Page 1

1	Revision 1
2	
3	
4	Manjiroite or Hydrous Hollandite?
5	
6	
7 8	Jeffrey E. Post ^{1*} , Peter J. Heaney ² , Timothy B. Fischer ³ , and Eugene Ilton ⁴
9 10 11	¹ Department of Mineral Sciences, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, United States ² Department of Geosciences, Penn State University, University Park, PA 16802, United States
12	³ Chevron, 3901 Briarpark Dr. Houston, TX 77042-5397, United States
13	⁴ Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, United States
14	
15	
16	
17	
18	
19	
20	
21	
22	*To whom correspondence should be addressed: postj@si.edu
23	
24	
25	

Page 2

2	<u>_</u>
7	b
_	-

ABSTRACT

In this study, we investigated an unusual natural Mn oxide hollandite-group mineral from 27 the Kohare Mine, Iwate Prefecture, Japan that has predominantly water molecules in the tunnels, 28 29 with K and Na and Ba. The specimens are labelled as type manjiroite, but our analyses show that Na is not the dominant tunnel species, nor is it even the primary tunnel cation, suggesting 30 either an error in the original analyses, or significant compositional variation within samples 31 from the type locality. Chemical analyses, X-ray photoelectron Spectroscopy, and thermal 32 gravimetric analysis measurements combined with Rietveld refinement results using synchrotron 33 powder diffraction data suggest the chemical formula: 34 $(K_{0,19}, Na_{0,17}, Ca_{0,3}, Ba_{0,01}, H_2O_{1,60})(Mn^{4+}_{5,02}Mn^{3+}_{2,82}Al_{0,14}Fe_{0,02})O_{13,47}, (OH)_{2,53}$. Our analyses 35 indicate that water is the primary tunnel species, and although water has been reported as a 36 component in natural hollandites, this is the first detailed study of the crystal structure and 37 dehydration behavior of a natural hydrous hollandite with water as the predominant tunnel 38 species. This work underscores the rarity of natural Na-rich hollandite phases and focuses new 39 attention on the role of hydrous components of hollandite-like phases in determining their 40 capacities to exchange or accommodate various cations, such as Li⁺, Na⁺, Ba²⁺, Pb²⁺, and K⁺ in 41 natural systems. 42

- 43
- 44

INTRODUCTION

Manganese oxide minerals with hollandite-type structures and their synthetic analogues
have long been studied for potential applications for storage of radioactive waste, ionic
conductors, super capacitors, battery electrodes and catalysts (Rossouw et al. 1992, Feng et al.
1995, Johnson et al. 1997, Kijima et al. 2007, Sauvage et al. 2009, Bruce et al. 2012, Zhang et al.

Page 3

2012, Tomsett and Islam 2013, Yang et al. 2015, 2017). The Mn hollandite-group minerals
occur in oxidized zones of Mn-rich deposits, in low-temperature hydrothermal veins, and as
sedimentary cements and coatings, including dendrites and nodules. Some studies suggest they
might also form as alteration products from biogenic Mn oxides (Grangeon 2015, Carmichael et
al. 2017).

Hollandite-group Mn oxide structures consist of double chains of edge-sharing Mn⁴⁺-O 54 octahedra that corner-share with other double chains to form a framework containing large 55 56 tunnels (Fig. 1). The tunnels are partially filled with large univalent or divalent cations and sometimes water molecules, and the dominant cation determines the particular mineral phase, 57 e.g., K⁺ (cryptomelane), Na⁺ (manjiroite), Ba²⁺ (hollandite), Pb²⁺ (coronadite), and Sr²⁺ 58 (strontiomelane). Lower-valence cations (e.g. Mn^{3+} , Al^{3+} , Fe^{3+} , etc.) substitute for some of the 59 Mn⁴⁺ to offset the positive charge of the tunnel cations. Mn hollandite minerals typically contain 60 a variety of tunnel cations. The framework dimensions and consequent tunnel cation 61 coordination environment apparently favor K, Ba and Pb; smaller divalent cations such as Mg 62 and Ca are rare in Mn hollandite-group minerals (Feng et al. 1995). Na is a common minor 63 constituent in cryptomelane, but maniform is apparently rare. Hollandite phases with only 64 65 divalent tunnel cations typically have half-filled tunnel sites, with cations ordered every other unit-cell along the tunnels, and in those with predominantly K and Na, the tunnel sites can be as 66 much as two-thirds to three-quarters filled. Detailed structure refinements have been reported for 67 hollandite and cryptomelane (Post et al., 1982), coronadite (Post and Bish, 1988) and 68 strontiomelane (Meisser et al. 1999). Analogous minerals are known with Fe^{3+} , e.g. akageneite 69 (Post and Buchwald 1991; Post et al. 2003), and Ti⁴⁺ (Post et al. 1982, Szymański 1986) as the 70 primary octahedral cations. 71

Page 4

72	In this study, we investigated an unusual natural Mn oxide hollandite phase from the
73	oxidized zone of a rhodochrosite-tephroite-rhodonite bedded deposit at the Kohare Mine, Iwate
74	Prefecture, Japan that has predominantly water molecules in the tunnels, with K and Na and Ba.
75	Chemical analyses, X-ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis
76	(TGA) measurements combined with Rietveld refinement results using synchrotron powder
77	diffraction data suggest the approximate chemical formula:
78	$(K_{0.19}Na_{0.17}Ca_{0.03}Ba_{0.01})(Mn^{4+}{}_{5.02}Mn^{3+}{}_{2.82}Al_{0.14}Fe_{0.02})(O,OH)_{16}$ · nH ₂ O. Interestingly, the
79	specimens studied here are labelled as type manjiroite used by Nambu and Tanida (1967) for
80	their original mineral description, but our analyses show that Na is not the dominant tunnel
81	species, nor is it even the primary tunnel cation. It is, of course, possible that the samples studied
82	here, despite the type designation, are different from the sample analyzed by Nambu and Tanida
83	(1967), but the discrepancies motivate a more thorough characterization of the samples.
84	Moreover, our analyses indicate that water is the primary tunnel species, and although water has
85	been reported as a component in natural hollandites, this is the first detailed study of the crystal
86	structure and dehydration behavior of a natural hydrous hollandite with water as the predominant
87	tunnel species.
88	

89

EXPERIMENTAL METHODS

90 Sample and Chemical Analyses

91 The primary sample used for this study, M28296 (National Museum of Nature and
92 Science -Japan) from the Kohare Mine, Iwate Prefecture, Japan, is labeled as a portion of the
93 type manjiroite used by Nambu and Tanida (1967). Scanning electron microscope (FEI Nova

Page 5

NanoSEM 600; Department of Mineral Sciences, Smithsonian Institution) images revealed the
sample to be polycrystalline consisting of a fine mesh of ~ 0.5 x 4 µm fiber-like crystals (Fig. 2),
consistent with the description of the sample studied by Nambu and Tanida (1967) - as dense
compact masses showing a conchoidal fracture. Electron microprobe analyses (JEOL
JXA8900R, operated at 15 keV) were performed using samples embedded in epoxy, polished
and carbon-coated. A defocused electron beam was used to minimize any Na loss during
analyses.

A portion of the sample was submitted for instrumental neutron activation analysis 101 (INAA) at the University of Missouri-Columbia Research Reactor Center. Two ~40 mg samples 102 were analyzed for Na and K using NIST standard reference materials SRM 688 (Basalt rock) for 103 calculating Na concentrations and SRM 1633b (Coal fly ash) for K. Samples were irradiated for 104 60 s and allowed to decay for \sim 48 h, and live-time counted for one hour. The Na concentrations 105 were quantified using the net peak area of the 1368 keV gamma-ray from the decay of 24 Na($t_{1/2}$ = 106 14.96 h) which was produced via the neutron capture by ²³Na, and the K concentrations were 107 quantified using the net peak area of the 1524 keV gamma-ray from the decay of 42 K ($t_{1/2} = 12.36$ 108 h) which was produced via the neutron capture by 41 K. 109

We also analyzed a small portion of a second sample from the private collection of
Kinichi Sakurai that was labeled as "type manjiroite from Dr. Nambu". The physical appearance
was the same as the original sample, and it was mounted, polished and carbon-coated for
electron microprobe analysis.

114 X-ray Diffraction

Page 6

115	The sample used for X-ray diffraction was hand ground under acetone in an agate mortar
116	and passed through a 325-mesh sieve and loaded into 0.7 mm quartz-glass (NSLS) or 1 mm (ID)
117	polyimide (APS) capillaries. XRD data were collected: 1) at beam line X7B of the National
118	Synchrotron Light Source (NSLS), Brookhaven National Laboratory (BNL), using a wavelength
119	of 0.3184 Å and a MAR345 full imaging plate detector, and 2) at beamline 11BM at the
120	Advanced Photon Source, using a wavelength of 0.414211 Å.

The synchrotron heating experiment was performed at NSLS in air using a Blake 121 Instruments furnace with a Pt-13%Rh coiled wire yoke encased in ZrO₂ cement (Brown et al. 122 1973). The temperature was varied with an Omega controller and monitored with a Chromel-123 Alumel thermocouple located ~ 2 mm from the specimen. The actual sample temperature was 124 calibrated for the range 25 to 1000 °C by a variety of phase and melting transitions and by the 125 placement of an additional thermocouple in the sample position. The highly linear relationship 126 between the observed and actual temperatures ($R^2 = 0.983$) allowed us to calculate a calibration 127 curve with an estimated error of ± 5 °C for a given temperature. Temperature-resolved data from 128 27 to 800 °C were collected as a series of 120 s exposures. The temperature was increased 129 continuously at 6.4 °C /min and measurements were obtained every ~25 °C, owing to down time 130 131 for repositioning of the sample and reading the imaging plate; thus, each exposure encompassed a temperature range of ~ 13 °C. During each exposure the sample was rotated through a 120° 132 angle. Preferred orientation of the powder was eliminated through a combination of the 133 specimen rotation, use of a capillary sample holder, and full intensity integration of the 134 diffraction rings, as obtained using the program Fit2D (Hammersley et al. 1996) with a 135 polarization factor of 0.93. 136

Page 7

Rietveld refinements (Rietveld, 1969) were performed for selected diffraction patterns using the General Structure Analysis System-II (GSAS-II) software (Toby and Von Dreele 2013). Diffraction data generated by a LaB₆ standard (NIST SRM 660a) were used to calibrate peak profile parameters that described instrumental broadening. For all samples, diffraction peak profiles were fit with a pseudo-Voigt function as parameterized by Thompson, et al. (1987), and microstrain anisotropic broadening terms by Stephens (1999).

143 The initial atom positions for the refinements were those for cryptomelane (space group:

144 I2/I) reported by Post et al. (1982). Only background parameters, scale factor, unit-cell

parameters, and peak profile coefficients were varied in the initial refinement cycles; background

146 intensities were fitted with a Chebyshev function using 5-7 terms. After convergence, atom

147 positions and occupancy factor of the tunnel water O atom were refined. Atomic displacement

148 factors, other than for the water O, were fixed to typical values for hollandite-like structures, e.g.

149 Post et al. (1982). The final refinement parameters for RT hydrous hollandite, using the APS

150 11BM data and selected bond distances are reported in the supplementary CIF. The final

151 observed, calculated, and difference patterns are plotted in Figure 3.

152

153 Fourier transform infrared spectroscopy (FTIR)

Samples were disaggregated under acetone in a mortar and pestle and sieved through a
325-mesh sieve ; 0.5 to 1 mg manjiroite samples were milled with ~250 mg KBr using a
SPECAC ball mixing mill for 1-2 min and pressed into pellets. Transmission vibrational spectra
were collected for a range of 400 to 4000 cm⁻¹ on a Nicolet 6700 analytical FTIR
spectrometer. The resolution was set at 3.86 cm⁻¹ and 64 scans were co-added for each
spectrum. The Omnic 8 software (Nicolet) was used to view data during data collection.

Page 8

160 X-ray photoelectron spectroscopy (XPS)

161	For XPS analysis, data collection and fitting procedures were followed as reported by
162	Ilton et al. (2016). Powder samples were mounted on strips of conductive copper tape affixed to
163	copper stubs and then pressed with clean borosilicate glass blocks onto copper stubs.
164	Measurements were conducted with a Kratos Axis Ultra DLD spectrometer with an Al $K\alpha$ X-ray
165	source (1486.7 eV) operating at 10 mA and 15 kV. Magnetic immersion lenses were used to
166	improve collection efficiency. The instrument work function was calibrated to give a binding
167	energy (BE) of 83.96 eV \pm 0.05 eV for the $4f_{7/2}$ line of metallic gold. The spectrometer
168	dispersion was adjusted to yield a BE of 932.62 eV for the $Cu_{2p_{3/2}}$ line of metallic copper.
169	Measurements of the Mn2p, Mn3s, Mn3p, O1s, C1s, and various alkali and alkaline earth lines
170	were conducted with a step size of 0.1 eV, an analysis area of 300 x 700 $\mu m,$ and pass energies
171	(PE) of 20 or 40 eV. The resultant full-width-at-half-maximums (FWHM) for the Ag $3d_{5/2}$ line
172	were 0.54 and 0.77 eV, respectively. The low sensitivity of the Mn3s line resulted in
173	measurements only with $PE = 40 \text{ eV}$. Survey scans were conducted at $PE = 160 \text{ eV}$ and step size
174	= 0.5 eV. XPS spectra were fit by non-linear least squares after Shirley background subtractions
175	with the CasaXPS curve resolution software package. Gaussian/Lorentzian contributions to line
176	shapes were numerically convoluted with a Voigt function.

- 177 Thermogravimetric Analyses
- The dehydration behavior was investigated by measuring H_2O and O_2 loss using combined thermal-gravimetric analysis and mass spectroscopy (TGA-MS). Samples were analyzed on a TA Instruments Discovery TGA 55 connected to a mass spectrometer. Calcium Oxalate Monohydrate (CaC₂O₄·H₂O) was used as a standard for calibration of the TGA and MS. Two types of analysis runs were performed, both using about 9 mg of sample. In the first, the

Page 9

183	sample was heated at 10°C/min to a temperature of 250°C, then held for one hour before
184	continued heating to 950°C at the same rate. In the second experiment the sample was heated
185	continuously to 950°C. Mass spectra at 18 (H ₂ O) and 32 (O ₂) were collected continuously
186	during each experimental run and then integrated over 100 points to determine the differential
187	thermal gravimetric (DTG) curves.
188	
189	RESULTS AND DISCUSSION
190	Characterization of type "manjiroite" samples
191	The XPS results for Mn showed 64.3 mol% Mn^{4+} , 35.7 mol% Mn^{3+} , and no Mn^{2+} ,
192	indicating an average Mn oxidation state of +3.66. Similar values, 62 mol% Mn^{4+} and 38 mol%
193	Mn ³⁺ , were derived using the Rietveld refinement mean Mn-O octahedral bond distance of 1.934
194	Å, assuming Shannon (1976) ideal bond lengths: $Mn^{4+}-O = 1.89$ Å and $Mn^{3+}-O = 2.005$ Å.
195	Additionally, linear combination fitting to the X-ray absorption spectroscopy Mn absorption
196	edge yielded 64 mol% Mn ⁴⁺ and 36 mol% Mn ³⁺ (unpublished results).
197	Electron microprobe analyses were generally consistent with the chemical formula
198	reported by Nambu and Tanida (1967), except that we detected significantly less Na. Utilizing
199	Mn oxidation states determined by XPS, we derived the following formula:
200	$(K_{0.19}Na_{0.17}Ca_{0.03}Ba_{0.01})(Mn^{4+}{}_{5.02}Mn^{3+}{}_{2.82}Al_{0.14}Fe_{0.02})(O,OH)_{16} \cdot nH_2O$
201	For comparison, Nambu and Tanida (1967) report:
202	$(K_{0.22}Na_{0.73}Ca_{0.03}Ba_{0.01})(Mn^{4+}{}_{7.46}Mn^{2+}{}_{0.34}Al_{0.09}Fe_{0.04}Mg_{0.03})O_{16}\cdot 1.64H_2O.$

Page 10

203	The Na and K concentrations that we measured by neutron activation (0.23 K and 0.15 Na per 16
204	O atoms) were within the range of our electron microprobe measurements.
205	It is possible that material labeled as "type" is not homogeneous, and the sample used
206	here has less Na than the specimen used in the 1967 study, but it seems curiously coincidental
207	that the concentrations of the other elements match so well. Alternatively, the high Na value in
208	the earlier analysis was in error. This possibility is supported by the fact that the short 2.85 Å $$
209	spacing between adjacent sites along the tunnels in hollandite phases generally limits the total
210	number of tunnel species (cations plus water molecules) to fewer than two per unit cell, and the
211	total from the Nambu and Tanida (1967) formula is an unlikely high value of 2.63.
212	The electron microprobe analysis of the "type manjiroite" from the Sakurai collection
213	yielded the formula:
214	$(K_{0.39}Na_{0.17}Ca_{0.05})[(Mn^{4+},Mn^{3+})_{7.68}Al_{0.30}Fe_{.02}]O_{16}$ nH ₂ O,
215	similar to that determined for our original sample, with the exception of a higher concentration of
216	K. The low concentration of Na in this sample also is inconsistent with the definition of
217	manjiroite, but the analyses support some chemical variation among samples labeled as "type
218	manjiroite". We did not have sufficient sample to determine either the water concentration or the
219	Mn^{3+}/Mn^{4+} ratio.

220	Our XPS results for the sample from the Kohare Mine (36% Mn ³⁺) indicated that there
221	are 2.82 Mn^{3+} (out of 7.84 Mn) per unit cell (16 O atoms), which together with the 0.14 Al^{3+} and
222	0.02 Fe^{3+} yields a net 2.98 negative charge on the Mn-O octahedral framework. By comparison,
223	the total tunnel cation charge from the chemical formula is +0.44, resulting in an overall charge
224	deficit of -2.54. The absence of any other cations in the chemical analyses suggests that charge

Page 11

balance likely is achieved by replacing 2.54 of the 16 framework O per unit cell by OH⁻ (15.9%).
This assumption is supported by the fitting results of the XPS O spectra that indicated
predominantly atomic O with significant amounts of OH and H₂O. Alternatively, some studies
of synthetic hydrous hollandite-like phases speculated that hydronium anions might be important
tunnel species (Bruce et al. 2012, Yang et al. 2017), instead of or in addition to molecular water,
but our XPS spectra did not show evidence of significant H₃O⁺.

The FT-IR spectrum collected for manjiroite at 25 °C is plotted in Figure 4, and shows a moderately intense broad peak between ~3000 and 3600 cm⁻¹ and one near 1600 cm⁻¹. Potter and Rossman (1979) observed that many hollandite-group mineral samples exhibited similar, but typically low-intensity, broad FTIR absorption features and assigned them to OH stretch and water bending modes, respectively. They also concluded that the broadness of the bands is characteristic of O-H stretch vibrations associated with disordered molecular water and OH⁻.

Although the samples studied here, and possibly that analyzed by Nambu and Tanida 237 (1967), may not properly be classified as the Na-dominant variety of hollandite defined as 238 manjiroite, the new analyses nonetheless confirm that this material is novel. Typical analyses of 239 Ba- or Pb-rich hollandite-type minerals show about one tunnel cation per unit cell, and for 240 cryptomelane, the number of K can be as high as 1.5 cations per unit cell. The total number of 241 tunnel cations per unit cell determined in the present study is an anomalously low 0.44 - 0.46 for 242 the first, and 0.60 for the second sample. The water analyses reported by Nambu and Tanida 243 (1967), and those from the current TGA study discussed below, suggest that H₂O molecules are 244 the predominant tunnel species, making this mineral not manjiroite but a "hydrous hollandite" 245 246 (or perhaps, considering that K is the primary tunnel cation, a "hydrous cryptomelane").

247

Page 12

248 X-Ray Diffraction and Rietveld Refinement

249 The Rietveld refinements showed that the Mn and O positions in the octahedral 250 framework are similar to those reported for cryptomelane by Post et al. (1982). The atom 251 positions and other Rietveld refinement results are summarized in the supplementary CIF. A Fourier difference map calculated using a structure model with only framework Mn and O atoms 252 253 showed a diffuse area of electron density centered at the special position at (0,0,0) in the centers of the tunnels and extending along the length of the tunnel, consistent with the water molecules 254 and tunnel cations positionally disordered about (0,0,0). A single-crystal X-ray diffraction study 255 of cryptomelane by Post et al. (1982) concluded that large cations such as K (and Ba^{2+}) occupy 256 positions at or near the special position where they are close to the preferred K-O bond distance 257 of ~ 2.90 Å from eight oxygen atoms. They also suggested that smaller cations (e.g. Na⁺) are 258 displaced off the special position, along the tunnel, where they form shorter and more favorable 259 bonds with the nearest framework O atoms. 260

During the refinement in the present study, the K was placed at (0,0,0) and the occupancy 261 fixed to the analytical value, and an O atom (representing water and Na) was placed at (0,y,0)262 and its position and occupancy refined. As the difference map indicated that the electron density 263 extended in the tunnel direction, the water O was modeled using an anisotropic temperature 264 factor with only the U_{22} (tunnel direction) component refined, yielding values in the range 0.02 265 to 0.04, and fixed to 0.025 for the final refinement cycles. The refined occupancy factor for the 266 O site, after accounting for the Na (and Ba and Ca), indicated approximately 1.7 water molecules 267 per unit cell, close to the value of 1.64 reported by Nambu and Tanida (1967). An accurate 268 269 determination of the tunnel site occupancy factor was complicated by the positional disorder, and

270	correlations with background coefficients and thermal displacement factors. The analysis total
271	of ~0.40 tunnel cations plus 1.60 water molecules would fill the two tunnel sites per unit cell.
272	The K^+ at the special position at (0,0,0) is 2.91 Å from four O3 atoms and 2.86 Å from
273	four O1 atoms, and these distances compare well with the 2.90 Å K-O bond length predicted by
274	Shannon (1976). It is, therefore, likely that the refined satellite tunnel position, which is ~0.45 Å $$
275	from the special position, is primarily occupied by water O and Na. By displacing along the
276	tunnel, they form shorter, and more favorable, distances of 2.66 Å from two O1 atoms and 2.71
277	Å from two O3 atoms; typical Na-O bonds are 2.6 Å (Shannon, 1976) and water H-bonds are
278	~2.7 Å (Bauer 1972).
279	Although the Rietveld refinement results suggest that our model reasonably describes the

Z/3 electron density in the tunnels, the actual situation is certainly more complex, and in fact, 280 significant positional disorder is indicated by the large and diffuse area of electron density on the 281 difference Fourier map. The chemical analyses show that K⁺ occupies only one out of every four 282 or five sites along a given tunnel, and likely the position of water molecules or Na⁺ will be 283 different depending upon whether the adjacent special position is filled or empty. Additionally, 284 water molecules will adjust as they form H-bonds with each other and perhaps with framework 285 OH⁻. DFT modeling by Bruce et al (2012) for a synthetic hydrous hollandite-like (α -MnO₂) 286 phase $[(H_2O, H_3O^+)_{0.17}MnO_2]$ showed that numerous different water molecule orientations and 287 positions yielded similar energies, suggesting that the water species are disordered in the tunnels. 288 Finally, structure energy calculations for hollandite-like phases by Post and Burnham (1986) 289 noted that the particular local arrangements of Mn⁴⁺ and Mn³⁺ in the octahedral sites also affect 290 291 tunnel cation positions. All of this suggests that the tunnel sites used for the refinement are at best an average of what are likely numerous local tunnel species configurations. 292

Page 14

293	The time-resolved synchrotron X-ray diffraction patterns collected while heating the
294	"manjiroite" sample from 24 to 900 °C are plotted in Figure 5, and unit-cell parameters
295	determined for selected temperatures by Rietveld refinements are plotted in Figure 6. These
296	results indicate a structural adjustment between 200 and 300 °C, associated with decreases in a
297	and <i>c</i> , and unit-cell volume, and a slight increase in β , which coincides with the loss of tunnel
298	water observed in the dehydration experiments discussed below. A steady increase in a, c, β ,
299	and unit-cell volume above ~400 °C, is associated with the breakdown of the hollandite structure
300	and release of O and OH, as discussed below. The diffraction data show that bixbyite $(Mn^{3+}_2O_3)$
301	forms above ~600 °C. Previous heating experiments on hollandite-like phases suggested that the
302	types and numbers of tunnel species affect the temperatures for the initial formation of bixbyite.
303	Akkopru-Akgun et al. (2015), for example, reported that the transition temperature varied from
304	600 to 675 °C as the Ba:Mn increased from 0.04 to 0.1, which is consistant with our observed
305	600 °C transition temperature and total tunnel cation to Mn ratio of 0.05.

306

307 Thermogravimetric Analyses

The TGA/DTG-MS data (Fig. 7) revealed that the total weight loss of water and O₂ from RT to 950 °C for the Kohare Mine manjiroite was ~14 wt%. This value compares well with the total anticipated weight loss of 13.3 wt% based on the chemical formula that we derived using EPMA, Reitveld refinements, and XPS data from this study. During the TGA heating trials, three significant weight loss events were apparent at ~250, 475, and 650 °C. The O₂ loss above ~450 ° C coincides with the breakdown of the hollandite structure and subsequent transformation to bixbyite (Mn₂O₃). A relatively sharp ~3 wt% water loss peak was evident at ~250 °C, and a

315	second more gradual water loss occurred at ~425 °C, coincident with the initial O_2 emission.
316	The loss of ~0.5 wt% H ₂ O below ~200 °C is assumed to be surface adsorbed water.
317	The mass spectrometer curves in Figures 7b and 7c indicate that the weight loss event at
318	\sim 250 °C derived primarily from water, likely corresponding to the evolution of tunnel molecular
319	water. If we assume there are $1.56 \text{ H}_2\text{O}$ per unit cell, the theoretical weight loss for Kohare Mine
320	manjiroite is 3.7 wt%, close to our observed value of ~3.5 wt%, (3 wt% at ~250 °C plus 0.5
321	wt% below 200 °C) and that of 3.9 wt% $H_2O(+)$ reported by Nambu and Tanida (1967). Our
322	conclusion is consistent with the observation by Feng et al. (1995) that structural water was
323	released below 350 °C from a synthetic hollandite-like phase, (H ₂ O) _{0.21} MnO ₂ . Also, Bruce et al.
324	(2012) reported tunnel water loss between ~260 and 380 °C for synthetic (H ₂ O, H ₃ O ⁺) _{0.17} MnO ₂ ,
325	and Yang et al. (2017) noted that tunnel water was removed from a similar phase by 400 °C.
326	The plots in Figure 7 reveal that the second weight loss event between 300 and 575 $^{\circ}$ C is
326 327	The plots in Figure 7 reveal that the second weight loss event between 300 and 575 $^{\circ}$ C is caused by overlapping H ₂ O and O ₂ emissions. The water loss occurs from 300 to 475 $^{\circ}$ C, with
327	caused by overlapping H_2O and O_2 emissions. The water loss occurs from 300 to 475 ° C, with
327 328	caused by overlapping H_2O and O_2 emissions. The water loss occurs from 300 to 475 ° C, with the DTGA peak at about 425 ° C. The gradual loss, as indicated by the greater breadth of this
327 328 329	caused by overlapping H_2O and O_2 emissions. The water loss occurs from 300 to 475 ° C, with the DTGA peak at about 425 ° C. The gradual loss, as indicated by the greater breadth of this mass spectrometer peak relative to that at 250 ° C, and the overlapping O_2 emission ranging from
327 328 329 330	caused by overlapping H ₂ O and O ₂ emissions. The water loss occurs from 300 to 475 ° C, with the DTGA peak at about 425 ° C. The gradual loss, as indicated by the greater breadth of this mass spectrometer peak relative to that at 250 ° C, and the overlapping O ₂ emission ranging from \sim 375 to 600 ° C (centered at 490 ° C) suggest that this event resulted from the release of
327 328 329 330 331	caused by overlapping H ₂ O and O ₂ emissions. The water loss occurs from 300 to 475 ° C, with the DTGA peak at about 425 ° C. The gradual loss, as indicated by the greater breadth of this mass spectrometer peak relative to that at 250 ° C, and the overlapping O ₂ emission ranging from ~375 to 600 ° C (centered at 490 ° C) suggest that this event resulted from the release of framework OH. This interpretation is consistent with the XRD data that show a breakdown of
327 328 329 330 331 332	caused by overlapping H ₂ O and O ₂ emissions. The water loss occurs from 300 to 475 ° C, with the DTGA peak at about 425 ° C. The gradual loss, as indicated by the greater breadth of this mass spectrometer peak relative to that at 250 ° C, and the overlapping O ₂ emission ranging from \sim 375 to 600 ° C (centered at 490 ° C) suggest that this event resulted from the release of framework OH. This interpretation is consistent with the XRD data that show a breakdown of the hollandite structure above ~400 °C, and with dehydration experiments by Feng et al. (1995)
327 328 329 330 331 332 333	caused by overlapping H ₂ O and O ₂ emissions. The water loss occurs from 300 to 475 ° C, with the DTGA peak at about 425 ° C. The gradual loss, as indicated by the greater breadth of this mass spectrometer peak relative to that at 250 ° C, and the overlapping O ₂ emission ranging from ~375 to 600 ° C (centered at 490 ° C) suggest that this event resulted from the release of framework OH. This interpretation is consistent with the XRD data that show a breakdown of the hollandite structure above ~400 °C, and with dehydration experiments by Feng et al. (1995) that showed a similar release of O ₂ and H ₂ O from (H ₂ O) _{0.21} MnO ₂₊ at ~480 °C.

Page 16

337	number of hydroxyl anions is in the range of the observed \sim 3 to 4 wt%. The overlap of the H ₂ O
338	and O ₂ emissions prevents a more precise determination of actual water loss in this event.
339	The O ₂ emission peak at 650 °C coincides with the transformation to bixbyite, with the
340	concomitant reduction of Mn ⁴⁺ to Mn ³⁺ . In our X-ray diffraction heating experiments, the first
341	bixbyite peaks appeared at 601 °C. The origin of the second O_2 emission at ~750 °C is not clear.
342	It might be related to the breakdown of a remnant oxide phase formed by the tunnel cations (K^+
343	and Na^+) and the octahedral Al and Fe with Mn as the hollandite structure transformed to
344	bixbyite. Previous studies have suggested that a Na or K spinel-type Mn oxide might form as
345	intermediate phases before eventual transformation to bixbyite (Feng et al. 1995), although a
346	spinel-like phase was not apparent from our XRD analyses.
347	
348	Manjiroite or "hydrous hollandite"?
348 349	Manjiroite or "hydrous hollandite"? The "type manjiroite" samples analyzed for this study did not conform to the chemical
349	The "type manjiroite" samples analyzed for this study did not conform to the chemical
349 350	The "type manjiroite" samples analyzed for this study did not conform to the chemical composition ascribed to manjiroite by Nambu and Tanida (1967) in their new mineral
349 350 351	The "type manjiroite" samples analyzed for this study did not conform to the chemical composition ascribed to manjiroite by Nambu and Tanida (1967) in their new mineral description. Although some chemical variation was apparent for the two "type" samples
349 350 351 352	The "type manjiroite" samples analyzed for this study did not conform to the chemical composition ascribed to manjiroite by Nambu and Tanida (1967) in their new mineral description. Although some chemical variation was apparent for the two "type" samples interrogated here, the Na concentrations were similar. Since both exhibited K as the primary
349 350 351 352 353	The "type manjiroite" samples analyzed for this study did not conform to the chemical composition ascribed to manjiroite by Nambu and Tanida (1967) in their new mineral description. Although some chemical variation was apparent for the two "type" samples interrogated here, the Na concentrations were similar. Since both exhibited K as the primary tunnel cation, they should not be classified as manjiroite. We are not able to explain the
349 350 351 352 353 354	The "type manjiroite" samples analyzed for this study did not conform to the chemical composition ascribed to manjiroite by Nambu and Tanida (1967) in their new mineral description. Although some chemical variation was apparent for the two "type" samples interrogated here, the Na concentrations were similar. Since both exhibited K as the primary tunnel cation, they should not be classified as manjiroite. We are not able to explain the discrepancy between our results and those of the original study. The analyses by Nambu and
349 350 351 352 353 354 355	The "type manjiroite" samples analyzed for this study did not conform to the chemical composition ascribed to manjiroite by Nambu and Tanida (1967) in their new mineral description. Although some chemical variation was apparent for the two "type" samples interrogated here, the Na concentrations were similar. Since both exhibited K as the primary tunnel cation, they should not be classified as manjiroite. We are not able to explain the discrepancy between our results and those of the original study. The analyses by Nambu and Tanida (1967) were performed using wet chemical methods, but details sufficient to evaluate the

Page 17

from the South African Kalahari manganese field. Our own analyses of samples from that
locality confirm that Na is the primary tunnel species. (unpublished results). Another purported
locality for supposed "manjiroite" specimens in many museum and private collections is
Tombstone, AZ. We have analyzed dozens of such samples from a variety of sources over the
past several years, and none are manjiroite; most are cryptomelane, sometimes with coronadite
(unpublished results).

The naming convention for hollandite-group minerals dictates that the Kohare Mine 365 samples analyzed in this study would be called cryptomelane, since K is the primary tunnel 366 cation. On the other hand, this material is unusual because molecular water rather than cations 367 were the predominant tunnel species. Hollandite-species nomenclature does not consider the 368 role of tunnel water, even though it is a common constituent in many natural hollandite-group 369 phases. Gruner (1943) attempted to clarify the confusion related to the hollandite-group 370 371 classification by proposing a general formula that includes molecular water, but the International 372 Mineralogical Association has not adopted his nomenclature. Other studies (Nambu and Tanida 1980) noted that hollandite minerals that experienced low to moderate metamorphism generally 373 have low water contents (< 1 weight %), whereas those that form hydrothermally or in sediments 374 375 can have significant structural water. Because of uncertainties associated with analyzing hollandite-group minerals, such as unknown Mn oxidation states, fine-grained textures, and 376 377 sample inhomogeneities, low electron microprobe analysis totals are routine. Therefore, 378 estimates of water by difference commonly are problematic. Unless TGA, FTIR or other water measurements are made, the presence of water might be overlooked or ignored. 379

380 Materials scientists have long been interested in α -MnO₂ (hollandite structure) with 381 predominantly, or all, H₂O in the tunnels – so-called "hydrous hollandite" (Rossouw et al. 1992;

Page 18

382	Feng et al. 1995; Johnson et al. 1997; Yang et al. 2015, 2017). Because hydrous hollandites
383	readily exchange H^+ and H_2O (or H_3O^+) for Li and certain other cations, it is being investigated
384	as an effective precursor for ion insertion reactions to create hollandite-structure battery
385	electrodes (Kijima et al. 2007; Sauvage et al. 2009; Yang et al. 2017).
386	This study confirms that analogues to synthetic hydrous hollandites occur naturally.
387	Chemical analyses, Rietveld structure refinement, and heating experiments all indicate that for
388	the samples studied here the tunnels were approximately three-quarters filled with water
389	molecules, with only minor quantities of K, Na, Ca and Ba. Additionally, ~15 mol% of the
390	octahedral O atoms was OH ⁻ , making this a truly soggy hollandite-like phase.
391	
392	
393	IMPLICATIONS
394	Our study raises questions about the material originally described as manjiroite by
395	Nambu and Tanida (1967), suggesting that either there is considerable variation of the Na
396	concentration in the type locality samples, or an error in the original analyses. Although the low
397	Na concentrations in the samples studied here ruled out a classification as manjiroite sensu
398	stricto, they nevertheless represented a novel hydrous hollandite-like mineral. As such, they
399	provided the opportunity for the first detailed characterization of the structure and dehydration
400	behavior of a natural hollandite-like mineral with molecular water as the predominant tunnel
401	species – filling approximately three-quarters of the tunnel sites. This work focuses new
402	
	attention on the role of molecular water in hollandite minerals, especially those formed from, or

Page 19

404	suggest that structural water affects their cation-exchange properties. In particular, higher
405	amounts of water promote the insertion of Li and other smaller cations into the tunnels (Yang et
406	al. 2017). Finally, recent studies have shown that birnessite-like phyllomanganates, which are
407	the major Mn oxide phases in soils and sediments (Post 1999), transform into hollandite-like
408	phases and other tunnel structures under ambient environmental conditions (Chen et al. 1986;
409	Grangeon et al. 2014, 2015). The structural water inherited from the interlayers of these
410	phyllomanganates end up in the tunnels as H ₂ O and as OH ⁻ , and the hydrous components of the
411	hollandite-like phases are important factors in determining their capacities to exchange or
412	accommodate various cations, such as Li^+ , Na^+ , Ba^{2+} , Pb^{2+} , and K^+ , in natural systems.
413	
414	Acknowledgements
415	
416	Funding for this work was provided by NSF EAR1925903. This research also utilized samples
417	from the Smithsonian Mineral Research Collection at the Museum of Natural History. The FTIR
418	
	laboratory at the Smithsonian Institution was established with generous support from Stephen
419	laboratory at the Smithsonian Institution was established with generous support from Stephen Turner. This research used resources of the Advanced Photon Source, a U.S. Department of
419 420	
	Turner. This research used resources of the Advanced Photon Source, a U.S. Department of
420 421	Turner. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by
420 421	Turner. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. ESI is supported by
420 421 422	Turner. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. ESI is supported by the PNNL managed Geosciences Research Program of the U.S. Department of Energy (DOE),

Page 20

- 426 Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL
- 427 is operated for DOE by Battelle Memorial Institute under Contract# DE-AC06-76RLO-1830.
- 428 We also acknowledge support from NSF EAR11-47728.

429

430

431

Page 21

432

REFERENCES

Akkopru-Akgun, B., Trolier-McInstry, S., and Lanagan, M. T. (2015) MnO₂ thin film
electrodes for enhanced reliability of thin glass capacitors. Journal of the American Ceramic
Society, 98, 3270–3279.

Baur, W.H. (1972) Prediction of hydrogen bonds and hydrogen atom positions in crystalline
solids. Acta Crystallographica, B28, 1456-1465.

Brown, G.E., Sueno, S., and Prewitt, C.T. (1973) A new single-crystal heater for the

439 precession camera and four-circle diffractometer. American Mineralogist, 58, 698–704

Bruce, P. G., Freunberge, S. A., Hardwick, L. J., and Tarascon J.-M., (2012) Li–O₂ and Li–S
batteries with high energy storage. Nature Materials, 11, 19-29.

Carmichael1, S. K., Doctor, D. H., Wilson, C. G., Feierstein, J. and McAleer, R. J. (2017)
New insight into the origin of manganese oxide ore deposits in the Appalachian Valley and
Ridge of northeastern Tennessee and northern Virginia, USA. Geological Society of America
Bulletin, 129, 1158-1180.

Chen C.C., Golden D.C., and Dixon J.B. (1986) Transformation of synthetic birnessite to
cryptomelane – an electron-microscopic study. Clays and Clay Minerals, 34, 565–571.

Feng, Q., Kanoh, H., Miyai, Y., and Ooi, K. (1995) Alkali metal ions insertion/extraction
reactions with hollandite-type manganese oxide in the aqueous phase. Chemistry of Materials, 7,
148-153.

451	Gao, T., Glerup, M., Krumeich, F., Nesper, R., Fjellvag, H., and Norby, P. (2008
452	Microstructures and spectroscopic properties of cryptomelane-type manganese dioxide
453	nanofibers. Journal of Physical Chemistry C, 112, 13134-13140.

Grangeon S., Lanson B., and Lanson M. (2014) Solid-state transformation of nanocrystalline
phyllomanganate into tectomanganate: influence of initial layer and interlayer structure. Acta
Crystallographica B, 70, 828–838.

457 Grangeon S. Fernandez-Martinez A. Warmont F. Gloter A. Marty N. Poulain A. Lanson B.

458 (2015): Cryptomelane formation from nanocrystalline vernadite precursor: a high energy X-ray

459 scattering and transmission electron microscopy perspective on reaction mechanisms. Geochem.

460 Trans. , 16, 12.

461 Gruner, J. W. (1943) The chemical relationship of cryptomelane (psilomelane), hollandite,
462 and coronadite. American Mineralogist, 28, 497-506.

Gutzmer, J. and Beukes, N. J. (2000) Asbestiform manjiroite and todorokite from the
Kalahari manganese field, South Africa. South African Journal of Geology, 103, 163-174.

Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., and Hausermann, D. (1996)
Two-dimensional detector software: From real detector to idealized image or two-theta scan.
High Pressure Research, 14, 235–248.

Ilton, E.S., Post, J.E., Heaney, P.J., Ling, F.T. and Kerisit, S.N. (2016) XPS determination of
Mn oxidation states in Mn (hydr) oxides. Applied Surface Science, 366, 475-485.

470	Johnson, C. S., Dees, D. W., Mansuetto, M. F., Thackeray, M. M., Vissers, D. R., Argyriou,
471	D., Loong, C. K., and Christensen, L. (1997) Structural and electrochemical studies of alpha-
472	manganese dioxide (αMnO2). Journal of Power Sources, 68, 570–577.

Kijima, N., Takahashi, Y., Akimoto, J., and Awaka, J. (2005) Lithium ion insertion and
extraction reactions with hollandite-type manganese dioxide free from any stabilizing cations in
its tunnel cavity. Journal of Solid State Chemistry, 178, 2741–2750.

476 Meisser, N., Perseil, E., Brugger, J., and Chiappero, P. (1999) Strontiomelane, 477 SrMn4⁴⁺ $_{6}$ Mn³⁺ $_{2}$ O₁₆, a new mineral species of the cryptomelane group from St. Marcel -478 Praborna, Aosta Valley, Italy. Canadian Mineralogist, 37, 673-678.

Nambu, M. and Tanida, K. (1967) Manjiroite, new manganese dioxide mineral, from
Kohare Mine, Iwate Prefecture, Japan. Journal of the Japanese Association of Mineralogists,
Petrologists and Economic Geologists: 58: 39-54.

482 Nambu, M. and Tanida, K. (1980) Cryptomelane-Manjiroite-Hollandite Series Minerals.
483 Journal of the Mineralogical Society of Japan, 14, 62-85 (in Japanese).

484 Post, J.E. (1999) Manganese oxide minerals: crystal structures and economic and
485 environmental significance. Proceedings of the National Academy of Sciences of the United
486 States of America, 96(7), 3447-54.

487 Post, J. E. and Bish, D. L. (1989) Rietveld refinement of the coronadite structure. American
488 Mineralogist, 74, 913-917

Page 24

489	Post, J. E. and Burnham, C. W. (1986) Modeling tunnel-cation displacements in hollandites
490	using structure-energy calculations. American Mineralogist, 71, 1178-1185.

491 Post, J.E. and Buchwald, V. F. (1991) Crystal structure refinement of akageneite. American
492 Mineralogist, 76, 272-277.

Post, J.E., Heaney, P.J., Von Dreele, R.B., and Hanson, J.C. (2003) Neutron and
temperature-resolved synchrotron X-ray powder diffraction study of akaganéite. American
Mineralogist, 88, 782-788.

Post, J.E., Von Dreele, R.B., and Buseck, P.R. (1982) Symmetry and cation displacements
in hollandites: structure refinements of hollandite, cryptomelane and priderite. Acta
Crystallographica, B38, 1056-1065.

Potter, R. M. and Rossman, G. R. (1979) The tetravalent manganese oxides: identification,
hydration, and structural relationships by infrared spectroscopy. American Mineralogist. 64,
1199-1218.

Prescher, C. and Prakapenka, V.B. (2015) DIOPTAS: A program for reduction of twodimensional X-ray diffraction data and data exploration. High Pressure Research, 35, 223–230.

Rietveld, H.M. (1969) A Profile Refinement Method for Nuclear and Magnetic Structures.
Journal of Applied Crystallography, 2(2), 65-71.

507	Rossouw, M. H., Liles, D. C., Thackeray, M. M., David, W. I. F., and Hull, S. (1992) Alpha
508	manganese-dioxide for lithium batteries - a structural and electrochemical study. Materials
509	Research Bulletin, 1992, 27, 221–230.

Sauvage, F., Laffont, L., Tarascon, J.-M., and Baudrin, E. (2007) Study of the
insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorganic Chemistry, 46,
3289–3294.

Shannon, R.D. (1976) Revised Effective Ionic Radii and Systematic Studies of Interatomie
Distances in Halides and Chaleogenides. Acta crystallographica. Section A, Foundations of
crystallography 32, 751-767.

516 Stephens, P.W. (1999) Phenomenological model of anisotropic peak broadening in powder
517 diffraction. Journal of Applied Crystallography, 32, 281–289.

518

Szymański, J. T. (1986) The crystal structure of mannardite, a new hydrated cryptomelanegroup (hollandite) mineral with a doubled short axis. Canadian Mineralogist, 24, 67-78.

521

Thompson, P., Cox, D.E., and Hastings, J.B. (1987) Rietveld refinement of Debye- Scherrer
synchrotron X-ray data from Al₂O₃. Journal of Applied Crystallography, 20, 79–83.

Toby, B.H., and Von Dreele, R.B. (2013) GSAS-II: the genesis of a modern open-source all
purpose crystallography software package. Journal of Applied Crystallography, 46(2), 544-549.

527	Tomsett, D. A. and Islam, M. S. (2013) Electrochemistry of Hollandite α-MnO ₂ : Li-Ion and
528	Na-Ion Insertion and Li ₂ O Incorporation. Chemistry of Materials, 25, 2515-2526.

529 Yang, Z., Trahey, L., Ren, Y., Chan, M. K. Y., Lin, C., Okasinski, J., and Thackeray, M. M.

530 (2015) In situ high-energy synchrotron X-ray diffraction studies and first principles modeling of

531 α -MnO2 electrodes in Li-O2 and Li-ion coin cells. Journal of Material Chemistry A, 3,

532 7389–7398.

533 Yang, Z., Ford, D. C., Park, J. S., Ren, Y., Kim, S., Kim, H., Fister, T. T., Chan, M. K. Y.,

and Thackeray, M. M. (2017) Probing the Release and Uptake of Water in α -MnO2·xH2O.

- 535 Chemistry of Materials, 29, 1507-1517.
- Zhang, R., Yu, X., Nam, K.-W., Ling, C., Arthur, T. S., Song, W., Knapp, A. M., Ehrlich, S.
 N., Yang, X.-Q., and Matsui, M. (2012) α-MnO2 as a cathode material for rechargeable Mg
 batteries. Electrochemistry Communications, 23, 110–113.

539

Page 27

540	Figure Captions
541	Figure 1. Polyhedral representation of the hollandite structure, consisting of double chains of
542	$(Mn^{4+},Mn^{3+})O_6$ octahedra; the spheres represent the tunnel cations.
543	Figure 2. Backscattered electron microscope image of the type manjiroite specimen. Individual
544	crystals are approximately 0.5 x 4 µm.
545	Figure 3. Final observed (crosses), calculated (solid line), and difference (below) powder X-ray
546	diffraction patterns from the Rietveld refinement for "hydrous hollandite." The Bragg
547	reflections are marked by the set of small vertical lines
548	
549	Figure 4. FTIR spectrum for "hydrous hollandite."
550	
551	Figure 5. Synchrotron powder X-ray diffraction patterns vs. temperature from RT (front) to 800
552	°C.
553	Figure 6. Plot of a) a and c , b) b , c) β , and d) unit-cell volume for "hydrous hollandite" for the
554	temperature range 27 to 800 °C. Calculated esd's fall within the areas of the plotting symbols.
555	Figure 7. Results of heating/dehydration experiments for "hydrous hollandite": a) Mass loss
556	(TGA) and differential mass loss (DTG) vs. temperature, b) mass loss of sample and mass
557	spectrometer H ₂ O and O ₂ loss with time and temperature, and c) mass loss of sample and mass
558	spectrometer H_2O loss vs. temperature of experiment with one-hour hold at 250 °C.

Figure 1.

Figure 3.

Figure 4.

Figure 5.

Figure 6a.

Figure 6b.

Figure 6c.

Figure 6d.

Figure 7a.

Figure 7c.