1	Revision 1
2	Release of chromite nanoparticles and their alteration in the presence of Mn-
3	oxides
4	
5	Neal W. McClenaghan ¹ and Michael Schindler ² *
6	1. Harquail School of Earth Sciences, Laurentian University, Sudbury, ON, P3E2C6,
7	Canada, e-mail: nmcclenaghan@laurentian.ca
8	
9	2. Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T2N2,
10	Canada
11	*Corresponding author: Michael.schindler@umanitoba.ca
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

24 Abstract

The discovery of chromite nanoparticles in silicates of ultramafic rocks may change our 25 approach on the environmental risk assessment of mine waste associated with chromitite mining. 26 This experimental study shows for the first time that the alteration of Cr-rich silicates results in 27 the release of chromite nanoparticles and that their interaction with oxidizing Mn-oxide 28 nanoparticles causes the dissolution of chromite and Mn-oxide nanoparticles and the 29 precipitation of Fe^{3+} and Cr^{3+} -hydroxides. Transmission electron microscopy (TEM) in 30 combination with ultra-microtomy, centrifugation, chromatography, ICP-MS and UV-VIS is 31 used to characterize release and alteration of chromite nanoparticles and the concentrations and 32 speciation of Cr aqueous species. Alteration of clinochlore grains containing chromite 33 34 nanoparticles results in the release of the nanoparticles and their attachment to Si-bearing Alhydroxide colloids. Chromite nanoparticles with the endmember composition $FeCr_2O_4$ are 35 synthesized and their interaction with Mn-oxide nanoparticles (hausmannite, Mn_3O_4), Fe^{2+} -36 silicates (chamosite, [(Fe_{3.9}Mg_{0.62}Al_{0.48}) Al(Si₃Al)O₁₀(OH)₈] and organic matter is studied over a 37 period of six to nine months in suspensions of pH = 5. The interaction of chromite and 38 hausmannite nanoparticles is facilitated by the aggregation of the nanoparticles and dissolution-39 precipitation processes. Processes on the surfaces of the hausmannite nanoparticles include the 40 reductive dissolution of the substrate (reduction of Mn^{3+} to Mn^{2+} by Fe^{2+} species) and its 41 replacement by amorphous or nanocrystalline Cr³⁺-bearing Fe³⁺-hydroxides. Processes on the 42 surfaces of the chromite nanoparticles involve the attachment of hausmannite nanoparticles, the 43 oxidative dissolution of the substrate (oxidation of Fe^{2+} and perhaps Cr^{3+} by Mn^{3+} species), its 44 replacement by an amorphous or nanocrystalline Mn-bearing Cr³⁺-hydroxide matrix and the 45 formation of the Cr³⁺-hydroxides bracewellite and grimaldite within the latter matrix. Analyses 46

47	of the suspensions indicate only minor amounts of Cr^{6+} in the suspensions (< 5 µg kg ⁻¹)
48	suggesting that formation or occurrence of Cr^{6+} species can be limited in complex geochemical
49	and mineralogical systems, even in the presence of hausmannite nanoparticles.
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	

69 Introduction

The environmental fate and toxicity of Cr strongly depends on local redox and pH 70 conditions as Cr³⁺-bearing minerals and aqueous species have commonly a lower solubility and 71 mobility than their Cr^{6+} -bearing toxic counterparts (Fendorf and Zasoski, 1992; Oliveira, 2012). 72 The only known naturally occurring oxidizing agents of Cr^{3+} are Mn-oxides (Fendorf and 73 Zasoski, 1992; Weaver and Hochella, 2003). Studies on the oxidation and reduction of Cr³⁺ and 74 Cr^{6+} species in the presence and absence of Mn-oxides indicate that (1) Cr^{3+} oxidation to Cr^{6+} in 75 the presence of Mn-oxides is rapid around pH = 5, but as Cr^{3+} concentration and pH increase the 76 reaction become limited; (2) products of the oxidation of Cr^{3+} are commonly Mn^{2+} and Cr^{6+} 77 which both do not limit the oxidation of Cr^{3+} through a shift in the redox potential or 78 equilibrium; (3) Mn-oxides with the greatest and longest lasting oxidizing ability are those that 79 contain both Mn^{3+} and Mn^{2+} ; (4) a higher proportion of Cr^{6+} forms in chromite-bearing 80 serpentinite soils in the presence than absence of birnessite, MnO_2 ; (5) Cr^{6+} can be reduced by 81 various substances including organic matter, Fe^{2+} and sulfides and (6) the formation of Cr^{6+} can 82 be suppressed by organic matter, even in the presence of Mn-oxides (Fendorf and Zasoski, 1992; 83 Weaver and Hochella, 2003; Oze et al. 2007; Jiang et al., 2014; Hausladen and Fendorf 2017). 84 Recently, Pan et al. (2017, 2019) conducted multichamber experiments in order to assess the 85 oxidation of Cr^{3+} to Cr^{6+} in the absence of solid-solid interactions. In these experiments, Cr^{3+} 86 aqueous species or Cr^{3+} -Fe³⁺ hydroxides were spatially separated from MnO₂ particles, while 87 aqueous species transport could still occur across a permeable membrane. The authors showed 88 that (a) oxidation of Cr^{3+} to Cr^{6+} occurred on the surface of MnO₂ particles. (b) Cr^{6+} production 89 rates were much lower in multichamber than in completely mixed batch experiments, (i.e. with 90 solid-solid interaction between $Cr^{3+}-Fe^{3+}$ -hydroxides and birnessite, Mn_3O_4) (c) Cr^{3+} oxidation 91

rate was initially fast, but then slowed and ceased in solutions with pH-values of 5 to 7.
Serpentinite soils and laterites derived from ultramafic rocks are typically enriched in Cr (up to
80 600 mg/kg Cr) (Fendorf and Zasoski, 1992; Godgul and Sahu, 1995; Oze et al., 2004; Oze et
al., 2007) and can contain Cr⁶⁺ -species in the presence of Mn-oxides (Fandeur et al. 2009).
Chromium (VI) has been also detected in natural solutions in proximity to ophiolite complexes
(Robles-Camacho and Armienta, 2000; Ball and Izbicki, 2004; Manning et al., 2015; Morrison et
al., 2015).

The discovery of chromite nanoparticles within clinochlore and lizardite grains in 99 100 chromitite ore from the Black Thor chromium deposit in central Canada and the Mistake mine, part of the Franciscan ophiolite complex, California, USA adds an unforeseen complexity to the 101 mineralogy and geochemistry of Cr in serpentinite soils (Schindler et al. 2017) as it was 102 commonly assumed that Cr^{3+} is structurally incorporated into silicate minerals containing 103 octahedral chains and layers (Roy and Roy, 1954; Huebner et al., 1976; Cameron and Papike 104 1981; Mével and Kienast, 1986; Phillips et al. 1980; Platonov et al. 1996). Schindler et al. (2017) 105 argued that the release of Cr during the weathering of the silicate minerals may occur in the form 106 of chromite nanoparticles rather than Cr³⁺-aqueous species. In this case, the environmental fate 107 of the element will be governed by the specific properties of the nanoparticles such as their 108 reactivity, solubility and their abilities to aggregate or to adhere to mineral surfaces (Hochella et 109 al., 2008; Theng and Yuan 2008; Hotze et al. 2010; Kumar, et al. 2012; Kaptay, 2012; 110 111 Aliofkhazraei et al., 2016). The chromite nanoparticles in the silicates are 3-5 nm in diameter, occur in random orientations throughout the host silicates, are released during the weathering of 112 their host silicates and most likely adhere to other nanoparticles present in solution (Schindler et 113

114 al. 2017).

115	Schindler et al (2018) studied dissolution mechanisms of chromite and clinochlore in
116	chromitite samples under acidic, near neutral and basic pH conditions in the absence and
117	presence of Fe-oxidizing bacteria. The authors showed that dissolution of chromitite is non-
118	stochiometric and results in surfaces enriched in Fe and Si relative to Cr.
119	
120	Objectives
121	An understanding of the fate of chromite nanoparticles in the environment requires
122	knowledge about their interactions with other nanoparticles, mineral surfaces and redox-sensitive
123	components in the soil environment such as Mn-oxides and organic matter. This interaction
124	includes the pathways for the potential oxidation of Cr^{3+} and Fe^{2+} by Mn-oxides; <i>i.e.</i>
125	(a) do redox processes occur along common interfaces between chromite and Mn-oxide
126	nanoparticles, as previous experiments indicate high rates of Cr ³⁺ oxidation through
127	Cr ³⁺ -Fe ³⁺ -hydroxide-birnessite solid-solid interactions (Pan et al. 2017)? If yes, do
128	they involve dissolution-reprecipitation processes and what are the secondary phases
129	formed during these processes?
130	(b) Do similar interfacial processes occur in the presence of reductive solids common in
131	chromite-ore deposits and surrounding soils such as Fe ²⁺ -bearing chlorites and
132	organic-rich soils?
133	Hence, the objectives of this experimental study are to examine release of chromite
134	nanoparticles during the breakdown of their silicate hosts and to identify the underlying
135	mechanisms for interfacial redox processes involving nanoparticles of chromite and
136	hausmannite and other constituents most likely present in serpentinite soils. These goals will be

achieved in experimental studies through conducting two distinct analytical and experimentalapproaches:

139	I.	Leaching of a silicate-enriched fraction of a chromitite ore sample in solutions of $pH = 2$
140		and $pH = 5$ in combination with TEM-STEM-EDS analyses in order to determine whether
141		chromite nanoparticles are released and stable upon the weathering of their silicate hosts.
142		The chromitite ore sample is from the Black Thor deposit Chromium deposit and the
143		abundance of chromite nanoparticles in clinochlore grains present in the ore have been
144		determined by Schindler et al. (2017). A silicate-enriched fraction is prepared to increase
145		the modal abundance of clinochlore (and thus of the chromite nanoparticles) and to
146		simulate better the weathering of mine waste composed of Cr-bearing silicates, which will
147		be most likely a finely-grained material composed of silica-rich gangue material. The pH-
148		value of $pH = 5$ is chosen as the eutric brunisolic soils surrounding the Black Thor
149		chromium deposit have contact pH-values of $pH = 4.5$ to 5.0 on the surface and $pH > 5.5$ at
150		greater depth (Smith et al. 2011). The pH value of $pH = 2$ is selected as changes in surface
151		chemistry of chromitites under these pH conditions have been well characterized (see
152		above, Schindler et al. 2018).
153	II.	Long-term (six to nine months) batch experiments in combination with TEM-STEM-EDS
154		in order to characterize the alteration of synthesized chromite nanoparticles (endmember
155		composition FeCr ₂ O ₄) in the presence of other components most likely present in
156		serpentinite soils such as hausmannite, Mn ₃ O ₄ nanoparticles, chamosite (an Fe ²⁺⁻ rich
157		mineral of the chlorite group) and organic-rich soils. Although birnessite shows commonly
158		a stronger ability to oxidize Cr^{3+} to Cr^{6+} than other Mn-oxides, we select hausmannite for
159		our experiment as the oxidization of Cr^{3+} to Cr^{6+} (a) strongly depends on the crystallinity

- 160 of the birnessite sample and (b) is sustained over a longer period of time in the presence of
- hausmannite than birnessite (Weaver and Hochella 2003). The concentrations of Cr_{total},
- 162 Cr^{3+}, Cr^{6+} , Mn and Fe will be determined with ICP-MS and combinations of
- 163 chromatography/ICP-MS and chromatography/UV-VIS.
- 164 Although these two approaches involve complex chemical and mineralogical systems, which do
- not allow the identification of individual parameters affecting the oxidative dissolution rates of
- 166 chromite nanoparticles, we believe that they provide a good simulation on the interaction of
- 167 chromite nanoparticles with components in mine waste and adjacent soils around the Ring of
- 168 Fire. This can be understood when considering that
- 169 I. Clinochlore and sulfides are common minerals of the ore deposit (Laarman, 2013)
- and a fine-grained silicate-rich fraction composed of Cr-bearing clinochlore will most
- 171 likely interact with sulfuric-acid solutions in potential waste disposal site around the172 Ring of Fire;
- 173II.Fine-grained powders of chamosite and an organic-rich soil from Northern Ontario174may represent reductive environments in and around potential mine waste site. The175addition of maximum 50 mgL⁻¹ phosphate in the form of a KH_2PO_4 buffer to the
- experiments (see below) may simulate expected P-concentrations in pore waters of
- soils in Northern Ontario ($\sim 10 \text{ mgL}^{-1}$ for e.g. organic rich soils (Griffiths et al. 2019)

and $\sim 70 \text{ mgL}^{-1}$ for agricultural used soils (Amarawansha et al. 2015)).

- 178
- 179
- 180
- 181
- 182

183 Materials and Methods

184 *Leaching experiments of a silicate-enriched fraction of a chromitite ore sample*

Chromitite samples from the Black Thor chromite deposit, Ontario, Canada were 185 obtained from Ontario Geological Survey. A silicate-enriched fraction of this ore with a circa 7-186 times lower Cr : Si ratio (Table 1) was obtained through heavy-mineral fractionation (Wilfley 187 Table) from a powdered sample with a grain size ranging from 10 to 100µm. Two-hundred 188 milligram of the silicate-enriched fraction was subsequently leached with 50 ml sulfuric acid 189 solutions of pH = 2 and pH = 5. After three months continuous shaking in test tubes, the 190 191 chemical compositions of the leachates were characterized with ICP-MS (Table 2) and parts of their colloidal fractions were deposited on TEM grids via centrifugation and characterized with 192 TEM (see below). 193

194

195 Set up of the long-term batch experiments

Six long-term (six to nine months) batch experiments were set up to examine the 196 interaction between chromite and hausmannite nanoparticles in the presence and absence of 197 chamosite and organic-rich soil. The experiments were conducted in 500 mL flasks with a Cr-198 concentration of 0.01 mol/L and Cr : Mn molar ratios of either 1 : 1 or 1 : 5 (Table S2). Two of 199 these experiments included 10g chamosite powder and two included 10g of the organic-rich soil 200 (Table S2, S = supplementary data). The pH-values in the long-term batch experiments were 201 adjusted to a pH value of pH = 5.0 with sulfuric acid and at a later stage with a 0.1 molL⁻¹ 202 KH₂PO₄ solution (after one month, max. 8 ml or 50 mgL⁻¹ P) and a 0.05 molL⁻¹ solution of 203 Potassium hydrogen phthalate solution (after every month until the end of the experiment, 204 205 maximum 32 mL or 1.6 mmol).

206	Over the course of the experiments, the Eh-pH values were monitored with a YSI ORP
207	probe and a pH meter. Probe and pH meter contain standard hydrogen electrodes which were
208	calibrated against pH solutions of pH 4, 7 and 10 and a K-iodide standard. The standard
209	deviation of individual measurement pH and Eh measurements is circa \pm 0.2 units, based on
210	repeated measurements of the standard solutions.
211	After 6- and 9-months continuous shaking of the 500 ml flasks, 10 mL of the suspensions
212	were extracted, centrifuged, filtered and analysed for their chemical composition, respectively
213	(see below).
214	Additional information on the reagents (synthesized chromite nanoparticles, chamosite,
215	organic matter, hausmannite nanoparticles) used in the long-term batch can be found in the
216	supplementary data (Table S1, Fig. S1-S4). The supplementary data also lists the analytical
217	protocols for all chemical analyses.
218	
219	Preparation of the TEM samples
220	The colloidal fractions of the solutions after the leaching experiment and the long-term
221	batch experiments were also deposited on TEM grids. Here, Cu TEM grids (400 mesh lacey
222	carbon, 100 μ m) were fixed to an epoxy support at the bottom of 15ml centrifuge tubes and then
223	filled with the leachates extracted from the test tubes. The tubes were centrifuged using a Sorvall
224	ST16 centrifuge equipped with a TX-400 swing bucket rotor for 8 hours at 5000 RPM which,
225	according to stokes equation, will deposit all spherical particles with densities and diameters
226	greater than 4.54 g cm ⁻³ (density of chromite) and 30 nm onto the TEM grids, respectively.
227	
228	

229 Scanning electron microscopy and Transmission Electron Microscopy,

230	Scanning electron microscopy on polished chromitite grains embedded in epoxy pucks
231	(Table 1) was conducted with a JEOL 6400 SEM, which was operated with an accelerating
232	voltage of 20 kV and a beam current of 1 nA, in combination with energy dispersive X-ray
233	spectrometry (EDS).
234	The TEM grids with deposited colloids/nanoparticles were examined with a field
235	emission Transmission Electron Microscope FEI Talos F200x at the Manitoba Institute of
236	Materials. An accelerating voltage of 200 kV in bright and dark field mode was used with a
237	16MB ceta camera and Fischicone annular dark field (HAADF) detector to acquire images and
238	SAED.
239	
240	RESULTS
241	The results of the nano-mineralogical and chemical study of the suspensions after
242	leaching of the silicate-enriched fraction of a chromitite sample will be addressed first followed
243	by the characterization of the suspensions after the six to nine months long-term batch
244	experiments.
245	
246	Chemical and mineralogical composition of the colloids and solutions after leaching of the
247	silicate-enriched fraction
248	After three months leaching of the silicate-enriched fraction of the chromitite ore sample
249	the solution of pH = 2 has higher concentrations of all major elements (Mg, Al, Fe, Cr and Si)
250	than the solution of $pH = 5$. Higher concentrations of Al, Si and Mg relative Fe and Cr in both
251	leachates indicate higher dissolution rates of clinochlore relative to chromite. The lower Al/Si

252	ratios in the leachates of $pH = 2$ and $pH = 5$ than in the solid materials (Tables 1 and 2) indicate
253	non-stochiometric dissolution of mainly clinochlore. The higher Cr/Si atomic ratio in the
254	leachates of $pH = 2$ than $pH = 5$ also suggests that the differences in dissolution rates between
255	clinochlore and chromite is higher at $pH = 5$ than $pH = 2$.
256	SEM examination of the silicate-enriched fraction show that chromite grains are slightly
257	chemically altered whereas the majority of the clinochlore grains are extensively etched (Fig.
258	1a). TEM examinations of the colloidal fraction in the leachates of $pH = 2$ and $pH = 5$ did not
259	unequivocally identify individual chromite nanoparticles on the TEM grids. Chromite
260	nanoparticles were only identified in larger clinochlore fragments (Fig. S5) and on the surface of
261	an Al-rich colloid with an elemental Al : Si : Cr : Fe ratio of ~ 8 : 2 : 1 : 1 and no detectable
262	concentrations of Mg (Fig. 1b-d, Fig. S6). Contrary, the colloidal fraction of the leachate of pH =
263	2 is composed of many Cr-, Fe- and Si rich colloids with diameters in the lower nanometer-size
264	range (Fig. 1e, f).
265	

Chemical and mineralogical features of the colloidal fraction in the suspensions after 6 months of the long-term batch experiments

Different nanoparticle-adsorbed solute, nanoparticle-nanoparticle and nanoparticlemicroparticle interactions occur in the suspensions. The most notable interaction is the aggregation of chromite and hausmannite nanoparticles (Fig. 2a-b). STEM chemical distribution maps indicate that this aggregation process occurred in the presence of adsorbed phosphate species (in red in Fig. 2b), which originated (most likely) from the KH₂PO₄ buffer added to the solution (max. 50 mgL⁻¹ P).

275 Chemical trends among the nano- to micrometer-size particles

Scanning TEM-EDS chemical analyses of chromite nanoparticles or aggregates of 276 chromite nanoparticles from the suspensions of all long-term batch experiments indicate that 277 (altered) chromite nanoparticles are depleted in Fe and enriched in Mn relative to the synthesized 278 chromite nanoparticles (Fig. 3a). Similarly, altered hausmannite nanoparticles are enriched in Fe 279 and sometimes in Cr with maximum Fe : Mn and Cr : Mn ratios of 1 : 1 and 1 : 3, respectively 280 (Fig 3b). Alterations also occur on the surfaces of the chamosite particles. These are commonly 281 characterized by areas depleted in Mg and enriched in Al and Fe relative to the unaltered grains 282 283 (Fig. 3c).

284

Textural, chemical and mineralogical features of chromite-hausmannite nanoparticle aggregates 285 Figure 4 shows a small aggregate of two altered hausmannite nanoparticles (see also Fig. 286 S7) and the remains of a chromite nanoparticle from the suspension with the organic-rich soil 287 (experiment 5). The hausmannite nanoparticles are enriched in Fe (Mn : Fe ratio ~ 1 , Fig. 4b) and 288 are highly altered with etch features at the lower nanometer range (dark spots in Fig. 4a). The 289 distribution of Fe is heterogeneous with high abundances of Fe occurring in cracks and on the 290 291 surface of the hausmannite nanoparticles (in red in Fig. 4c). The latter nanoparticles contain also pockets enriched in Si (in yellow in Fig. 4d) which often overlap or are adjacent to areas 292 enriched in Fe. The remains of a chromite nanoparticle occur below the plane of the hausmannite 293 294 nanoparticles (Fig. 4a and in green in Fig. 4b) and are depleted in Fe relative to an unaltered chromite nanoparticle (Fe : Cr ratio = 1 : 5). 295

Large aggregates of hausmannite nanoparticles with attached chromite nanoparticles
 occur in all suspensions. For example, a micrometer-size aggregate from the suspension with the

298	chamosite powder (experiment 3) contains highly altered hausmannite nanoparticles enriched in
299	Fe (max. Fe : Mn ratios of 1 : 1) along its surface and relatively unaltered nanoparticles in its
300	interior (Fig. 5a-b). The altered hausmannite nanoparticles are rimmed by a nanometer-thick
301	Fe(hydr)oxide precipitate without any apparent lattice fringes (Fig. 5c-d). Chromite
302	nanoparticles attached to the aggregate are also rimmed by Fe-(hydr)oxide precipitates (Fig. 5c)
303	
304	Textural, chemical and mineralogical features of secondary Cr-hydroxide phases
305	Chromium (hydr)oxide precipitates occur in all suspensions. For example, precipitates in
306	the suspension with organic rich soil (experiment 6) are depleted in Fe and enriched in Mn
307	relative to chromite (min. Fe : Cr ratios ~ 1 : 14; max. Mn : Cr ratios of 1 : 7; Fig. 6). The
308	precipitates lack any apparent long- or short-range ordering (i.e. no diffraction spots in SAED
309	pattern and lattice fringes, Fig. S8) but their matrices contain rods of bracewellite (γ -CrO(OH))
310	(Fig. 6 and S8). In some cases, the morphology of the Cr-hydroxide precipitate resembles those
311	of a chromite cubo-octahedron with almost equi-dimensions (120 nm x 100 nm) (Fig.6d, e).
312	Hausmannite nanoparticles associated with the Cr-hydroxides precipitates are commonly
313	rimed by pockets of Mn-bearing Fe-(hydr)oxide precipitates (Fe : Mn ratios vary from 1 : 7 to 1 :
314	1; in red in Fig. 6e).
315	
316	Interaction of chromite nanoparticles with chamosite and organic matter
317	One of the most prevalent interaction in the suspension containing chamosite particles is
318	the attachment of chromite, Cr-(hydr)oxide and altered hausmannite nanoparticles on surfaces of
319	the chamosite particles (experiments 3 and 4). For example, Figures 7a-e depict the attachment

320 of Cr-hydr(oxide)- and hausmannite nanoparticles on a highly altered chamosite particle, which

321	is partially covered by Fe-(hydr)oxide precipitates (bright areas in Fig. 7a and indicated with the
322	corresponding Fe : Mg ratios in Fig. 7b). Attached cubic and needle-like Mn-oxide nanoparticles
323	(hausmannite and manganite, Fig. S2) and Fe-(hydr)oxides precipitates are in close association
324	whereas the Cr-(hydr)oxide nanoparticles seem randomly distributed over the surface of
325	chamosite grain (Fig. 7a-d). High-resolution TEM studies and FFT-pattern indicate that parts of
326	the attached Cr-(hydr)oxide nanoparticles are composed of grimaldiite (α -CrOOH) (Fig. 7d, e).
327	One of the most prevalent interactions in the suspension with the organic-rich soils
328	(experiments 5 and 6) is the interaction between chromite nanoparticles and organic colloids.
329	Figure 7f shows for example an organic colloid with two attached or incorporated aggregates of
330	altered and unaltered chromite nanoparticle (labelled "1" and "2" in Fig. 7f). Aggregate 1 is
331	composed of chemically unaltered nanoparticles of chromite (Fig. S9) whereas altered
332	nanoparticles in aggregate 2 are enriched in Cr and Mn and depleted in Fe with respect to the
333	synthesized chromite nanoparticles (Fig. 7f).
334	
335	Chemical composition of the suspensions after 9 months of the long-term batch experiments
336	The pH values during all long-term batch experiments rose occasionally above $pH = 5$
337	and had to be re-adjusted mainly with a K-hydrogen phthalate solution (see above). The redox
338	potential at this constant pH value varied only slightly in the range of $Eh = 0.4 - 0.43 V$.
339	The Cr concentrations are in the μ g kg ⁻¹ range (0.8-26.4 μ kg ⁻¹) and thus are much lower
340	than the initial Cr concentration of 519.96 mg kg ⁻¹ in the leachate (Table 3 versus Table S2). The
341	Fe concentrations are below the detection limit in most of the suspensions due to the higher
342	detection limit for the element. The concentrations for Mn are variable across the six
343	experiments with the lowest and highest concentrations in the suspensions with the chamosite

344	particles and organic-rich soils, respectively (Table 3). The concentrations of Cr^{3+} and Cr^{6+} in the
345	suspensions are below the detection limit of 1 μ gkg ⁻¹ when analysed with the combination
346	chromatography/ICP-MS. The concentrations of Cr^{6+} in the suspensions are either below or
347	slightly above the detection limit of 0.5 μ gL ⁻¹ when analysed with the combination of
348	chromatography/UV-VIS (Table 3). Here, the suspensions with the chamosite particles contain
349	the highest concentrations of Cr^{6+} with 4.0 and 4.1 µg L ⁻¹ (Table 3).
350	
351	DISCUSSION
352	We will address release of chromite nanoparticles in the leaching experiments before
353	discussing their interaction with hausmannite nanoparticles, clinochlore and organic matter at pH
354	= 5.
355	
356	Mineralogy of the colloidal fraction versus bulk dissolution data
357	The chemical and mineralogical characterization of the silicate-enriched fraction after the
358	leaching experiments (Fig. 1a, Table 1) and the chemical composition of the leachates (Table 2)
359	suggest that
360	(a) small amounts of clinochlore dissolve at $pH = 5$ whereas the chromite grains remain
361	nearly unaltered (Fig. 4a);
362	(b) the differences in dissolution rates between clinochlore and chromite are smaller
363	under acidic than near neutral pH conditions; in accord with previous observations by
364	Schindler et al. (2018).
365	(c) the observed non-stochiometric dissolution of clinochlore (on the basis of the
366	chemical compositions of the solids and leachates, Table 1 and 2) may be the result of

- the formation of Al-rich surface precipitates or larger Al-rich colloids which were
 most likely filtered out prior to chemical analysis of the leachate (mesh size < 450
 nm).
- These observations agree with the TEM examinations of the colloidal fractions in both 370 leachates: (1) larger colloids of clinochlore (Fig. S5) and a Si-bearing Al-hydroxide in the 371 leachate of pH = 5 (Fig. 1a-d) indicate incomplete dissolution and non-stochiometric of 372 clinochlore, respectively; (2) many small Fe-, Cr- and Si-bearing colloids in the lower 373 nanometer size range (which were able to pass through the 450 nm filter) are present and absent 374 375 in the colloidal fractions of the leachates at pH = 2 and pH = 5, respectively (Fig. 1f). Chromite nanoparticles were only identified in colloids composed of clinochlore (Fig. 376 S5) and on the surface of an amorphous Si-bearing Al-hydroxide in the leachate of pH = 5 (Fig. 377 1b and c, S6). The occurrence of attached and aggregated chromite nanoparticles on the surface 378 of the Al-hydroxide colloid indicates the presence of nanoparticles in the colloidal fraction of the 379 leachate of pH = 5. It seems unlikely that these nanoparticles originated from the breakdown of 380 micrometer-sized chromite grains as they (1) have similar sizes as those observed in clinochlore 381 and (2) contain only minor Mg (Fig. S6) whereas the micrometer-size chromite grains in the 382 chromitite sample have Fe : Mg ratios close to 1 : 1 (Table 1). 383
 - 384

385 Aggregation of nanoparticles and their attachment onto mineral surfaces

The observed aggregation of chromite- and hausmannite- nanoparticles (Fig 2a-b) and their attachment to larger chamosite and organic matter particles (Fig. 7) can be explained with the Derjaguin-Landau-Verwey-Overbeak (DLVO) theory and extended Derjaguin-Landau-Verwey-Overbeak (XDLVO) theory. According to these theories, pH and activity of dissolved

390	ions have a great influence on the surface charge and can either inhibit or promote aggregation.
391	As the pH approaches the point of zero charge of a nanoparticle surface, electrostatic double
392	layer repulsion decreases and aggregation is promoted by van der Waals attraction. Chromite and
393	hausmannite have points of zero charge of around $pHpzc = 6.0-6.5$ and $pHpzc = 5.7$, respectively
394	(Rousseau, 1987; Kosmulski, 2009) and their surfaces had thus slightly positive surface charges
395	at $pH = 5$. This positive surface charge was neutralized in the suspension by the presence of
396	negative counter ions such as phosphate and sulfate ions (Fig. 2a-b). These counter ions
397	neutralised the slightly positive-charged EDL and van der Waals attractions became dominate
398	and promoted the aggregation of the chromite and hausmannite nanoparticles (Fig. 2a-b).
399	Chlorite-group minerals have point of zero charges around $pHpzc = 4-5$ and thus their
400	slightly-negative to neutral-charged surfaces at $pH = 5$ promoted the attachment of the positive-
401	charged chromite and hausmannite nanoparticles (Fig 7a-e). The typical point of zero charge for
402	organic matter in soils is pHpzc = 2 to 3 (Selinus and Alloway, 2005; Sparks, 2003) and the
403	negative-charged surfaces of organic colloids at $pH = 5$ promoted also the attachment of the
404	chromite nanoparticles (Fig. 7f).

405

406 Dissolution reprecipitation processes on the surface of hausmannite

The STEM/TEM studies indicate that the dissolution of chromite nanoparticles in the presence of hausmannite nanoparticle results in the formation of Cr- and Fe-hydroxide phases (Figs. 4-7). The corresponding dissolution-reprecipitation reactions are most likely catalysed by the oxidation of Fe^{2+} by Mn^{3+} species which is thermodynamically favoured over the oxidation of Mn^{2+} by Fe^{3+} species:

412
$$Mn^{3+} + Fe^{2+} \rightarrow Mn^{2+} + Fe^{3+}$$
 $\Delta G^{\circ}r = -103.14 \text{ kJ/mol}$ [1]

413 Or in terms of (hydr)oxides:

414
$$Mn_3O_4 + 2Fe^{2+} + 2H_2O \rightarrow 3Mn^{2+} + 2Fe(OH)_3 + H^+ \Delta G^\circ r = -61.36 \text{ kJ/mol}$$
 [2]

The resulting Fe^{3+} (hydr)oxides (equation [2]) form a porous surface layer or fillings within 415 the hausmannite nanoparticles (Figs. 4-6 9), which allowed the continuous oxidation of Fe^{2+} to 416 Fe^{3+} , the precipitation of Fe^{3+} -phases and the reductive dissolution of the Mn-oxide. This 417 continuous dissolution-reprecipitation process has been also observed by others (Schaefer et al., 418 2017), and can eventually result in the pseudomorphic replacement of a Mn- by Fe-oxide mineral 419 (Golden et al. 1988). Similarly, the attachment of Mn-oxide nanoparticles on the surface of the 420 chamosite crystals resulted in the formation Fe³⁺-(hydr)oxides most likely due to the oxidative 421 dissolution of the underlying Fe^{2+} -bearing sheet silicate (Fig. 7a-c). 422 The mineralogical composition of the Fe-hydroxide rim on the surfaces of the hausmannite 423 nanoparticles could not be unequivocally identified due to the absence of diffraction spots and 424 lattice fringes. The precipitation of ferrihydrite seems however likely as it is commonly the first 425 Fe-(hydr)oxide phase to precipitate from aqueous solution (Navrotsky et al. 2008; Guo and 426 Barnard, 2013; Aeppli et al, 2019). 427

The formation of an Fe^{3+} -(hydr)oxide rim on the surface of hausmannite nanoparticles most likely impacts the overall ability of Mn oxides to remain redox-active phases in environmental systems. Experimental studies showed for example that the production of Mn²⁺ during equation [2] decreases with time, suggesting that the Fe³⁺ -hydroxide layers partially passivate Mn^{3+/4+} terminations on the surface of Mn oxides (Villinski et al., 2001).

Large parts of the Cr-(hydr)oxides nanoparticles formed during the long-term batch experiment lack long-range (no diffraction spots in SAED pattern) (Fig. S8). The initial formation of an amorphous (or nanocrystalline) Cr-(hydr)oxide and its subsequent

436	transformation to the thermodynamically more stable phases bracewellite and grimaldiite (which
437	occur as nano-size crystals within the amorphous phase; Fig 6a-e, 7a-d) follows hereby
438	Ostwald's step rule.
439	There are three CrOOH polymorphs: α -CrOOH, grimaldiite, β -CrOOH, guyanaite and γ -
440	CrOOH, bracewellite. These phases are rare and only occur in a few locations with merumite, a
441	hydrated Cr-hydroxide ore discovered in Guyana, being the most prominent host of all three
442	phases (Bracewell, 1946; Milton et al. 1976). Similar to this study, Shpachenko et al. (2006)
443	identified bracewellite crystals grown in a matrix of an amorphous Cr-(hydr)oxide.
444	
445	Reaction pathways during the interaction of hausmannite and chromite nanoparticles
446	The observations above clearly indicate the occurrence of dissolution-precipitation
447	processes involving dissolution of chromite and hausmannite and precipitation of Fe- and Cr-
448	hydroxides. These processes lead in some cases to the replacement of the Mn-oxide by a Fe-
449	(hydr)oxides (Figs. 4 and 5) and the replacement of chromite by Cr-hydr(oxides) (Fig. 6d-e).
450	They required the initial oxidation of Fe^{2+} to Fe^{3+} and reduction of Mn^{3+} to Mn^{2+} .
451	Using multichamber experiment with Cr ³⁺ -Fe ³⁺ -hydroxide being spatially separated from
452	Mn-oxides, Pan et al. (2019) showed that the reaction pathway $Cr^{3+} \rightarrow Cr^{6+}$ involves dissolution
453	of the Cr-bearing solid and transport of Cr ³⁺ to the Mn-oxide surface and its subsequent
454	oxidation to Cr^{6+} .
455	The occurrence of Cr-rich Fe-(hydr)oxides (Figs.4 and 6-7) on the surface of the
456	hausmannite nanoparticles indicate that reduced Fe ²⁺ and Cr ³⁺ species occurred on the surfaces

458 (unknown) fraction of the Cr^{3+} reprecipitates with the Fe³⁺-hydroxides during the reductive

457

of the hausmannite nanoparticles (some in form of attached chromite nanoparticles) and that a

459	dissolution of the Mn-oxide substrate (Fig. 3b). The presence of Mn in altered chromite
460	nanoparticles or Cr-(hydr)oxide precipitates (Fig. 3a and 6c) indicates the co-precipitation of Mn
461	species with Cr-(hydr)oxides during the oxidative dissolution of the chromite nanoparticles. It is
462	however unclear whether the oxidation of chromite was initiated by adsorbed Mn ³⁺ species or
463	solid-solid interactions between hausmannite and chromite nanoparticles. A combination of
464	TEM, X-ray Photoelectron Spectroscopy and multichamber reaction cells will perhaps allow the
465	differentiation between oxidative dissolution processes involving adsorbed species versus solid-
466	solid interactions.
467	
468	The composition of the suspensions after the long-term experiments
469	The observations above show complex solid-solid interactions such as dissolution,
470	reprecipitation, aggregation and attachment involving nanoparticles of chromite, hausmannite,
471	chamosite, organic matter, Fe- and Cr-(hydr)oxides and phosphate species. Hence, many factors
472	affected the concentrations of Cr (Cr^{3+} and Cr^{6+}), Fe and Mn in the leachate after the long-term
473	batch experiment. As such, we will point out here only major differences and similarities
474	between the different experiments.
475	The concentrations of Cr, Fe and Mn in the leachate and filtering (450 nm pore size) are
476	much lower (Table 3) than their initial concentrations (519.96 mg kg ⁻¹ , Table S2) and suggest
477	that the majority of Cr, Fe and Mn occur in aggregates with $d > 450$ nm. This conclusion is in
478	accord with the observed aggregates of chromite, hausmannite and chamosite particles (Figs. 2
479	and 4-7). However, the concentration of Cr and Mn in the leachates differ significantly between
480	the six experiments with the lowest and the highest concentrations of Cr and Mn in the leachates
481	with chamosite and organic rich soils, respectively (Table 3). The higher concentrations of Cr

and Mn in the solutions with organic matter can be either a result of (a) a lower degree of particle aggregation relative to the experiments without organic matter or (b) the enhanced complexation of Cr and Mn by dissolved organic matter (Dinu, 2013; Gustafsson et al., 2014). However, the latter scenario can be ruled out for Cr as the concentrations for $Cr^{3+}aq$ and $Cr^{6+}aq$ after their chromatographic separation from the chromite nanoparticles were below or close to the detection limits of the ICP-MS and UV-VIS (1 µgkg⁻¹ and 0.5 µgkg⁻¹).

As discussed above, pH and activity of dissolved ions have a great influence on the 488 surface charge and can either inhibit or promote aggregation. As the pH was constant in all long-489 term batch experiments, the lower degree of particle aggregation in the suspension with organic 490 matter may be explained with the presence of adsorbed dissolved organic matter (DOM) on the 491 surfaces of the particles. Studies on the fate of natural colloids in the environment show that 492 natural colloids with a wide range of chemical compositions are often negative-charged due to 493 adsorbed DOM species (Philippe and Schaumann, 2014). These DOM species are mainly humic 494 substances which either neutralize positive-charged surfaces and thus induce aggregation or 495 cause electrosteric stabilization and hinder aggregation of the colloids (Philippe and Schaumann, 496 2014). Hence, humic substances adsorbed on the positive-charged surfaces of the hausmannite 497 and chromite nanoparticles may have partially reversed their surface charges and subsequently 498 lowered their degree of aggregation in the experiments with organic matter. 499

Two distinct analytical approaches (chromatography + ICP-MS versus chromatography + UV-VIS) indicated that the concentrations of Cr^{6+} in all suspensions after the long-term batch experiments were very low with the highest concentration around 4 µg kg⁻¹ (Table 3). These low concentrations of Cr^{6+} contradict previous observations on the oxidation of Cr^{3+} to Cr^{6+} in the presence of Mn^{3+} -bearing oxides such as hausmannite and birnessite (Weaver and Hochella,

505 2003, Oze et al. 2007, Pan et al. 2017, 2019). However, none of the previous studies were conducted over a period of nine months and in the presence of reducing substances such as Fe^{2+} -506 silicates and organic matter. Hence the observations in this study show that the formation and 507 occurrence of Cr⁶⁺ species in solutions can be limited in complex mineralogical and geochemical 508 systems, even in the presence of Mn^{3+} -oxides, due to the presence of adsorption sites on silicates, 509 organic matter, Fe- and Cr³⁺-hydroxides. Future more simplified experimental studies need to be 510 carried to identify factors that either inhibit the formation of Cr^{6+} or sequester Cr^{6+} -species 511 formed during the oxidative dissolution of chromite nanoparticles. 512

513

527

514 IMPLICATIONS

The results of this study show that chromite nanoparticles persist through weathering of their host silicates at pH = 5 and can be thus released into the environment. These observations change our understanding of the potential risks of Cr-bearing silicates in mine tailings and soils. The release of chromite nanoparticles as opposed to $Cr^{3+}(aq)$ species has a large impact on the fate of Cr in the environment as the behavior of nanoparticles is governed by surface reactions and nanoparticle-nanoparticle interactions (Hochella et al., 2008).

This study gives for the first-time insight into mineralogical processes during the
interaction of chromite and Mn-oxides nanoparticles. Common mineralogical features are
the aggregation of chromite and hausmannite nanoparticles, which is (a) promoted
under near neutral pH conditions and the presence of adsorbed negative-charged
phosphate species and (b) partly inhibited by dissolved organic matter.
The dissolution of chromite and hausmannite nanoparticles and their (partial)

23

replacement by Cr- and Fe-hydroxides is facilitated by dissolution-reprecipitation

528	processes. The latter processes involve the redox-controlled dissolution of the parent
529	phases chromite and Mn-oxides, their replacement by the daughter phases Fe- and Cr-
530	hydroxides and the formation of porosity which allows a continuous mass exchange
531	between the daughter-parent phases and the bulk solution.
532	Many experimental studies show that the oxidation of Cr ³⁺ in species and solids occurs readily in
533	the presence of Mn-oxides such as hausmannite and birnessite. This study shows, however, that
534	elevated Cr ⁶⁺ concentration may not necessarily form or occur after 9-months interaction of
535	chromite and hausmannite nanoparticles if these particles are part of a complex mineralogical
536	and geochemical system containing Cr^{6+} -reducing solids such as organic matter and Fe^{2+}
537	silicates, precipitates of Fe- and Cr-hydroxides and inorganic and organic buffers.
538	
539	ACKNOWLEDGEMENTS
540	This project was supported by the Best of Science award # ESSD-BIS201617-15 of the Ministry
541	of the Environment, Conservation and Parks, Ontario, Canada to MS. We would like to thank
542	Graeme Spiers for his continuous support of the project, Joy Gray Munroe and Pedro Jugo for
543	their assistance with the synthesis of the chromite nanoparticles, M.B. McClenaghan for her
544	comments of an earlier version of the MS, Abdul Khan at the Manitoba Institute of Materials for
545	his assistance with the TEM studies and the MECP laboratories in Etobicoke and especially
546	Teresa Switzer and Taddese Godeto for their assistance with the chemical analyses. We like to
547	thank Associate Editor Fabrizio Nestola for handling the paper and two anonymous reviewers for
548	their valuable comments on an earlier version of the paper.
549	
550	

552 **References**

- Aeppli, M., Kaegi, R., Kretzschmar, R., Voegelin, A., Hofstetter, T. B., and Sander, M. (2019)
- 554 Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite
- transformation into goethite and magnetite, Environmental Science & Technology, 53,
- **556 3568-3578**.
- 557 Aliofkhazraei, M., Ed. (2016) Handbook of nanoparticles, p.661-662. Springer, Switzerland.
- Ball, J. W., and Izbicki, J. A. (2004) Occurrence of hexavalent chromium in ground water in the
 western Mojave Desert, California. Applied Geochemistry, 19, 1123-1135.
- 560 Bracewell, S. (1946). The geology and mineral resources of British Guiana. Daily Chronicle,
- 561 Limited.
- Cameron, M., and Papike, J. J. (1981) Structural and chemical variations in pyroxenes. American
 Mineralogist, 66, 1-50.
- Dinu, M. I. (2013) Metals complexation with humic acids in surface water of different natural–
 climatic zones. EDP Sciences, 1, 32011.
- 566 Fandeur, D., Juillot, F., Morin, G., Olivi, L., Cognigni, A., Webb, S. M., Ambrosi, J., Fritsch, E.
- 567 Guyot, F., and Brown, Jr, G. E. (2009). XANES evidence for oxidation of Cr (III) to Cr (VI)
- 568 by Mn-oxides in a lateritic regolith developed on serpentinized ultramafic rocks of New
- 569 Caledonia. Environmental Science & Technology, 43, 7384-7390.
- 570 Fendorf, S.E., and Zasoski, R.J. (1992) Chromium(III) oxidation by delta-MnO₂. I.
- 571 Characterization. Environmental Science & Technology, 26, 79-85.
- 572 Griffiths, N.A., Sebestyen, S.D. and Oleheiser, K.C. (2019) Variation in peatland porewater
- 573 chemistry over time and space along a bog to fen gradient. Science of the Total
- 574 Environment 697, 134152-134165.

- 575 Godgul, G., and Sahu, K.C. (1995) Chromium contamination from chromite
- 576 mine. Environmental Geology, 25, 251-257.
- Golden, D. C., Chen, C. C., Dixon, J. B., and Tokashiki, Y. (1988) Pseudomorphic replacement
- of manganese oxides by iron oxide minerals. Geoderma, 42, 199-211.
- 579 Guo, H., and Barnard, A. S. (2013) Naturally occurring iron oxide nanoparticles: morphology,
- surface chemistry and environmental stability. Journal of Materials Chemistry A, 1, 27-42.
- 581 Gustafsson, J. P., Persson, I., Oromieh, A. G., van Schaik, J. W., Sjös edt, C., and Kleja, D. B.
- 582 (2014) Chromium (III) complexation to natural organic matter: mechanisms and
- 583 modeling. Environmental Science & Technology, 48, 1753-1761.
- Hausladen, D. M., and Fendorf, S. (2017) Hexavalent chromium generation within naturally

structured soils and sediments. Environmental Science & Technology, 51, 2058-2067.

586 Hochella, M.F., Lower, K.S., Maurice, P.A., Penn, R.L., Sahai, N., Sparks, D.L., Twining, B.S.

587 (2008) Nanominerals, mineral nanoparticles, and earths systems. Science, 319, 1631-1635.

- Hotze, E. M., Phenrat, T., and Lowry, G. V. (2010) Nanoparticle aggregation: challenges to
- 589understanding transport and reactivity in the environment. Journal of Environmental
- **590** Quality, 39, 1909-1924.
- Huebner, J. S., Lipin, B. R., and Wiggins, L. B. (1976) Partitioning of chromium between silicate
 crystals and melts. Lunar and Planetary Science Conference Proceedings. 7, 1195-1220.
- Jiang, W., Cai, Q., Xu, W., Yang, M., Cai, Y., Dionysiou, D.D., and O'Shea, K.E. (2014) Cr
- (VI) adsorption and reduction by humic acid coated on magnetite. Environmental Science &
 Technology, 48, 8078-8085.
- 596 Kaptay, G. (2012) On the size and shape dependence of the solubility of nano-particles in
- solutions. International Journal of Pharmaceutics, 430, 253-257.

- 598 Kosmulski, M. (2009) Surface charging and points of zero charge (Vol. 145), 334 p. CRC press.
- 599 Kumar, R., Rawat, K.S., and Mishra, A.K. (2012) Nanoparticles in the soil environment and their
- behaviour: An overview. Journal of Applied and Natural Science, 4, 310-324.
- Laarman, J.E. (2013) Detailed metallogenic study of the McFaulds lake chromite deposits,
- Northern Ontario. Ph.D. thesis, The University of Western Ontario, pp. 494,
- Manning, A. H., Mills, C. T., Morrison, J. M., and Ball, L. B. (2015) Insights into controls on
- 604 hexavalent chromium in groundwater provided by environmental tracers, Sacramento
- 605 Valley, California, USA. Applied Geochemistry, 62, 186-199.
- 606 Mével, C., & Kienast, J. R. (1986) Jadeite-kosmochlor solid solution and chromian sodic
- amphiboles in jadeitites and associated rocks from Tawmaw (Burma). Bulletin de
- 608 Minéralogie, 109, 617-633.
- Milton, C., Appleman, D. E., Appleman, M. H., Chao, E.C., Cuttitta, F., Dinnin, J.I., Dwornik,
- E.J., Ingram, B.L., and Rose, H.J. (1976) Merumite- a Complex Assemblage of Chromium
- 611 Minerals from Gayana. U.S. geological survey, Prof. Paper 887, 1–29
- 612 Morrison, J. M., Goldhaber, M. B., Mills, C. T., Breit, G. N., Hooper, R. L., Holloway, J. M.,
- Diehl, S.F., and Ranville, J. F. (2015) Weathering and transport of chromium and nickel
- from serpentinite in the Coast Range ophiolite to the Sacramento Valley, California,
- 615 USA. Applied Geochemistry, 61, 72-86.
- Navrotsky, A., Mazeina, L., and Majzlan, J. (2008). Size-driven structural and thermodynamic
 complexity in iron oxides. Science, 319, 1635-1638.
- Pan, C., Liu, H., Catalano, J.G., Qian, A., Wang, Z., Giammar, D.E. (2017) Rates of Cr(VI) Generation
- from $Cr_xFe_{1-x}(OH)_3$ Solids upon Reaction with Manganese Oxide. Environmental Science &
- 620 Technology 51, 12416-12423.

621 I	Pan.	С.,	Liu.	Н.,	Catalano.	J.G.,	Wang,	Z., (Dian. A	Giammar	D.E.	(2019)) Understand	ling t	the
-------	------	-----	------	-----	-----------	-------	-------	-------	---------	---------	------	--------	--------------	--------	-----

- 622 Roles of Dissolution and Diffusion in Cr(OH)₃ Oxidation by δ-MnO₂ ACS Earth Space
- 623 *Chemistry* 3, 357–365.Oliveira, H. (2012) Chromium as an environmental pollutant:

624 insights on induced plant toxicity. Journal of Botany, vol. 2012.

- Oze, C., Fendorf, S., Bird, D.K., and Coleman R.G. (2004) Chromium geochemistry in
- 626 serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of
- 627 California. American Journal of Science, 304, 67-101.
- 628 Oze, C., Bird, D. K., and Fendorf, S. (2007) Genesis of hexavalent chromium from natural
- sources in soil and groundwater. Proceedings of the National Academy of Sciences, 104,650 6544-6549.
- Philippe, A., and Schaumann, G. E. (2014) Interactions of dissolved organic matter with natural
 and engineered inorganic colloids: a review. Environmental Science & Technology, 48,
 8946-8962.
- Phillips, T. L., Loveless, J. K., and Bailey, S. W. (1980). Cr³⁺ coordination in chlorites: a
- 635 structural study of ten chromian chlorites. American Mineralogist, 65, 112-122.
- 636 Platonov, A. N., Langer, K., Andrut, M., and Calas, G. (1996). Cr³⁺ in phyllosilicates: influence
- of the nature of coordinating ligands and their next cationic neighbors on the crystal field
- parameters. The Geochemical Society Special Publication, 5, 41-48.
- 639 Robles-Camacho, J., and Armienta, M. A. (2000) Natural chromium contamination of
- groundwater at Leon Valley, Mexico. Journal of Geochemical Exploration, 68, 167-181.
- 641 Rousseau, R. W., Ed. (1987). Handbook of Separation Process Technology. John Wiley & Sons.

- Roy, D. M., and Roy, R. (1954). An experimental study of the formation and properties of
- synthetic serpentines and related layer silicate minerals. American Mineralogist, 39, 957975.
- 645 Schaefer, M. V., Handler, R. M., and Scherer, M. M. (2017) Fe (II) reduction of pyrolusite (β-
- MnO_2) and secondary mineral evolution. Geochemical transactions, 18, 7-18.
- 647 Schindler, M., Berti, D., and Hochella, M. F. (2017). Previously unknown mineral-nanomineral
- 648 relationships with important environmental consequences: The case of chromium release
- from dissolving silicate minerals. American Mineralogist, 102, 2142-2145.
- 650 Schindler, M., Lussier, A. J., Principe, E., and Mykytczuk, N. (2018) Dissolution mechanisms of
- 651 chromitite: Understanding the release and fate of chromium in the environment. American652 Mineralogist, 103, 271-283.
- 653 Selinus O., and Alloway B. J. (2005) Essentials of Medical Geology: Impacts of the Natural
 654 Environment on Public Health, Elsevier Academic Press.
- 655 Shpachenko, A. K., Sorokhtina, N. V., Chukanov, N. V., Gorshkov, A. N., and Sivtsov, A. V.
- 656 (2006) Genesis and compositional characteristics of natural γ-CrOOH. Geochemistry
 657 International, 44, 681-689.
- 658 Smith, C. A. S., Webb, K. T., Kenney, E., Anderson, A., and Kroetsch, D. (2011) Brunisolic

soils of Canada: Genesis, distribution, and classification. Canadian Journal of SoilScience, 91, 695-717.

- 661 Sparks, D. L. (2003) Environmental soil chemistry, 2nd ed., Elsevier Science & Technology
 662 Books.
- Theng, B.K., and Yuan, G. (2008) Nanoparticles in the soil environment. Elements, 4, 395-399.

664	Villinski, J. E., O'Day, P. A., Corley, T. L., and Conklin, M. H. (2001) In situ spectroscopic and
665	solution analyses of the reductive dissolution of MnO2 by Fe (II). Environmental Science &
666	Technology, 35, 1157-1163.
667	Weaver, R.M., and Hochella, M.F. (2003) The reactivity of seven Mn-oxides with Cr ³⁺ aq: A
668	comparative analysis of a complex, environmentally important redox reaction. American
669	Mineralogist, 88, 2016-2027
670	
671	
672	FIGURE CAPTIONS
673	FIGURE 1. (a) SEM-BSE image of an etched clinochlore grain (chl) after leaching of a silicate-
674	enriched chromitite powder with a solution of $pH = 5$; (b) STEM and (c) STEM-EDS chemical
675	distribution maps for Cr (green), Fe (red) of an Al-rich colloid deposited from the leachate of pH
676	= 5 on the carbon lath of the TEM holder; (d) high resolution TEM image of the chromite
677	nanoparticles on the surface of the Al-rich colloid (indicated with a rectangle in b) with
678	characteristic lattice fringes of chromite with d-spacings of 2.1 Å (400) and 2.9 Å (220); (e)
679	STEM and (c) STEM-EDS chemical distribution maps for Cr (green), Fe (red) and Si (yellow) of
680	many small Fe-, Cr- and Si-rich colloids in the leachate of $pH = 2$,
681	
682	FIGURE 2. (a) STEM image and b) STEM-EDS chemical distribution map for Cr (green), Mn
683	(blue) and P (red) of an aggregate of hausmannite (Hsm), chromite (Chr) and manganite
684	nanoparticles in a suspension without chamosite and organic matter.
685	
686	FIGURE 3. Chemical composition of chromite, hausmannite nanoparticles and chamosite
687	particles after the long-term experiments: Ternary plots depicting (a)-(b) Cr : Mn : Fe ratios in (a)

688	altered chromite nanoparticles (blue) in comparison to the ideal stoichiometry of an unaltered
689	chromite (red); (b) altered hausmannite nanoparticles; (c) the Al : Mg : Fe ratio in altered
690	chamosite grains (black) in comparison to the ideal stoichiometry of an unaltered chamosite
691	(red).
692	
693	FIGURE 4. (a) STEM image and (b)-(d) STEM-EDS chemical maps for (b) Fe (red) and Cr
694	(green), (c) Fe (red) and Mn (blue) and (d) Mn (blue) and Si (yellow) of an aggregate containing
695	two hausmannite (Hsm) and the remains of a chromite (Chr) nanoparticle.
696	
697	FIGURE 5. (a) STEM image of an aggregate of hausmannite (Hsm) and chromite (chr)
698	nanoparticles, the area shown in (b)-(d) is indicated with a rectangle; (b) STEM image (c)
699	STEM-EDS chemical map for Fe (red), Cr(green) and Mn (blue) and (d) high resolution TEM
700	image of the area depicted in (b); etch features and a rim of a Fe-(hydr)oxide are indicated with
701	arrows.
702	
703	FIGURE 6. (a) TEM image and (b)-(c) STEM-EDS chemical maps for (b) Fe (red) and Cr
704	(green) and (c) Fe (red) and Mn (blue) of an aggregate of chromite nanoparticles (chr) with an
705	Cr-(hydr)oxide precipitate containing two parallel rods of bracewellite rods (γ-CrO(OH)); (d)
706	STEM image and (e) STEM-EDS chemical distribution map for Fe (red), Cr (green), Mn (blue),
707	Si (yellow) of an aggregate containing hausmannite nanoparticles (hsm), an unidentified clay
708	mineral and the remains of a chromite nanoparticle with two rods of bracewellite (γ -CrO(OH));
709	the area shown in (f) is indicated with a rectangle in (e); (f) TEM image of two rods of
710	bracewellite.

711	FIGURE 7. (a) STEM image and (b) STEM-EDS chemical map for Fe (green), Cr (red) and Mn
712	(pink) of a chamosite grain from with attached Cr-(hydr)oxides and hausmannite nanoparticles;
713	the areas shown in (c) and (d-e) are indicated with rectangles in (b); (c) STEM image of
714	hausmannite nanoparticles attached to the chamosite grain; (d) TEM image and (e) high-
715	resolution TEM image of a Cr-(hydr)oxide grain attached to a chamosite grain, the area shown in
716	(e) is indicated with a rectangle in (d); a FFT pattern (inlet) indicates that the lattice fringes in (e)
717	have characteristic d-spacings of grimaldiite (α -CrO(OH)); (f) STEM image of chromite
718	nanoparticle aggregates (chr) attached to a larger organic matter colloid (OM); aggregate 1 is
719	composed of weakly-altered chromite nanoparticles whereas aggregate 2 is highly altered and is
720	depleted in Fe and enriched in Mn relative to aggregate 1 (see supplementary data).
721	
722	
723	
724	
725	
726	
727	
728	
729	
730	
731 732	
733	

TABLE 1. Chemical composition of chromitite (Chr) and a silicate-enriched fraction (Sef) from

the Black Thor deposit in weight% [wt%] and as atomic ratios relative to Si with M = Al, Cr, Fe

736 and Mg

Oxide	Chr wt%	M/Si	Sef wt%	M/Si				
Al ₂ O ₃	13.52	4.4	12.74	1				
Cr ₂ O ₃	46.69	10.3 28.45		1.5				
Fe ₂ O ₃	21.27	4.5	13.88	0.7				
MgO	12.89	5.3	23.13	2.3				
SiO ₂	3.64		15.4					
Average compositions of chromite and clinchlore are: $(Fe_{0.5}Mg_{0.5})(Al_{0.6}Cr_{1.4})O_4$ and $Mg_3[Si_4O_{10}(OH)_2] \times (MgAl_{1.33}(OH)_6)$, respectively. Clinochlore contains 3 at% Cr (Schindler et al. 2017, 2018).								

TABLE 2. Chemical composition of the solution after leaching of the silicate-enriched fraction of chromitite at pH = 2 and 5 in [μ g kg⁻¹] and as atomic ratios relative to Si with *M* = Al, Cr, Fe

C				
	pH = 2	<i>M</i> /Si	pH = 5	M/Si
	(n = 3)		(n = 4)	
AI	3281	0.6	8	0.02
Cr	1059	0.1	6	0.01
Fe	2682	0.23	B.D.L.	
Mg	8426	1.7	1322	4.25
Si	5756		360	

750 and Mg

TABLE 3. Chromium-, Fe- and Mn- concentrations in the suspensions (pH = 5) after the 9 months batch experiments (detection limits for Cr, Cr^{6+} , Fe, Mn = 0.2, 0.5, 50 and 1.0 [µgkg⁻¹]); the solutions were filtered (450 nm filer) but not centrifuged; Cr = chromite nanoparticles, Mn = hausmannite nanoparticles, Si = 10 gr chamosite, or = 10 gr organic rich soil; bdl = below detection limit

Experiment	Eh [V]	Cr [mgkg ⁻¹]	Cr ⁶⁺ [µgkg ⁻¹]	Fe [mgkg ⁻¹]	Mn [mgkg ⁻¹]	P [mgkg ⁻¹]
1: $Cr-Mn = 1 : 1$	0.43	0.0200	0.6	Bdl	19.11	2.903
2: Cr-Mn = 1 : 5	0.40	0.0028	<0.5	Bdl	15.66	4.681
3: Cr-Mn = 1 : 1, Si	0.41	0.0008	4.0	0.07	8.74	0.157
4: Cr-Mn = 1 : 5, Si	0.41	0.0014	4.1	Bdl	7.57	3.321
5: Cr-Mn = 1 : 1, Or	0.42	0.0300	0.6	0.01	25.40	0.125
6: Cr-Mn = 1 : 5, Or	0.43	0.0264	0.9	Bdl	38.32	0.040

30 nm

