| 1  | Word count: 5053                                                                                         |
|----|----------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                          |
| 3  | The electrical conductivity of albite feldspar: implications for oceanic lower                           |
| 4  | crustal sequences and subduction zones                                                                   |
| 5  |                                                                                                          |
| 6  | Running Title: EC Measurements of andesine at Crustal PT Conditions                                      |
| 7  | Version: Revision 1 (Accept with revisions) Corrected version                                            |
| 8  | Date: 10/03/2021                                                                                         |
| 9  | Journal: American Mineralogist                                                                           |
| 10 |                                                                                                          |
| 11 | George M. Amulele <sup>1,2†</sup> , Anthony W. Lanati <sup>1,3*†</sup> , and Simon M. Clark <sup>1</sup> |
| 12 |                                                                                                          |
| 13 | <sup>1</sup> Australian Research Council Centre of Excellence for Core to Crust Fluid                    |
| 14 | Systems (CCFS), Department of Earth and Environmental Sciences, Macquarie                                |
| 15 | University, Balaclava Road, North Ryde, NSW 2109, Sydney, Australia.                                     |
| 16 |                                                                                                          |
| 17 | <sup>2</sup> Earth, Environmental and Planetary Sciences, Case Western Reserve University,               |
| 18 | 10900 Euclid Avenue, OH 44106, U. S. A                                                                   |
| 19 |                                                                                                          |
| 20 | <sup>3</sup> Institut für Mineralogie, Universität Münster, Corrensstraße 24, D-48149                    |
| 21 | Münster, Germany                                                                                         |
| 22 |                                                                                                          |
| 23 | * : Corresponding Author                                                                                 |
| 24 | <sup>†</sup> : These authors contributed equally                                                         |
| 25 |                                                                                                          |
| 26 | Author ORCID ID:                                                                                         |
| 27 | George M. Amulele: 0000-0002-1504-4722                                                                   |
| 28 | Anthony W. Lanati: 0000-0002-3317-5697                                                                   |
| 29 | Simon M. Clark: 0000-0002-7488-3438                                                                      |
| 30 |                                                                                                          |
| 31 | Keywords:                                                                                                |
| 32 | Electrical conductivity; Impedance Spectroscopy; Single crystal; Feldspar; Albite;                       |
| 33 | High-pressure; Multi-anvil apparatus.                                                                    |

#### 34 Abstract

35 Volatile-sensitive electrical soundings are becoming more widely adopted with large nationwide arrays currently being acquired globally. This boom in 36 37 new data is despite a number of key uncertainties relating to the electrical 38 responses of a wide range of minerals that make up crustal regions. 39 Complications include the influence of mineral chemistry, hydrous or nominally 40 hydrous phases, and oxygen fugacity on charge-carrying ion activity within a 41 mineral substrate. Feldspars are the most abundant mineral group in the Earth's 42 crust, comprising about 60% of its mineral assemblages and are particularly 43 prevalent within subduction zones and lower crustal sequences. These areas are 44 known locations where ore systems are commonly rooted making them among 45 the most widely studied regions in Earth. To date, few studies exist that cover the 46 electrical behavior of the intermediate feldspar mineral albite. In order to help 47 address some of these issues and complications we have undertaken electrical 48 conductivity investigations on a single crystal of gem-quality albite from Nuevo 49 Casas Grande, Chihuahua, Mexico. Electrical conductivity measurements using 50 impedance spectroscopy were performed at a pressure of 1 GPa and over a 51 temperature range of 373 – 1273 K in a multi-anvil high-pressure apparatus. 52 Experiments were carried out using different metal electrodes; molybdenum, 53 nickel, and rhenium to vary the oxygen fugacity during the experiments. FTIR 54 measurements of the starting and final materials confirm that the initial samples 55 are completely dry but absorb an average of 67 ppm H<sub>2</sub>O by mass during the 56 experiments from the surrounding pressure medium materials. We observe no 57 correlation in the amount of water absorbed in the feldspar to the oxygen 58 fugacity under water undersaturated conditions. Our investigations show that

| 59 | the activation enthalpy increases from $\sim 0.77$ eV to $\sim 1.0$ eV from the nominally     |
|----|-----------------------------------------------------------------------------------------------|
| 60 | hydrous to the completely dry feldspar. The activation enthalpy decreases with                |
| 61 | increasing oxygen fugacity for comparable water contents. An oxygen fugacity                  |
| 62 | exponent of -0.069 is calculated at the nominal water content measured in the                 |
| 63 | experiment, indicating an electrical conductivity mechanism that also involves                |
| 64 | the mobility of hydrogen.                                                                     |
| 65 |                                                                                               |
| 66 | Introduction & Background                                                                     |
| 67 | The use of magnetotelluric (MT) soundings as a mechanism for                                  |
| 68 | understanding the internal structure and processes within the Earth has become                |
| 69 | increasingly common since the mid-1950s. These soundings determine the                        |
| 70 | resistivity of the Earth's sub-surface by utilizing the natural variations in the             |
| 71 | Earth's magnetic and electric fields. As an electrical geophysical method, MT is              |
| 72 | highly sensitive to volatile components known to enhance the electrical response              |
| 73 | of a geological system <mark>(Adetunji et al., 2015; Cherevatova et al., 2015b; Comeau</mark> |
| 74 | et al., 2020a; Comeau et al., 2015; Selway, 2014; Selway et al., 2019; Selway et al.,         |
| 75 | 2020). It is therefore an incredibly useful tool in understanding a huge range of             |
| 76 | crustal and upper mantle processes including slab dehydration melting, partial                |
| 77 | melting of the lithosphere, the migration of brines and geothermal fluids, and                |
| 78 | long term magmatic migration in volcanic systems <mark>(Aizawa et al., 2014; Aizawa</mark>    |
| 79 | et al., 2009; Aizawa et al., 2005; Comeau et al., 2020a; Comeau et al., 2015; Díaz            |
| 80 | <mark>et al., 2012; Ingham et al., 2009).</mark> Earth materials encompass a wide range of    |
| 81 | electrical responses, $\sim \! 10$ orders of magnitude in most cases, and up to 22 orders     |
| 82 | in extreme instances (e.g. highly conductive sulfide ore zones near ultra-resistive           |
| 83 | quartz bodies). The bulk of the Earth is characterized by responses ranging from              |

highly resistive magmatic rocks (1x10<sup>6</sup> ohm) through to ultra-conductive
massive sulfides (1x10<sup>-6</sup> ohm) (Figure 1). It is therefore logical that individual
minerals and mineral family groups generally encompass a large range of
electrical responses as well. This large variance in conductive responses,
stemming from differing conduction mechanisms, makes the understanding of
the measured substrate's composition an integral prerequisite to the successful
interpretation of MT.

91 Feldspars are the most abundant minerals in the Earth's crust, comprising 92 about 60% of its mineral assemblages. Feldspars have a general formula Ca<sub>x</sub>Na<sub>1</sub>-93  $_{x}K_{1-x}Al_{1+x}Si_{3-x}O_{8}$ , where 0 < x < 1, in which Ca and Na form a ternary with K. This 94 ternary is defined primarily by a solid solution relationship between the albite 95  $(Na(AlSi_3O_8))$ , anorthite  $(Ca(Al_2Si_2O_8))$ , and orthoclase  $(K(AlSi_3O_8) (K-feldspar))$ . 96 end members. Andesine ((Ca, Na)(Al, Si) $_4O_8$ ), the focus of this study, is an 97 intermediary feldspar formed by a solid solution of Ca and Na, residing in binary 98 space between albite and anorthite. Therefore andesine, like most calcic and 99 sodic feldspars, has limited K content. An important note for the reader is that 100 although the name andesine is still used widely in literature, recent 101 developments in the nomenclature in response to the IMA-CNMNC dominant-102 valency rule means that the feldspar used in this study is classified as an albite 103 using modern terminology (Bosi et al., 2019). Henceforth, we will refer to our 104 samples as andesine or andesine feldspar as a matter of specificity to aid the 105 reader, except for instances where we wish to refer to the composition generally 106 as "albite". In a geological context, andesine gains its importance from being the 107 most common plagioclase feldspar in basalt and gabbro, which comprise  $\sim 70\%$ 108 of the earth's crust as the key components of oceanic lithosphere, as well as

| 109 | being a significant constituent in some other crustal rocks (i.e. anorthosites and                                                |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|
| 110 | amphibolites). Given this prevalence, knowledge of the physical and chemical                                                      |
| 111 | properties of andesine is critically important in understanding the dynamics of                                                   |
| 112 | the Earth's crust and upper mantle, especially in the context of subduction                                                       |
| 113 | processes such as slab dehydration and redox melting.                                                                             |
| 114 | Electrical conductivity measurements of crustal regions are usually                                                               |
| 115 | obtained from magnetotelluric deep-sounding surveys <mark>(Adetunji et al., 2015;</mark>                                          |
| 116 | Aizawa et al., 2014; Aizawa et al., 2009; Aizawa et al., 2005; Bai et al., 2010;                                                  |
| 117 | Cherevatova et al., 2015b; Comeau et al., 2020a; Comeau et al., 2020b; Comeau et                                                  |
| 118 | al., 2015; Díaz et al., 2012; Heinson and White, 2005; Ingham et al., 2009; Kühn et                                               |
| 119 | al., 2014; Selway, 2014; Selway et al., 2019; Selway et al., 2020; Unsworth, 2010;                                                |
| 120 | Wannamaker et al., 2009). Complementary measurements of electrical                                                                |
| 121 | conductivity determined in the laboratory are a necessity in modeling and                                                         |
| 122 | interpreting field information from the magnetotelluric surveys. Several studies                                                  |
| 123 | already report on the electrical conductivity of the various compositions of                                                      |
| 124 | feldspathic minerals as well as their assemblages <mark>(Hu et al., 2015; Hu et al., 2014;</mark>                                 |
| 125 | Hu et al., 2011; Hu et al., 2013; Jones et al., 2004; Wang et al., 2014a). Through                                                |
| 126 | these experiments, as well as modeling, it has been established that electrical                                                   |
| 127 | conductivity in feldspars occurs by alkali ion diffusion (i.e. via the cations Na $^+$ , K $^+$ ,                                 |
| 128 | and Ca <sup>2+</sup> ). Diffusion progresses either by an interstitial mechanism, if the size of                                  |
| 129 | the alkali ion present is small relative to the parent structure of the mineral, or                                               |
| 130 | through vacancy substitution. Modeling results by Jones et al. (2004) have                                                        |
| 131 | determined that in the albite and K-feldspar crystal structures, the Na $^{\scriptscriptstyle +}$ and K $^{\scriptscriptstyle +}$ |
| 132 | ions move within the (010) plane. The concentrations and relative proportions of                                                  |
| 133 | the different cations, Na <sup>+</sup> , K <sup>+</sup> , and Ca <sup>2+</sup> , will affect the electrical properties of         |

134 feldspar differently. Hu et al. (2013) has reported on the effect of the Na/(Na+K) 135 ratio on the electrical conductivity and proposed a model to this effect. Still, no 136 generalized model that can account for the effect of all cations present in a 137 feldspathic system exists. 138 From electrical conductivity measurements and models of lower crustal, 139 dry and hydrous clinopyroxene, orthopyroxene, and plagioclase, (Yang et al., 140 **2012; Yang et al., 2011)** have suggested that the high electrical conductivities 141 observed in most regions in the lower crust can be explained without 142 contributions from hydrous fluids, melts or graphite films. Yang (2012) has also 143 suggested that oxygen fugacity is directly related to the feldspar water content. 144 Within geological systems, oxygen fugacity,  $(f_{0_2})$ , is expressed as the chemical 145 potential of the oxygen  $(O_2)$  component. Oxygen fugacity is therefore inherently linked to the ratio between the concentrations of ferrous and ferric iron 146 147  $(Fe^{3+}/Fe^{2+})$ , as Fe is generally the most abundant redox-variable element in most magmas (i.e. FeO and Fe<sub>2</sub>O<sub>3</sub>) (Anenburg and O'Neill, 2019; Foley, 2011; Frost, 148 149 **1991; Frost and McCammon, 2008)**. However, experimental systems such as 150 single crystal measurements like those undertaken in this study are devoid of 151 iron; therefore, the use of calibrated solid-state buffers is required. The range of 152 buffers discussed in literature is immense and thus impossible to summarize 153 within this contribution. Instead, we focus on undertaking our measurements at a range of  $f_{0_2}$  conditions expected to exist at varying points in the Earth. 154 Specifically, we look to emulate aspects of the study of (Yang, 2012) in the choice 155 156 of including a reduced, intermediary, and oxidized external buffer. (Yang, 2012) 157 undertook experiments utilizing the reduced iron-wüstite (hereafter referred to 158 as IW), intermediate nickel-nickel oxide (Ni-NiO, hereafter NNO), and oxidized

| 159 | hematite-magnetite (hereafter MH) buffers. In this contribution we have chosen                  |
|-----|-------------------------------------------------------------------------------------------------|
| 160 | to utilize solid-state metal buffers of similar $f_{O_2}$ , namely the reduced                  |
| 161 | molybdenum-molybdenum oxide (Mo-MoO <sub>2</sub> , MMO), the intermediate $f_{O_2}$ NNO,        |
| 162 | and the oxidized rhenium-rhenium oxide (Re-ReO <sub>2</sub> , RRO) buffer. Each of these        |
| 163 | buffers, whilst not physically linked to a geological setting, are used to simulate             |
| 164 | conditions theorized to represent a range of geological conditions. Importantly,                |
| 165 | much of the information that informs $f_{\mathcal{O}_2}$ conditions within the earth comes from |
| 166 | a mix of sources including physical xenolith, peridotite massifs and magmatic                   |
| 167 | studies (primarily via basalts), as well as theoretical, and experimental                       |
| 168 | laboratory studies <mark>(Foley, 2011; Frost and McCammon, 2008).</mark> Thus the buffers       |
| 169 | chosen in this study were selected to encompass a range of settings from heavily                |
| 170 | reduced, emulating deep mantle and deep subduction values (MMO and IW                           |
| 171 | (Yang, 2012) buffers), through the average oxidation state of the lithosphere and               |
| 172 | subduction zones (between FMQ and NNO), and heavily oxidized reproducing                        |
| 173 | crustal processes such as some hydrothermal fluids and ore bodies (RRO and MH                   |
| 174 | (Yang, 2012). Importantly, the coupling of the water content to the $f_{O_2}$                   |
| 175 | conditions has significant implications for processes such as dehydration and                   |
| 176 | redox melting within subducting slabs, as well as at the base of continental crusts             |
| 177 | where granites and other silicic melts are likely to intrude. It is therefore                   |
| 178 | important to investigate the effect of oxygen fugacity on the electrical                        |
| 179 | conductivity in feldspars to provide further insight into the processes occurring               |
| 180 | during subduction.                                                                              |
| 181 | Given that electrical conductivity in feldspars is primarily by diffusion of                    |
| 182 | alkali ions, the addition of water in the structure is expected to enhance the                  |
| 183 | electrical conductivity <mark>(Hu et al., 2011; Maury, 1968; Wang et al., 2014a; Yang et</mark> |

| 184 | al., 2012),. Water can be incorporated in the feldspar structure as a hydroxyl ion           |
|-----|----------------------------------------------------------------------------------------------|
| 185 | or water molecule <mark>(Wright et al., 1996). Wang et al. (2014a)</mark> reports on the     |
| 186 | electrical conductivity in feldspar on hydrated samples and proposes a model                 |
| 187 | that suggests a direct contribution of water to the electrical conductivity.                 |
| 188 | Measurements <mark>by Ni et al. (2011)</mark> on dry and hydrous glasses, also suggest that  |
| 189 | water enhances electrical conductivity in glasses of feldspathic composition. It             |
| 190 | should be noted, however, that given the amorphous nature of glasses,                        |
| 191 | conduction in these systems is not analogous to that of crystalline substrates. In           |
| 192 | addition, (Behrens, 2021) showed that hydrous species in feldspar exist                      |
| 193 | predominantly as OH groups and as small amounts of molecular $H_2O$ . The water              |
| 194 | content is determined not only by the presence of water molecules, that may be               |
| 195 | accommodated at defects sites such as at alkali vacancy sites, but also by the               |
| 196 | water pressure, i.e. the water fugacity. Coupled substitution can occur where                |
| 197 | hydrogen and alkali ions are substituted for a silicon ion with the protons                  |
| 198 | residing at interstitial sites. Oxygen fugacity can, in addition, control the $OH^-$ ion     |
| 199 | content, thereby having a strong influence on its electrical conductivity.                   |
| 200 | Therefore, while it is well established that conduction in feldspars is                      |
| 201 | primarily via the diffusion of alkali ions, and that water is likely to enhance              |
| 202 | conduction it is less clear what, if any, interplay between these two systems                |
| 203 | exists. Specifically in instances where hydration is well below the saturation               |
| 204 | point of feldspars, clarification is needed on which system, the ionic (i.e. alkali          |
| 205 | diffusion), or proton (i.e. H <sup>+</sup> diffusion), is dominant or if some combination of |
| 206 | both is present. In this paper, we aim to investigate the effect of nominal                  |
| 207 | hydration on the electrical conductivity in Andesine feldspar under a range of               |
| 208 | oxygen fugacity conditions that are analogous to those within subduction zones               |

and crustal regimes. In order to determine the electrical conductivity response,

210 we undertake a series of complex impedance measurements at 1 GPa (~30 km

211 under continents or ~7 km under oceans) and temperatures to a maximum of

212 1273 K.

213

### 214 **Experimental Details**

215 All samples used in the experiments were cored from a single gem-quality andesine crystal obtained from Nuevo Casas Grande in Chihuahua (Mexico). The 216 217 initial crystal was chemically homogenous (Ab<sub>49</sub>An<sub>48</sub>Or<sub>3</sub>) (Table 1) and optically 218 clear with no visible fractures or alteration products. Though crystallographic 219 orientation measurements were not carried out on the crystal, coring was done 220 in the same direction for all the samples used so that the same crystal orientation 221 would be used in all experiments. The samples measured about 2.0mm in 222 diameter and 1.2mm in length. The schematic of the cell assembly used in the 223 electrical conductivity experiments is shown in Figure 2 and is similar to that 224 used in (Amulele et al., 2019). The sample was fitted into an alumina sleeve and 225 was sealed between two metal electrodes at both ends. Metal electrodes have 226 been used as solid oxygen buffers in laboratory electrical conductivity 227 experiments at high pressures and temperatures, where evidence from scanning 228 electron microscopy of the coexistence of the metal and its metal oxide confirms 229 buffering (Dai and Karato, 2014; Dai et al., 2009). Molybdenum, nickel, and 230 rhenium metal electrodes were used in separate experiments. Metal oxide buffers were selected to encompass a range of  $f_{O_2}$  conditions. Specifically, Ni-NiO 231 encompassing -23 to -9 log  $f_{O_2}$  (~ +1 to +0.73  $\Delta$ FMQ), Mo-MoO<sub>2</sub> -30 to -13 232  $\log f_{0_2}$  (~ -6.5 to -3.5  $\Delta$ FMQ), and Re-ReO<sub>2</sub> -20 to -7 log  $f_{0_2}$  (~ +3.8 to +2.5  $\Delta$ FMQ) 233

| 234                                    | from 773 – 1373 K. The electrodes were stored in an oven at 393 K for at least a                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 235                                    | week before experiments and only those with a visible oxide coating were                                                                                                                                                                                                                                                                                                                                                                                                        |
| 236                                    | selected for use in experiments. Two Pt/Pt-10%Rh (S-type) thermocouples were                                                                                                                                                                                                                                                                                                                                                                                                    |
| 237                                    | connected at both ends to the electrodes. These served to measure temperature                                                                                                                                                                                                                                                                                                                                                                                                   |
| 238                                    | as well as complete the electrical conductivity path through the sample. Heating                                                                                                                                                                                                                                                                                                                                                                                                |
| 239                                    | was achieved using a graphite furnace. The error in temperature is taken to be                                                                                                                                                                                                                                                                                                                                                                                                  |
| 240                                    | approximately 50°C, and is based on the design and size of the pressure cell                                                                                                                                                                                                                                                                                                                                                                                                    |
| 241                                    | (Leinenweber et al., 2012). 18 mm truncated edge length (TEL) MgO-Cr <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                |
| 242                                    | doped octahedra were used and were compressed within a cavity formed by                                                                                                                                                                                                                                                                                                                                                                                                         |
| 243                                    | eight, 11 mm TEL tungsten carbide anvils using a calibrated 500-ton multi-anvil                                                                                                                                                                                                                                                                                                                                                                                                 |
| 244                                    | high-pressure system. Effective pressure errors on experiments presented here                                                                                                                                                                                                                                                                                                                                                                                                   |
| 245                                    | are in the order of approximately $\pm 0.5$ GPa as expected for a multi-anvil                                                                                                                                                                                                                                                                                                                                                                                                   |
| 246                                    | apparatus not associated with a light source at working pressures of less than 10                                                                                                                                                                                                                                                                                                                                                                                               |
| 247                                    | GPa ( Ito, 2007; and references therein; Dai and Karato, 2009; Frost et al., 2004).                                                                                                                                                                                                                                                                                                                                                                                             |
| 240                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 248                                    | Before each conductivity experiment, the completed assembly was stored for at                                                                                                                                                                                                                                                                                                                                                                                                   |
| 248                                    | Before each conductivity experiment, the completed assembly was stored for at least 12 hours in oven at a temperature of 393 K to minimize the absorption of                                                                                                                                                                                                                                                                                                                    |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 249                                    | least 12 hours in oven at a temperature of 393 K to minimize the absorption of                                                                                                                                                                                                                                                                                                                                                                                                  |
| 249<br>250                             | least 12 hours in oven at a temperature of 393 K to minimize the absorption of moisture from the assembly parts and ceramic cement to fill the gaps.                                                                                                                                                                                                                                                                                                                            |
| 249<br>250<br>251                      | least 12 hours in oven at a temperature of 393 K to minimize the absorption of<br>moisture from the assembly parts and ceramic cement to fill the gaps.<br>Impedance spectroscopy measurements were carried out, over a frequency                                                                                                                                                                                                                                               |
| 249<br>250<br>251<br>252               | least 12 hours in oven at a temperature of 393 K to minimize the absorption of<br>moisture from the assembly parts and ceramic cement to fill the gaps.<br>Impedance spectroscopy measurements were carried out, over a frequency<br>range of 10 Hz – 1 MHz, at 1 GPa, and over a temperature range of 373 to 1273 K                                                                                                                                                            |
| 249<br>250<br>251<br>252<br>253        | least 12 hours in oven at a temperature of 393 K to minimize the absorption of<br>moisture from the assembly parts and ceramic cement to fill the gaps.<br>Impedance spectroscopy measurements were carried out, over a frequency<br>range of 10 Hz – 1 MHz, at 1 GPa, and over a temperature range of 373 to 1273 K<br>using a 1260 Solatron Impedance Gain-Phase Analyzer. The sample's impedance                                                                             |
| 249<br>250<br>251<br>252<br>253<br>254 | least 12 hours in oven at a temperature of 393 K to minimize the absorption of<br>moisture from the assembly parts and ceramic cement to fill the gaps.<br>Impedance spectroscopy measurements were carried out, over a frequency<br>range of 10 Hz – 1 MHz, at 1 GPa, and over a temperature range of 373 to 1273 K<br>using a 1260 Solatron Impedance Gain-Phase Analyzer. The sample's impedance<br>at each temperature was determined from the complex plane ( $Z' - Z''$ ) |

$$\sigma = \frac{L}{Z' \cdot S} \tag{1}$$

| 258 | where $L$ is the length and $S$ the cross-sectional area of the sample, both measured        |
|-----|----------------------------------------------------------------------------------------------|
| 259 | by a calibrated high-resolution Leica M205C optical microscope after sample                  |
| 260 | polishing at the end of each experiment. $Z'$ is the real part of the impedance,             |
| 261 | corresponding to the intersection of the electrical response with the real axis.             |
| 262 | Samples were polished on both sides down to thicknesses of less than 2 mm                    |
| 263 | (Table 1) and unpolarized FTIR measurements carried out in transmission mode                 |
| 264 | to quantify the water contents. A ThermoFisher iN10 FTIR spectrometer was                    |
| 265 | used for this analysis. Spectra were collected over a frequency range of 3000-               |
| 266 | 4000 cm <sup>-1</sup> with a 4 cm <sup>-1</sup> resolution and averaged over 128 scans. EPMA |
| 267 | measurements were carried out using a Cameca SX100 probe on the run                          |
| 268 | products to determine the elemental compositions. FTIR and EPMA                              |
| 269 | measurements were also collected on the parent sample.                                       |
| 270 |                                                                                              |
| 271 | Results                                                                                      |
| 272 | Figure 3 shows an optical image of MQ026 and SEM images of MQ046,                            |

273 MQ049 and MQ50, that have been sectioned and polished after the experiments.

274 Apart from the decompression cracks observed, the samples are optically clear

and chemically homogenous single crystals. Table 1 shows results of

276 experiments carried out, including results from EPMA and FTIR analysis both

277 before and after the electrical conductivity measurements. The electrodes used

to control oxygen fugacity during runs are also listed for each experiment.

Although we did not analyze the metal oxide films at the electrodes after the

280 experiments while carrying out SEM EDS analysis, based on comparison with

- 281 previous investigations of the chemical environment, pressure, temperatures
- 282 (e.g. (Dai et al., 2016; Dai and Karato, 2014)) as well as from studied oxidation

- kinetics of nickel (Rosa, 1982; Unutulmazsoy et al., 2017) we are confident that
- the systems were buffered at the respective oxygen fugacities. Oxygen fugacity
- values for each metal-metal oxide buffer at ambient pressure (1 bar) are
- 286 calculated from expressions obtained by (O'Neill, 1986; O'Neill and Pownceby,
- 287 **1993; Pownceby and O'Neill, 1994)**:
- 288 Mo-MoO<sub>2</sub>: (O'Neill, 1986)
- $289 -603,268 + 337.460 T 20.6892 T \ln T (2)$
- 290 Ni-NiO: (O'Neill and Pownceby, 1993)
- $-478,967 + 248.514 T 9.7961 T \ln T$ (3)
- 292 Re-ReO<sub>2</sub>: (Pownceby and O'Neill, 1994)
- 293  $-451,020 + 297.595 T 14.6585 T \ln T$  (4)
- 294 The chemical formula of the Andesine is determined to be Ca0.5Na0.5Al1.5Si2.5O8.
- Na<sup>+</sup> ions are the primary contributor to electrical conductivity (Hu et al., 2011;
- 296 Maury, 1968; Wang et al., 2014a; Yang et al., 2012). The concentration from K<sup>+</sup>
- 297 ions is very low and does not significantly contribute to the electrical
- 298 conductivity. The contribution from Ca<sup>2+</sup> ions to electrical conductivity, on the
- other hand, has not been well documented yet but probably plays a greater role
- at temperatures above 1500K when desorption of Na has been known to take
- 301 place (Campone et al., 1995). Elemental compositions taken after all the
- 302 experiments are essentially the same as those in the parent crystal (Table 1). No
- 303 loss of sodium or calcium to the alumina capsule is observed to take place from
- 304 the samples, within the temperature range studied.
- 305 The parent crystal used as the starting sample for all electrical
- 306 conductivity measurements was analyzed prior to the experiments and
- 307 displayed no discernable FTIR spectra, thus indicating it to be dry. FTIR spectra

308 from all the samples recovered from the electrical conductivity runs (Figure 4) 309 show one broad peak centered around 3400 cm<sup>-1</sup> indicating that water was 310 absorbed by the sample from the surrounding pressure medium materials at 311 high temperature during the experiment. The 3400 cm<sup>-1</sup> peak is similar to that 312 observed in most feldspars (Behrens, 2021; Johnson and Rossman, 2003; Yang, 313 2012) and indicates multiple OH sites in the crystal structure (Yang et al., 2015). 314 Molecular water also shows a broad peak about this frequency in some minerals (Kronenberg, 1994) but given that several temperature sweeps were carried out 315 316 and the systems equilibrated, the water in the samples is believed not to be 317 molecular but structural. The water contents of the recovered samples were 318 calculated by applying Beer-Lambert's law using the expression:

319 
$$C_{w} = \int_{3000}^{3700} \frac{H(v)}{I \cdot t \cdot \gamma} dv$$
 (5)

320 where  $\int H(v) dv$  is the absorption per cm integrated over the frequency range 321 3000 – 3700 cm<sup>-1</sup>, *I* is the specific absorption coefficient of andesine from 322 (Johnson and Rossman, 2003) (107,000 l mol<sup>-1</sup> cm<sup>-2</sup>), *t* is the thickness of the 323 sample and  $\gamma$  is the orientation factor (1.0). The recovered MQ026 sample contains the highest content of water while MQ046 contains the least (Table 1). 324 325 **Figure 5** shows the raw impedance spectra plotted in the complex plane 326 at selected temperatures from experiment MQ046 which was buffered to RRO 327 (other experiments spectra shown in Supplementary Figure 1). The spectra are 328 fitted with an impedance-constant phase element (CPE) model which is able to 329 cater for any distortions in the half circle. However, in cases where we do not 330 obtain a good fit the intercept of the model with the Z' axis is used to determine

the resistance (Karato and Wang, 2013). Electrical conductivity is related to theactivation enthalpy through the Arrhenius equation:

333 
$$\sigma = A \exp\left(-\frac{\Delta H}{RT}\right) \tag{6}$$

334 were  $\sigma$  is the electrical conductivity, *A* is the pre-exponent factor,  $\Delta H$  the

activation enthalpy, *R* the ideal gas constant, and *T* the temperature.

Two experiments, MQ046 and MQ049 were carried out using Re 336 337 electrodes. FTIR measurements after the experiments show a nominal uptake of 338 water in the sample from the assembly parts. Activation enthalpies of 1.0 eV and 339 0.77 eV and were calculated from MQ046 and MQ049, respectively. Experiment 340 MQ050 was carried out using Mo electrodes and 51 ppm wt. H<sub>2</sub>O was measured 341 in the sample recovered from the experiment. An activation enthalpy of 0.81 eV 342 was calculated from this experiment. In experiments MQ026 and MQ061, 343 electrical conductivity measurements were carried out using Ni electrodes. In 344 both experiments, an activation enthalpy of 0.78 eV was calculated. The same 345 activation enthalpy is obtained despite the large variance in water contents 346 measured in the recovered samples: 557 and 77 ppm wt. H<sub>2</sub>O, respectively. 347 **Figure 6** summarizes the Arrhenius relationships from all the experiments and also compares them with selected literature data (Hu et al., 2011; Maury, 1968; 348 349 Wang et al., 2014a; Yang et al., 2012). Figure 7 shows the relationship between 350 the activation enthalpies and the water contents, with exception to the result 351 from experiment MQ026. We observe that the activation enthalpy increases 352 with the decrease in water content and approaches 1.0 eV for dry Andesine. 353

354 **Discussion** 

In our investigations, FTIR measurements before and after the experiments show nominal uptake of water by the samples. Yang et al. (2012) also reported a lower activation enthalpy and higher conductivity with increasing water content in plagioclase. Electrical conductivity can be expressed as a function of water content and oxygen fugacity through the more general Arrhenius equation:

361 
$$\sigma = A \cdot C_w^r \cdot f_{O_2}^q \cdot exp\left(-\frac{\Delta H}{RT}\right)$$
(7)

where,  $C_w$  is the water content,  $f_{O_2}$  is the oxygen fugacity and r and q are the water content and oxygen fugacity exponents, respectively. To estimate r we carried out regression analysis, simultaneously, on the parameters A, r and  $\Delta H$ using Equation (7) (taking  $f_{O_2}^q$  as 1), and the measured water contents,  $C_w$ . The calculation of q is addressed in the context of the literature data below. In the nominally hydrated feldspar systems that we measured, we obtained values of rranging between 0.52 and 0.81(Table 1).

Figure 8 shows the water content measured in the feldspar plotted as a function of oxygen fugacity, calculated at 1073 K. Our results are plotted over those from Yang (2012), which were determined under saturated hydrous conditions for each buffer. This demonstrates that our conductivity experiments were carried out in nominally hydrous systems well below the saturation limit for each buffer. Hence our experiments show a minimal effect on the water content in andesine as a function of oxygen fugacity.

Figure 9 shows the relationship of the activation enthalpies obtained as a
function of oxygen fugacity determined from experiments MQ049, MQ050, and
MQ061. The choice of plotting only these three experiments is based on the

| 379 | reason that the water contents measured in the three samples are comparable,            |
|-----|-----------------------------------------------------------------------------------------|
| 380 | within experimental error, whereas an order of magnitude increase in water              |
| 381 | content is observed in MQ026, while MQ046 remains essentially dry after the             |
| 382 | experiment. Based on the saturation point determined by Yang (2012) for the             |
| 383 | NNO buffer, experiment MQ026 represents a case where the sample was                     |
| 384 | oversaturated. The fugacity values from each metal-metal oxide are obtained             |
| 385 | from expressions obtained <mark>by (O'Neill, 1986; O'Neill and Pownceby, 1993;</mark>   |
| 386 | Pownceby and O'Neill, 1994), and are calculated at 1 GPa. Our results show a            |
| 387 | decrease in the activation enthalpy with an increase in oxygen fugacity (from           |
| 388 | Mo-MoO2 to Ni-NiO to Re-ReO2 buffers).                                                  |
| 389 | Experiments MQ049, MQ050, and MQ061 were also used to determine                         |
| 390 | the value of the oxygen fugacity exponent, $q$ , given in the electrical conductivity   |
| 391 | model ( <b>Figure 10</b> ). The electrical conductivity in andesine decreases with an   |
| 392 | increase in oxygen fugacity. An average oxygen fugacity exponent value of -0.069        |
| 393 | $\pm$ 0.005 is calculated over the temperature range of 873 K – 1073 K. This value is   |
| 394 | obtained by averaging the slopes of each temperature profile in Figure 10 and is        |
| 395 | similar to that obtained by (Dai and Karato, 2014) for hydrous olivine in the           |
| 396 | upper mantle ( $q = -0.066$ ). Additionally, our $q$ value is close to that for hydrous |
| 397 | wadsleyite (-0.058) in the mantle transition zone <mark>(Dai and Karato, 2009)</mark> . |
| 398 | According to Dai and Karato (2014), a value of $q = -0.069$ is consistent with a        |
| 399 | conductivity mechanism that involves protons. Therefore, noting that the                |
| 400 | mobility of alkali ions is the dominant mechanism for electrical conductivity in        |
| 401 | feldspars (i.e. ionic conduction), at least two conduction mechanisms must be           |
| 402 | present, with the additional contribution being that of protons.                        |
|     |                                                                                         |

| 403 | Defect chemistry of hydrous olivine and hydrous wadsleyite systems                                                               |
|-----|----------------------------------------------------------------------------------------------------------------------------------|
| 404 | shows that the concentration of defects is related to the chemical environment,                                                  |
| 405 | and can be expressed as (Dai and Karato, 2014):                                                                                  |
| 406 | $[X] \propto f_{H_2O}^p \cdot f_{O_2}^q \cdot a_{MeO}^s \tag{8}$                                                                 |
| 407 | where <i>p</i> , <i>q</i> , and <i>s</i> are constants dependent on defect type, $f_{H_2O}$ is the water                         |
| 408 | fugacity and <i>a</i> the activity of the metal oxide buffer. In a hydrous system where                                          |
| 409 | electrical conductivity is mainly attributed to interstitial mobility protons (H <sup>+</sup> ), $q$                             |
| 410 | ≈ - <sup>1</sup> / <sub>8</sub> and $r \approx \frac{3}{4}$ in Equation (7). In the same way, within a hydrous system            |
| 411 | where electrical conductivity is attributed to alkali ions, especially when the role                                             |
| 412 | of water and alkali ions are interconnected through another defect site like the                                                 |
| 413 | $AlO_4^-$ site, such as the one presented here, the absolute value of $q$ in both                                                |
| 414 | Equations (7) and (8) works out to be much lower.                                                                                |
| 415 | Hu et al. (2013) suggests that Ca increases the Na-Na ionic distance thus                                                        |
| 416 | increasing the hopping energy and in retrospect the activation enthalpy. <mark>Jones et</mark>                                   |
| 417 | al. (2004), on the other hand, calculated a lower activation enthalpy for Na $^+$ in K-                                          |
| 418 | feldspar than for K <sup>+</sup> in K-feldspar, concluding that a more open structure                                            |
| 419 | facilitates a lower energy migration pathway. This is further supported by a                                                     |
| 420 | recent study by <mark>Hergemoller et al. (2017)</mark> who demonstrated that self-diffusion                                      |
| 421 | of Na <sup>+</sup> is ~1000 times faster than K <sup>+</sup> in alkali feldspar even when the                                    |
| 422 | concentration of Na <sup>+</sup> is only $\sim$ 1/6 that of K <sup>+</sup> . Diffusion of alkali ions, and                       |
| 423 | therefore electrical conductivity in an alkali dominated mineral, is heavily                                                     |
| 424 | dependent on the concentration of ions within the lattice as explained by                                                        |
| 425 | Hergemoller et al. (2017). A finding which lends further credence to the                                                         |
| 426 | assertion that Na <sup>+</sup> ions are the primary conduction mechanism in our system in                                        |
| 427 | part due to the low concentration of K <sup>+</sup> ions (Na <sub>2</sub> 0: K <sub>2</sub> 0 $\approx$ 11:1) within the lattice |

| 428 | for this sample and the larger ionic radii of K <sup>+</sup> (K <sup>+</sup> = 152 pm > Na <sup>+</sup> = 102 pm $\approx$ |
|-----|----------------------------------------------------------------------------------------------------------------------------|
| 429 | $Ca^{2+}=100 \text{ pm}$ (Shannon, 1976)). Importantly, we do not consider $Ca^{2+}$ in our                                |
| 430 | model despite it being the dominant alkali ion (26.2 wt. %) as this is a twofold                                           |
| 431 | problem. Firstly, there are limited contributions that discuss Ca <sup>2+</sup> as a charge                                |
| 432 | carrier except for those that focus on clinopyroxene group minerals. Secondly, in                                          |
| 433 | our system and based on the results of <mark>(Campone et al., 1995)</mark> , despite the                                   |
| 434 | similar ionic radii of Ca $^{2+}$ to Na $^+$ the temperatures under which our experiments                                  |
| 435 | were carried out will limit the activity of $Ca^{2+}$ until Na <sup>+</sup> desorption occurs at                           |
| 436 | ${\sim}1500$ K. Therefore, we consider that at crustal pressures and temperatures the                                      |
| 437 | conductivity of feldspar group minerals will be primarily controlled by the                                                |
| 438 | mobility of Na <sup>+</sup> ions. Comparing experiment MQ050 with that of Wang et al.                                      |
| 439 | (2014a), where the same pre-exponent factor is obtained in both, within                                                    |
| 440 | experimental error, there is an increase in activation enthalpy from 0.81 eV to                                            |
| 441 | 1.06 eV for a decrease in Ca concentration from 10.2 wt % to 0.2 wt. %,                                                    |
| 442 | indicating that a more open structure enhances electrical conductivity. Note that                                          |
| 443 | there is a near factor of 2 drop in water content from Wang et al. (2014a) to                                              |
| 444 | MQ050.                                                                                                                     |
| 445 |                                                                                                                            |
| 446 | The implication for the Farth's crust                                                                                      |

## 446 **The implication for the Earth's crust**

Redox regimes within the Earth range from ~FMQ -5 at the base of the
upper mantle through to ~FMQ +4 in some heavily oxidized mineral systems
(Foley, 2011; Frost, 1991; Frost and McCammon, 2008). Most oceanic and
subduction zone settings, however, encompass a much narrower range from
~FMQ -2 through ~FMQ+1, making the NNO buffer the most appropriate for
these settings. This is with the exception of deep subduction regions where the

| 453 | range of $f_{O_2}$ values widen once more, suggesting that the MMO and IW buffers                   |
|-----|-----------------------------------------------------------------------------------------------------|
| 454 | become more appropriate. MH and RRO buffers are extremely oxidizing and can                         |
| 455 | be considered useful in understanding fluid processes within the crust,                             |
| 456 | specifically hydrothermal and magmatic systems such as those that produce ore                       |
| 457 | deposits <mark>(Richards, 2011; Richards, 2014; Richards, 2015; Wang et al., 2014b).</mark>         |
| 458 | Albite is the most abundant feldspar within crustal regions due, in part, to                        |
| 459 | its significant distribution within the oceanic lithosphere (i.e. as a major                        |
| 460 | constituent in basalts and gabbros). The albite electrical conductivity model                       |
| 461 | presented in this study may be useful in several ways. Specifically, in the                         |
| 462 | monitoring of volcanic systems <mark>(Aizawa et al., 2014; Aizawa et al., 2009; Aizawa</mark>       |
| 463 | et al., 2005; Comeau et al., 2015; Díaz et al., 2012; Ingham et al., 2009); in                      |
| 464 | understanding shallow structures such as crustal-scale brittle and ductile                          |
| 465 | fracture zones <mark>(Comeau et al., 2020b; Karas et al., 2017; Ozaydin et al., 2018;</mark>        |
| 466 | Tank et al., 2018); in understanding deep earth structure and plumbing systems                      |
| 467 | (Bai et al., 2010; Comeau et al., 2020a; Kühn et al., 2014; Unsworth, 2010;                         |
| 468 | Wannamaker et al., 2009); in searching for resource zones <mark>(Cherevatova et al.,</mark>         |
| 469 | <mark>2015a; Corseri et al., 2017; Heinson et al., 2006);</mark> as well as in (volatile sensitive) |
| 470 | deep earth sounding studies <mark>(Adetunji et al., 2015; Cherevatova et al., 2015a;</mark>         |
| 471 | Selway, 2014). When coupled with the distribution of other feldspar minerals                        |
| 472 | our conductivity data can elucidate the mechanism of conduction across a wide                       |
| 473 | range of compositions and geological settings. An area of special interest would                    |
| 474 | be the lower crust, which is known to be primarily composed of clinopyroxene,                       |
| 475 | orthopyroxene, and plagioclase group minerals such as andesine (albite).                            |
| 476 | Electrical conductivity results obtained from magnetotelluric field                                 |
| 477 | measurements of the lower crust fall within the range $10^{-4} - 10^{-1}$ S/m (Figure 1).           |

478 These are much higher values than laboratory measurements that have been 479 obtained for typical crustal minerals and mineral aggregates such as quartz, amphibole, and micas (see (Amulele et al., 2019; Hu et al., 2018)). The most 480 481 likely mineral to influence the electrical conductivity of the lower crust is 482 clinopyroxene given its high conductivity relative to other phases (i.e. olivine and and esine ), and its high volume fraction ( $\sim 60\%$ ) increasing the likelihood of 483 484 forming interconnected networks (Yang et al., 2011). Additionally, clinopyroxene 485 is also able to accommodate a much higher hydrogen content than other crustal 486 minerals such as quartz, although much less than minerals with hydroxyl groups 487 in their structure such as micas and amphiboles. Laboratory measurements 488 indicate that for clinopyroxene to have high electrical conductivity values, it only 489 needs to contain a few tens to a few hundred ppm wt. H<sub>2</sub>O at lower crustal 490 temperatures (Yang et al., 2011). Conversely, our measurements indicate that 491 the electrical conductivity of a naturally dry plagioclase feldspar can be low and only increases above 10<sup>-4</sup> S/m when it is hydrated with as little as 50 ppm wt. 492 493 H<sub>2</sub>O. These values imply a highly dry crust in certain regions of the Earth that 494 may be dominated by plagioclase feldspars with regions of nominal hydration. 495 Nevertheless, the contributions from the constituent minerals (clinopyroxene, 496 orthopyroxene, and andesine ) as well as contributions from partial melts and 497 graphite films must be taken into account. Each of these components has been 498 considered extensively when modeling conductivities in the Earth's crust and 499 mantle, although most works focus on identifying individual contributors and no 500 complete model for the lithosphere currently exists (Ingham et al., 2009; Jones, 501 1992; Özaydın and Selway, 2020).

| 502 | In summary, we have presented new data on the electrical conductivity                           |
|-----|-------------------------------------------------------------------------------------------------|
| 503 | and the likely conduction mechanisms in a single crystal of andesine at crustal                 |
| 504 | pressures and temperatures. Our data highlights that at 1 GPa and temperatures                  |
| 505 | ranging from 573 K to 1273 K the electrical conductivity of andesine feldspar                   |
| 506 | increases with increasing water content from $10^{-4}$ to $10^{-1}$ S/m. The activation         |
| 507 | enthalpy decreases with increasing water content from ${\sim}1.0$ eV for the                    |
| 508 | completely dry feldspar to $\sim$ 0.77 eV for samples with >50 ppm H <sub>2</sub> O. Activation |
| 509 | enthalpy is also found to decrease mildly with increasing oxygen fugacity for                   |
| 510 | comparable water contents. Given this moderate decrease it can be said that                     |
| 511 | conductivity, expressed as $\log_{10} A$ , increases with increasing oxidation (i.e. ReO <      |
| 512 | NNO < MMO). Finally, we report an oxygen fugacity exponent of -0.069 within                     |
| 513 | the nominally hydrated experiments which, based on literature, indicates an                     |
| 514 | electrical conductivity mechanism that involves the mobility of hydrogen as well                |
| 515 | as alkali ions. Our results are, therefore, of specific use in the modeling and                 |
| 516 | interpretation of MT responses recorded within the initial stages of subduction                 |
| 517 | down to depths of $\sim$ 30 km into the lithosphere, where a slab would be hydrated,            |
| 518 | and within redox regime of the NNO buffer.                                                      |
|     |                                                                                                 |

519

# 520 Acknowledgment

The authors thank L. Spruženiece for the supply of the Nuevo Casas
Grande andesine used at the starting material in this study as well as many
helpful discussions about felspars. We would like to thank Prof. G. Heinson,
University of Adelaide, for the loan of the 1260 Solatron Impedance Gain-Phase
Analyzer. The authors acknowledge useful discussions around oxygen fugacity

526 from M. Anenburg; comments and helpful insights from M Klöcking; and the

- 527 generation of conductivity models to provide some of the values in Figure 1 by S.
- 528 Özaydin using the MATE software.
- 529 An earlier version of this manuscript was improved by the insights of two
- anonymous reviewers and editor from a previous submission to another journal,
- 531 for which we thank them immensely. We gratefully acknowledge and thank our
- reviewers, including Dr. Xiaozhi Yang for their constructive comments and
- 533 insights from the two American Mineralogist submissions. We thank Dr. Daniel
- Hummer for extensive editorial assistance and useful comments on the
- 535 manuscript during the original submission, and during resubmission. We also
- acknowledge and thank Dr. Zhicheng Jing for editorial handling of the
- 537 resubmission.
- 538

### 539 Author Contributions:

- 540 GMA designed the study with useful discussions from SMC. GMA and AWL
- 541 carried out the experiments. GMA undertook analysis and interpretation of
- results in collaboration with AWL. GMA wrote the initial manuscript. AWL
- 543 undertook extensive edits, submitted, and revised the paper with GMA. All
- 544 authors have contributed to, read, and agreed to the final manuscript.
- 545

### 546 Funding:

- 547 This is contribution xxx from the ARC Centre of Excellence for Core to Crust Fluid
- 548 Systems (http://www.ccfs.mq.edu.au). The analytical data were obtained using
- 549 instrumentation funded by DEST Systemic Infrastructure Grants, ARC LIEF,
- 550 NCRIS/AuScope, industry partners, and Macquarie University. High-pressure
- equipment and consumables were obtained from an ARC LIEF (LE160100103) to

- 552 Prof. S. F. Foley (SMC CI), and an ARC Discovery (DP160103502) to SMC.
- 553 Additional laboratory and consumables funding were provided through the ARC
- 554 Centre of Excellence for Core to Crust Fluid Systems. Some of the FTIR analysis
- 555 was obtained using the Bruker FTIR V70 FTIR system located at the University of
- 556 Hawaii, instrument funded by NSF grant No. EAR-0957137. AWL was supported
- 557 during his Masters of Research by and Macquarie University Faculty of Science
- 558 HDR funds. AWL is currently funded by a Deutscher Akademischer
- 559 Austauschdienst (German Research Exchange Service) Research Grant (Grant
- 560 No. 57507869) and an Australian Government Research Training Program (RTP)
- 561 Stipend and RTP Fee-Offset Scholarship through Macquarie University
- 562 (Allocation No. 2018177).

### 563 **References**

| 564 | Adetunji, A.Q., Ferguson, I.J., and Jones, A.G. (2015) Imaging the mantle             |
|-----|---------------------------------------------------------------------------------------|
| 565 | lithosphere of the Precambrian Grenville Province: large-scale electrical             |
| 566 | resistivity structures. Geophysical Journal International, 201(2), 1040-              |
| 567 | 1061.                                                                                 |
| 568 | Aizawa, K., Koyama, T., Hase, H., Uyeshima, M., Kanda, W., Utsugi, M., Yoshimura,     |
| 569 | R., Yamaya, Y., Hashimoto, T., Yamazaki, K.i., Komatsu, S., Watanabe, A.,             |
| 570 | Miyakawa, K., and Ogawa, Y. (2014) Three-dimensional resistivity                      |
| 571 | structure and magma plumbing system of the Kirishima Volcanoes as                     |
| 572 | inferred from broadband magnetotelluric data. Journal of Geophysical                  |
| 573 | Research: Solid Earth, 119(1), 198-215.                                               |
| 574 | Aizawa, K., Ogawa, Y., and Ishido, T. (2009) Groundwater flow and hydrothermal        |
| 575 | systems within volcanic edifices: Delineation by electric self-potential and          |
| 576 | magnetotellurics. Journal of Geophysical Research: Solid Earth, 114(B1),              |
| 577 | n/a-n/a.                                                                              |
| 578 | Aizawa, K., Yoshimura, R., Oshiman, N., Yamazaki, K., Uto, T., Ogawa, Y., Tank, S.B., |
| 579 | Kanda, W., Sakanaka, S., Furukawa, Y., Hashimoto, T., Uyeshima, M.,                   |
| 580 | Ogawa, T., Shiozaki, I., and Hurst, A.W. (2005) Hydrothermal system                   |
| 581 | beneath Mt. Fuji volcano inferred from magnetotellurics and electric self-            |
| 582 | potential. Earth and Planetary Science Letters, 235(1–2), 343-355.                    |
| 583 | Amulele, G.M., Lanati, A.W., and Clark, S.M. (2019) Electrical conductivity studies   |
| 584 | on silica phases and the effects of phase transformation. American                    |
| 585 | Mineralogist, 104(12), 1800-1805.                                                     |

| 586 | Anenburg, M., and O'Neill, H.C. (2019) Redox in Magmas: Comment on a Recent              |
|-----|------------------------------------------------------------------------------------------|
| 587 | Treatment of the Kaiserstuhl Volcanics (Braunger et al., Journal of                      |
| 588 | Petrology, 59, 1731–1762, 2018) and Some Other Misconceptions. Journal                   |
| 589 | of Petrology, 60(9), 1825–1832.                                                          |
| 590 | Bai, D., Unsworth, M.J., Meju, M.A., Ma, X., Teng, J., Kong, X., Sun, Y., Sun, J., Wang, |
| 591 | L., Jiang, C., Zhao, C., Xiao, P., and Liu, M. (2010) Crustal deformation of the         |
| 592 | eastern Tibetan plateau revealed by magnetotelluric imaging. Nature                      |
| 593 | Geosci, 3(5), 358-362.                                                                   |
| 594 | Behrens, H. (2021) Hydrogen defects in feldspars: defect properties and                  |
| 595 | implications for water solubility in feldspar. Physics and Chemistry of                  |
| 596 | Minerals, 48.                                                                            |
| 597 | Bosi, F., Hatert, F., Halenius, U., Pasero, M., Ritsuro, M., and Mills, S.J. (2019) On   |
| 598 | the application of the IMA-CNMNC dominant-valency rule to complex                        |
| 599 | mineral compositions. Mineralogical Magazine, 83(5), 627-632.                            |
| 600 | Campone, P., Magliocco, M., Spinolo, G., and Vedda, A. (1995) Ionic transport in         |
| 601 | crystalline SiO2: The role of alkali-metal ions and hydrogen impurities.                 |
| 602 | Physical Review B, 52(22), 15903-15908.                                                  |
| 603 | Cherevatova, M., Smirnov, M.Y., Jones, A.G., Pedersen, L.B., Becken, M., Biolik, M.,     |
| 604 | Cherevatova, M., Ebbing, J., Gradmann, S., Gurk, M., Hübert, J., Jones, A.G.,            |
| 605 | Junge, A., Kamm, J., Korja, T., Lahti, I., Löwer, A., Nittinger, C., Pedersen,           |
| 606 | L.B., Savvaidis, A., and Smirnov, M. (2015a) Magnetotelluric array data                  |
| 607 | analysis from north-west Fennoscandia. Tectonophysics, 653, 1-19.                        |
|     |                                                                                          |

| 608 | Cherevatova, M., Smirnov, M.Y., Jones, A.G., Pedersen, L.B., Becken, M., Biolik, M.,  |
|-----|---------------------------------------------------------------------------------------|
| 609 | Cherevatova, M., Ebbing, J., Gradmann, S., Gurk, M., Hubert, J., Jones, A.G.,         |
| 610 | Junge, A., Kamm, J., Korja, T., Lahti, I., Lower, A., Nittinger, C., Pedersen,        |
| 611 | L.B., Savvaidis, A., Smirnov, M., and Grp, M.W. (2015b) Magnetotelluric               |
| 612 | array data analysis from north-west Fennoscandia. Tectonophysics, 653,                |
| 613 | 1-19.                                                                                 |
| 614 | Comeau, M.J. (2015) Electrical Resistivity Structure of the Altiplano-Puna Magma      |
| 615 | Body and Volcan Uturuncu from Magnetotelluric Data, Doctor of                         |
| 616 | Philosophy. University of Alberta.                                                    |
| 617 | Comeau, M.J., Becken, M., Connolly, J.A.D., Grayver, A.V., and Kuvshinov, A.V.        |
| 618 | (2020a) Compaction-Driven Fluid Localization as an Explanation for                    |
| 619 | Lower Crustal Electrical Conductors in an Intracontinental Setting.                   |
| 620 | Geophysical Research Letters, 47(19).                                                 |
| 621 | Comeau, M.J., Becken, M., Kaufl, J.S., Grayver, A.V., Kuvshinov, A.V., Tserendug, S., |
| 622 | Batmagnai, E., and Demberel, S. (2020b) Evidence for terrane boundaries               |
| 623 | and suture zones across Southern Mongolia detected with a 2-                          |
| 624 | dimensional magnetotelluric transect. Earth Planets and Space, 72(1).                 |
| 625 | Comeau, M.J., Unsworth, M.J., Ticona, F., and Sunagua, M. (2015) Magnetotelluric      |
| 626 | images of magma distribution beneath Volcan Uturuncu, Bolivia:                        |
| 627 | Implications for magma dynamics. Geology, 43(3), 243-246.                             |
| 628 | Corseri, R., Senger, K., Selway, K., Abdelmalak, M.M., Planke, S., and Jerram, D.A.   |
| 629 | (2017) Magnetotelluric evidence for massive sulphide mineralization in                |

| 630 | intruded sediments of the outer Voring Basin, mid-Norway. |
|-----|-----------------------------------------------------------|
|     |                                                           |

- 631 Tectonophysics, 706, 196-205.
- Dai, L., and Karato, S.I. (2009) Electrical conductivity of wadsleyite at high
- 633 temperatures and high pressures. Earth and Planetary Science Letters,
- 634 287(1-2), 277-283.
- 635 Dai, L.D., Hu, H.Y., Li, H.P., Wu, L., Hui, K.S., Jiang, J.J., and Sun, W.Q. (2016)
- Influence of temperature, pressure, and oxygen fugacity on the electricalconductivity of dry eclogite, and geophysical implications. Geochemistry
- 638 Geophysics Geosystems, 17(6), 2394-2407.
- Dai, L.D., and Karato, S. (2014) Influence of oxygen fugacity on the electrical
- 640 conductivity of hydrous olivine: Implications for the mechanism of
- 641 conduction. Physics of the Earth and Planetary Interiors, 232, 57-60.
- Dai, L.D., Li, H.P., Hu, H.Y., and Shan, S.M. (2009) Novel technique to control
- 643 oxygen fugacity during high-pressure measurements of grain boundary
- 644 conductivities of rocks. Review of Scientific Instruments, 80(3).
- Díaz, D., Brasse, H., and Ticona, F. (2012) Conductivity distribution beneath
- 646 Lascar volcano (Northern Chile) and the Puna, inferred from
- 647 magnetotelluric data. Journal of Volcanology and Geothermal Research,
- 648 217–218, 21-29.
- Duba, A., Heard, H.C., and Schock, R.N. (1974) Electrical-Conductivity of Olivine at
  High-Pressure and under Controlled Oxygen Fugacity. Journal of
  Geophysical Research, 79(11), 1667-1673.

- Duba, A.G., and Shankland, T.J. (1982) Free Carbon and Electrical-Conductivity in
- the Earths Mantle. Geophysical Research Letters, 9(11), 1271-1274.
- 654 Fitzpatrick, A.D. (2006) Scale dependent electrical properties of sulphide
- 655 deposits. University of Tasmania.
- 656 Foley, S.F. (2011) A Reappraisal of Redox Melting in the Earth's Mantle as a
- 657 Function of Tectonic Setting and Time. Journal of Petrology, 52(7-8),
- 6581363-1391.
- Frost, B.R. (1991) Introduction to oxygen fugacity and its petrologic importance.

660 Reviews in Mineralogy and Geochemistry, 25(1), 1-9.

- Frost, D.J., and McCammon, C.A. (2008) The redox state of Earth's mantle. Annual
  Review of Earth and Planetary Sciences, 36, 389-420.
- 663 Haak, V., and Hutton, R. (1986) Electrical resistivity in continental lower crust. In
- J.B. Dawson, D.A. Carswell, J. Hall, and K.H. Wedepohl, Eds. The Nature of
  the Lower Continental Crust, 24. Geological Society Special Publication.
- Heinson, G., and White, A. (2005) Electrical resistivity of the Northern Australian
  lithosphere: Crustal anisotropy or mantle heterogeneity? Earth and
  Planetary Science Letters, 232(1-2), 157-170.
- Heinson, G.S., Direen, N.G., and Gill, R.M. (2006) Magnetotelluric evidence for a
- 670 deep-crustal mineralizing system beneath the Olympic Dam iron oxide
- 671 copper-gold deposit, southern Australia. Geology, 34(7), 573-576.

| 672 | Heinson, G.S., | and Lilley, F.E.M. | (1993) An A | Application of | Thin-Sheet |
|-----|----------------|--------------------|-------------|----------------|------------|
|-----|----------------|--------------------|-------------|----------------|------------|

- Electromagnetic Modeling to the Tasman Sea. Physics of the Earth and
  Planetary Interiors, 81(1-4), 231-251.
- Hergemoller, F., Wegner, M., Deicher, M., Wolf, H., Brenner, F., Hutter, H., Abart,
- 676 R., and Stolwijk, N.A. (2017) Potassium self-diffusion in a K-rich single-
- 677 crystal alkali feldspar. Physics and Chemistry of Minerals, 44(5), 345-351.
- Hirsch, L.M., Shankland, T.J., and Duba, A.G. (1993) Electrical-Conduction and
- 679 Polaron Mobility in Fe-Bearing Olivine. Geophysical Journal International,
  680 114(1), 36-44.
- Hu, H.Y., Dai, L.D., Li, H.P., Hui, K.S., and Li, J. (2015) Temperature and pressure
- dependence of electrical conductivity in synthetic anorthite. Solid StateIonics, 276, 136-141.
- Hu, H.Y., Dai, L.D., Li, H.P., Jiang, J.J., and Hui, K.S. (2014) Electrical conductivity of
  K-feldspar at high temperature and high pressure. Mineralogy and
  Petrology, 108(5), 609-618.
- Hu, H.Y., Dai, L.D., Li, H.P., Sun, W.Q., and Li, B.S. (2018) Effect of dehydrogenation
  on the electrical conductivity of Fe-bearing amphibole: Implications for
- high conductivity anomalies in subduction zones and continental crust.
  Earth and Planetary Science Letters, 498, 27-37.
- Hu, H.Y., Li, H.P., Dai, L.D., Shan, S.M., and Zhu, C.M. (2011) Electrical conductivity
  of albite at high temperatures and high pressures. American Mineralogist,
  96(11-12), 1821-1827.

| 694 | (2013) Electrical conductivity of alkali feldspar solid solutions at high             |
|-----|---------------------------------------------------------------------------------------|
| 695 | temperatures and high pressures. Physics and Chemistry of Minerals,                   |
| 696 | 40(1), 51-62.                                                                         |
| 697 | Ingham, M.R., Bibby, H.M., Heise, W., Jones, K.A., Cairns, P., Dravitzki, S., Bennie, |
| 698 | S.L., Caldwell, T.G., and Ogawa, Y. (2009) A magnetotelluric study of                 |
| 699 | Mount Ruapehu volcano, New Zealand. Geophysical Journal International,                |
| 700 | 179(2), 887-904.                                                                      |
| 701 | Johnson, E.A., and Rossman, G.R. (2003) The concentration and speciation of           |
| 702 | hydrogen in feldspars using FTIR and H-1 MAS NMR spectroscopy.                        |
| 703 | American Mineralogist, 88(5-6), 901-911.                                              |
| 704 | Jones, A. (1992) Electrical conductivity of the continental lower crust. In D.M.      |
| 705 | Fountain, R.J. Arculus, and R.W. Kay, Eds. Continental Lower Crust, p. 81.            |
| 706 | Elsevier.                                                                             |
| 707 | Jones, A., Islam, M.S., Mortimer, M., and Palmer, D. (2004) Alkali ion migration in   |
| 708 | albite and K-feldspar. Physics and Chemistry of Minerals, 31(5), 313-320.             |
| 709 | Karas, M., Tank, S.B., and Ozaydin, S. (2017) Electrical conductivity of a locked     |
| 710 | fault: investigation of the Ganos segment of the North Anatolian Fault                |
| 711 | using three-dimensional magnetotellurics. Earth Planets and Space, 69.                |
| 712 | Karato, S., and Wang, D.J. (2013) Electrical Conductivity of Minerals and Rocks. In   |
| 713 | S. Karato, Ed. Physics and Chemistry of the Deep Earth. John Wiley & Sons,            |
| 714 | Ltd.                                                                                  |

| 715 | Kariya, K.A., and Shankland, T.J. (1983) Electrical-Conductivity of Dry Lower |
|-----|-------------------------------------------------------------------------------|
|     |                                                                               |

- 716 Crustal Rocks. Geophysics, 48(1), 52-61.
- 717 Keller, G. (1966) Electrical Properties of Rocks and Minerals. Handbook of
- 718 Physical Constants, 97. The Geological Society of America.
- 719 Kronenberg, A.K. (1994) Hydrogen Speciation and Chemical Weakening of
- 720 Quartz. Silica: Physical Behavior, Geochemistry and Materials
- 721 Applications, 29, 123-176.
- 722 Kühn, C., Küster, J., and Brasse, H. (2014) Three-dimensional inversion of
- magnetotelluric data from the Central Andean continental margin. Earth,
  Planets and Space, 66(1), 112.
- Leinenweber, K.D., Tyburczy, J.A., Sharp, T.G., Soignard, E., Diedrich, T., Petuskey,
- 726 W.B., Wang, Y.B., and Mosenfelder, J.L. (2012) Cell assemblies for
- 727 reproducible multi-anvil experiments (the COMPRES assemblies).
- 728 American Mineralogist, 97(2-3), 353-368.
- 729 Lizarralde, D., Chave, A., Hirth, G., and Schultz, A. (1995) Northeastern Pacific
- 730 Mantle Conductivity Profile from Long-Period Magnetotelluric Sounding
- 731 Using Hawaii-to-California Submarine Cable Data. Journal of Geophysical
- 732 Research-Solid Earth, 100(B9), 17837-17854.
- Maury, R. (1968) Conductivilite electrique des tectosilicates. II. Discussion des
  resultats. Bulletin de la Societe Francaise de Mineralogie et
- 735 Cristallographie, 91, 355 366.

| 736 | Nesbitt, B.E. (1993) Electrical Resistivities of Crustal Fluids. Journal of           |
|-----|---------------------------------------------------------------------------------------|
| 737 | Geophysical Research-Solid Earth, 98(B3), 4301-4310.                                  |
| 738 | Ni, H.W., Keppler, H., Manthilake, M.A.G.M., and Katsura, T. (2011) Electrical        |
| 739 | conductivity of dry and hydrous NaAlSi308 glasses and liquids at high                 |
| 740 | pressures. Contributions to Mineralogy and Petrology, 162(3), 501-513.                |
| 741 | O'Neill, H.S.C. (1986) Mo-Mo02 (MOM) oxygen buffer and the free energy of             |
| 742 | formation of Mo02. American Mineralogist, 71, 1007 - 1010.                            |
| 743 | O'Neill, H.S.C., and Pownceby, M.I. (1993) Thermodynamic data from redox              |
| 744 | reactions at high temperatures. I. An experimental and theoretical                    |
| 745 | assessment of the electrochemical method using stabilized zirconia                    |
| 746 | electrolytes, with revised values for the Fe - "FeO", Co- CoO, Ni - NiO and           |
| 747 | Cu- CuzO oxygen buffers, and new data for the W-WO2 buffer.                           |
| 748 | Contributions to Mineralogy and Petrology, 114, 296 - 314.                            |
| 749 | Özaydın, S., and Selway, K. (2020) MATE: An analysis tool for the interpretation      |
| 750 | of magnetotelluric models of the mantle. Geochemistry Geophysics                      |
| 751 | Geosystems, 21.                                                                       |
| 752 | Ozaydin, S., Tank, S.B., and Karas, M. (2018) Electrical resistivity structure at the |
| 753 | North-Central Turkey inferred from three-dimensional magnetotellurics.                |
| 754 | Earth Planets and Space, 70.                                                          |
| 755 | Palacky, G.J. (1987) 3. Resistivity Characteristics of Geologic Targets.              |
| 756 | Electromagnetic Methods in Applied Geophysics: Volume 1, Theory, p. 52-               |
| 757 | 129.                                                                                  |

| 758                             | Pownceby, M.I., and O'Neill, H.S.C. (1994) Thermodynamic data from redox                                                                                                                                                                                                                                                                      |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 759                             | reactions at high temperatures. IV. Calibration of the Re-ReO2 oxygen                                                                                                                                                                                                                                                                         |
| 760                             | buffer from EMF and NiO + Ni-Pd redox sensor measurements.                                                                                                                                                                                                                                                                                    |
| 761                             | Contributions to Mineralogy and Petrology, 118, 130 - 137.                                                                                                                                                                                                                                                                                    |
| 762                             | Presnall, D.C., Simmons, C.L., and Porath, H. (1972) Changes in Electrical                                                                                                                                                                                                                                                                    |
| 763                             | Conductivity of a Synthetic Basalt during Melting. Journal of Geophysical                                                                                                                                                                                                                                                                     |
| 764                             | Research, 77(29), 5665-&.                                                                                                                                                                                                                                                                                                                     |
| 765                             | Richards, J.P. (2011) Magmatic to hydrothermal metal fluxes in convergent and                                                                                                                                                                                                                                                                 |
| 766                             | collided margins. Ore Geology Reviews, 40(1), 1-26.                                                                                                                                                                                                                                                                                           |
| 767                             | (2014) Discussion of Sun et al. (2013): The link between reduced porphyry                                                                                                                                                                                                                                                                     |
| 768                             | copper deposits and oxidized magmas. Geochimica Et Cosmochimica Acta,                                                                                                                                                                                                                                                                         |
| 769                             | 126, 643-645.                                                                                                                                                                                                                                                                                                                                 |
|                                 |                                                                                                                                                                                                                                                                                                                                               |
| 770                             | (2015) The oxidation state, and sulfur and Cu contents of arc magmas:                                                                                                                                                                                                                                                                         |
| 770<br>771                      | (2015) The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny. Lithos, 233, 27-45.                                                                                                                                                                                                                       |
|                                 |                                                                                                                                                                                                                                                                                                                                               |
| 771                             | implications for metallogeny. Lithos, 233, 27-45.                                                                                                                                                                                                                                                                                             |
| 771<br>772                      | implications for metallogeny. Lithos, 233, 27-45.<br>Rosa, C.J. (1982) The High-Temperature Oxidation of Nickel. Corrosion Science,                                                                                                                                                                                                           |
| 771<br>772<br>773               | implications for metallogeny. Lithos, 233, 27-45.<br>Rosa, C.J. (1982) The High-Temperature Oxidation of Nickel. Corrosion Science, 22(12), 1081-1088.                                                                                                                                                                                        |
| 771<br>772<br>773<br>774        | <ul> <li>implications for metallogeny. Lithos, 233, 27-45.</li> <li>Rosa, C.J. (1982) The High-Temperature Oxidation of Nickel. Corrosion Science, 22(12), 1081-1088.</li> <li>Schultz, A., Kurtz, R.D., Chave, A.D., and Jones, A.G. (1993) Conductivity</li> </ul>                                                                          |
| 771<br>772<br>773<br>774<br>775 | <ul> <li>implications for metallogeny. Lithos, 233, 27-45.</li> <li>Rosa, C.J. (1982) The High-Temperature Oxidation of Nickel. Corrosion Science, 22(12), 1081-1088.</li> <li>Schultz, A., Kurtz, R.D., Chave, A.D., and Jones, A.G. (1993) Conductivity Discontinuities in the Upper-Mantle beneath a Stable Craton. Geophysical</li> </ul> |

| 779                                    | Selway, K., O'Donnell, J.P., and Ozaydin, S. (2019) Upper Mantle Melt Distribution                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 780                                    | From Petrologically Constrained Magnetotellurics. Geochemistry                                                                                                                                                                                                                                                                                                                                          |
| 781                                    | Geophysics Geosystems, 20(7), 3328-3346.                                                                                                                                                                                                                                                                                                                                                                |
| 782                                    | Selway, K., Smirnov, M.Y., Beka, T., O'Donnell, J.P., Minakov, A., Senger, K., Faleide,                                                                                                                                                                                                                                                                                                                 |
| 783                                    | J.I., and Kalscheuer, T. (2020) Magnetotelluric Constraints on the                                                                                                                                                                                                                                                                                                                                      |
| 784                                    | Temperature, Composition, Partial Melt Content, and Viscosity of the                                                                                                                                                                                                                                                                                                                                    |
| 785                                    | Upper Mantle Beneath Svalbard. Geochemistry Geophysics Geosystems,                                                                                                                                                                                                                                                                                                                                      |
| 786                                    | 21(5).                                                                                                                                                                                                                                                                                                                                                                                                  |
| 787                                    | Shannon, R.D. (1976) Revised Effective Ionic-Radii and Systematic Studies of                                                                                                                                                                                                                                                                                                                            |
| 788                                    | Interatomic Distances in Halides and Chalcogenides. Acta                                                                                                                                                                                                                                                                                                                                                |
| 789                                    | Crystallographica Section A, 32(Sep1), 751-767.                                                                                                                                                                                                                                                                                                                                                         |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                         |
| 790                                    | Simpson, F. (2002) A comparison of electromagnetic distortion and resolution of                                                                                                                                                                                                                                                                                                                         |
| 790<br>791                             | Simpson, F. (2002) A comparison of electromagnetic distortion and resolution of upper mantle conductivities beneath continental Europe and the                                                                                                                                                                                                                                                          |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                         |
| 791                                    | upper mantle conductivities beneath continental Europe and the                                                                                                                                                                                                                                                                                                                                          |
| 791<br>792                             | upper mantle conductivities beneath continental Europe and the<br>Mediterranean using islands as windows. Physics of the Earth and                                                                                                                                                                                                                                                                      |
| 791<br>792<br>793                      | upper mantle conductivities beneath continental Europe and the<br>Mediterranean using islands as windows. Physics of the Earth and<br>Planetary Interiors, 129(1-2), 117-130.                                                                                                                                                                                                                           |
| 791<br>792<br>793<br>794               | upper mantle conductivities beneath continental Europe and the<br>Mediterranean using islands as windows. Physics of the Earth and<br>Planetary Interiors, 129(1-2), 117-130.<br>Simpson, F., and Bahr, K. (2005) Practical Magnetotellurics. Cambridge                                                                                                                                                 |
| 791<br>792<br>793<br>794<br>795        | upper mantle conductivities beneath continental Europe and the<br>Mediterranean using islands as windows. Physics of the Earth and<br>Planetary Interiors, 129(1-2), 117-130.<br>Simpson, F., and Bahr, K. (2005) Practical Magnetotellurics. Cambridge<br>University Press.                                                                                                                            |
| 791<br>792<br>793<br>794<br>795<br>796 | <ul> <li>upper mantle conductivities beneath continental Europe and the<br/>Mediterranean using islands as windows. Physics of the Earth and<br/>Planetary Interiors, 129(1-2), 117-130.</li> <li>Simpson, F., and Bahr, K. (2005) Practical Magnetotellurics. Cambridge<br/>University Press.</li> <li>Tank, S.B., Ozaydin, S., and Karas, M. (2018) Revealing the electrical properties of</li> </ul> |

| 800 | Telford, W.M., Geldart, L.P., and Sheriff, R.E. (1990) Magnetic Methods. Applied |
|-----|----------------------------------------------------------------------------------|
| 801 | Geophysics, p. 62-135. Cambridge University Press.                               |

- 802 Tyburczy, J.A., and Waff, H.S. (1983) Electrical-Conductivity of Molten Basalt and
- 803 Andesite to 25 Kilobars Pressure Geophysical Significance and
- 804 Implications for Charge Transport and Melt Structure. Journal of
- 805 Geophysical Research, 88(Nb3), 2413-2430.
- 806 Unsworth, M. (2010) Magnetotelluric Studies of Active Continent–Continent
- 807 Collisions. Surveys in Geophysics, 31(2), 137-161.
- 808 Unutulmazsoy, Y., Merkle, R., Fischer, D., Mannhart, J., and Maier, J. (2017) The
- 809 oxidation kinetics of thin nickel films between 250 and 500 degrees C.

810 Physical Chemistry Chemical Physics, 19(13), 9045-9052.

- 811 Utada, H., Koyama, T., Shimizu, H., and Chave, A.D. (2003) A semi-global
- 812 reference model for electrical conductivity in the mid-mantle beneath the
- 813 north Pacific region. Geophysical Research Letters, 30(4).
- 814 Waff, H.S. (1974) Theoretical Considerations of Electrical-Conductivity in a
- Partially Molten Mantle and Implications for Geothermometry. Journal of
  Geophysical Research, 79(26), 4003-4010.
- 817 Wang, D.J., and Karato, S.I. (2013) Electrical conductivity of talc aggregates at 0.5
- 818 GPa: influence of dehydration. Physics and Chemistry of Minerals, 40(1),
  819 11-17.

| 820 | Wang, D.J., Yu, Y.J., and Zhou, Y.S. (2014a) Electrical conductivity anisotropy in      |
|-----|-----------------------------------------------------------------------------------------|
| 821 | alkali feldspar at high temperature and pressure. High Pressure Research,               |
| 822 | 34(3), 297-308.                                                                         |
| 823 | Wang, R., Richards, J.P., Hou, Z.Q., Yang, Z.M., Gu, Z.B., and DuFrane, S.A. (2014b)    |
| 824 | Increasing Magmatic Oxidation State from Paleocene to Miocene in the                    |
| 825 | Eastern Gangdese Belt, Tibet: Implication for Collision-Related Porphyry                |
| 826 | Cu-Mo +/- Au Mineralization. Economic Geology, 109(7), 1943-1965.                       |
| 827 | Wannamaker, P.E., Caldwell, T.G., Jiracek, G.R., Maris, V., Hill, G.J., Ogawa, Y.,      |
| 828 | Bibby, H.M., Bennie, S.L., and Heise, W. (2009) Fluid and deformation                   |
| 829 | regime of an advancing subduction system at Marlborough, New Zealand.                   |
| 830 | Nature, 460(7256), 733-736.                                                             |
| 831 | Wright, K., Freer, R., and Catlow, C.R.A. (1996) Water-related defects and oxygen       |
| 832 | diffusion in albite: A computer simulation study. Contributions to                      |
| 833 | Mineralogy and Petrology, 125(2-3), 161-166.                                            |
| 834 | Xu, Y.S., Poe, B.T., Shankland, T.J., and Rubie, D.C. (1998) Electrical conductivity of |
| 835 | olivine, wadsleyite, and ringwoodite under upper-mantle conditions.                     |
| 836 | Science, 280(5368), 1415-1418.                                                          |
| 837 | Xu, Y.S., and Shankland, T.J. (1999) Electrical conductivity of orthopyroxene and       |
| 838 | its high pressure phases. Geophysical Research Letters, 26(17), 2645-                   |
| 839 | 2648.                                                                                   |
| 840 | Yang, X.Z. (2012) An experimental study of H solubility in feldspars: Effect of    |
|-----|------------------------------------------------------------------------------------|
| 841 | composition, oxygen fugacity, temperature and pressure and implications            |
| 842 | for crustal processes. Geochimica Et Cosmochimica Acta, 97, 46-57.                 |
| 843 | Yang, X.Z., Keppler, H., McCammon, C., and Ni, H.W. (2012) Electrical conductivity |
| 844 | of orthopyroxene and plagioclase in the lower crust. Contributions to              |
| 845 | Mineralogy and Petrology, 163(1), 33-48.                                           |
| 846 | Yang, X.Z., Keppler, H., McCammon, C., Ni, H.W., Xia, Q.K., and Fan, Q.C. (2011)   |
| 847 | Effect of water on the electrical conductivity of lower crustal                    |
| 848 | clinopyroxene. Journal of Geophysical Research-Solid Earth, 116.                   |
| 849 | Yang, Y., Xia, Q.K., and Zhang, P.P. (2015) Evolution of OH groups in diopside and |
| 850 | feldspars with temperature. European Journal of Mineralogy, 27(2), 185-            |
| 851 | 192.                                                                               |
| 852 |                                                                                    |
| 853 |                                                                                    |

## 854 **Figure Captions**:

| 855                                                  | Figure 1: Electrical conductivity ranges for i) Earth materials, ii) Major mantle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 856                                                  | minerals, iii) Crust and upper mantle (from MT sounding), iv) Analytical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 857                                                  | electrical response models . Fields labelled a) – e) are based on values from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 858                                                  | (Utada et al., 2003) and represent the range of electrical responses from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 859                                                  | crust through to the deep mantle (including transition zone (TZ)) beneath the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 860                                                  | North Pacific where a) represents lithosphere (0 – 100 Km); b) the upper mantle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 861                                                  | (100 – 410 Km, olivine stable); c) upper TZ (410 – 550 km, wadsleyite stable); d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 862                                                  | lower TZ (550 – 660 Km, ringwoodite stable); and e) lower mantle ( >660 Km).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 863                                                  | An upper and lower bound for each field for i) – iv) is given by a resistivity (ohm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 864                                                  | meter) and conductivity (S/m) with the bars colored across a gradient from red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 865                                                  | (conductive) to purple (resistive) illustrating electrical response relative to other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 866                                                  | materials. Data references: graphite <mark>(Duba and Shankland, 1982; Simpson and</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 867                                                  | Bahr, 2005); sulfides (Fitzpatrick, 2006; Keller, 1966; Telford et al., 1990));                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 867<br>868                                           | Bahr, 2005); sulfides <mark>(Fitzpatrick, 2006; Keller, 1966; Telford et al., 1990))</mark> ;<br>brines and geothermal <mark>fluids (Nesbitt, 1993)</mark> ; graphitic <mark>schist (Comeau, 2015)</mark> ;                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 868                                                  | brines and geothermal <mark>fluids (Nesbitt, 1993)</mark> ; graphitic <mark>schist (Comeau, 2015)</mark> ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 868<br>869                                           | brines and geothermal <mark>fluids (Nesbitt, 1993)</mark> ; graphitic <mark>schist (Comeau, 2015)</mark> ;<br>seawater <mark>((Simpson and Bahr, 2005) (Comeau, 2015)</mark> ; partial melt (as 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 868<br>869<br>870                                    | brines and geothermal <mark>fluids (Nesbitt, 1993)</mark> ; graphitic <mark>schist (Comeau, 2015)</mark> ;<br>seawater <mark>((Simpson and Bahr, 2005) (Comeau, 2015)</mark> ; partial melt (as 5%<br>basaltic melt from 1000 – 1200°C <mark>) (Presnall et al., 1972; Tyburczy and Waff,</mark>                                                                                                                                                                                                                                                                                                                                                              |
| 868<br>869<br>870<br>871                             | brines and geothermal fluids (Nesbitt, 1993); graphitic schist (Comeau, 2015);<br>seawater ((Simpson and Bahr, 2005) (Comeau, 2015); partial melt (as 5%<br>basaltic melt from 1000 – 1200°C) (Presnall et al., 1972; Tyburczy and Waff,<br>1983; Waff, 1974); pure melt (basalt 1200°C) (Tyburczy and Waff, 1983; Waff,                                                                                                                                                                                                                                                                                                                                      |
| 868<br>869<br>870<br>871<br>872                      | brines and geothermal fluids (Nesbitt, 1993); graphitic schist (Comeau, 2015);<br>seawater ((Simpson and Bahr, 2005) (Comeau, 2015); partial melt (as 5%<br>basaltic melt from 1000 – 1200°C) (Presnall et al., 1972; Tyburczy and Waff,<br>1983; Waff, 1974); pure melt (basalt 1200°C) (Tyburczy and Waff, 1983; Waff,<br>1974); weathered granite, sandstone and limestone (Comeau, 2015); igneous                                                                                                                                                                                                                                                         |
| 868<br>869<br>870<br>871<br>872<br>873               | brines and geothermal fluids (Nesbitt, 1993); graphitic schist (Comeau, 2015);<br>seawater ((Simpson and Bahr, 2005) (Comeau, 2015); partial melt (as 5%<br>basaltic melt from 1000 – 1200°C) (Presnall et al., 1972; Tyburczy and Waff,<br>1983; Waff, 1974); pure melt (basalt 1200°C) (Tyburczy and Waff, 1983; Waff,<br>1974); weathered granite, sandstone and limestone (Comeau, 2015); igneous<br>rocks (resistive bound 500°C, conductive bound 1000°C), basalt, gabbro and                                                                                                                                                                           |
| 868<br>869<br>870<br>871<br>872<br>873<br>873        | brines and geothermal fluids (Nesbitt, 1993); graphitic schist (Comeau, 2015);<br>seawater ((Simpson and Bahr, 2005) (Comeau, 2015); partial melt (as 5%<br>basaltic melt from 1000 – 1200°C) (Presnall et al., 1972; Tyburczy and Waff,<br>1983; Waff, 1974); pure melt (basalt 1200°C) (Tyburczy and Waff, 1983; Waff,<br>1974); weathered granite, sandstone and limestone (Comeau, 2015); igneous<br>rocks (resistive bound 500°C, conductive bound 1000°C), basalt, gabbro and<br>granite (Kariya and Shankland, 1983); olivine, wet (Lizarralde et al., 1995), dry                                                                                      |
| 868<br>869<br>870<br>871<br>872<br>873<br>874<br>875 | brines and geothermal fluids (Nesbitt, 1993); graphitic schist (Comeau, 2015);<br>seawater ((Simpson and Bahr, 2005) (Comeau, 2015); partial melt (as 5%<br>basaltic melt from 1000 – 1200°C) (Presnall et al., 1972; Tyburczy and Waff,<br>1983; Waff, 1974); pure melt (basalt 1200°C) (Tyburczy and Waff, 1983; Waff,<br>1974); weathered granite, sandstone and limestone (Comeau, 2015); igneous<br>rocks (resistive bound 500°C, conductive bound 1000°C), basalt, gabbro and<br>granite (Kariya and Shankland, 1983); olivine, wet (Lizarralde et al., 1995), dry<br>(Duba et al., 1974; Hirsch et al., 1993; Xu et al., 1998); pyroxene (dry) (Xu and |

| 879 | (1,,,,,,,, .       | $V_{2}$ = $(1 + 1)^{2}$ = $(1 + 1)^{2}$ = $(1 + 1)^{2}$ = $(1 + 1)^{2}$ |
|-----|--------------------|-------------------------------------------------------------------------|
| х/ч | Nimncon Zuitzie    | $V_{2}$                                                                 |
| 0/) | JIII JJUII, 2002 J | Values for wet/dry pyroxenite (as Ol-websterite: ol 29%, opx            |

- 41%, cpx 30%, grt 0%) and peridotite (as lherzolite: ol 60%, opx 31%, cpx 9%,
- 881 grt 0% (0 100 km), and ol 60.6%, opx 28.4%, cpx 6%, grt 5% (100 200 km)
- 882 were generated using the MATE program with wet values being modeled
- 883 containing 100 ppm H<sub>2</sub>O (Özaydın and Selway, 2020). After (Fitzpatrick, 2006;
- 884 Palacky, 1987; Simpson and Bahr, 2005) and (Comeau, 2015).
- 885
- 886 **Figure 2**: A schematic of the electrical conductivity high-pressure temperature
- cell used in the multi-anvil experiments (Amulele et al., 2019)
- 888
- Figure 3: Optical image of MQ026 and SEM images of MQ046, MQ049 and MQ50,
- 890 sectioned and polished experimental run products. The samples were optically
- clear single gem-quality crystals of andesine.
- 892
- 893 Figure 4: FTIR Spectra of nominally hydrous andesine obtained after electrical
- 894 conductivity experiments at high pressure and temperature. Inset shows
- detailed view of spectra from experiments MQ046 (brown), MQ049 (red),
- 896 MQ050 (blue), and MQ061 (green).
- 897
- 898 Figure 5: Selected impedance spectra collected during the second temperature
- increase in experiment MQ046. The spectra are fitted with an impedance-
- 900 constant phase element model which is able to cater for any distortions in the
- 901 half circle. However, in cases where we do not obtain a good fit the intercept of
- 902 the model with the Z<sup>'</sup>axis is used to determine the resistance (Karato and Wang,

- 903 **2013**]. Impedance spectra for all experiments can be found in supplementary
- 904 figure 1.
- 905
- 906 Figure 6: Comparing Arrhenius plots obtained in experiments MQ026, MQ046,
- 907 MQ049, MQ050 and MQ061 with literature data from (Hu et al., 2011; Maury,
- 908 1968; Wang et al., 2014a; Yang et al., 2012)
- 909
- 910 **Figure 7**: Relationship between the activation enthalpy and the water content
- from experiments MQ046, MQ049, MQ050 and MQ061, with exception of
- 912 experiment MQ026 which had an order of magnitude higher water content. The
- red line shows the best fit model with the anchor point being MQ050.
- 914
- 915 Figure 8: Water content measured in andesine as a function of oxygen fugacity,
- 916 calculated at 1073 K. Comparison is made with the saturation curve determined
- 917 by Yang (2012) for each buffer (black squares), showing that experiments
- 918 presented here (red triangles) represent water undersaturated conductivity
- 919 measurements. The blue triangle shows MQ046 (2.74 ppm H<sub>2</sub>O), and the green
- 920 triangle shows the excluded MQ026 experiment which, for its buffer, is heavily
- 921 oversaturated (NNO, 557 ppm H<sub>2</sub>O).
- 922
- 923 Figure 9: Activation enthalpy as a function of oxygen fugacity in feldspar at 1 GPa924
- 925 Figure 10: The effect of oxygen fugacity on electrical conductivity in andesine at
- 926 1.0 GPa, temperature range of 873–1073 K, and an average water content of ~67
- ppm wt. H<sub>2</sub>O for experiments MQ049, MQ050 and MQ061.

## 928 Table 1: A summary of experimental conditions and results from the experimental runs carried out

| Exp.               | Т<br>(К)   | Cycles <sup>1</sup> | SiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | Na <sub>2</sub> O | K20  | CaO  | Water content<br>(ppm wt. H <sub>2</sub> O) | ΔН<br>(eV)      | Log <sub>10</sub> A | r               | Electrodes          | Thickness<br>(cm) |
|--------------------|------------|---------------------|------------------|--------------------------------|-------------------|------|------|---------------------------------------------|-----------------|---------------------|-----------------|---------------------|-------------------|
| Parent             |            |                     | 56.7             | 27.2                           | 5.6               | 0.5  | 10.2 | Dry                                         |                 |                     |                 |                     |                   |
| MQ026              | 573 - 1273 | 2                   | 56.1             | 27.5                           | 5.5               | 0.5  | 10.1 | 557                                         | 0.78 ±0.03      | 1.66 ± 0.70         | $0.81 \pm 0.02$ | Ni-NiO              | 0.13              |
| MQ046              | 573 - 1273 | 2                   | 56.2             | 27.5                           | 5.6               | 0.5  | 10.1 | 2.74                                        | $1.00 \pm 0.06$ | 1.10 ± 0.96         | $0.00\pm0.02$   | Re-ReO <sub>2</sub> | 0.17              |
| MQ049              | 573 - 1273 | 2                   | 56.2             | 27.6                           | 5.6               | 0.6  | 10.1 | 72                                          | 0.77 ± 0.03     | $0.80 \pm 0.70$     | 0.66 ± 0.02     | Re-ReO <sub>2</sub> | 0.18              |
| MQ050              | 573 - 1173 | 2                   | 56.2             | 27.6                           | 5.7               | 0.5  | 10.1 | 51                                          | $0.81 \pm 0.02$ | 1.58 ± 0.69         | $0.77\pm0.02$   | Mo-MoO <sub>2</sub> | 0.13              |
| MQ061 <sup>2</sup> | 573 - 1273 | 2                   | N.D.             | N.D.                           | N.D.              | N.D. | N.D. | 77                                          | $0.78 \pm 0.07$ | $1.05 \pm 1.04$     | $0.52 \pm 0.02$ | Ni-NiO              | 0.16              |

Notes:

<sup>1</sup>: Conductivity cycles comprise both a heating and a cooling phase within which conductivity was measured at 100 K intervals.

<sup>2</sup>: Run product for MQ061 was lost in preparation for chemical analysis. We therefore assume the composition of MQ026 to be analogous.

N.D.: Not Determined



| 931 | Figure 1: Electrical conductivity ranges for i) Earth materials, ii) Major mantle minerals, iii) Crust and upper mantle (from MT sounding),                                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 932 | iv) Analytical electrical response models . Fields labelled a) – e) are based on values from (Utada et al., 2003) and represent the range of                                |
| 933 | electrical responses from the crust through to the deep mantle (including transition zone (TZ)) beneath the North Pacific where a)                                          |
| 934 | represents lithosphere (0 – 100 Km); b) the upper mantle (100 – 410 Km, olivine stable); c) upper TZ (410 – 550 km, wadsleyite stable);                                     |
| 935 | d) lower TZ (550 – 660 Km, ringwoodite stable); and e) lower mantle ( >660 Km). An upper and lower bound for each field for i) – iv) is                                     |
| 936 | given by a resistivity (ohm meter) and conductivity (S/m) with the bars colored across a gradient from red (conductive) to purple                                           |
| 937 | (resistive) illustrating electrical response relative to other materials. Data references: graphite <mark>(Duba and Shankland, 1982; Simpson</mark>                         |
| 938 | and Bahr, 2005); sulfides <mark>(Fitzpatrick, 2006; Keller, 1966; Telford et al., 1990))</mark> ; brines and geothermal <mark>fluids (Nesbitt, 1993)</mark> ; graphitic     |
| 939 | <mark>schist (Comeau, 2015)</mark> ; seawater <mark>((Simpson and Bahr, 2005) (Comeau, 2015)</mark> ; partial melt (as 5% basaltic melt from 1000 – 1200°C <mark>)</mark>   |
| 940 | (Presnall et al., 1972; Tyburczy and Waff, 1983; Waff, 1974); pure melt (basalt 1200°C) (Tyburczy and Waff, 1983; Waff, 1974);                                              |
| 941 | weathered granite, sandstone and limestone <mark>(Comeau, 2015)</mark> ; igneous rocks (resistive bound 500°C, conductive bound 1000°C), basalt,                            |
| 942 | gabbro and granite <mark>(Kariya and Shankland, 1983)</mark> ; olivine, wet <mark>(Lizarralde et al., 1995), dry (Duba et al., 1974; Hirsch et al., 1993; Xu et</mark>      |
| 943 | <mark>al., 1998);</mark> pyroxene (dry) <mark>(Xu and Shankland, 1999)</mark> ; Mid-Lower Continental Crust (MLCC) <mark>(Haak and Hutton, 1986; Jones, 1992);</mark> Upper |
| 944 | Continental Mantle (UCM <mark>) (Heinson and Lilley, 1993; Lizarralde et al., 1995)</mark> ; Upper Oceanic Mantle (UOM) <mark>(Schultz et al., 1993;</mark>                 |
| 945 | Simpson, 2002); Values for wet/dry pyroxenite (as Ol-websterite: ol 29%, opx 41%, cpx 30%, grt 0%) and peridotite (as lherzolite: ol                                        |
| 946 | 60%, opx 31%, cpx 9%, grt 0% (0 – 100 km), and ol 60.6%, opx 28.4%, cpx 6%, grt 5% (100 – 200 km) were generated using the MATE                                             |

| 947 | program with wet values being modeled containing 100 ppm $ m H_2O$ (Özaydın and Selway, 2020). After (Fitzpatrick, 2006; Palacky, 1987; |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|
| 948 | Simpson and Bahr, 2005) and (Comeau, 2015).                                                                                             |
| 949 |                                                                                                                                         |



951 952

952 Figure 2: A schematic of the electrical conductivity high-pressure temperature cell used in the multi-anvil experiments (Amulele et al.,

953

<mark>2019)</mark>



- Figure 3: Optical image of MQ026 and SEM images of MQ046, MQ049 and MQ50, sectioned and polished experimental run products.
   The samples were optically clear single gem-quality crystals of andesine.
- 956



957

958 Figure 4: FTIR Spectra of nominally hydrous andesine obtained after electrical conductivity experiments at high pressure and

959 temperature. Inset shows detailed view of spectra from experiments MQ046 (brown), MQ049 (red), MQ050 (blue), and MQ061 (green).



961

Figure 5: Selected impedance spectra collected during the second temperature increase in experiment MQ046. The spectra are fitted
 with an impedance-constant phase element model which is able to cater for any distortions in the half circle. However, in cases where
 we do not obtain a good fit the intercept of the model with the Z' axis is used to determine the resistance (Karato and Wang, 2013).
 Impedance spectra for all experiments can be found in supplementary figure 1.





969

970 Figure 6: Comparing Arrhenius plots obtained in experiments MQ026, MQ046, MQ049, MQ050 and MQ061 with literature data from (Hu

971

et al., 2011; Maury, 1968; Wang et al., 2014a; Yang et al., 2012)



973 974

Figure 7: Relationship between the activation enthalpy and the water content from experiments MQ046, MQ049, MQ050 and MQ061, 975 with exception of experiment MQ026 which had an order of magnitude higher water content. The red line shows the best fit model with 976 the anchor point being MQ050.



Figure 8: Water content measured in andesine as a function of oxygen fugacity, calculated at 1073 K. Comparison is made with the
 saturation curve determined by Yang (2012) for each buffer (black squares), showing that experiments presented here (red triangles)
 represent water undersaturated conductivity measurements. The blue triangle shows MQ046 (2.74 ppm H<sub>2</sub>O), and the green triangle
 shows the excluded MQ026 experiment which, for its buffer, is heavily oversaturated (NNO, 557 ppm H<sub>2</sub>O).



Figure 9: Activation enthalpy as a function of oxygen fugacity in andesine at 1.0 GPa

984 985



987

Figure 10: The effect of oxygen fugacity on electrical conductivity in andesine at 1.0 GPa, temperature range of 873–1073 K, and an

989

average water content of ~67 ppm wt.  $H_2O$  for experiments MQ049, MQ050 and MQ061.