1	Revision 2 Word Count: 10975	5
2	Transformation of Fe-bearing minerals from Dongsheng sandstone-type uranium deposit,	
3	Ordos Basin, north-central China: Implications for ore genesis	
4	Liang Yue ^{1,2,3} , Yangquan Jiao ^{1,2,*} , Mostafa Fayek ³ , Liqun Wu ^{1,2} , Hui Rong ^{1,2} , Huili Xie ⁴	
5	¹ Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences),	,
6	Ministry of Education, Wuhan 430074, China	
7	² School of Earth Resources, China University of Geosciences, Wuhan 430074, China	
8	³ Department of Geological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada	
9	⁴ CNNC Beijing Research Institute of Uranium Geology, Beijing 100029, China	
10	Abstract	
11	Iron-bearing mineral assemblages and their distribution patterns directly reflect the redox	ζ
12	environment in sediments, which plays a decisive role in the migration and precipitation of U. The	Э
13	Dongsheng sandstone-type U deposit hosted in fluvial and/or deltaic sandstones of the lower	r
14	member of the Middle Jurassic Zhiluo Formation in the northeastern Ordos Basin has experienced	ł
15	multiple fluid events that impacted the redox conditions. Highly enriched in barren grey sandstones	s,
16	pre-ore U ($U_{mean} = 12.05$ ppm) associated with Fe-Ti oxides, clay minerals and organic matter is	5
17	likely one of the key sources of U for the mineralization. Different contents of Fe-bearing minerals	S
18	including biotite, Fe-Ti oxides, pyrite, hematite, goethite, and chlorite that were formed or altered	1
19	under different redox conditions, resulted in sandstone units with distinct colors. The red sandstone	Э
20	is hematite-rich, indicating a highly oxidizing environment. The green sandstone is chlorite-rich *Corresponding author. <i>Email address</i> : <u>yqjiao@cug.edu.cn</u> .	1

21	and formed because of reducing hydrocarbon-rich fluids that overprinted the hematite-rich
22	sandstone. The barren and mineralized grey sandstones consist of pyrite (with a higher content in
23	mineralized sandstones), Fe-Ti oxide minerals, and carbonaceous debris, which are indicators of a
24	reducing environment. Based on the paragenetic relationship and sulfur isotopic compositions of
25	ore-stage pyrite, bacterial sulfate reduction was responsible for the formation of framboidal pyrite
26	$(\delta^{34}S = -31.2 \text{ to } -3.8\%)$, and the sulfur of this pyrite mainly came from the oxidation of pre-ore
27	pyrite ($\delta^{34}S = -19.1$ to +20.3‰). Euhedral and cement pyrite overprinting framboids were
28	produced via Ostwald ripening with δ^{34} S values ranging from -56.9 to -34.3‰, lower than any
29	values of framboidal pyrite. Therefore, these mineralogical and geochemical characteristics of the
30	Dongsheng deposit suggest U mineralization involved both biogenic and abiogenic redox
31	processes.
32	Keywords: Pyrite, δ^{34} S, Fe-bearing minerals, alteration, sandstone-type U deposit, Ordos Basin
33	Introduction
34	Large-scale sandstone-type U deposits in China are mainly distributed in sedimentary basins
35	generally parallel to the Central Asian Orogenic Belt (Chen 2002; Huang and Huang 2005; Zhang
36	et al. 2010; Jiao et al. 2015; Zhu et al. 2018). The Dongsheng U deposit, located at the southeastern
37	margin of the Central Asia Uraniferous Province (CAUP; OECD-NEA, IAEA 2010), has
38	experienced multiple low-temperature fluid events responsible for multi-stage mobilization and
39	fixation of U (e.g., Miao et al. 2010; Zhang et al. 2019). Having simple fluid histories quite
40	different from the complex fluid history in the Dongsheng deposit, the ore-forming process of

41	other sandstone-type U deposits in the CAUP (e.g., the Bayinwula deposit in the Erlian basin,
42	Bonnetti et al. 2015; the Kuji'ertai and Mengqiguer deposits in the Yili basin, Zhang and Liu 2019),
43	is similar to the roll front reported by Shawe and Granger (1965) and Warren (1971). However,
44	the genesis of the Dongsheng deposit remains controversial, with two models proposed including
45	biogenic processes due to confirmed existence of bacteria (Cai et al. 2007a, 2007b; Jiang et al.
46	2012) and hydrothermal mineralization (Xiao et al. 2004; Zhang et al. 2017).
47	It has been widely accepted that U mineralization of sandstone-type deposits occurs during
48	infiltration of the low-temperature surface-derived oxygenated groundwater into permeable
49	sandstones. Containing abundant intrinsic or extrinsic reductants (e.g., organic matter, H ₂ S and
50	FeS ₂ ; Granger and Warren 1969; Goldhaber et al. 1983; Jiao et al. 2018a; Hough et al. 2019;
51	Bonnetti et al. 2020), those permeable sandstones are confined by non- to semi-permeable
52	aquitards (e.g., coal seams and mudstones). In this process, soluble U (VI) is reduced to insoluble
53	U (IV). Additionally, iron is a redox-sensitive element with a high abundance in natural
54	environments (e.g., Soliman and Goresy 2012; Mahoney et al. 2019). The mobilization, migration
55	and fixation of U are often accompanied by variations in the existing forms of Fe species (i.e.,
56	different Fe-bearing minerals; Reynolds and Goldhaber 1978; Bonnetti et al. 2015; Rong et al.
57	2016). Therefore, the distribution and alteration characteristics of Fe-bearing minerals, in turn,
58	reveal the geochemical zoning of the host sandstones, thus helping to decipher the genesis of U
59	deposits. The changes of redox environment can also be indicated by the distribution
60	characteristics of organic materials (e.g., total organic carbon; Spirakis 1996). It is known that

61	organic materials can not only provide energy for microbial activities involved in the alteration of
62	Fe-bearing minerals (Reynolds et al. 1982; Reynolds and Goldhaber 1983), but also adsorb U
63	under reducing conditions (Douglas et al. 2011; Zhang et al. 2020). Although the metallogenic
64	model for the Dongsheng U deposit is well established, and in outcrops, U anomalies mainly
65	associated with carbonaceous debris (CD) in the yellow sandstone have been reported by Jiao et
66	al. (2018b) and Zhang et al. (2019a), the distribution characteristics of Fe-bearing minerals in
67	different geochemical zones of host sandstones, especially the alteration of these minerals, are
68	poorly understood.
69	The purpose of this paper is to characterize the role of Fe-bearing minerals in the mobilization
70	and fixation of U in the Dongsheng deposit in the Ordos Basin. Mineralogical, chemical, and sulfur
71	isotopic data are used to evaluate their alteration processes and to characterize the genetic link
72	between Fe-bearing and U-bearing minerals. Here, we propose that biogenic activities and the
73	following abiogenic processes were involved in the U mineralization in the Dongsheng deposit,
74	thereby providing a better understanding for the genesis of U deposits in northern China.
75	Geological background
76	The Ordos Basin
77	The Ordos Basin is a rectangular, NNE-trending basin located in north-central China (Fig. 1a),
78	covering an approximate area of 250, 000 km ² (Deng et al. 2005). Based on the current tectonic
79	configuration, the basin can be divided into six structural domains (Fig. 1a): the Yimeng uplift, the
80	Western fault-folded zone, the Tianhuan depression, the Shanbei slope, the Jinxi folded zone, and

81 the Weibei uplift (Guo and Jiao 2002).

82	The Ordos Basin developed during five main stages (Sun et al. 1985; Li et al. 1992; Zhang et al.
83	1995; Zhao et al. 1996; Zhang and Liao 2006; Jiao et al. 2015; Peng et al. 2019): (1) an aulacogen
84	stage characterized by Mesoproterozoic to Neoproterozoic metamorphic rocks, including phyllites,
85	marbles, greenschists and metamorphosed volcanic rocks (Zhang et al. 1980; Jia et al. 1997; Yang
86	et al. 2005); (2) an epicontinental sea stage marked by early Paleozoic limestone, evaporite and
87	gas-rich carbonate rocks of neritic platform facies (Sun et al. 1986; Zhai et al. 2002); (3) a
88	depression stage characterized by late Paleozoic to early Mesozoic coal, limestone, and gas- and
89	oil-bearing sandstone and mudstone (Li et al. 1995; Liu and Yang 2000); (4) an independent intra-
90	continental basin stage characterized by deposition of middle to late Mesozoic sedimentary units
91	dominated by fluvial, deltaic and lacustrine environments, and containing various energy resources
92	including (from oldest to youngest in Jurassic sediments) oil in the Fuxian Formation, oil and coal
93	in the Yan'an Formation, and U in the Zhiluo Formation (Qu et al. 2003; Yang et al. 2005; Zhang
94	et al. 2006; Cai et al. 2007a); and (5) a fault depression stage characterized by generation of a
95	series of grabens in the Cenozoic around the basin, thereby destroying the integrity of the basin
96	(Zhao, Z.Y. 1990; Zhao, M.W., et al. 1996; He 2003).
97	Several NW- and NNE-trending faults are developed in the northern Ordos Basin (Fig. S1; Han

- et al. 2008), some of which cut through the early Paleozoic to middle Mesozoic sediments (Chen
- 99 et al. 2005; Deng et al. 2005; Liu et al. 2009). Based on thermal and tectonic history analyses
- 100 reported by Zhao et al. (1996), the Ordos Basin has undergone a short-lived thermal event in

101	Middle Jurassic (170-160 Ma), and this event was attributed to the subsurface magmatic intrusion
102	related to the early Yanshanian movement and resulted in the initial formation of hydrocarbons in
103	Paleozoic sediments and migration from them. In addition, the differential uplift and erosion
104	between the eastern and western parts of the basin since 23 Ma led to a regional upward migration
105	of hydrocarbons (Zhao et al. 1996; Zhang et al. 2018), which was indicated by carbon isotope
106	values and fluid inclusion compositions in calcite cement in the Zhiluo Formation (e.g., Cai et al.
107	2007b).
108	The Dongsheng uranium deposit
108 109	The Dongsheng uranium deposit The Dongsheng U deposit, located in the northeastern Ordos Basin (Fig. 1a), is hosted in the
108 109 110	The Dongsheng uranium deposit The Dongsheng U deposit, located in the northeastern Ordos Basin (Fig. 1a), is hosted in the sandstone of the Middle Jurassic Zhiluo Formation (J_{2z}) deposited as climate changed from semi-
108 109 110 111	The Dongsheng uranium deposit The Dongsheng U deposit, located in the northeastern Ordos Basin (Fig. 1a), is hosted in the sandstone of the Middle Jurassic Zhiluo Formation (J ₂ z) deposited as climate changed from semi- humid to semi-arid (Miao et al. 2010; Sun et al. 2017; Jiao et al. 2018a). The Zhiluo Formation
108 109 110 111 112	The Dongsheng uranium deposit The Dongsheng U deposit, located in the northeastern Ordos Basin (Fig. 1a), is hosted in the sandstone of the Middle Jurassic Zhiluo Formation (J ₂ z) deposited as climate changed from semi-humid to semi-arid (Miao et al. 2010; Sun et al. 2017; Jiao et al. 2018a). The Zhiluo Formation (J ₂ y) is
 108 109 110 111 112 113 	The Dongsheng uranium deposit The Dongsheng U deposit, located in the northeastern Ordos Basin (Fig. 1a), is hosted in the sandstone of the Middle Jurassic Zhiluo Formation (J_2z) deposited as climate changed from semi-humid to semi-arid (Miao et al. 2010; Sun et al. 2017; Jiao et al. 2018a). The Zhiluo Formation unconformably overlying the Middle Jurassic coal-bearing strata of the Yan'an Formation (J_2y) is composed of lowstand, transgressive and highstand systems tracts, and the lowstand systems tract

115 originated from a braided river (delta) is the primary ore-bearing stratum. The upper parasequence

116 set (J_2z^{1-2}) originated from a meandering river (delta) is the secondary ore-bearing stratum. Two

117 main tabular orebodies have been delineated based on their different horizons (i.e., J_{2z}^{1-1} , J_{2z}^{1-2} ;

- 118 Fig. 1b), showing 0.5 to 5 m in thickness and dip direction of northwest-southeast with a burial
- depth decreasing from 800 to 100 m. The orebodies extend for over 100 km along the redox front
- 120 and are a few hundred meters to a kilometer wide (Peng et al. 2019). The inferred and indicated

121	resources total more than 50 kt at 0.03 to 0.1% U (Akhtar et al. 2017; Zhu et al. 2018; Peng et al.
122	2019). The U mineralization is mainly hosted in coarse to medium-grained sandstones in the
123	middle and upper parts of the fluvial facies (Figs. 1 and 2). Uranium minerals mainly occur as
124	coffinite and uraninite and are associated with CD and pyrite (Jiao et al. 2018a; Yue et al. 2019).
125	Four facies displaying different colors are identified in the deposit: red sandstone (Figs. 1b-1d
126	and 2a), green sandstone (Figs. 1b-1d and 2b-2c), grey sandstone (Figs. 1b-1d and 2d-2h) and
127	yellow sandstone (Fig. 1c and 1d), classified into: (1) oxidized zone, consisting of red, green and
128	yellow sandstones, (2) mineralized zone hosted by grey sandstones, and (3) reduced zone with
129	barren grey sandstones (Fig. 2). Clay minerals are composed of an assemblage of smectite-
130	kaolinite-chlorite-illite in the sandbodies, with a higher content of chlorite in the green sandstone
131	and a higher content of kaolinite in the mineralized grey sandstone (e.g., Zhang et al. 2019).
132	Sampling and analytical methods
133	A total of 109 sandstone samples from three regional stratigraphic drill holes (DSA, DSB and
134	DSC) and three drill holes through the Dongsheng U deposit (DS1, DS2 and DS3), and 21 outcrop
135	sandstone samples from Shenshangou area were collected. Detailed sample locations and
136	descriptions are shown in Figures S1-S3 and Tables S1-S2.
137	Ninety-nine drill core samples (27 red, 33 green and 39 barren grey sandstone samples; Fig. S2)
138	combined with 7 yellow outcrop sandstone samples (Fig. S3) were analyzed for their U and Th
139	contents (Table S1). Three drill holes DSA-DSC were used as a reference to determine the
140	petrographic, mineralogical and geochemical characteristics of the host sandstone before U

141	mineralization. Thirty-five different colored samples (7 red, 7 green, 7 mineralized grey, 7 barren
142	grey and 7 yellow sandstone samples; Figs. S2 and S3; Table S2) were analyzed for redox-sensitive
143	indicators (i.e., Fe ³⁺ , Fe ²⁺ , S ²⁻ , S _{total} , TOC, Δ Eh and pH). The Δ Eh and pH of the sandstones were
144	tested with international standards, i.e., ISO11271:2002 and ISO10390:2005, respectively. The
145	analyses of U, Th and redox-sensitive indicators were carried out, by using a HD3025 laser
146	analyzer for U (relative standard deviation (RSD) = 4.18%), a modal 721 spectrophotometer for
147	Th (RSD = 2.60%), a 5mL acid burette for Fe ³⁺ (RSD = 0.10 to 1.24%), Fe ²⁺ (RSD = 0.22 to 1.35%)
148	and TOC (RSD = 0.10 to 1.30%), a HCS-140 high frequency infrared ray carbon-sulphur analyzer
149	for S_{total} (RSD = 0.24 to 1.65%), a ESJ200-4 electronic balance for S^{2-} (RSD = 0.18 to 1.40%), an
150	electronic potentiometer for Δ Eh (RSD = 0.30 to 1.50%) and a PHS-3C acidimeter for pH (RSD
151	= 0.12 to 1.50%) at the Analyses and Testing Center in No.208 Geological Party, China Nuclear
152	Geology, Chinese National Nuclear Corporation, Baotou, China.
153	Thirty-five samples (Table S2) were prepared as polished thin sections and characterized, by
154	using a Nikon ME600POL optical microscope and a Zeiss EVO LS 15 scanning electron
155	microscope (SEM) at the Key Laboratory of Tectonics and Petroleum Resources Ministry of
156	Education, China University of Geosciences, Wuhan. Observations were focused on the U-bearing
157	and Fe-bearing minerals to determine their textural and paragenetic relationships. Electron probe
158	microanalysis (EPMA) was chosen to quantify the chemistry of U-bearing and Fe-bearing minerals
159	at the University of Manitoba, Winnipeg, Canada, by using a Cameca SX100 universal electron
160	probe microanalyzer. The EPMA beam size was adjusted between 1 and 10 μ m, which depended

161 on the detail required. The acceleration voltage was 15 kV and the current was 20 nA.

162	Twenty-two thin sections (5 red, 5 green, 5 mineralized grey, 2 barren grey and 5 yellow
163	sandstone samples; Table S2) were selected for pyrite sectional area counts within a 2 cm ² area by
164	SEM. The percentage area covered by pyrite grains in the photomicrographs is measured, by using
165	the software named Image-Pro Plus 6.0. We tried to approximate the average content of pyrite in
166	sandstones using the ratio of cross-sectional area of pyrite to 2 cm ² in thin sections (Fig. S4).
167	In order to preserve isotopic values in their paragenetic context, eleven polished thin sections
168	from grey sandstones (GY-1~GY-9, DSC-08 and DSC-14; Table S2) were prepared for in situ
169	sulfur isotope analyses, conducted with a Cameca 7f secondary ion mass spectrometer (SIMS) at
170	the University of Manitoba, Winnipeg, Canada. Procedures similar to those documented by Hough
171	et al. (2019) were used. All samples were gold coated to prevent surface charging. Sulfur isotope
172	ratios (${}^{34}S/{}^{32}S$) were measured, by using a ~1-nA Cs ⁺ primary beam accelerated at 10 kV with a
173	spot size of ~15 μ m filtered through a 247 μ m entrance slit. The sulfur isotope values are reported
174	in per mil relative to V-CDT standards with an analytical uncertainty (1 σ) of ± 0.3‰ for δ^{34} S.
175	Results
170	

176 Uranium and thorium contents

Average U contents for red, green and yellow sandstones are 1.55 ppm, 1.32 ppm and 1.81 ppm, whereas the content for barren grey sandstones is 12.05 ppm (Tables S1 and S3). The oxidized and reduced sandstones have similar Th contents but differ in their Th/U ratios (Fig. S5). The mean ratio of Th/U in red, green and yellow sandstones are 7.68, 9.20 and 6.94, whereas the ratio in

181 barren grey sandstones is 1.06 (Table S3).

182 **Redox-sensitive indicators of host sandstones**

- In contrast to those in red and yellow sandstones, the Fe^{3+}/Fe^{2+} ratios are less than 1.0 in both green and grey sandstones (Fig. 3a). The mean ratio of S_{total}/S^{2-} in red sandstones (mean > 6) is much higher than that in yellow sandstones (mean = 1.80), and the mean value in grey sandstones (mean = 1.40) is lower than that in green sandstones (mean = 3.74; Fig. 3a; Table S4). Both the
- 187 average values of S^{2-} and total organic carbon (TOC) are highest in mineralized grey sandstones,

188 followed by those in barren grey sandstones and yellow sandstones, and decreasing gradually from

189 those in green sandstones to those in red sandstones (Fig. 3b). Notably, there is a positive

190 correlation between TOC and S^{2-} in grey sandstones (Fig. 3b). There are relatively higher values

191 of ΔEh but lower pH in mineralized grey sandstones, and the pH values in all four colored

192 sandstone units are more than 7 (Fig. 3c).

193 Occurrence and paragenesis of Fe-bearing minerals

Macroscopically, the Fe-bearing minerals that can be found mainly include pyrite, limonite and hematite (Fig. 4). Pyrite, generally as nodules with diameter ranging from 2 to 20 mm in drilling

- 196 cores, is predominantly associated with CD in the grey sandstone and surrounded by limonite when
- 197 exposed to air for an extended period of time (Fig. 4a). Limonite is a mixture of iron hydroxides,
- 198 mainly comprised of goethite, and usually occurs as encrustation on pyrite in the yellow sandstone
- 199 (Fig. 4d). The dark red hematite is mainly distributed in the red sandstone (Figs. 4b, 4c and 4e).
- 200 Microscopically, the Fe-bearing minerals appear mainly as authigenic and altered minerals such

201	as hematite, goethite, pyrite and chlorite, as well as detrital minerals such as Fe-Ti oxides and
202	biotite (Fig. 5; Table S5). Hematite mainly occurs as dark red cements in the matrix or as coatings
203	on mineral surfaces and along microfractures of clastic particles in red sandstones (Fig. 5a). Minor
204	amounts of it occur as subhedral grains with a diameter up to 150 μm (Fig. 5b). Goethite can be
205	observed in both yellow and red sandstones, and occurs primarily as coatings on the surfaces of
206	interstitial materials and detrital particles, or along microfractures of clastic particles (Fig. 5c).
207	Same as with hematite, a small amount of goethite was observed as subhedral grains (Fig. 5d).
208	Three different morphologies of pyrite in all four colored sandstones were identified: framboidal,
209	euhedral and cement. Framboidal pyrite mainly distributed around CD is the most abundant type
210	of pyrite (Fig. 5e). Densely-packed framboids appear as spherical aggregates of submicrometer-
211	sized pyrite crystals. Euhedral pyrite, generally in the form of discrete cubes, is most closely
212	associated with the matrix of clay minerals (Fig. 5f). Distributed between clastic particles, the
213	pyrite cement shows a texturally homogeneous growth (Fig. 5g).
214	Chlorite is most abundant in the green sandstone, followed by the grey sandstone. It occurs
215	mainly in one of two habits: pompon-like aggregates coating clastic particles (Fig. 5h), or needle-
216	shaped crystals or squamous aggregates in the matrix (Fig. 5i).
217	The detrital Fe-Ti oxide minerals were observed in all four colored sandstone units (Fig. 5j).
218	Ilmenite is the original detrital mineral but it usually appears as the remnant grain with residual
219	cores surrounded by Ti oxides (Fig. 5k). These minerals are a mixture of Ti oxide and Fe
220	oxide/hydroxide micrograins, characterized by relatively high U contents (Table S5). Iron-Ti

221 oxides are more abundant in grey sandstones than in oxidized sandstones in which the Fe-Ti oxides

have lower iron contents (Table S5).

Detrital biotite is high in Fe but low in Mg (Table S5), and occurs in all four colored sandstone units (Fig. 51). The length of the biotite can reach several hundred micrometers, and it generally appears as a deformed grain.

226 These six Fe-bearing minerals are closely related to each other, mainly manifested as the 227 coexistence of two or more minerals at the micron scale (Fig. 6). Significantly, the types of Fe-228 bearing minerals occurring along cleavage planes in biotite in different colored sandstones are 229 quite distinct. For instance, pyrite predominates in the grey sandstone (Fig. 6a), hematite in the red 230 sandstone (Fig. 6b), and goethite in the yellow sandstone (Figs. 6c and 6d), whereas in the green 231 sandstone, biotite was partially replaced by chlorite (Fig. 6e). In addition, it can also be observed 232 that chlorite altered from biotite was filled with hematite and pyrite (Fig. 6f). As a clay mineral 233 widely distributed in the matrix, chlorite occurrence is linked to the occurrence of pyrite (Fig. 6g). 234 Generally, pyrite is distributed in the microfractures of or around Fe-Ti oxides (Figs. 6h and 6i). 235 In red sandstones, framboidal hematite can be observed (Fig. 6j), whereas in yellow sandstones, 236 goethite and pyrite are often found on the same particle (Figs. 6k and 6l), and the goethite around 237 the edge of different morphological pyrite is documented (Fig. S6). In addition, based on our 238 observations and recent work described in detail by Yue et al. (2020), it is common to see the 239 framboidal pyrite overprinted by euhedral pyrite and pyrite cement, respectively, in mineralized 240 grey sandstones (Fig. S7). The simplified paragenetic sequence of Fe-bearing minerals in the

241 Dongsheng U deposit is illustrated in Figure 7.

242 **Proportions of pyrite**

243 The proportions of pyrite in reduced sandstones are 2 orders of magnitude higher than that in 244 oxidized sandstones. In red, green and yellow sandstone units, the mean area percentages of pyrite are 1.49×10^{-4} %, 3.31×10^{-4} % and 5.47×10^{-4} %, respectively (Table S6). In mineralized grey 245 sandstones, the proportions of pyrite ranging from 3.97×10^{-2} to 9.28×10^{-2} % are higher than those 246 in barren grey sandstones (1.06×10^{-2} to 2.58×10^{-2} %) whose values represent the initial level of 247 pyrite content. 248 249 In situ sulfur isotopes 250 Sulfur isotopes were analyzed in pyrite from barren samples (pre-ore pyrite) and associated with U (ore-stage pyrite; Fig. 8; Table S7). The pre-ore pyrite produced δ^{34} S values from -19.1 to +20.3‰ 251 (mean = +7.3%). Framboidal pyrite (n = 5) with ³⁴S depletion ranges from -19.1 to -8.0% (mean 252 253 = -13.4%), whereas the euhedral and cement pyrite (n = 9), together with the pyrite occurring 254 along cleavage planes in biotite (n = 1) show higher values from +7.9 to +20.3% (mean = +17.7%). The δ^{34} S values of ore-stage pyrite (n = 29) range from -56.9 to -3.8‰ (mean = -34.1‰). Ore-255 256 stage framboidal pyrite (n = 12) ranges from -31.2 to -3.8‰ (mean = -16.4‰), whereas ore-stage 257 euhedral and cement pyrite (n = 17) have lower values from -56.9 to -34.3% (mean = -46.7%). 258 Uranium mineralization 259 Uranium minerals are closely related to pyrite and Fe-Ti oxides (Fig. 9), mainly distributed: (1)

- 260 in the interstices of microcrystallites of the closely arranged pyrite framboids (Figs. 9a-9c), (2)

- around the Fe-Ti oxides, euhedral pyrite or pyrite cement generally replacing the Fe-Ti oxides
 (Figs. 9d-9h), and (3) along cleavage planes in biotite filled with pyrite (Fig. 9i).
- 263 **Discussion**
- 264 Alteration of Fe-bearing minerals
- 265 The alteration among Fe-bearing minerals can be divided into: (1) alteration from Fe^{2+} -bearing
- 266 to Fe^{2+} -bearing minerals, (2) oxidation from Fe^{2+} -bearing to Fe^{3+} -bearing minerals, and (3)
- 267 reduction from Fe^{3+} -bearing to Fe^{2+} -bearing minerals. The multiple alteration processes not only
- 268 represent the changes of redox environment, but also indicate the multi-stage mobilization and
- fixation of U (e.g., Reynolds and Goldhaber 1978; Reynolds et al. 1986; Bonnetti et al. 2015; Jiao
- et al. 2018b; Zhang et al. 2019a).

The alteration from Fe^{2+} -bearing to Fe^{2+} -bearing minerals generally involves: (1) biotite 271 272 chloritization, and (2) the formation of pyrite whose Fe sources may be biotite, chlorite, Fe-Ti oxides and dissolved Fe^{2+} carried by the descending meteoric water. The alteration of biotite is 273 274 closely related to the physico-chemical properties of pore fluids (Boles and Johnson 1983; Claeys 275 and Mount 1991). Biotite can be replaced pseudomorphically by chlorite with a greenish tint (Fig. 276 6e), which may indicate the conditions of low K^+/H^+ ratios relative to $(Fe^{2+} + Mg^{2+})/H^+$ ratios 277 (Veblen and Ferry 1983; Morad 1986; Morad and Aldahan 1986). 278 The euhedral pyrite was formed along cleavage planes in biotite, thus indicating high rates of iron leaching and low rates of Fe^{2+} supply during the dissolution of biotite (Morad 1986; Fig. 6a; 279

Table S5: Biotite, GY-11). Additionally, the lower iron content in chlorite (Table S5: Chlorite, GY-

281 5) associated with pyrite permits the interpretation that the released iron was utilized in the formation of pyrite (Fig. 6g). Previous studies have demonstrated that the substitution of Mg^{2+} for 282 283 Fe^{2+} after the precipitation of chlorite results in a low Fe/(Fe + Mg) ratio in chlorite under 284 conditions of high Mg²⁺ activities. Pyrite is formed in an anoxic-sulfidic environment due to the released Fe²⁺ (White et al. 1985; Aldahan and Morad 1986). Thermodynamic calculations 285 286 performed by Bonnetti et al. (2015) suggested that ilmenite is almost insoluble in the H₂S-free 287 system over a broad range of pH conditions (approximately from 5 to 11), whereas Fe-Ti oxide grains (predominantly ilmenite) will be altered to Ti-oxide minerals and release Fe^{2+} in the 288 289 presence of H₂S-rich fluids during diagenesis, which is involved in the following reaction 290 (Reynolds and Goldhaber 1978; Bonnetti et al. 2015): 291 $FeTiO_3 + 2H_2S \rightarrow TiO_2 + FeS_2 + H_2O + H_2$ (1)

The alteration of ilmenite is usually accompanied by the production of relatively large micropores generally filled with pyrite (Fig. 6h). Additionally, due to Fe-Ti oxides containing minor U (Table S5), the U will also be leached out during alteration, and precipitate as U-bearing minerals around the Fe-Ti oxides (Figs. 9g and 9h).

Epigenetic U mineralization is generally considered as a continuous process driven by the translation of the redox front (Bonnetti et al. 2020). There will definitely be a part of dissolved Fe^{2+} not incorporated into Fe^{3+} -bearing minerals, thereby providing iron source for ore-stage pyrite. The whole process is supported by the mineralized grey sandstones having the highest pyrite contents and the red sandstones with the lowest (Table S6). In addition, the dissolved U from

- 301 oxidized sandstones will precipitate as coffinite and uraninite around the pyrite in grey sandstones
- 302 (Fig. 9). This process will be further discussed in the next section.
- 303 The alteration from Fe^{2+} -bearing to Fe^{3+} -bearing minerals usually results in the precipitation of
- 304 goethite and/or hematite from pyrite oxidation mainly involving chemical, biological and
- 305 electrochemical reactions (Lowson 1982; Evangelou and Zhang 1995). Because the activity of
- 306 ferro-oxidizing bacteria is greatly reduced with a pH of over 4.5 (Kuznetsov et al. 1963; Rackley
- 307 1972), pyrite oxidation is dominated by abiotic chemical reactions in sandstones of the lower
- 308 member of the Zhiluo Formation (Fig. 3c: pH >7). The process can be illustrated by following
- 309 reactions (Evangelou and Zhang 1995):
- 310 $\operatorname{FeS}_2 + 7/2O_2 + H_2O \rightarrow \operatorname{Fe}^{2+} + 2\operatorname{SO}_4^{2-} + 2\operatorname{H}^+$ (2)
- 311 $Fe^{2+} + 1/4O_2 + H^+ \rightarrow Fe^{3+} + 1/2H_2O$ (3)
- 312 $Fe^{3+} + 3H_2O \rightarrow Fe(OH)_{3(s)} + 3H^+$ (4)

313
$$FeS_2 + 7Fe_2(SO_4)_3 + 8H_2O \rightarrow 15FeSO_4 + 8H_2SO_4$$
 (5)

- $314 \quad Fe(OH)_{3(s)} \rightarrow FeOOH + H_2O \tag{6}$
- $315 \quad 2FeOOH \rightarrow Fe_2O_3 + H_2O \tag{7}$

Factors such as pH, O₂ content, morphology and specific surface of pyrite, as well as hydrological
conditions, determine the rate of oxidation (Moses et al. 1987; Nicholson et al. 1990; Evangelou

- and Zhang 1995), and the final product is dependent on the magnitude of the rate of oxidation.
- 319 Goethite is the early product (in the reaction 6; Figs. 6k and 6l), and the build-up of goethite around
- 320 the edge of a particle will decrease rate of pyrite oxidation because of the limitation of oxygen

321	diffusion through the armoring effect (Nicholson et al. 1990; Heidari et al. 2017; Mahoney et al.
322	2019). However, it is the metastable step under arid climate conditions, and goethite can be
323	transformed to hematite by dehydration reaction (in the reaction 7; Fig. 6j; e.g., Walker 1967), thus
324	giving the sandstone reddish color. Therefore, the large-scale distribution of hematite in the altered
325	sandstone with shallow burial (< 800 m) indicates the semi-arid to arid climate, which may also
326	facilitate the dissolution of U (Hobday and Galloway 1999; Bonnetti et al. 2020). Uranium trapped
327	by Fe-Ti oxides, CD and clay minerals together with the primary U originating from intermediate-
328	acid magmatic rocks (U-rich granites; e.g., Zhang et al. 2016) of the Yinshan orogenic belt lying
329	to the north of the basin provide significant sources for the U mineralization in the Dongsheng
330	deposit (Jiao et al. 2006, 2015), as the regional U geochemical background in barren grey
331	sandstones ($U_{mean} = 12.05$ ppm) is much higher than the average in the upper continental crust
332	($U_{mean} = 2.8 \text{ ppm}$; Cuney 2010). Additionally, in outcrops, the pyrite in reduced sandstones was
333	oxidized to goethite, leading to a wide distribution of yellow sandstones due to the relatively weak
334	oxidizing capability of modern weathering (lower S_{total}/S^2 - ratio but higher U, TOC and pyrite
335	contents in yellow sandstones than those in red sandstones; Fig. 3; Tables S3 and S6). Meanwhile,
336	the U-bearing minerals in mineralized grey sandstones were oxidized, and the dissolved U flowed
337	down the sandstones with the groundwater, and was re-adsorbed on organic materials (e.g., the CD
338	in the Zhiluo Formation or the coal seams in the Yan'an Formation) nearby (Figs. 1c-1e; Zhang et
339	al. 2019a).

340 The reduction (Fe^{3+} -bearing to Fe^{2+} -bearing minerals) mainly involves the formation of

341	authigenic chlorite from hematite. According to pollen analyses, the Hetao graben along the north
342	margin of the basin was formed at least since Late Paleocene (Fu et al. 1994), thus cutting off the
343	sources of U and leading to the termination of large-scale U mineralization (Zheng et al. 2006;
344	Miao et al. 2010; Li et al. 2016). Subsequently, the decrease of oxygenated groundwater led to
345	large amounts of ascending hydrocarbons from the Paleozoic and the early Mesozoic strata, which
346	created a reducing environment (Zhao et al. 1996). Infiltration of hydrocarbons in red sandstones
347	resulted in the reduction of hematite into chlorite (e.g., Zhang et al. 2019), which was evidenced
348	by red calcareous nodules within green sandstones (Figs. 1b-1d and 2b), the similar contents of U
349	and pyrite between red and green sandstones (Tables S3 and S6), and the hematite surrounded by
350	chlorite (Fig. 6f).
351	Genesis of the Dongsheng uranium deposit
352	Different from the well-established model of roll front-type U deposits (Granger and Warren
353	1969; Warren 1971, 1972; Reynolds and Goldhaber 1983; Cuney 2009; Bonnetti et al. 2015;
354	Hough et al. 2019), tabular orebodies occur at a regional density-stabilized oxidation-reduction
355	interface (Northrop et al. 1990; Sanford 1990, 1992, 1994; Hansley and Spirakis 1992; Turner et
356	al. 1993; Abzalov 2012). In this occurrence, oxidizing fluids were derived from oxygenated U-

- 357 bearing meteoric water, whereas reducing fluids were closely associated with organic matter
- 358 composed of inherent organic materials (such as plant fragments in the Cottonwood Wash U-V
- tabular deposits, USA; Meunier et al. 1987) in sandstones, and extrinsic humic acid-bearing pore
- 360 waters (the Grants U region, USA; Turner et al. 1993) from adjacent strata. In the Dongsheng

361 deposit, due to abundant hydrocarbons in the oil-, gas- or coal-bearing strata underlying the Zhiluo 362 Formation and the inherent CD in the grey sandstone (Jiao et al. 2015; Zhang et al. 2019a), the 363 numerical modeling of fluid flow reported by Xue et al. (2010) indicated that the mixing of 364 descending meteoric fluids and ascending hydrocarbons are responsible for U mineralization. 365 Additionally, the combination of a stable tectonic period followed by regional uplift and an 366 alternating climate from humid to arid is most favorable for ore deposition (Harshman and Adams 367 1980; Jiao et al. 2015; Bonnetti et al. 2020). 368 Based on the development of the Ordos Basin and its sedimentary sequences, the sulfur involved in the formation of ore-stage pyrite in the Zhiluo Formation hosting the Dongsheng deposit may 369 370 be derived from: (1) dissolved sulfate ions from Ordovician marine evaporites, (2) H_2S/HS^{-1} in

371 extrinsic hydrocarbons, or (3) oxidation of pre-ore pyrite, whose sulfur mainly results from the

372 weathering of volcanic and metamorphic rocks in source area (e.g., Jiao et al. 2015). Because the

373 sandstones of the Zhiluo Formation overlie the Ordovician evaporites by > 2000 m (Li et al. 1984;

374 Yang et al. 2004), there is a sufficient distance for the upward-migrating fluids containing dissolved

 $375 \quad SO_4^{2-}$ could be completely consumed by microbial reduction or purely chemical processes in the

376 oil- and coal-bearing late Paleozoic to early Mesozoic sediments. Jiao et al. (2018b) has reported

that in outcrops, the majority of pyrite occurs within approximately 4 m of the top of coal seams

- 378 of the Yan'an Formation, and the farther away from the coal seam, the smaller size of and the less
- 379 numerous of pyrite grains become in sandstones. This suggests that the formation and distribution
- 380 of this pyrite is intimately related to H₂S escaped from coal seams (Jiao et al. 2018b), and the H₂S

381	seems to be completely fixed within 4 m. However, the orebodies are generally more than 20 m
382	away from the boundary between the Zhiluo and the Yan'an Formation (Fig. 2; Peng et al. 2019).
383	Therefore, it is impossible to have enough H ₂ S/HS ⁻ in extrinsic hydrocarbons to produce ore-stage
384	pyrite, which can also be supported by very little pyrite in green sandstones (Table S6). Therefore,
385	the oxidation of pre-ore pyrite becomes a dominant sulfur source for ore-stage pyrite.
386	Despite the hydrothermal conditions inferred from fluid inclusions in calcite cements (Xiao et
387	al. 2004; Cao et al. 2016; Akhtar et al. 2017), vitrinite reflectance ($R_o < 0.47\%$) of CD in
388	mineralized grey sandstones suggests mineralization took place at temperatures below 65 °C
389	(Zhang et al. 2019b). The lower $\delta^{34}S$ of ore-stage euhedral and cement pyrite ($\delta^{34}S = -56.9$ to -
390	34.3‰) than those of ore-stage framboidal pyrite ($\delta^{34}S = -31.2$ to -3.8%), together with their
391	paragenetic relationship (Fig. S7) indicate that the different pyrite textural generations may form
392	through distinct mechanisms, rather than a biogeochemical cycle (e.g., Bonnetti et al. 2020). We
393	propose that ore-stage framboids were produced through bacterial sulfate reduction (BSR), and the
394	following formation of ore-stage euhedral and cement pyrite was via abiogenic Ostwald ripening
395	(Fig. 10).
396	Sulfate ions (SO ₄ ²⁻) derived from pyrite oxidation were reduced to H_2S/HS^- by BSR and formed
397	ore-stage framboidal pyrite (Fig. 10; Machel 2001), which is also supported by the positive
398	correlation between S ²⁻ and TOC in grey sandstones (Reynolds et al. 1982; Fig. 3b). In this process,
399	the bacteria confirmed to be in existence in the Dongsheng deposit prefer the lighter ³² S isotope
400	(Bruchert 2004; Seal 2006; Jiang et al. 2012; Gregory and Kohn 2020), thus meaning that the

401	biogenic pyrite will have a lower δ^{34} S value than subsequent generations. In a closed system for
402	sulfur, the Rayleigh fractionation may be exhibited, leading to a fraction of framboidal pyrite
403	produced δ^{34} S values higher than pre-ore pyrite (Fig. 8), as predicted by Hough et al. (2019).
404	Additionally, hydrogen ions produced by organic matter degradation during BSR can be removed
405	by destruction of feldspars and carbonate (e.g., Bonnetti et al. 2015), which has contributed to the
406	maintained pH at relatively high values (Fig. 3c). The dissolution of feldspars explains the
407	abundance of kaolinite in the mineralized zone and will supply a silica source for the formation of
408	coffinite (Langmuir 1978).
409	There are also sulfite and thiosulfate ions generated by pyrite oxidation in neutral to basic
410	solutions (Granger and Warren 1969), and the unstable sulfur species will spontaneously undergo
411	decomposition by disproportionation resulting in ³⁴ S-depleted HS ⁻ and ³⁴ S-enriched sulfate (Fig.
412	S8; Granger and Warren 1969; Hough et al. 2019). Pyrite framboid is the metastable phase, and
413	existing surfaces of pyrite have been identified to be conducive to precipitation of pyrite of later
414	stages (Sawlowicz 1993). The ³⁴ S-depleted HS ⁻ produced from dissolved framboidal crystals was
415	utilized to generate euhedral and cement pyrite (Fig. 10). This process could be revealed through
416	observations in which framboidal pyrite was being transformed to euhedral or cement pyrite via
417	Ostwald ripening (Fig. S7; e.g., Morse and Casey 1988; Steefel and Cappellen 1990). Because the
418	³⁴ S-enriched sulfate is nonreactive in abiogenic process and removed by groundwater, the pyrite
419	formed through Ostwald ripening will always have lower $\delta^{34}S$ values than pre-existing or earlier-
420	formed pyrite (Fig. 10; Brunner and Bernasconi 2005), which is evidenced by the very low isotopic

421	values of euhedral and cement pyrite ranging from -56.9 to -34.3‰, lower than any values of
422	framboidal pyrite. The sulfur isotopes of abiogenically-derived pyrite are dependent on Eh/pH
423	conditions established by the presence of barite and clausthalite coupled with alternating
424	precipitation between pyrite and ferroselite (Figs. S9 and S10; Ohmoto 1972). The process of
425	producing euhedral grains of pyrite with very low $\delta^{34}S$ values via Ostwald ripening in the
426	Dongsheng deposit is on contrast to sulfur recycling processes suggested by Hough et al. (2019)
427	for the Wyoming roll front U deposits.
428	Implications
429	In sandstone-type U deposits, the mobilization, migration and fixation of U are driven by
430	multiple redox events in low-temperature conditions, which can be directly and effectively
431	documented in textures, paragenetic sequence and chemical compositions of various Fe-bearing
432	minerals. Several alteration processes among Fe-bearing minerals not only give sandstones distinct
433	colors (e.g., red, green and yellow), considered as a criterion for ore prospecting, but provide a
434	minor U source for mineralization (e.g., Fe-Ti oxides, Bonnetti et al. 2015), and can be used to
435	effectively assess the sulfur source of pyrite closely associated with U-bearing minerals.
436	Additionally, textural and sulfur isotopic data provide new insights into the genetic mechanism of
437	ore-stage pyrite in the Dongsheng deposit. Both biogenic and abiogenic mechanisms were
438	involved in the generation of ore-stage pyrite. Namely, framboidal pyrite was produced by BSR,
439	using the sulfur derived from oxidation of pre-ore pyrite, whereas Ostwald ripening was
440	responsible for the formation of euhedral and cement pyrite from framboids. Although the redox

441	mechanism of the Dongsheng deposit is slightly different from that of deposits in Lake Eyre Basin,
442	Australia (BSR overprinted by hydrothermal fluids, Ingham et al. 2014), deposits in Wyoming,
443	USA (pyrite recycling, Hough et al. 2019) and deposit in Erlian Basin, China (biogenic processes,
444	Bonnetti et al. 2020), which may result from different geologic contexts, the role of bacterial
445	metabolic processes was proposed for all these sandstone-type U deposits, and a biogenic
446	mechanism was considered to be the common and/or initial stage of U mineralization. The
447	alteration processes related to Fe and U of the Dongsheng deposit during the mineralization period
448	are also similar to those of other sandstone-type U deposits (e.g., Warren 1971; Rong et al. 2016),
449	except for the superimposed effects of post-ore hydrocarbon-rich fluids (Miao et al. 2010; Peng et
450	al. 2019) and surface weathering (Jiao et al. 2018b). This study also demonstrates that the careful
451	assessment of U in the context of other redox sensitive elements like Fe and S can provide a more
452	complete picture of the formation of U ore deposits, and the transformation model of Fe-bearing
453	minerals proposed for the Dongsheng deposit may be applied to other mineral resources controlled
454	by redox events.

455 Acknowledgements

We are grateful to Zhenpeng Tao, Aisheng Miao, Xiaoquan Jiao and other workers from the Geological Party No.208, CNNC for help with fieldwork, and we also thank Longyao Xiong, Zefu Yan and Qiang Li for suggestion to figure editing, Ryan Sharpe for assisting with the SIMS analysis, and Yonggang Gao for language polishing. Finally, the authors would like to thank Paul Tomascak and two anonymous reviewers for constructive and insightful suggestions that greatly improved

23

- this manuscript.
- 462 Funding
- 463 Financial support for this study was provided by the National Key Research and Development
- 464 Program of China (No. 2018YFC0604202), the State Scholarship Fund from the China
- 465 Scholarship Council (No. 201906410063) and a NSERC Discovery grant to Fayek.
- 466References cited
- 467 Abzalov, M.Z. (2012) Sandstone-hosted uranium deposits amenable for exploitation by in situ
- 468 leaching technologies. Applied Earth Science, 121, 55-64.
- 469 Akhtar, S., Yang, X.Y., and Pirajno, F. (2017) Sandstone type uranium deposits in the Ordos Basin,
- 470 Northwest China: A case study and an overview. Journal of Asian Earth Sciences, 146, 367-
- 471 382.
- 472 Aldahan, A.A., and Morad, S. (1986) Chemistry of detrital biotites and their phyllosilicate
- 473 intergrowths in sandstones. Clay and Clay Minerals, 34, 539-548.
- 474 Boles, J.R., and Johnson, S.K. (1983) Influence of mica surfaces on pore water pH. Chemical
 475 Geology, 43, 303-317.
- 476 Bonnetti, C., Cuney, M., Michels, R., Truche, L., Malartre, F., Liu, X.D., and Yang, J.X. (2015)
- 477 The multiple roles of sulfate-reducing bacteria and Fe-Ti oxides in the genesis of the
- 478 Bayinwula roll front-type uranium deposit, Erlian Basin, NE China. Economic Geology, 110,
- 479 1059-1081.
- 480 Bonnetti, C., Zhou, L.L., Riegler, T., Brugger, J., and Fairclough, M. (2020) Large S isotope and

24

481	trace element fractionations in pyrite of uranium roll front systems result from internally-
482	driven biogeochemical cycle. Geochimica et Cosmochimica Acta, 282, 113-132.
483	Bruchert, V. (2004) Physiological and ecological aspects of sulfur isotope fractionation during
484	bacterial sulfate reduction. Geological Society of America, Special Paper 379, p. 1-16.
485	Brunner, B., and Bernasconi, S.M. (2005) A revised isotope fractionation model for dissimilatory
486	sulfate reduction in sulfate reducing bacteria. Geochimica et Cosmochimica Acta, 69, 4759-
487	4771.
488	Cai, C.F., Dong, H.L., Li, H.T., Xiao, X.J., Qu, G.X., and Zhang, C.M. (2007a) Mineralogical and
489	geochemical evidence for coupled bacterial uranium mineralization and hydrocarbon
490	oxidation in the Shashagetai deposit, NW China. Chemical Geology, 236, 167-179.
491	Cai, C.F., Li, H.T., Qin, M.K., Luo, X.R., Wang, F.Y., and Ou, G.X. (2007b) Biogenic and
492	petroleum-related ore-forming processes in Dongsheng uranium deposit, NW China. Ore
493	Geology Reviews, 32, 262-274.
494	Cao, B.F., Bai, G.P., Zhang, K.X., Zhang, L.K., and He, B. (2016) A comprehensive review of
495	hydrocarbons and genetic model of the sandstone-hosted Dongsheng uranium deposit, Ordos
496	Basin, China. Geofluids, 16, 624-650.
497	Chen, G., Li, X.P., Zhou, L.F., Li, S.H., Li, X.D., and Zhang, H.R. (2005) Ordos basin tectonics
498	relative to the coupling coexistence of multiple energy resources. Earth Science Frontiers, 12,
499	535-541 (in Chinese with English abstract).
500	Chen, Z.Y. (2002) Regional distribution regularity of sandstone uranium deposits in Asian 25

- 501 continent and prospecting strategy for sandstone uranium deposits in China. Uranium
- 502 Geology, 18, 129-137 (in Chinese with English abstract).
- 503 Claeys, P.F., and Mount, J.F. (1991) Diagenetic origin of carbonate, sulfide and oxide inclusions
- 504 in biotites of the Great Valley Group (Cretaceous), Sacramento Valley, California. Journal of
- 505 Sedimentary Research, 61, 719-731.
- 506 Cuney, M. (2009) The extreme diversity of uranium deposits. Mineralium Deposita, 44, 3-9.
- 507 Cuney, M. (2010) Evolution of uranium fractionation processes through time: Driving the secular
- 508 variation of uranium deposit types. Economic Geology, 105, 553-569.
- 509 Deng, J., Wang, Q.F., Gao, B.F., Huang, D.H., Yang, L.Q., Xu, H., and Zhou, Y.H. (2005) Evolution
- 510 of the Ordos Basin and its distribution of various energy and mineral resources. Geoscience,
- 511 19, 538-545 (in Chinese with English abstract).
- 512 Douglas, G.B., Butt, C.R.M., and Gray, D.J. (2011) Geology, geochemistry and mineralogy of the
- 513 lignite-hosted Ambassador palaeochannel uranium and multi-element deposit, Gunbarrel
- Basin, Western Australia. Mineralium Deposita, 46, 761-787.
- 515 Evangelou, V.P., and Zhang, Y.L. (1995) A review: Pyrite oxidation mechanisms and acid mine
- 516 drainage prevention. Critical Reviews in Environmental Science and Technology, 25, 141-
- 517 199.
- 518 Fu, Z.Y., Yuan, X.Q., and Geng, G.C. (1994) The tertiary of the Hetao Basin and its biotas. Journal
- 519 of Stratigraphy, 18, 24-29.
- 520 Goldhaber, M.B., Reynolds, R.L., and Rye, R.O. (1983) Role of fluid mixing and fault-related

26

- sulfide in the origin of the Ray Point uranium district, south Texas. Economic Geology, 78,1043-1063.
- 523 Granger, H.C., and Warren, C.G. (1969) Unstable sulfur compounds and the origin of roll-type
- uranium deposits. Economic Geology, 64, 160-171.
- 525 Gregory, D.D., and Kohn, M.J. (2020) Pyrite: Fool's gold records starvation of bacteria. American
- 526 Mineralogist, 105, 282-283.
- 527 Guo, X.J., and Jiao, G.H. (2002) Petroleum Geology of Paleozoic in the North China: Beijing,
- 528 Geological Publishing House, 171 p (in Chinese).
- 529 Han, X.Z., Zhang, Z.L., Yao, C.L., Li, X.D., Li, S.X., Miao, A.S., and Yang, J.X. (2008) Discussion
- on metallogenic model for sandstone-hosted uranium deposits in northeastern Ordos Basin.

531 Mineral Deposits, 27, 415-422 (in Chinese with English abstract).

- Hansley, P.L., and Spirakis, C.S. (1992) Organic matter diagenesis as the key to a unifying theory
- for the genesis of tabular uranium-vanadium deposits in the Morrison Formation, Colorado
- 534 Plateau. Economic Geology, 87, 352-365.
- Harshman, E.N., and Adams, S.S. (1980) Geology and recognition criteria for roll-type uranium
- deposits in continental sandstones. U.S. Department of Energy GJBX-1 81, 185 p.
- He, Z.X. (2003) Evolution of Ordos basin with relation to oil and gas: Beijing, Petroleum Industry
- 538 Press, p. 3-143 (in Chinese).
- 539 Heidari, P., Li, L., Jin, L.X., Williams, J.Z., and Brantley, S.L. (2017) A reactive transport model
- 540 for Marcellus shale weathering. Geochimica et Cosmochimica Acta, 217, 421-440.

- 541 Hobday, D.K., and Galloway, W.E. (1999) Groundwater processes and sedimentary uranium
- 542 deposits. Hydrogeology Journal, 7, 127-138.
- 543 Hough, G., Swapp, S., Frost, C., and Fayek, M. (2019) Sulfur isotopes in biogenically and
- abiogenically derived uranium roll-front deposits. Economic Geology, 114, 353-373.
- 545 Huang, J.B., and Huang, S.J. (2005) Regional metallogenic characteristics of China's uranium
- 546 resources. Uranium Geology, 21, 129-138 (in Chinese with English abstract).
- 547 Ingham, E.S., Cook, N.J., Cliff, J., Ciobanu, C.L., and Huddleston, A. (2014) A combined chemical,
- 548 isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin,
- 549 South Australia. Geochimica et Cosmochimica Acta, 125, 440-465.
- Jia, J.D., He, G.Q., Li, M.S., Zhou, D.C., and Zhang, L.X. (1997) Structural feature of basement
- 551 in the Ordos Basin and its control to Paleozoic gas. Geological Journal of China Universities,
- 552 3, 144-153 (in Chinese with English abstract).
- 553 Jiang, L., Cai, C.F., Zhang, Y.D., Mao, S.Y., Sun, Y.G., Li, K.K., Xiang, L., and Zhang, C.M. (2012)
- 554 Lipids of sulfate-reducing bacteria and sulfur-oxidizing bacteria found in the Dongsheng
- uranium deposit. Chinese Science Bulletin, 57, 1311-1319 (in Chinese with English abstract).
- Jiao, Y.Q., Chen, A.P., Wang, M.F., Wu, L.Q., Yuan, H.T., Yang, Q., Zhang, C.Z., and Xu, Z.C.
- 557 (2005a) Genesis analysis of the bottom sandstone of Zhiluo Formation, northeastern Ordos
- 558 Basin: Predictive base of spatial orientation of sandstone-type uranium deposit. Acta
- 559 Sedimentologica Sinica, 23, 371-379 (in Chinese with English abstract).
- Jiao, Y.Q., Wu, L.Q., Wang, M.F., and Xu, Z.C. (2005b) Forecasting the occurrence of sandstone-

561	type uranium deposits by spatial analysis: an example from the northeastern Ordos Basin,
562	China. In: Mao JW, Bierlein FP (eds) Mineral Deposit Research: Meeting the Global
563	Challenge. Springer-Verlag, Berlin Heidelberg, p. 273-275.
564	Jiao, Y.Q., Wu, L.Q., Yang, S.K., Lü, X.B., Yang, Q., Wang, Z.H., and Wang, M.F. (2006)
565	Sedimentology of uranium reservoir: The foundation of sandstone type uranium deposit
566	exploration and development: Beijing, Geological Publishing House, p. 265-267 (in Chinese).
567	Jiao, Y.Q., Wu, L.Q., Peng, Y.B., Rong, H., Ji, D.M., Miao, A.S., and Li, H.L. (2015) Sedimentary-
568	tectonic setting of the deposition-type uranium deposits forming in the Paleo-Asian tectonic
569	domain, North China. Earth Science Frontiers, 22, 189-205 (in Chinese with English abstract).
570	Jiao, Y.Q., Wu, L.Q., and Rong, H. (2018a) Model of inner and outer reductive media within
571	uranium reservoir sandstone of sandstone-type uranium deposits and its ore-controlling
572	mechanism: Case studies in Daying and Qianjiadian uranium deposits. Earth Science, 43,
573	459-474 (in Chinese with English abstract).
574	Jiao, Y.Q., Wu, L.Q., Rong, H., Zhang, F., Yue, L., Tao, Z.P., and Sun, Y.H. (2018b) Geological
575	modeling of uranium reservoir: the geological foundation of revealing the metallogenic
576	mechanism and solving "remaining uranium". Earth Science, 43, 3568-3583 (in Chinese with
577	English abstract).
578	Kuznetsov, S.I., Ivanov, M.V., and Lyalikova, N.N. (1963) Introduction to geological microbiology
579	International series in the earth sciences [translated from Vvedeniye v Geologicheskuyu
580	Mikrobiologiyu, Academy of Sciences: Moscow, USSR Press, 1962]: New York, McGraw- 29

- 581 Hill, 252 p.
- Langmuir, D. (1978) Uranium solution-mineral equilibria at low temperatures with applications to
 sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42, 547-569.
- 584 Li, S., Yang, S., and Jerzykiewicz, T. (1995) Upper Triassic-Jurassic foreland sequences of the
- 585 Ordos basin in China. In: Dorobek SL, Ross GM (eds) Stratigraphic evolution of foreland
- basins: SEPM Special Publication 52, p. 233-241.
- 587 Li, S.T., Yang, S.G., and Lin, C.S. (1992) On the chronostratigraphic framwork and basic building
- blocks of sedimentary basin. Acta Sedimentologica Sinica, 10, 11-22 (in Chinese with English
 abstract).
- 590 Li, X.D., Yi, C., Gao, H.W., Chen, X.L., Zhang, K., and Wang, M.T. (2016) Study on formation
- 591 mechanism of epigenetic altered zone in Zhiluo Formation, northeastern Ordos Basin, north

592 China. Geoscience, 30, 739-747 (in Chinese with English abstract).

- 593 Li, Y.T., Sun, X.Y., and Liu, J.Y. (1984) Stratigraphy of China the tertiary system of China.
- 594 Beijing, Geological Publishing House, p. 116–119 (in Chinese).
- 595 Liu, C.Y., Zhao, H.G., and Sun, Y.Z. (2009) Tectonic background of Ordos Basin and its
- 596 controlling role for basin evolution and energy mineral deposits. Energy Exploration &
- 597 Exploitation, 27, 15-27.
- 598 Liu, S., and Yang, S. (2000) Upper Triassic-Jurassic sequence stratigraphy and its structural
- 599 controls in the western Ordos Basin, China. Basin Research, 12, 1-18.
- 600 Lowson, R.T. (1982) Aqueous oxidation of pyrite by molecular oxygen. Chemical Reviews, 82,

30

- 601 461-497.
- Machel, H.G. (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings-old and
 new insights. Sedimentary Geology, 140, 143-175.
- Mahoney, C., Marz, C., Buckman, J., Wagner, T., and Velandia, V.O.B. (2019) Pyrite oxidation in
- shales: Implications for palaeo-redox proxies based on geochemical and SEM-EDX evidence.
- 606 Sedimentary Geology, 389, 186-199.
- 607 Meunier, J.D., Landais, P., Monthioux, M., and Pagel, M. (1987) Oxidation-reduction processes in
- the genesis of the uranium-vanadium tabular deposits of the Cottonwood Wash mining area
- 609 (Utah, USA): evidence from petrological study and organic matter analysis. Bulletin de
- 610 Minéralogie, 110, 145-156.
- 611 Miao, A.S., Jiao, Y.Q., Chang, B.C., Wu, L.Q., Rong, H., and Liu, Z.B. (2010) Detailed
- 612 investigation of the paleo-interlayer-oxidation zone of Dongsheng uranium deposit in
- 613 northeastern Ordos Basin. Geological Science and Technology Information, 29, 55-61 (in
- 614 Chinese with English abstract).
- Morad, S. (1986) Pyrite-chlorite and pyrite-biotite relations in sandstones. Sedimentary Geology,
- 616 **49**, 177-192.
- 617 Morad, S., and Aldahan, A.A. (1986) Diagenetic alteration of detrital biotite in Proterozoic
- sedimentary rocks from Sweden. Sedimentary Geology, 47, 95-107.
- Morse, J.W., and Casey, W.H. (1988) Ostwald processes and mineral paragenesis in sediments.
- 620 American Journal of Science, 288, 537-560.

621	Moses, C.O., Nordstrom, D.K., Herman, J.S., and Mills, A.L. (1987) Aqueous pyrite oxidation by
622	dissolved oxygen and by ferric iron. Geochimica et Cosmochimica Acta, 51, 1561-1671.
623	Nicholson, R.V., Gillham, R.W., and Reardon, E.J. (1990) Pyrite oxidation in carbonate-buffered
624	solution: 2. Rate control by oxide coatings. Geochimica et Cosmochimica Acta, 54, 395-402.
625	Northrop, H.R., Goldhaber, M.B., Landis, G.P., and Unruh, J.W. (1990) Genesis of the tabular-
626	type vanadium-uranium deposits of the Henry Basin, Utah; Part I, Geochemical and
627	mineralogical evidence for the sources of ore-forming fluids. Economic Geology, 85, 215-
628	236.
629	OECD-NEA, IAEA. (2010) Uranium 2009: resources, production and demand.
630	Ohmoto, H. (1972) Systematics of sulfur and carbon isotopes in hydrothermal ore deposits.
631	Economic Geology, 67, 551-578.
632	Peng, Y.B., Jiao, Y.Q., and Chen, A.P. (2019) Theoretical & technological innovation of uranium
633	mineralization and major prospecting breakthrough of Mesozoic uranium-bearing basins in
634	midwestern Inner Mongolia: Wuhan, China University of Geosciences Press, p. 14-30 (in
635	Chinese).
636	Qu, H.J., Li, W.H., Mei, Z.C., and Chen, Q.H. (2003) Relationship between sequence stratigraphy
637	and petroleum system in oil and gas exploration: An example in the Mesozoic Ordos Basin.
638	Geological Review, 49, 495-500 (in Chinese with English abstract).
639	Rackley, R.I. (1972) Environment of Wyoming Tertiary uranium deposits. American Association
640	of Petroleum Geologists Bulletin, 56, 755-774.

641	Reynolds.	R.L.	Fishman	N.S.	. Scott.	. J.H.	and Hudson.	. M.R.	(1986)) Iron-titar	iium o	oxide m	inera	ls
			,		, ~	,		,	1	/				-

- and magnetic susceptibility anomalies in the Mariano Lake-Lake Valley cores—Constraints
- on conditions of uranium mineralization in the Morrison Formation, San Juan Basin, New
- 644 Mexico. In: Turner-Peterson CE, Santos ES, Fishman NS (eds) A Basin Analysis Case Study:
- 645 The Morrison Formation Grants Uranium Region New Mexico. AAPG Bulletin, 22, 303-313.
- 646 Reynolds, R.L., and Goldhaber, M.B. (1978) Origin of a south Texas roll-type uranium deposit: I.
- 647 Alteration of iron-titanium oxide minerals. Economic Geology, 73, 1677-1689.
- 648 Reynolds, R.L., and Goldhaber, M.B. (1983) Iron disulfide minerals and the genesis of roll-type
- 649 uranium deposits. Economic Geology, 78, 105-120.
- 650 Reynolds, R.L., Goldhaber, M.B., and Carpenter, D.J. (1982) Biogenic and nonbiogenic ore-
- 651 forming processes in the south Texas uranium district: Evidence from the Panna Maria deposit.
- 652 Economic Geology, 77, 541-556.
- 653 Rong, H., Jiao, Y.Q., Wu, L.Q., Ji, D.M., Li, H.L., Zhu, Q., Cao, M.Q., Wang, X.M., Li, Q.C., and
- 54 Xie, H.L. (2016) Epigenetic alteration and its constraints on uranium mineralization from the
- 655 Qianjiadian uranium deposit, southern Songliao Basin. Earth Science, 41, 153-166 (in
- 656 Chinese with English abstract).
- 657 Sanford, R.F. (1990) Hydrogeology of an ancient arid closed basin: Implications for tabular
- sandstone-hosted uranium deposits. Geology, 18, 1099-1102.
- 659 Sanford, R.F. (1992) A new model for tabular-type uranium deposits. Economic Geology, 87,
- 660 2041-2055.

- 661 Sanford, R.F. (1994) A quantitative model of ground-water flow during formation of tabular
- sandstone uranium deposits. Economic Geology, 89, 341-360.
- 663 Sawlowicz, Z. (1993) Pyrite framboids and their development: a new conceptual mechanism.
- 664 Geologische Rundschau, 82, 148-156.
- 665 Seal, R.R. (2006) Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and
- 666 Geochemistry, 61, 633-677.
- 667 Shawe, D.R., and Granger, H.C. (1965) Uranium ore rolls—An analysis. Economic Geology, 60,
- 668 240-250.
- 669 Soliman, M.F., and Goresy, A.E. (2012) Framboidal and idiomorphic pyrite in the upper
- 670 Maastrichtian sedimentary rocks at Gabal Oweina, Nile Valley, Egypt: Formation processes,
- 671 oxidation products and genetic implications to the origin of framboidal pyrite. Geochimica et
- 672 Cosmochimica Acta, 90, 195-220.
- 673 Spirakis, C.S. (1996) The roles of organic matter in the formation of uranium deposits in
- sedimentary rocks. Ore Geology Reviews, 11, 53-69.
- 675 Steefel, C.I., and Cappellen, P.V. (1990) A new kinetic approach to modeling water-rock interaction:
- 676 The role of nucleation, precursor, and Ostwald ripening. Geochimica et Cosmochimica Acta,
- 67754, 2657-2677.
- 678 Sun, G.F., Liu, J.P., Liu, K.Q., and Yuan, W.G. (1985) Evolution of a major Mesozoic continental
- basin within Huabei plate and its geodynamic setting. Oil & Gas Geology, 6, 280-288 (in
- 680 Chinese with English abstract).

- 681 Sun, G.F., Xie, Q.Y., Liu, J.P., Xie, S.Y., Liu, K.Q., and Yuan, W.G. (1986) Evolution stacking and
- 682 hydrocarbon potential of the Ordos Basin Prototypel analysis of a huge basin in Chinese
- 683 continental plate. Oil & Gas Geology, 7, 356-367 (in Chinese with English abstract).
- 684 Sun, L.X., Zhang, Y., Zhang, T.F., Cheng, Y.H., Li, Y.F., Ma, H.L., Yang, C., Guo, J.C., Lu, C., and
- 685 Zhou, X.G. (2017) Jurassic sporopollen of Yan'an Formation and Zhiluo Formation in the
- 686 northeastern Ordos Basin, Inner Mongolia, and its paleoclimatic significance. Earth Science
- 687 Frontiers, 24, 32-51 (in Chinese with English abstract).
- Turner, C.E., Fishman, N.S., Hatcher, P.G., and Spiker, E.C. (1993) Nature and role of organic
- 689 matter in sandstone uranium deposits, Grants Uranium Region, New Mexico, USA. Bitumens
- 690 in Ore Deposits, 9, 239-275.
- 691 Veblen, D.R., and Ferry, J.M. (1983) A TEM study of the biotite-chlorite reaction and a comparison
- 692 with petrologic observation. American Mineralogist, 68, 1160-1168.
- 693 Walker, T.R. (1967) Formation of red beds in modern and ancient deserts. Geological Society of
- 694 America Bulletin, 78, 353-368.
- Wang, X.M., Jiao, Y.Q., Wu, L.Q., Rong, H., Wang, X.M., Pan, S.Q., Tang, H., Ji, B., and Song, J.
- 696 (2011) Major element geochemistry of Jurassic coal in Dongsheng-Shenmu area, Ordos Basin.
- 697 Acta Sedimentologica Sinica, 29, 520-528 (in Chinese with English abstract).
- 698 Warren, C.G. (1971) A method for discriminating between biogenic and chemical origins of the
- ore-stage pyrite in a roll-type uranium deposit. Economic Geology, 66, 919-928.
- Warren, C.G. (1972) Sulfur isotopes as a clue to the genetic geochemistry of a roll-type uranium

701	deposit.	Economic	Geology.	67.	759-767.
				~ . ,	

- 702 White, S.H., Huggett, J.M., and Shaw, H.F. (1985) Electron-optical studies of phyllosilicate
- intergrowths in sedimentary and metamorphic rocks. Mineralogical Magazine, 49, 413-423.
- Xiao, X.J., Li, Z.Y., Fang, X.H., Ou, G.X., Sun, Y., and Chen, A.P. (2004) The evidences and
- significances of epithermal mineralization fluid in the Dongsheng sandstone type uranium
- deposit. Bulletin of Mineralogy, Petrology and Geochemistry, 23, 301-304 (in Chinese with
- 707 English abstract).
- Xue, C.J., Chi, G.X., and Xue, W. (2010) Interaction of two fluid systems in the formation of
- sandstone-hosted uranium deposits in the Ordos Basin: Geochemical evidence and

710 hydrodynamic modeling. Journal of Geochemical Exploration, 106, 226-235.

711 Yang, H., Fu, S.T., and Wei, X.S. (2004) Geology and exploration of oil and gas in the Ordos Basin.

712 Applied Geophysics, 1, 103-109 (in Chinese with English abstract).

- 713 Yang, Y.T., Li, W., and Ma, L. (2005) Tectonic and stratigraphic controls of hydrocarbon systems
- in the Ordos basin: A multicycle cratonic basin in central China. AAPG Bulletin, 89, 255-269.
- 715 Yue, L., Jiao, Y.Q., Wu, L.Q., Rong, H., Xie, H.L., Wang, Q.Y., and Yan, Q.Q. (2019) Selective
- crystallization and precipitation of authigenic pyrite during diagenesis in uranium reservoir
- sandbodies in Ordos Basin. Ore Geology Reviews, 107, 532-545.
- 718 Yue, L., Jiao, Y.Q., Wu, L.Q., Rong, H., Fayek, M., and Xie, H.L. (2020) Evolution and origins of
- 719 pyrite in sandstone-type uranium deposits, northern Ordos Basin, north-central China, based
- on micromorphological and compositional analysis, Ore Geology Reviews, 118, 103334.

36

- 721 Zhai, G., Song, J., Jin, J., and Gao, W. (2002) Plate tectonic evolution and its relationship to
- petroliferous basins: Beijing, Petroleum Industry Press, p. 3-236 (in Chinese).
- 723 Zhang, C., Yi, C., Dong, Q., Cai, Y.Q., and Liu, H.X. (2018) Geological and geochronological
- evidence for the effect of Paleogene and Miocene uplift of the Northern Ordos Basin on the
- formation of the Dongsheng uranium district, China. Journal of Geodynamics, 114, 1-18.
- 726 Zhang, C., and Liu, H.X. (2019) A growing sandstone type uranium district in South Yili Basin,
- 727 NW China as a result of extension of Tien Shan Orogen: Evidences from geochronology and
- hydrology. Gondwana Research, 76, 146-172.
- 729 Zhang, F., Jiao, Y.Q., Wu, L.Q., Rong, H., and Wang, L.H. (2019a) Relations of uranium
- enrichment and carbonaceous debris within the Daying uranium deposit, northern OrdosBasin. Journal of Earth Science, 30, 142-157.
- Zhang, F., Jiao, Y.Q., Wu, L.Q., Rong, H., Li, J.H., and Wan, D. (2019b) Enhancement of organic
- 733 matter maturation because of radiogenic heat from uranium: A case study from the Ordos
- Basin in China. AAPG Bulletin, 103, 157-176.
- Zhang, F., Jiao, Y.Q., Wu, L.Q., Rong, H., and Zang, B. (2020) Changes in physicochemical
- properties of organic matter by uranium irradiation: A case study from the Ordos Basin in
- 737 China. Journal of Environmental Radioactivity, 211, 106105.
- 738 Zhang, H., Bai, Q.Z., Zhang, X.W., and Gao, X.Z. (1995) Formation of the Ordos Basin and its
- coal-forming tectonic environment. Coal Geology & Exploration, 23, 1-9 (in Chinese with
- 740 English abstract).

- 741 Zhang, J.D., Xu, G.Z., Lin, J.R., Peng, Y.B., and Wang, G. (2010) The implication of six kinds of
- new sandstone-type uranium deposits to uranium resources potential in North China. Geology
- in China, 37, 1434-1449 (in Chinese with English abstract).
- 744 Zhang, K., Luo, Z., Zhang, Q., Dai, J., and Yao, H. (1980) Classification of basins and potential
- hydrocarbons resources in China. Acta Petrolei Sinica, 1, 1-18 (in Chinese with Englishabstract).
- 747 Zhang, L., Wu, B.L., Liu, C.Y., Lei, K.Y., Hou, H.Q., Sun, L., Cun, X.N., and Wang, J.Q. (2016)
- Provenance analysis of the Zhiluo Formation in the sandstone-hosted uranium deposits of the
- northern Ordos Basin and implications for uranium mineralization. Acta Geologica Sinica,
- 750 90, 3441-3453 (in Chinese with English abstract).
- 751 Zhang, L., Liu, C.Y., Fayek, M., Wu, B.L., Lei, K.Y., Cun, X.N., and Li, S. (2017) Hydrothermal
- 752 mineralization in the sandstone–hosted Hangjinqi uranium deposit, North Ordos Basin, China.
- 753 Ore Geology Reviews, 80, 103-115.
- 754 Zhang, L., Liu, C.Y., and Lei, K.Y. (2019) Green altered sandstone related to hydrocarbon
- 755 migration from the uranium deposits in the northern Ordos Basin, China. Ore Geology
- 756 Reviews, 109, 482-493.
- 757 Zhang, L.P., Bai, G.P., Zhao, K.B., and Sun, C.Q. (2006) Restudy of acid-extractable hydrocarbon
- data from surface geochemical survey in the Yimeng Uplift of the Ordos Basin, China:
- 759 Improvement of geochemical prospecting for hydrocarbons. Marine and Petroleum Geology,
- 760 23, 529-542.

761	Zhang, Y.Q., and Liao, C.Z. (2006) Transition of the Late Mesozoic-Cenozoic tectonic regimes
762	and modification of the Ordos basin. Geology in China, 33, 28-40 (in Chinese with English
763	abstract).

- 764 Zhao, M.W., Behr, H.J., Ahrendt, H., Wemmer, K., Ren, Z.L., and Zhao, Z.Y. (1996) Thermal and
- 765 tectonic history of the Ordos Basin, China: Evidence from apatite fission track analysis,

766 vitrinite reflectance, and K-Ar dating. AAPG Bulletin, 80, 1110-1134.

- 767 Zhao, Z.Y. (1990) History of structural evolution, mechanism of formation, and the possible
- 768 petroliferous area of the Ordos basin. In: Zhao ZY (eds) The formation and evolution of the
- 769 sedimentary basins and their hydrocarbon occurrence in the north China craton: Xi'an,
- 770 Northwest University Press, p. 93-102 (in Chinese).
- 771 Zheng, M.L., Jin, Z.J., Wang, Y., Liu, C.Y., and Xu, G.Z. (2006) Structural characteristics and
- 772 evolution of north Ordos Basin in late Mesozoic and Cenozoic. Journal of Earth Sciences and
- 773 Environment, 28, 31-36 (in Chinese with English abstract).
- Zhu, P.F., Cai, Y.Q., Guo, Q.Y., Liu, W.S., Li, J.H., Zhang, M.L., Qi, F.C., Zhang, Z.L., Jia, L.C., 774
- 775 and Xu, H. (2018) Metallogenetic and geological characterization and resource potential
- 776 assessment of uranium resources in China. Earth Science Frontiers, 25, 148-158 (in Chinese
- 777 with English abstract).
- 778 **Figure captions:**

- 779 Figure 1. (a) Tectonic units of the Ordos Basin showing the location of the Dongsheng U deposit
- 780 (modified after Deng et al. 2005; Wang et al. 2011); (b) A cross section showing the spatial

781	distribution between different colored sandstone units and orebodies in the lower member of the
782	Zhiluo Formation; (c) The U-rich sandstones of the Zhiluo Formation in outcrop; (d) A map of the
783	different colored sandstone units in the Zhiluo Formation in outcrop; (e) The spatial distribution
784	of U contents in the sandstone of the Zhiluo Formation in outcrop.
785	Figure 2. Drill holes cross section showing the geochemical zoning in the lower member of the
786	Zhiluo Formation. (A) Oxidized zone: a. red sandstone; b. residual red color in green sandstone;
787	c. green sandstone; (B) Mineralized zone: d. pyrite and carbonaceous debris in mineralized grey
788	sandstone; e. mineralized grey sandstone; (C) Reduced zone: f. mud gravel and carbonaceous
789	debris in barren grey sandstone; g. carbonaceous debris in barren grey sandstone; h. barren grey
790	sandstone. Abbreviations: CD = carbonaceous debris, MG = mud gravel, Py = pyrite.
791	Figure 3. Fe^{3+}/Fe^{2+} vs. S_{total}/S^{2-} (a), TOC vs. S^{2-} (b) and ΔEh vs. pH (c) diagrams for different
792	colored sandstones.
793	Figure 4. Photographs showing occurrences of Fe-bearing minerals. (a) Limonite occurring as
794	rims around pyrite grains in grey sandstone due to being exposed to air; (b) Hematite and limonite
795	in red sandstone; (c) Disseminated hematite in red sandstone; (d) Pyrite grains were oxidized to
796	limonite in yellow sandstone; (e) Euhedral hematite grains in red sandstone. Abbreviations: CD =
797	carbonaceous debris, Hem = hematite, Lm = limonite, Py = pyrite.
798	Figure 5. Photomicrographs (a, c, i, transmitted light; g, reflected light), back-scattered electron
799	(b, d-f, j-l) and secondary electron (h) images showing occurrences of Fe-bearing minerals. (a)
800	Hematite filling pores, sample RD-2; (b) Hematite grain; (c) Goethite coating K-feldspar, sample

801	YW-1; (d) Goethite grains; (e) Framboidal pyrite distributed around the carbonaceous debris; (f)
802	Euhedral pyrite; (g) Pyrite cement, sample DSC-08; (h-i) Chlorite coating the clastic particles; (j)
803	Detrital Fe-Ti oxide grains in grey sandstone; (k) Altered Fe-Ti oxide; (l) Detrital biotite in grey
804	sandstone, sample DSC-20. Abbreviations: Bt = biotite, Cal = calcite, CD = carbonaceous debris,
805	Chl = chlorite, Gth = goethite, Hem = hematite, Kfs = K-feldspar, Kln = kaolinite, Py = pyrite, Qz
806	= quartz.
807	Figure 6. Back-scattered electron images (a-c, f-j, l) and photomicrographs (d-e, transmitted light;
808	k, reflected light) showing paragenetic relationships of different Fe-bearing minerals. (a) Euhedral
809	pyrite along cleavage planes of biotite in grey sandstone; (b) Hematite along cleavage planes of
810	biotite in red sandstone; (c-d) Goethite along cleavage planes of biotite in yellow sandstone; (e)
811	Biotite grains partly altered to chlorite in green sandstone, sample GN-1; (f) Biotite partly altered
812	to chlorite filled with hematite and pyrite; (g) Pyrite distributed in the matrix of chlorite; (h) Pyrite
813	filling in microfractures of altered Fe-Ti oxide; (i) Framboidal pyrite distributed near the Fe-Ti
814	oxide; (j) Framboidal hematite in red sandstone; (k-l) Goethite occurring as rims of pyrite cores.
815	Abbreviations: Bt = biotite; Cal = calcite, Chl = chlorite, Gth = goethite, Hem = hematite, Py =
816	pyrite, Qz = quartz.
817	Figure 7. Paragenetic sequence of Fe-bearing and U-bearing minerals in the Dongsheng deposit.
818	Figure 8. Sulfur isotopes of different generations of pyrite. Abbreviations: Pyrite (1) = framboidal
819	pyrite, Pyrite (2) = euhedral + cement pyrite.

820 Figure 9. Back-scattered electron images showing the relationship between U-bearing and Fe-

821	bearing minerals. (a-c) Coffinite filling in framboidal pyrite; (d) Uraninite distributed around the
822	euhedral pyrite grains; (e) Coffinite distributed near the euhedral pyrite; (f) Coffinite formed
823	around the pyrite cement; (g) Coffinite distributed around the pyrite cement replacing Fe-Ti oxide;
824	(h) Coffinite precipitates near the Fe-Ti oxide; (i) Pyrite replaced by coffinite along cleavage
825	planes in biotite. Abbreviations: Bt = biotite, Cal = calcite, CD = carbonaceous debris, Py = pyrite,
826	Qz = quartz, $Urn = uraninite$.
827	Figure 10. Genetic model for different generations of ore-stage pyrite in the Dongsheng U deposit.
828	Abbreviations: BSR = bacterial sulfate reduction, CD = carbonaceous debris, CP = clastic particles,
829	C-Py = cement pyrite, E-Py = euhedral pyrite, F-Py = framboidal pyrite, SRB = sulfate-reducing
830	bacteria.
831	
832	42
833	
834	
835	
836	
837	
838	
839	
840	

25.004V 588x 8.0mm NTS 650 RD-2 - 20p

Deposit		RELATIVE TIME				Presen		
STAGE	Descrition	Diagenesis						
\backslash	Deposition	Pre-ore	Ore-stage		Post-ore			
MINERAL	Barren grey sandstone	Barren grey sandstone	Red sandstone	Mineralized grey sandstone	Green sandstone	Yellow sandstone		
Biotite								
Fe-Ti oxides								
Pyrite	0	2		① + ②				
Hematite			1					
Goethite				-				
Chlorite								
Coffinite								
Uraninite								
Abundant — Minor Local								

Framboidal pyrite
 Euhedral + Cement pyrite

EHT Mag WD Signal A NTS BSD - 50µm GY-7 267x 9.0mm 25.00kV

EHT Mag WD

20.00kV 200x 8.5mm Signal A

NTS BSD

GY-5

50µm

δ³⁴S: +7.9 to +20.3‰

δ³⁴S: -56.9 to -34.3‰

Pre-ore stage

Ore stage

Ore stage