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ABSTRACT 14 

In this paper, we report a first principles molecular dynamics (FPMD) study of 15 

interfacial structures and acidity constants of goethite. The pKas of the groups on 16 

(010), (110), and (021) surfaces (in Pbnm) are derived with the FPMD based vertical 17 

energy gap technique. The results indicate that major reactive groups include 18 

≡Fe2OH2 and ≡FeOH2 on (010), ≡FeOH2, ≡Fe3OLH, and ≡Fe3OUH on (110), and 19 

≡FeOhH2 and ≡Fe2OH on (021). The interfacial structures were characterized in detail 20 

with a focus on the hydrogen bonding environment. With the calculated pKa values, 21 

the point of zero charges (PZCs) of the three surfaces are derived and the overall PZC 22 

range of goethite is found to be consistent with the experiment. We further discuss the 23 

potential applications of these results in future studies towards understanding the 24 

environmental processes of goethite.  25 
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INTRODUCTION 30 

Goethite is the most thermodynamically stable iron oxyhydroxides at ambient 31 

temperature (Cornell and Schwertmann, 2003; Majzlan et al., 2003; Gleason et al., 32 

2008). It is ubiquitous in soils (Sparks, 2003), lakes and marine sediments (van der 33 

Zee et al., 2003), acid mine drainage precipitates (McCarty et al., 1998; Peretyazhko 34 

et al., 2009), and on Mars (Klingelhoefer et al., 2005). Goethite usually expresses 35 

acicular habit and is enclosed by (110), (010), and (021) surfaces (Cornell and 36 

Schwertmann, 2003). Due to its high specific surface area (up to 200 m2/g) 37 

(Schwertmann and Taylor, 1989) and reactivity (Schwertmann and Cornell, 2000), 38 

goethite has a profound effect on the retention of heavy metals cations and 39 

negatively-charged moieties (e.g., As/P oxyanions and organic acids) (Fendorf et al., 40 

1997; Randall et al., 1999; Filius et al., 2000; Ostergren et al., 2000; Kaiser and 41 

Guggenberger, 2007). 42 

Due to the presence of amphoteric surface groups (i.e. OH/OH2 of singly, doubly, 43 

and triply coordinated Fe sites), goethite surfaces can both donate and accept protons, 44 

and the interfacial properties including complexing of cations and anions are 45 

pH-dependent. For example, the adsorption capacities of heavy metal cations and 46 

oxyanions increase and decrease with pH, respectively (Grossl et al., 1997; Kim et al., 47 

2011; Mamindy-Pajany et al., 2011; Komárek et al., 2018). It was also found that 48 

As/P oxyanions and carboxylate groups can form bidentate complexes at low pH and 49 

monodentate or hydrogen-bonded outer-sphere complexes at high pH (Fendorf et al., 50 

1997; Manning et al., 1998; Filius et al., 2000; Ona-Nguema et al., 2005; Persson and 51 
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Axe, 2005; Hanna et al., 2014; Marsac et al., 2016; Yang et al., 2016; Yan and Jing, 52 

2018). As common heavy metal contaminants in water and soils, Pb(II) and Cd(II) 53 

were selected as model cations in many experimental and modeling studies (Spadini 54 

et al., 1994; Venema et al., 1997; Randall et al., 1999; Ostergren et al., 2000; Elzinga 55 

et al., 2001; Boily et al., 2005; Granados-Correa et al., 2011; Leung and Criscenti, 56 

2017; Liu et al., 2018). Using extended x-ray absorption fine structure (EXAFS) 57 

spectroscopy, it was found that Pb(II) and Cd(II) form predominantly edge-sharing 58 

and corner-sharing complexes on goethite, respectively (Randall et al., 1999; 59 

Ostergren et al., 2000). Despite the extensive studies, the microscopic complexation 60 

mechanisms of heavy metal cations, including the complexing sites and structures on 61 

different facets and the corresponding pH-dependence were still poorly understood. 62 

The identities and intrinsic acidity constants of surface groups on goethite are 63 

central to the understanding of the pH-dependent interfacial processes. Unfortunately, 64 

current experimental techniques are unable to distinguish the pKas of minerals with so 65 

many facets and surface sites. Several theoretical approaches including MUSIC 66 

method, static density functional theory (DFT) calculations, and first-principles 67 

molecular dynamics (FPMD) simulations have been utilized to calculate the pKas of 68 

goethite. MUSIC method (Hiemstra et al., 1989) correlates the surface pKa with the 69 

undersaturation of surface oxygen based on bond valence and it is able to calculate the 70 

acidities of groups on different surfaces (Hiemstra et al., 1996). With this method, the 71 

pKas of the groups on (110), (021), and (100) surfaces were obtained, and the 72 

corresponding point of zero charge (PZC) matched with the measured values 73 
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(Venema et al., 1998; Gaboriaud and Ehrhardt, 2003). Despite this agreement, the 74 

pKas cannot be uniquely determined using MUSIC method. For example, essentially 75 

different pKas were obtained for several groups when hydrogen bond contributions 76 

and Fe-O distances derived from classical molecular dynamics simulations were used 77 

as the input of MUSIC (Boily, 2012). According to previous studies, the pKa values 78 

predicted by MUSIC with different proton bond valences and hydrogen bonding 79 

environments can vary up to 5 and 8 pKa units, respectively (Boily et al., 2001; 80 

Gaboriaud and Ehrhardt, 2003). Aquino et al. (2008) derived pKa values based on the 81 

deprotonation free energies from static DFT calculations with cluster surface models 82 

and simplified continuum solvent models. However, the cluster models cannot 83 

distinguish the pKas of different surfaces. 84 

In recent years, FPMD method with periodic surface model and explicit solvent 85 

have been applied to calculate the free energies for a variety of chemical processes at 86 

mineral-water interfaces (Boulet et al., 2006; Watts et al., 2014; Churakov, 2015; 87 

Gaigeot and Sulpizi, 2016; Pouvreau et al., 2017; Churakov and Liu, 2018; Gaigeot 88 

and Sulpizi, 2020). For example, by employing FPMD based free energy calculations, 89 

Klyukin et al. (2018) investigated the release of iron from goethite (110) and (021) 90 

facets. Leung and Criscenti (2012) calculated the potential of mean force associated 91 

with the deprotonation of ≡FeOH2 on (110) surface and obtained a pKa of 7.0. 92 

However, to our knowledge, a dataset of pKas at the FPMD level is still lacking for 93 

goethite surfaces. 94 
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FPMD based vertical energy gap method developed by Sprik group at Cambridge 95 

has proven powerful in pKa prediction (Sulpizi and Sprik, 2008; Costanzo et al., 96 

2011). This method has been validated on molecular acids spanning over 20 pKa units 97 

with an accuracy of 2 pKa units (Park et al., 2006; Cheng et al., 2009; Sulpizi and 98 

Sprik, 2010; Costanzo et al., 2011; Mangold et al., 2011; Cheng et al., 2014). It has 99 

been successfully applied to derive the pKas of surface groups of oxides (Cheng and 100 

Sprik, 2010; Gaigeot et al., 2012; Sulpizi et al., 2012; Liu et al., 2014a; Gittus et al., 101 

2018), hydroxides (Liu et al., 2013a) and clay minerals (Liu et al., 2013b; Liu et al., 102 

2014b). In the present study, this technique was applied to calculate the pKas of major 103 

surfaces of goethite (i.e. (010), (110), and (021)). The interfacial structures are 104 

characterized in detail and the reactive groups have been identified based on the 105 

calculated pKas.  106 

COMPUTATIONAL METHODS 107 

The models 108 

The crystal parameters of goethite used to build surface models are a=4.616 Å,b= 109 

9.956 Å, c=3.025 Å and α=β=γ=90° (in Pbnm) (Alvarez et al., 2008). The (010) 110 

surface (Figure 1a) consisted of 2×1×3 unit cells and it was cut from the bulk crystal 111 

based on the structure from crystal truncation rod analysis (Ghose et al., 2010). Singly 112 

and doubly coordinated groups exist on this surface (i.e. ≡FeOH2 and ≡Fe2OH). (110) 113 

and (021) surfaces were cleaved from the bulk crystal according to the structures 114 

available in the literature (Aquino et al., 2007; Rustad and Boily, 2010; Boily, 2012; 115 

Kubicki et al., 2012; Leung and Criscenti, 2012; Alexandrov and Rosso, 2015; 116 
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Kubicki et al., 2017). One singly coordinated group (≡FeOH), one doubly coordinated 117 

group (≡Fe2OH), and three triply coordinated groups (lower site: ≡Fe3OLH; upper 118 

site: ≡Fe3OUH; site without proton: ≡Fe3O) are present on (110) surface (Figure 1b). 119 

On (021) surface (Figure 1c), there are two kinds of singly coordinated groups 120 

(≡FeOhH2 coordinated with water and ≡FeOH coordinated with OH) and two doubly 121 

coordinated groups (≡Fe2OH at structural O site and ≡Fe2OhH at structural OH site). 122 

All of the surface models created in the present study bear no net charge. 123 

The surface models were placed in 3D periodically repeated orthorhombic cells 124 

with a solution region of 16 Å. The dimensions of the simulation cells are 125 

9.074×9.233×28.000 Å3 for (010) system, 9.074×10.975×26.000 Å3 for (110) system, 126 

and 9.233×11.650×26.000 Å3 for (021) system. 45, 53, and 58 water molecules were 127 

randomly placed in the solution regions of (010), (110), and (021) systems 128 

respectively. These numbers were determined from the density of bulk water. The 129 

water density profiles derived from the trajectories (Figure S1 in the Supplemental1 130 

material) suggested that the ambient water density was reached in the bulk regions. 131 

FPMD Details 132 

The CP2K/QUICKSTEP package (VandeVondele et al., 2005; Hutter et al., 2014) 133 

was used to conduct all FPMD simulations. In this package, the electronic structures 134 

were calculated with the hybrid Gaussian and Plane Wave (GPW) approach (Lippert 135 

et al., 1997). A double-ζ Gaussian-type orbital basis (VandeVondele and Hutter, 2007) 136 

with polarization functions (DZVP) was employed to construct the electronic 137 

wavefunctions. The plane wave basis was expanded to 360 Ry to represent the 138 
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electron density. The Goedecker-Teter-Hutter (GTH) pseudopotentials (Goedecker et 139 

al., 1995) were used to represent the core electrons states. The 140 

Perdew–Burke–Ernzerhof (PBE) functional (Perdew et al., 1997) was used to describe 141 

the exchange-correlation interaction. Van der Waals interactions were taken into 142 

account by using the DFT-D3 dispersion corrections (Grimme et al., 2010). Wave 143 

functions were optimized to a tolerance of 1.0E-6.  144 

All calculations were spin-polarized with the spin multiplicity set to unity. 145 

Antiferromagnetic ordering was adopted as the initial spin configurations for all the 146 

systems with up/down spin Fe atoms locating at alternating layers along [010] 147 

direction (Kubicki et al., 2008; Martin et al., 2009; Kerisit et al., 2016; Bylaska et al., 148 

2020) (Figure 1). The antiferromagnetic configuration was maintained during the 149 

simulations. Our calculations predicted a pKa of 7.3 for ≡FeOH2 on (110) surface, 150 

which is consistent with 7.0 obtained by Leung and Criscenti (2012) using DFT+U 151 

based FPMD simulation. This agreement indicates that the Hubbard U correction does 152 

not have obvious influence on the pKa estimate for the current systems.  153 

Born-Oppenheimer type molecular dynamics (BOMD) simulations were carried 154 

out with a time step of 0.5 fs. NVT ensemble with the Nosé-Hoover chain thermostat 155 

was adopted to propagate the simulations. The temperature was controlled at 330 K. 156 

This temperature was intended to avoid the glassy behavior of liquid water at a lower 157 

temperature (VandeVondele et al., 2004). For each FPMD simulation, an equilibration 158 

runs for at least 2.0 ps was conducted, followed by a production run for over 10.0 ps. 159 
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The pKa values of goethite surface groups were evaluated with the half-reaction 160 

scheme of the vertical energy gap method (Sulpizi and Sprik, 2008; Cheng et al., 161 

2009; Costanzo et al., 2011; Cheng and Sprik, 2012). With this method, the free 162 

energy change of the deprotonation reaction is calculated as the integral of the 163 

ensemble averages of the vertical energy gaps obtained from a series of FPMD 164 

trajectories along the alchemical path from reactant state to product state. The details 165 

are given in section S2 in the Supplemental1 material. 166 

RESULTS AND DISCUSSION 167 

Interfacial structures and pKas 168 

(010) surface. During the free MD simulation, two H2O ligands out of 12 ≡FeOH2 169 

groups left from the Fe atoms, indicating a weak interaction between Fe and the 170 

coordinated water. Similar detachment was also observed in the FPMD study of Chen 171 

et al. (2017). ≡FeOH2 can donate hydrogen bonds to solvent water and the average 172 

coordination number (CN) of water O around the H of ≡FeOH2 is 0.5 (Figure 3a). 173 

≡Fe2OH donates a hydrogen bond to ≡Fe3O in the bulk and at the same time it accepts 174 

on average 0.7 hydrogen bonds from the solvent water (Figure 3b). 175 

The calculated energy gaps and deprotonation free energies of (010) surface 176 

groups are listed in Supplemental1 Table S2, and the obtained pKas are summarized in 177 

Table 1. It can be seen that the vertical energy gaps converge within 0.26 eV 178 

(Supplemental1 Table S2) and the calculated pKas have statistical errors within 2.0 179 

pKa units (Tables 1-3). The calculated pKa of ≡FeOH2 is 10.9, indicating that this 180 

group remains protonated in the near neutral pH range and the deprotonated form can 181 
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occur under basic conditions. The pKas of ≡Fe2OH and ≡Fe2OH2 are 15.4 and 4.7, 182 

respectively, implying that ≡Fe2OH is the most possible form, whereas ≡Fe2OH2 183 

mainly occurs in acidic pH range. Using hydrogen bond valence derived from 184 

classical molecular dynamics simulations, MUSIC method predicted a pKa of 4.3 for 185 

≡Fe2OH2, which is consistent with our prediction (Boily, 2012). No MUSIC result 186 

was reported for ≡Fe2OH to the best of our knowledge. 187 

(110) surface. Most of the OHs of ≡FeOH sites show orientations parallel to the 188 

surface and the rest pointed towards the solution region (Figure 4). Therefore, the 189 

parallelly orientated ≡FeOH can accept hydrogen bonds from both ≡Fe3OLH groups 190 

and solvent water while the others donate hydrogen bonds to solvent water (Figure 4). 191 

The different orientations of OHs were also observed on other (hydr)oxides surfaces, 192 

e.g., gibbsite (Liu et al., 2013a), corundum (Gaigeot et al., 2012), and hematite (von 193 

Rudorff et al., 2016). The OHs of ≡FeOH can switch between the two orientations 194 

and the overall CN between water H and the O of ≡FeOH is 0.97 (Figure 5a). The 195 

OHs of ≡Fe2OH and ≡Fe3OUH point towards the solution region, and both donate 196 

hydrogen bonds to solvent water, with an average CN of 0.97 (Figure 6b) and 0.85 197 

(Figure 5b) respectively. ≡Fe2OH also accepts one hydrogen bond from solvent water 198 

(Figure 6a). ≡Fe3O has no contact with water because of the steric hindrance (Figure 199 

5c).   200 

The pKas of ≡FeOH and ≡FeOH2 are 15.0 and 7.3 respectively (Table 2). 201 

Although the computed pKa of ≡FeOH is smaller than the MUSIC prediction 19.6 202 

(Venema et al., 1998), they both indicate that ≡FeOH is inert. The pKa of ≡FeOH2 is 203 
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similar to the previous FPMD result 7.0 (Leung and Criscenti, 2012) and the MUSIC 204 

result 7.7 (Venema et al., 1998). However, the MUSIC prediction for these groups 205 

will be significantly different if a different hydrogen bonding environment was used 206 

(11.7 or 3.7 and 23.6 or 15.6 would be obtained for ≡FeOH2 and ≡FeOH when it was 207 

assumed that 1 or 3 hydrogen bonds were formed with water) (Gaboriaud and 208 

Ehrhardt, 2003). Nevertheless, the calculated pKas suggest that ≡FeOH can get 209 

protonated and therefore both ≡FeOH and ≡FeOH2 can exist in normal pH range. 210 

≡Fe2OH and ≡Fe2OH2 have pKas of 13.9 and -0.5, respectively, which are close to 211 

the MUSIC predictions 12.3 and 0.4 (Venema et al., 1998). Such a low acidity 212 

constant for ≡Fe2OH2 indicates that ≡Fe2OH hardly accepts a second proton at 213 

common pH. 214 

The pKa values of ≡Fe3OLH, ≡Fe3OUH, and≡Fe3OH are calculated to be 10.7, 9.7, 215 

and 0.3, respectively. MUSIC method cannot discriminate ≡Fe3OLH and ≡Fe3OUH 216 

and gave a pKa of 11.7 (Venema et al., 1998). This value agrees with the pKas 217 

obtained for ≡Fe3OLH and ≡Fe3OUH. However, this should be considered fortuitous 218 

as the hydrogen bonding environments are different for these two groups: ≡Fe3OLH 219 

forms a hydrogen bond with ≡FeOH while ≡Fe3OUH donates a hydrogen bond to 220 

water. For ≡Fe3OH, the MUSIC result was -0.2 (Venema et al., 1998), close to our 221 

prediction. Overall, the calculated pKas indicate that ≡Fe3OLH and ≡Fe3OUH are 222 

stable in common pH. 223 

(021) surface. On (021) surface, the coordinated H2O of ≡FeOhH2 sites are loosely 224 

bound and can leave the surface spontaneously during the free MD simulation. This 225 
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observation is consistent with the low desorption energy of ~0.5 kcal/mol for H2O on 226 

this site (Alexandrov and Rosso, 2015). ≡FeOhH2 accepts hydrogen bonds from 227 

solvent water with a CN of 0.3 (Figures 7a and 8a). The two OHs of ≡FeOhH2 also 228 

donate hydrogen bonds to the nearby ≡FeOH and ≡Fe2OH groups (Figure 7b). ≡FeOH 229 

can donate and accept hydrogen bonds to/from solvent water, with a CN of 0.7 and 230 

0.3, respectively (Figures 7a and 9). ≡Fe2OH and ≡Fe2OhH donate hydrogen bonds to 231 

≡FeOH (Figure 7b). ≡Fe2OH also donates hydrogen bonds to solvent water with a CN 232 

of 0.3 (Figure 8b), while ≡Fe2OhH accepts hydrogen bonds from solvent water with a 233 

CN of 0.4 (Figure 8c). Overall, the interaction between the first layer water and 234 

surface groups on (021) surface is weaker compared to those on (010) and (110) 235 

surfaces, as revealed by the smaller CNs between surface groups and water. 236 

The calculated pKa of ≡FeOhH2 is 10.0 (Table 3), close to the MUSIC result 11.9 237 

(Venema et al., 1998). ≡FeOH and ≡FeOH2 have pKas of 12.2 and 2.3, respectively, 238 

indicating that ≡FeOH2 rarely happens and ≡FeOH is the most possible form in 239 

common pH range. MUSIC results were 20.0 and 8.1 for ≡FeOH and ≡FeOH2, 240 

respectively (Venema et al., 1998), which are substantially higher than our results. 241 

The calculated pKas for ≡Fe2OhH/≡Fe2OhH2 and ≡Fe2OH/≡Fe2OH2 are 13.2/0.8 242 

and 5.2/-1.3, respectively. The higher pKa value of ≡Fe2OhH compared to ≡Fe2OH is 243 

consistent with the different roles they played in hydrogen bonding, that is, ≡Fe2OhH 244 

was proton acceptor while ≡Fe2OH was proton donor. MUSIC predictions were 245 

19.6/7.7 for ≡Fe2OhH/≡Fe2OhH2 and 11.9/0.0 for ≡Fe2OH/≡Fe2OH2 (Venema et al., 246 

1998). Although these values were different from our results, the MUSIC predictions 247 
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also demonstrated a decreasing trend from ≡Fe2OhH to ≡Fe2OH. Overall, our 248 

calculated pKas suggest that the protonated ≡Fe2OhH2 and ≡Fe2OH2 rarely occur; 249 

≡Fe2OhH is inactive in normal pH range and ≡Fe2OH can get deprotonated in slightly 250 

acidic conditions. 251 

Surface charging 252 

PZC is an important parameter in surface complexation reactions because it 253 

determines the sign of surface charges at a certain pH. PZC of a certain surface can be 254 

estimated based on the surface pKas (Table 4). For the (010) surface, the PZC is 255 

estimated to be 7.8, which is determined by the pKas of ≡FeOH2 and ≡Fe2OH2. 256 

Similarly, the PZCs of (110) and (021) are 8.5 and 3.8, respectively. Therefore, the 257 

PZC of a whole goethite should be in the range of 3.8~8.5, which is consistent with 258 

the experimental range of 5.6~9.5 (Lutzenkirchen, 2002; Lützenkirchen et al., 2008; 259 

Kosmulski, 2009). The PZC values of (010) and (110) surfaces are very close, and 260 

they are significantly higher than the PZC of (021) surface.  261 

At pH below 3.8 (i.e. PZC of (021) surface), all three surfaces are positively 262 

charged and therefore adsorption of heavy metal cations is inhibited. This is 263 

consistent with the fact that heavy metals do not show adsorption (e.g. Cd, Zn) or only 264 

marginal adsorption (e.g. Pb, Cu) on goethite at pH below 3.8 (Komárek et al., 2018). 265 

As pH increases, the net charges on (010) and (110) surfaces decrease and they bear 266 

net negative charges at pH above 7.8 and 8.5, respectively. These values are in 267 

general coincidence with the pH range where the adsorption capacity reached the 268 

maximum (Komárek et al., 2018). 269 
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IMPLICATIONS 270 

Based on the computed pKas, the surface sites available for complexing metal 271 

cations can be derived and they include ≡FeOH on (010) surface, ≡FeOH, ≡Fe3OL, 272 

and ≡Fe3OU on (110) surface, and ≡Fe2O, ≡FeOH, and ≡FeOhH on (021) surface. The 273 

complexation mechanisms of heavy metals at a certain pH can be deduced based on 274 

the distributions of available complexing sites. As an example, the distance between 275 

two neighboring ≡FeOH groups on (110) surface is ~3.0 Å, and therefore a bidentate 276 

corner-sharing complex can form on these sites in near-neutral conditions (Randall et 277 

al., 1999). The relative stabilities of the complexes on different sites can be obtained 278 

by comparing FPMD calculated free energies. For example, with such an approach we 279 

investigated the thermodynamics of Cd(II) and Ni(II) complexes formed on clay edge 280 

sites (Zhang et al., 2016; Zhang et al., 2017). 281 

There is a consensus that anionic groups (e.g. soil organic matters (SOMs), As/P 282 

oxyanions) can form inner-sphere complexes on goethite via ligand exchange 283 

reactions (Gu et al., 1994; Grossl et al., 1997; Kaiser et al., 1997; Kaiser et al., 2007; 284 

Kim et al., 2011). pH dependence of complexation of anionic groups can be derived 285 

by integrating surface pKas and FPMD computed adsorption free energies, e.g. with 286 

this approach we investigated the complexation mechanisms of acetate, quinone, and 287 

phosphate on clay edges as a function of pH (Liu et al., 2017; Lützenkirchen et al., 288 

2018; Zhang et al., 2020).  289 

The pKas calculated in the present study are of high accuracy and can be directly 290 

applied with SCMs (Nie et al., 2017; Han and Katz, 2019) to investigate the 291 
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adsorption behaviors. For example, based on the surface sites and pKas derived in our 292 

prior studies (Liu et al., 2012a; Liu et al., 2012b; Liu et al., 2013b; Liu et al., 2014b). 293 

Tournassat et al. developed a SCM for clay edges, that successfully reproduced the 294 

experimental acid-base titration data of montmorillonite (Tournassat et al., 2016) and 295 

the adsorption of uranyl over a wide range of pH and concentration conditions 296 

(Tournassat et al., 2018; Zhang et al., 2018). The integration of the computed intrinsic 297 

pKas into the SCM modeling can establish direct links between macroscopic 298 

experiments and microscopic properties, that can thus help uncover the adsorption 299 

mechanisms. Overall, the structures and pKas obtained in the present study form a 300 

microscopic basis for understanding the environmental and geochemical processes at 301 

goethite interfaces. 302 

303 
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638 

  639 

FIGURE 1. The surface models used in the study. O = red, H = white, Fe = 640 

blue-violet. Green arrows indicate the electron spin orientations. 641 

642 
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 643 

FIGURE 2. Snapshot of the (010) surface. Atoms are color-coded by element as 644 

described in Figure 1. Only the water molecules that hydrogen-bonded with surface 645 

groups are depicted and the others are removed for clarity. 646 

647 
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 648 

FIGURE 3. Radial distribution function (RDF) and coordination number (CN) for 649 

(a) water O around H of ≡FeOH2 and (b) water H around O of ≡Fe2OH on (010) 650 

surface. 651 
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 653 

FIGURE 4. Snapshot of the (110) surface. Atoms are color-coded by element as 654 

described in Figure 1. Only the water molecules that hydrogen-bonded with surface 655 

groups are depicted and the others are removed for clarity. 656 
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 658 

FIGURE 5. RDF and CN for (a) water H around O of ≡FeOH, (b) water O 659 

around H of ≡Fe3OUH, and (c) water H around O of ≡Fe3O on (110) surface. 660 

661 
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 662 

FIGURE 6. RDF and CN for (a) water H around O of ≡Fe2OH and (b) water O 663 

around H of ≡Fe2OH on (110) surface. 664 

665 
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 666 

FIGURE 7. Snapshot of the (021) surface. (a) side view showing the hydrogen 667 

bonds between surface groups and water molecules; (b) top view showing the 668 

hydrogen bonds between surface groups. Atoms are color-coded by element as 669 

described in Figure 1. Only the water molecules that hydrogen-bonded with surface 670 

groups are depicted and the others are removed for clarity. 671 

672 
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 673 

FIGURE 8. RDF and CN for (a) water H around O of ≡FeOhH2, (b) water O 674 

around H of ≡Fe2OH, and (c) water H around O of ≡Fe2OhH on (021) surface. 675 

676 
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 677 

FIGURE 9. RDF and CN for (a) water O around H of ≡FeOH and (b) water H 678 

around O of ≡FeOH on (021) surface. 679 

680 
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TABLE 1. Calculated pKa values of groups on (010) surface in comparison with 681 

MUSIC results 682 

Groups This study MUSICa 

≡FeOH2 10.9±1.8  

≡Fe2OH2/≡Fe2OH 4.7±0.8/15.4±0.7 4.3/- 
a(Boily, 2012). 

 683 
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TABLE 2. Calculated pKa values of surface groups on (110) surface in comparison 685 

with literature results 686 

Groups This study MUSICa FPMDb 

  I II III  

≡FeOH2/≡FeOH 7.3±0.5/15.0±0.7 11.7/23.6 7.7/19.6 3.7/15.6 7.0/- 

≡Fe2OH2/≡Fe2OH -0.5±1.3/13.9±0.7 0.4/12.3    

≡Fe3OLH 10.7±0.5 11.7    

≡Fe3OUH 9.7±0.7 11.7    

≡Fe3OH 0.3±0.8 -0.2    
a(Venema et al., 1998; Gaboriaud and Ehrhardt, 2003): I, II, and III mean that 1, 2, and 3 
hydrogen bonds are presumed between surface groups and water, respectively. b(Leung 
and Criscenti, 2012). 
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TABLE 3. Calculated pKa values of surface groups on (021) surface in comparison 689 

with MUSIC results 690 

Groups This study MUSICa 

≡FeOhH2 10.0±1.5 11.9 

≡FeOH2/≡FeOH 2.3±1.2/12.2±1.7 8.1/20.0 

≡Fe2OH2/≡Fe2OH -1.3±2.0/5.2±1.3 0.0/11.9 

≡Fe2OhH2/≡Fe2OhH 0.8±1.7/13.2±1.0 7.7/19.6 
a(Venema et al., 1998). 

 691 

692 

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. 
 The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. 

DOI: https://doi.org/10.2138/am-2021-7835.  http://www.minsocam.org/

Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld



TABLE 4. Calculated pKa values of surface groups and PZC of individual surfaces 693 

Surface Groups pKa PZC 

(010) ≡FeOH2 10.9 7.8 
 ≡Fe2OH2/≡Fe2OH 4.7/15.4  

(110) ≡FeOH2/≡FeOH 7.3/15.0 8.5 
 ≡Fe2OH2/≡Fe2OH -0.5/13.9  

 ≡Fe3OLH 10.7  

 ≡Fe3OUH 9.7  

 ≡Fe3O 0.3  

(021) ≡FeOhH2 10.0 3.8 
 ≡FeOH2/≡FeOH 2.3/12.2  

 ≡Fe2OH2/≡Fe2OH -1.3/5.2  

 ≡Fe2OhH2/≡Fe2OhH 0.8/13.2  

 694 
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