyrite, generally as nodules with diameter ranging from 2 to 20 mm in drilling 195 

cores, is predominantly associated with CD in the grey sandstone and surrounded by limonite when 196 

exposed to air for an extended period of time (Fig. 4a). Limonite is a mixture of iron hydroxides, 197 

mainly comprised of goethite, and usually occurs as encrustation on pyrite in the yellow sandstone 198 

(Fig. 4d). The dark red hematite is mainly distributed in the red sandstone (Figs. 4b, 4c and 4e). 199 

Microscopically, the Fe-bearing minerals appear mainly as authigenic and altered minerals such 200 
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as hematite, goethite, pyrite and chlorite, as well as detrital minerals such as Fe-Ti oxides and 201 

biotite (Fig. 5; Table S5). Hematite mainly occurs as dark red cements in the matrix or as coatings 202 

on mineral surfaces and along microfractures of clastic particles in red sandstones (Fig. 5a). Minor 203 

amounts of it occur as subhedral grains with a diameter up to 150 µm (Fig. 5b). Goethite can be 204 

observed in both yellow and red sandstones, and occurs primarily as coatings on the surfaces of 205 

interstitial materials and detrital particles, or along microfractures of clastic particles (Fig. 5c). 206 

Same as with hematite, a small amount of goethite was observed as subhedral grains (Fig. 5d). 207 

Three different morphologies of pyrite in all four colored sandstones were identified: framboidal, 208 

euhedral and cement. Framboidal pyrite mainly distributed around CD is the most abundant type 209 

of pyrite (Fig. 5e). Densely-packed framboids appear as spherical aggregates of submicrometer-210 

sized pyrite crystals. Euhedral pyrite, generally in the form of discrete cubes, is most closely 211 

associated with the matrix of clay minerals (Fig. 5f). Distributed between clastic particles, the 212 

pyrite cement shows a texturally homogeneous growth (Fig. 5g). 213 

Chlorite is most abundant in the green sandstone, followed by the grey sandstone. It occurs 214 

mainly in one of two habits: pompon-like aggregates coating clastic particles (Fig. 5h), or needle-215 

shaped crystals or squamous aggregates in the matrix (Fig. 5i). 216 

The detrital Fe-Ti oxide minerals were observed in all four colored sandstone units (Fig. 5j). 217 

Ilmenite is the original detrital mineral but it usually appears as the remnant grain with residual 218 

cores surrounded by Ti oxides (Fig. 5k). These minerals are a mixture of Ti oxide and Fe 219 

oxide/hydroxide micrograins, characterized by relatively high U contents (Table S5). Iron-Ti 220 
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oxides are more abundant in grey sandstones than in oxidized sandstones in which the Fe-Ti oxides 221 

have lower iron contents (Table S5). 222 

Detrital biotite is high in Fe but low in Mg (Table S5), and occurs in all four colored sandstone 223 

units (Fig. 5l). The length of the biotite can reach several hundred micrometers, and it generally 224 

appears as a deformed grain. 225 

These six Fe-bearing minerals are closely related to each other, mainly manifested as the 226 

coexistence of two or more minerals at the micron scale (Fig. 6). Significantly, the types of Fe-227 

bearing minerals occurring along cleavage planes in biotite in different colored sandstones are 228 

quite distinct. For instance, pyrite predominates in the grey sandstone (Fig. 6a), hematite in the red 229 

sandstone (Fig. 6b), and goethite in the yellow sandstone (Figs. 6c and 6d), whereas in the green 230 

sandstone, biotite was partially replaced by chlorite (Fig. 6e). In addition, it can also be observed 231 

that chlorite altered from biotite was filled with hematite and pyrite (Fig. 6f). As a clay mineral 232 

widely distributed in the matrix, chlorite occurrence is linked to the occurrence of pyrite (Fig. 6g). 233 

Generally, pyrite is distributed in the microfractures of or around Fe-Ti oxides (Figs. 6h and 6i). 234 

In red sandstones, framboidal hematite can be observed (Fig. 6j), whereas in yellow sandstones, 235 

goethite and pyrite are often found on the same particle (Figs. 6k and 6l), and the goethite around 236 

the edge of different morphological pyrite is documented (Fig. S6). In addition, based on our 237 

observations and recent work described in detail by Yue et al. (2020), it is common to see the 238 

framboidal pyrite overprinted by euhedral pyrite and pyrite cement, respectively, in mineralized 239 

grey sandstones (Fig. S7). The simplified paragenetic sequence of Fe-bearing minerals in the 240 
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Dongsheng U deposit is illustrated in Figure 7. 241 

Proportions of pyrite 242 

The proportions of pyrite in reduced sandstones are 2 orders of magnitude higher than that in 243 

oxidized sandstones. In red, green and yellow sandstone units, the mean area percentages of pyrite 244 

are 1.49 × 10-4%, 3.31 × 10-4% and 5.47 × 10-4%, respectively (Table S6). In mineralized grey 245 

sandstones, the proportions of pyrite ranging from 3.97 × 10-2 to 9.28 × 10-2% are higher than those 246 

in barren grey sandstones (1.06 × 10-2 to 2.58 × 10-2%) whose values represent the initial level of 247 

pyrite content. 248 

In situ sulfur isotopes 249 

Sulfur isotopes were analyzed in pyrite from barren samples (pre-ore pyrite) and associated with 250 

U (ore-stage pyrite; Fig. 8; Table S7). The pre-ore pyrite produced δ34S values from -19.1 to +20.3‰ 251 

(mean = +7.3‰). Framboidal pyrite (n = 5) with 34S depletion ranges from -19.1 to -8.0‰ (mean 252 

= -13.4‰), whereas the euhedral and cement pyrite (n = 9), together with the pyrite occurring 253 

along cleavage planes in biotite (n = 1) show higher values from +7.9 to +20.3‰ (mean = +17.7‰). 254 

The δ34S values of ore-stage pyrite (n = 29) range from -56.9 to -3.8‰ (mean = -34.1‰). Ore-255 

stage framboidal pyrite (n = 12) ranges from -31.2 to -3.8‰ (mean = -16.4‰), whereas ore-stage 256 

euhedral and cement pyrite (n = 17) have lower values from -56.9 to -34.3‰ (mean = -46.7‰). 257 

Uranium mineralization 258 

Uranium minerals are closely related to pyrite and Fe-Ti oxides (Fig. 9), mainly distributed: (1) 259 

in the interstices of microcrystallites of the closely arranged pyrite framboids (Figs. 9a-9c), (2) 260 
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around the Fe-Ti oxides, euhedral pyrite or pyrite cement generally replacing the Fe-Ti oxides 261 

(Figs. 9d-9h), and (3) along cleavage planes in biotite filled with pyrite (Fig. 9i). 262 

Discussion 263 

Alteration of Fe-bearing minerals 264 

The alteration among Fe-bearing minerals can be divided into: (1) alteration from Fe2+-bearing 265 

to Fe2+-bearing minerals, (2) oxidation from Fe2+-bearing to Fe3+-bearing minerals, and (3) 266 

reduction from Fe3+-bearing to Fe2+-bearing minerals. The multiple alteration processes not only 267 

represent the changes of redox environment, but also indicate the multi-stage mobilization and 268 

fixation of U (e.g., Reynolds and Goldhaber 1978; Reynolds et al. 1986; Bonnetti et al. 2015; Jiao 269 

et al. 2018b; Zhang et al. 2019a). 270 

The alteration from Fe2+-bearing to Fe2+-bearing minerals generally involves: (1) biotite 271 

chloritization, and (2) the formation of pyrite whose Fe sources may be biotite, chlorite, Fe-Ti 272 

oxides and dissolved Fe2+ carried by the descending meteoric water. The alteration of biotite is 273 

closely related to the physico-chemical properties of pore fluids (Boles and Johnson 1983; Claeys 274 

and Mount 1991). Biotite can be replaced pseudomorphically by chlorite with a greenish tint (Fig. 275 

6e), which may indicate the conditions of low K+/H+ ratios relative to (Fe2+ + Mg2+)/H+ ratios 276 

(Veblen and Ferry 1983; Morad 1986; Morad and Aldahan 1986). 277 

The euhedral pyrite was formed along cleavage planes in biotite, thus indicating high rates of 278 

iron leaching and low rates of Fe2+ supply during the dissolution of biotite (Morad 1986; Fig. 6a; 279 

Table S5: Biotite, GY-11). Additionally, the lower iron content in chlorite (Table S5: Chlorite, GY-280 
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5) associated with pyrite permits the interpretation that the released iron was utilized in the 281 

formation of pyrite (Fig. 6g). Previous studies have demonstrated that the substitution of Mg2+ for 282 

Fe2+ after the precipitation of chlorite results in a low Fe/(Fe + Mg) ratio in chlorite under 283 

conditions of high Mg2+ activities. Pyrite is formed in an anoxic-sulfidic environment due to the 284 

released Fe2+ (White et al. 1985; Aldahan and Morad 1986). Thermodynamic calculations 285 

performed by Bonnetti et al. (2015) suggested that ilmenite is almost insoluble in the H2S-free 286 

system over a broad range of pH conditions (approximately from 5 to 11), whereas Fe-Ti oxide 287 

grains (predominantly ilmenite) will be altered to Ti-oxide minerals and release Fe2+ in the 288 

presence of H2S-rich fluids during diagenesis, which is involved in the following reaction 289 

(Reynolds and Goldhaber 1978; Bonnetti et al. 2015): 290 

FeTiO3 + 2H2S → TiO2 + FeS2 + H2O + H2                                      (1) 291 

The alteration of ilmenite is usually accompanied by the production of relatively large micropores 292 

generally filled with pyrite (Fig. 6h). Additionally, due to Fe-Ti oxides containing minor U (Table 293 

S5), the U will also be leached out during alteration, and precipitate as U-bearing minerals around 294 

the Fe-Ti oxides (Figs. 9g and 9h). 295 

Epigenetic U mineralization is generally considered as a continuous process driven by the 296 

translation of the redox front (Bonnetti et al. 2020). There will definitely be a part of dissolved 297 

Fe2+ not incorporated into Fe3+-bearing minerals, thereby providing iron source for ore-stage pyrite. 298 

The whole process is supported by the mineralized grey sandstones having the highest pyrite 299 

contents and the red sandstones with the lowest (Table S6). In addition, the dissolved U from 300 
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oxidized sandstones will precipitate as coffinite and uraninite around the pyrite in grey sandstones 301 

(Fig. 9). This process will be further discussed in the next section. 302 

The alteration from Fe2+-bearing to Fe3+-bearing minerals usually results in the precipitation of 303 

goethite and/or hematite from pyrite oxidation mainly involving chemical, biological and 304 

electrochemical reactions (Lowson 1982; Evangelou and Zhang 1995). Because the activity of 305 

ferro-oxidizing bacteria is greatly reduced with a pH of over 4.5 (Kuznetsov et al. 1963; Rackley 306 

1972), pyrite oxidation is dominated by abiotic chemical reactions in sandstones of the lower 307 

member of the Zhiluo Formation (Fig. 3c: pH >7). The process can be illustrated by following 308 

reactions (Evangelou and Zhang 1995): 309 

FeS2 + 7/2O2 + H2O → Fe2+ + 2SO2- 
4  + 2H+ (2) 310 

Fe2+ + 1/4O2 + H+ → Fe3+ + 1/2H2O (3) 311 

Fe3+ + 3H2O → Fe(OH)3(s) + 3H+ (4) 312 

FeS2 + 7Fe2(SO4)3 + 8H2O → 15FeSO4 + 8H2SO4 (5) 313 

Fe(OH)3(s) → FeOOH + H2O (6) 314 

2FeOOH → Fe2O3 + H2O (7) 315 

Factors such as pH, O2 content, morphology and specific surface of pyrite, as well as hydrological 316 

conditions, determine the rate of oxidation (Moses et al. 1987; Nicholson et al. 1990; Evangelou 317 

and Zhang 1995), and the final product is dependent on the magnitude of the rate of oxidation. 318 

Goethite is the early product (in the reaction 6; Figs. 6k and 6l), and the build-up of goethite around 319 

the edge of a particle will decrease rate of pyrite oxidation because of the limitation of oxygen 320 
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diffusion through the armoring effect (Nicholson et al. 1990; Heidari et al. 2017; Mahoney et al. 321 

2019). However, it is the metastable step under arid climate conditions, and goethite can be 322 

transformed to hematite by dehydration reaction (in the reaction 7; Fig. 6j; e.g., Walker 1967), thus 323 

giving the sandstone reddish color. Therefore, the large-scale distribution of hematite in the altered 324 

sandstone with shallow burial (< 800 m) indicates the semi-arid to arid climate, which may also 325 

facilitate the dissolution of U (Hobday and Galloway 1999; Bonnetti et al. 2020). Uranium trapped 326 

by Fe-Ti oxides, CD and clay minerals together with the primary U originating from intermediate-327 

acid magmatic rocks (U-rich granites; e.g., Zhang et al. 2016) of the Yinshan orogenic belt lying 328 

to the north of the basin provide significant sources for the U mineralization in the Dongsheng 329 

deposit (Jiao et al. 2006, 2015), as the regional U geochemical background in barren grey 330 

sandstones (Umean = 12.05 ppm) is much higher than the average in the upper continental crust 331 

(Umean = 2.8 ppm; Cuney 2010). Additionally, in outcrops, the pyrite in reduced sandstones was 332 

oxidized to goethite, leading to a wide distribution of yellow sandstones due to the relatively weak 333 

oxidizing capability of modern weathering (lower Stotal/S2- ratio but higher U, TOC and pyrite 334 

contents in yellow sandstones than those in red sandstones; Fig. 3; Tables S3 and S6). Meanwhile, 335 

the U-bearing minerals in mineralized grey sandstones were oxidized, and the dissolved U flowed 336 

down the sandstones with the groundwater, and was re-adsorbed on organic materials (e.g., the CD 337 

in the Zhiluo Formation or the coal seams in the Yan’an Formation) nearby (Figs. 1c-1e; Zhang et 338 

al. 2019a). 339 

The reduction (Fe3+-bearing to Fe2+-bearing minerals) mainly involves the formation of 340 
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authigenic chlorite from hematite. According to pollen analyses, the Hetao graben along the north 341 

margin of the basin was formed at least since Late Paleocene (Fu et al. 1994), thus cutting off the 342 

sources of U and leading to the termination of large-scale U mineralization (Zheng et al. 2006; 343 

Miao et al. 2010; Li et al. 2016). Subsequently, the decrease of oxygenated groundwater led to 344 

large amounts of ascending hydrocarbons from the Paleozoic and the early Mesozoic strata, which 345 

created a reducing environment (Zhao et al. 1996). Infiltration of hydrocarbons in red sandstones 346 

resulted in the reduction of hematite into chlorite (e.g., Zhang et al. 2019), which was evidenced 347 

by red calcareous nodules within green sandstones (Figs. 1b-1d and 2b), the similar contents of U 348 

and pyrite between red and green sandstones (Tables S3 and S6), and the hematite surrounded by 349 

chlorite (Fig. 6f). 350 

Genesis of the Dongsheng uranium deposit 351 

Different from the well-established model of roll front-type U deposits (Granger and Warren 352 

1969; Warren 1971, 1972; Reynolds and Goldhaber 1983; Cuney 2009; Bonnetti et al. 2015; 353 

Hough et al. 2019), tabular orebodies occur at a regional density-stabilized oxidation-reduction 354 

interface (Northrop et al. 1990; Sanford 1990, 1992, 1994; Hansley and Spirakis 1992; Turner et 355 

al. 1993; Abzalov 2012). In this occurrence, oxidizing fluids were derived from oxygenated U-356 

bearing meteoric water, whereas reducing fluids were closely associated with organic matter 357 

composed of inherent organic materials (such as plant fragments in the Cottonwood Wash U-V 358 

tabular deposits, USA; Meunier et al. 1987) in sandstones, and extrinsic humic acid-bearing pore 359 

waters (the Grants U region, USA; Turner et al. 1993) from adjacent strata. In the Dongsheng 360 
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deposit, due to abundant hydrocarbons in the oil-, gas- or coal-bearing strata underlying the Zhiluo 361 

Formation and the inherent CD in the grey sandstone (Jiao et al. 2015; Zhang et al. 2019a), the 362 

numerical modeling of fluid flow reported by Xue et al. (2010) indicated that the mixing of 363 

descending meteoric fluids and ascending hydrocarbons are responsible for U mineralization. 364 

Additionally, the combination of a stable tectonic period followed by regional uplift and an 365 

alternating climate from humid to arid is most favorable for ore deposition (Harshman and Adams 366 

1980; Jiao et al. 2015; Bonnetti et al. 2020). 367 

Based on the development of the Ordos Basin and its sedimentary sequences, the sulfur involved 368 

in the formation of ore-stage pyrite in the Zhiluo Formation hosting the Dongsheng deposit may 369 

be derived from: (1) dissolved sulfate ions from Ordovician marine evaporites, (2) H2S/HS- in 370 

extrinsic hydrocarbons, or (3) oxidation of pre-ore pyrite, whose sulfur mainly results from the 371 

weathering of volcanic and metamorphic rocks in source area (e.g., Jiao et al. 2015). Because the 372 

sandstones of the Zhiluo Formation overlie the Ordovician evaporites by > 2000 m (Li et al. 1984; 373 

Yang et al. 2004), there is a sufficient distance for the upward-migrating fluids containing dissolved 374 

SO2- 
4  could be completely consumed by microbial reduction or purely chemical processes in the 375 

oil- and coal-bearing late Paleozoic to early Mesozoic sediments. Jiao et al. (2018b) has reported 376 

that in outcrops, the majority of pyrite occurs within approximately 4 m of the top of coal seams 377 

of the Yan’an Formation, and the farther away from the coal seam, the smaller size of and the less 378 

numerous of pyrite grains become in sandstones. This suggests that the formation and distribution 379 

of this pyrite is intimately related to H2S escaped from coal seams (Jiao et al. 2018b), and the H2S 380 
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seems to be completely fixed within 4 m. However, the orebodies are generally more than 20 m 381 

away from the boundary between the Zhiluo and the Yan’an Formation (Fig. 2; Peng et al. 2019). 382 

Therefore, it is impossible to have enough H2S/HS- in extrinsic hydrocarbons to produce ore-stage 383 

pyrite, which can also be supported by very little pyrite in green sandstones (Table S6). Therefore, 384 

the oxidation of pre-ore pyrite becomes a dominant sulfur source for ore-stage pyrite. 385 

Despite the hydrothermal conditions inferred from fluid inclusions in calcite cements (Xiao et 386 

al. 2004; Cao et al. 2016; Akhtar et al. 2017), vitrinite reflectance (Ro < 0.47%) of CD in 387 

mineralized grey sandstones suggests mineralization took place at temperatures below 65 ℃ 388 

(Zhang et al. 2019b). The lower δ34S of ore-stage euhedral and cement pyrite (δ34S = -56.9 to -389 

34.3‰) than those of ore-stage framboidal pyrite (δ34S = -31.2 to -3.8‰), together with their 390 

paragenetic relationship (Fig. S7) indicate that the different pyrite textural generations may form 391 

through distinct mechanisms, rather than a biogeochemical cycle (e.g., Bonnetti et al. 2020). We 392 

propose that ore-stage framboids were produced through bacterial sulfate reduction (BSR), and the 393 

following formation of ore-stage euhedral and cement pyrite was via abiogenic Ostwald ripening 394 

(Fig. 10). 395 

Sulfate ions (SO2- 
4 ) derived from pyrite oxidation were reduced to H2S/HS- by BSR and formed 396 

ore-stage framboidal pyrite (Fig. 10; Machel 2001), which is also supported by the positive 397 

correlation between S2- and TOC in grey sandstones (Reynolds et al. 1982; Fig. 3b). In this process, 398 

the bacteria confirmed to be in existence in the Dongsheng deposit prefer the lighter 32S isotope 399 

(Bruchert 2004; Seal 2006; Jiang et al. 2012; Gregory and Kohn 2020), thus meaning that the 400 
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biogenic pyrite will have a lower δ34S value than subsequent generations. In a closed system for 401 

sulfur, the Rayleigh fractionation may be exhibited, leading to a fraction of framboidal pyrite 402 

produced δ34S values higher than pre-ore pyrite (Fig. 8), as predicted by Hough et al. (2019). 403 

Additionally, hydrogen ions produced by organic matter degradation during BSR can be removed 404 

by destruction of feldspars and carbonate (e.g., Bonnetti et al. 2015), which has contributed to the 405 

maintained pH at relatively high values (Fig. 3c). The dissolution of feldspars explains the 406 

abundance of kaolinite in the mineralized zone and will supply a silica source for the formation of 407 

coffinite (Langmuir 1978). 408 

There are also sulfite and thiosulfate ions generated by pyrite oxidation in neutral to basic 409 

solutions (Granger and Warren 1969), and the unstable sulfur species will spontaneously undergo 410 

decomposition by disproportionation resulting in 34S-depleted HS- and 34S-enriched sulfate (Fig. 411 

S8; Granger and Warren 1969; Hough et al. 2019). Pyrite framboid is the metastable phase, and 412 

existing surfaces of pyrite have been identified to be conducive to precipitation of pyrite of later 413 

stages (Sawlowicz 1993). The 34S-depleted HS- produced from dissolved framboidal crystals was 414 

utilized to generate euhedral and cement pyrite (Fig. 10). This process could be revealed through 415 

observations in which framboidal pyrite was being transformed to euhedral or cement pyrite via 416 

Ostwald ripening (Fig. S7; e.g., Morse and Casey 1988; Steefel and Cappellen 1990). Because the 417 

34S-enriched sulfate is nonreactive in abiogenic process and removed by groundwater, the pyrite 418 

formed through Ostwald ripening will always have lower δ34S values than pre-existing or earlier-419 

formed pyrite (Fig. 10; Brunner and Bernasconi 2005), which is evidenced by the very low isotopic 420 
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values of euhedral and cement pyrite ranging from -56.9 to -34.3‰, lower than any values of 421 

framboidal pyrite. The sulfur isotopes of abiogenically-derived pyrite are dependent on Eh/pH 422 

conditions established by the presence of barite and clausthalite coupled with alternating 423 

precipitation between pyrite and ferroselite (Figs. S9 and S10; Ohmoto 1972). The process of 424 

producing euhedral grains of pyrite with very low δ34S values via Ostwald ripening in the 425 

Dongsheng deposit is on contrast to sulfur recycling processes suggested by Hough et al. (2019) 426 

for the Wyoming roll front U deposits. 427 

Implications 428 

In sandstone-type U deposits, the mobilization, migration and fixation of U are driven by 429 

multiple redox events in low-temperature conditions, which can be directly and effectively 430 

documented in textures, paragenetic sequence and chemical compositions of various Fe-bearing 431 

minerals. Several alteration processes among Fe-bearing minerals not only give sandstones distinct 432 

colors (e.g., red, green and yellow), considered as a criterion for ore prospecting, but provide a 433 

minor U source for mineralization (e.g., Fe-Ti oxides, Bonnetti et al. 2015), and can be used to 434 

effectively assess the sulfur source of pyrite closely associated with U-bearing minerals. 435 

Additionally, textural and sulfur isotopic data provide new insights into the genetic mechanism of 436 

ore-stage pyrite in the Dongsheng deposit. Both biogenic and abiogenic mechanisms were 437 

involved in the generation of ore-stage pyrite. Namely, framboidal pyrite was produced by BSR, 438 

using the sulfur derived from oxidation of pre-ore pyrite, whereas Ostwald ripening was 439 

responsible for the formation of euhedral and cement pyrite from framboids. Although the redox 440 
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mechanism of the Dongsheng deposit is slightly different from that of deposits in Lake Eyre Basin, 441 

Australia (BSR overprinted by hydrothermal fluids, Ingham et al. 2014), deposits in Wyoming, 442 

USA (pyrite recycling, Hough et al. 2019) and deposit in Erlian Basin, China (biogenic processes, 443 

Bonnetti et al. 2020), which may result from different geologic contexts, the role of bacterial 444 

metabolic processes was proposed for all these sandstone-type U deposits, and a biogenic 445 

mechanism was considered to be the common and/or initial stage of U mineralization. The 446 

alteration processes related to Fe and U of the Dongsheng deposit during the mineralization period 447 

are also similar to those of other sandstone-type U deposits (e.g., Warren 1971; Rong et al. 2016), 448 

except for the superimposed effects of post-ore hydrocarbon-rich fluids (Miao et al. 2010; Peng et 449 

al. 2019) and surface weathering (Jiao et al. 2018b). This study also demonstrates that the careful 450 

assessment of U in the context of other redox sensitive elements like Fe and S can provide a more 451 

complete picture of the formation of U ore deposits, and the transformation model of Fe-bearing 452 

minerals proposed for the Dongsheng deposit may be applied to other mineral resources controlled 453 

by redox events. 454 
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Figure captions: 778 

Figure 1. (a) Tectonic units of the Ordos Basin showing the location of the Dongsheng U deposit 779 

(modified after Deng et al. 2005; Wang et al. 2011); (b) A cross section showing the spatial 780 
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distribution between different colored sandstone units and orebodies in the lower member of the 781 

Zhiluo Formation; (c) The U-rich sandstones of the Zhiluo Formation in outcrop; (d) A map of the 782 

different colored sandstone units in the Zhiluo Formation in outcrop; (e) The spatial distribution 783 

of U contents in the sandstone of the Zhiluo Formation in outcrop. 784 

Figure 2. Drill holes cross section showing the geochemical zoning in the lower member of the 785 

Zhiluo Formation. (A) Oxidized zone: a. red sandstone; b. residual red color in green sandstone; 786 

c. green sandstone; (B) Mineralized zone: d. pyrite and carbonaceous debris in mineralized grey787 

sandstone; e. mineralized grey sandstone; (C) Reduced zone: f. mud gravel and carbonaceous 788 

debris in barren grey sandstone; g. carbonaceous debris in barren grey sandstone; h. barren grey 789 

sandstone. Abbreviations: CD = carbonaceous debris, MG = mud gravel, Py = pyrite. 790 

Figure 3. Fe3+/Fe2+ vs. Stotal/S2- (a), TOC vs. S2- (b) and ∆Eh vs. pH (c) diagrams for different 791 

colored sandstones. 792 

Figure 4. Photographs showing occurrences of Fe-bearing minerals. (a) Limonite occurring as 793 

rims around pyrite grains in grey sandstone due to being exposed to air; (b) Hematite and limonite 794 

in red sandstone; (c) Disseminated hematite in red sandstone; (d) Pyrite grains were oxidized to 795 

limonite in yellow sandstone; (e) Euhedral hematite grains in red sandstone. Abbreviations: CD = 796 

carbonaceous debris, Hem = hematite, Lm = limonite, Py = pyrite. 797 

Figure 5. Photomicrographs (a, c, i, transmitted light; g, reflected light), back-scattered electron 798 

(b, d-f, j-l) and secondary electron (h) images showing occurrences of Fe-bearing minerals. (a) 799 

Hematite filling pores, sample RD-2; (b) Hematite grain; (c) Goethite coating K-feldspar, sample 800 
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YW-1; (d) Goethite grains; (e) Framboidal pyrite distributed around the carbonaceous debris; (f) 801 

Euhedral pyrite; (g) Pyrite cement, sample DSC-08; (h-i) Chlorite coating the clastic particles; (j) 802 

Detrital Fe-Ti oxide grains in grey sandstone; (k) Altered Fe-Ti oxide; (l) Detrital biotite in grey 803 

sandstone, sample DSC-20. Abbreviations: Bt = biotite, Cal = calcite, CD = carbonaceous debris, 804 

Chl = chlorite, Gth = goethite, Hem = hematite, Kfs = K-feldspar, Kln = kaolinite, Py = pyrite, Qz 805 

= quartz. 806 

Figure 6. Back-scattered electron images (a-c, f-j, l) and photomicrographs (d-e, transmitted light; 807 

k, reflected light) showing paragenetic relationships of different Fe-bearing minerals. (a) Euhedral 808 

pyrite along cleavage planes of biotite in grey sandstone; (b) Hematite along cleavage planes of 809 

biotite in red sandstone; (c-d) Goethite along cleavage planes of biotite in yellow sandstone; (e) 810 

Biotite grains partly altered to chlorite in green sandstone, sample GN-1; (f) Biotite partly altered 811 

to chlorite filled with hematite and pyrite; (g) Pyrite distributed in the matrix of chlorite; (h) Pyrite 812 

filling in microfractures of altered Fe-Ti oxide; (i) Framboidal pyrite distributed near the Fe-Ti 813 

oxide; (j) Framboidal hematite in red sandstone; (k-l) Goethite occurring as rims of pyrite cores. 814 

Abbreviations: Bt = biotite; Cal = calcite, Chl = chlorite, Gth = goethite, Hem = hematite, Py = 815 

pyrite, Qz = quartz. 816 

Figure 7. Paragenetic sequence of Fe-bearing and U-bearing minerals in the Dongsheng deposit. 817 

Figure 8. Sulfur isotopes of different generations of pyrite. Abbreviations: Pyrite (1) = framboidal 818 

pyrite, Pyrite (2) = euhedral + cement pyrite. 819 

Figure 9. Back-scattered electron images showing the relationship between U-bearing and Fe-820 
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829 
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831 

832 

833 

834 

835 

836 

837 

838 

839 

bearing minerals. (a-c) Coffinite filling in framboidal pyrite; (d) Uraninite distributed around the 

euhedral pyrite grains; (e) Coffinite distributed near the euhedral pyrite; (f) Coffinite formed 

around the pyrite cement; (g) Coffinite distributed around the pyrite cement replacing Fe-Ti oxide; 

(h) Coffinite precipitates near the Fe-Ti oxide; (i) Pyrite replaced by coffinite along cleavage 

planes in biotite. Abbreviations: Bt = biotite, Cal = calcite, CD = carbonaceous debris, Py = pyrite, 

Qz = quartz, Urn = uraninite. 

Figure 10. Genetic model for different generations of ore-stage pyrite in the Dongsheng U deposit. 

Abbreviations: BSR = bacterial sulfate reduction, CD = carbonaceous debris, CP = clastic particles, 

C-Py = cement pyrite, E-Py = euhedral pyrite, F-Py = framboidal pyrite, SRB = sulfate-reducing 

bacteria. 
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