1 Revision 3

2 Word Count: 7217

3	Element mobility and oxygen isotope systematics during submarine alteration of
4	basaltic glass
5	
6	Miaohong He ^{1, 2*} , Shudi Zhang ^{3, 4} , Le Zhang ^{1, 2} , Fan Yang ^{1, 2} , Yanqiang Zhang ^{1, 2} ,
7	Xiaolong Huang ^{1, 2} , Gangjian Wei ^{1, 2}
8	
9	¹ State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry,
10	Chinese Academy of Sciences, Guangzhou 510640, China
11	² CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
12	³ Department of Public Health and Medical Technology, Xiamen Medical College,
13	Xiamen 361023, Fujian, China
14	⁴ Engineering Research Center of Natural Cosmeceuticals College of Fujian Province,
15	Xiamen Medical College, Xiamen 361023, Fujian, China
16	
17	*Corresponding author: Miaohong He
18	Tel: 86-20-85290501
19	E-mail: mhhe@gig.ac.cn
20	

21 Abstract

Studies of the submarine alteration of basaltic glass may improve the understanding of 22 23 crust-seawater interactions and the oceanic elemental cycle. Natural alteration processes such as the palagonitization of basaltic glass are complex, and their elucidation is crucial 24 to the understanding of fluid-rock interactions. This study involves major and trace 25 26 element and isotope mapping of a submarine-altered basaltic glass grain, and reveals 27 sequential development of alteration textures toward the grain core through the transition between unaltered glass and palagonite. The conversion from basaltic glass to palagonite 28 29 in a low-temperature submarine environment results in enrichment in B, Rb, K, Li, H₂O, U, Nb, Th, Ti, Cu, Ta, Zr, Hf, Ni, Sc, Fe, Cr, Pb, and Zn; and depletion in Si, Mg, Al, Sr, 30 Na, Co, rare-earth elements, Ca, P, and V (in order of decreasing distribution coefficient). 31 32 The glass–palagonite interface region has the highest high field strength element (HFSE) and Fe-Ti contents, but the lowest Mg content, indicating that the Fe-Ti phases that host 33 34 HFSE were precipitated first during initial palagonitization. At the same time an inferred exchange of oxygen occurred, based on variation in δ^{18} O, with values increasing from 35 basaltic glass to palagonite. However, initial palagonite compositions were affected by 36 subsequent precipitation and/or incorporation/adsorption of additional compounds such 37 38 as $Mg(OH)_2$ scavenged from pore water.

39

40 Keywords: basaltic glass; palagonite; alteration; elemental imaging; oxygen isotope

41 **1. Introduction**

Basaltic glass is the most abundant unstable, highly reactive solid on the seafloor 42 43 (Staudigel and Hart 1983; Utzmann et al. 2002; Walton et al. 2005), and its alteration attracts increasing attention within geochemistry and materials science. Study of basaltic 44 glass alteration is important for improving the understanding of oceanic crust-seawater 45 46 interactions (Utzmann et al. 2002), for determining the composition of groundwater in 47 basaltic terrains such as Iceland (Gislason and Eugster 1987), and in calculating the flux of materials in geochemical cycles involving seawater and oceanic crust. Basaltic glass is 48 49 also considered a natural analogue of glass used for containment of radioactive waste, owing to their similar chemical compositions (Crovisier et al. 2003; Daux et al. 1994; Gin 50 et al. 2015a; Gin et al. 2013; Grambow et al. 1985; Lutze et al. 1985; Techer et al. 2001b), 51 52 and it provides a means of assessing theoretical models of the long-term safety of nuclear waste disposal in borosilicate glass (Crovisier et al. 2003; Jantzen and Plodinec 1984; 53 54 Techer et al. 2000; Techer et al. 2001b). The alteration of glass may also provide 55 guidance for archaeologists during heritage conservation (Saheb et al. 2015). Palagonitization is a geochemical alteration process common to basaltic glass 56

(Jercinovic et al. 1990; Pauly et al. 2011; Stroncik and Schmincke 2002; Walton and
Schiffman 2003), but its controls and mechanism are not fully understood (Drief and
Schiffman 2004; Pauly et al. 2011). Palagonite is generally considered the initial
metastable alteration product of volcanic glass (Jercinovic et al. 1990; Stroncik and

61 Schmincke 2002; Stroncik and Schmincke 2001), and usually occurs on exposed glass surfaces such as grain peripheries, vesicle walls, and along fractures (Jercinovic et al. 62 63 1990; Stroncik and Schmincke 2001; Techer et al. 2001b; Walton and Schiffman 2003). An investigation of compositional variations during basaltic glass alteration to palagonite 64 may elucidate the alteration process. Traditional bulk analysis techniques have high 65 66 precision and accuracy, and are easily applied to the determination of major and trace 67 element compositions of altered glass, but cannot completely differentiate unaltered and altered material whose thickness are in the range of micrometers (Ailin-Pyzik and 68 69 Sommer 1981; Hart 1970; Hart 1969). Differentiation may be achieved by in situ elemental analysis procedures with high spatial resolution, such as electron microprobe 70 71 analysis (EPMA), micro-X-ray fluorescence spectroscopy (XRF), and laser ablation-72 inductively coupled plasma-mass spectrometry (LA-ICP-MS). The use of LA-ICP-MS allows simultaneous quantitative analyses of major and trace elements (including 73 74 elements with low atomic mass) in glass and palagonite, with low detection limits (in 75 favorable cases to parts per trillion, ppt) (Belza et al. 2015; Drief and Schiffman 2004; Knowles et al. 2013; Nikitczuk et al. 2016; Pauly et al. 2011; Thorseth et al. 1991; 76 Utzmann et al. 2002; Walton et al. 2005). Two-dimensional elemental imaging allows 77 78 observation of variations between pristine glass and its alteration phase (palagonite), while clearly revealing fine spatial compositional changes. Qualitative elemental imaging 79 of altered glass has been reported in previous studies, which have focused on the 80

compositional differences of certain elements between glass and alteration phases (palagonite, smectite, or zeolite) (Belza et al. 2015; Knowles et al. 2013; Stroncik and Schmincke 2001; Utzmann et al. 2002). However, there has been little study of the overall process from initial precipitation to aged palagonite (before crystallization with smectite), which is of importance for comprehensive understanding of glass alteration.

In this study, major and trace element imaging by LA–ICP–MS and oxygen isotope analyses by secondary ion mass spectrometry (SIMS) were undertaken for an individual submarine-altered basaltic glass grain. Chemical mobility and oxygen isotopic features during alteration from basaltic glass to palagonite were recorded visually and quantitatively and focused on the glass–palagonite interface, which is critical to elucidating the process of glass alteration.

92

93 2. Experimental

94 **2.1 Sample descriptions**

The studied sample was collected from a >2500-m-deep basin in the South China Sea, at site U1434 of the 2014 International Ocean Discovery Program Expedition 349, near Fossil Spreading Ridge in the southwest sub-basin at 278.3–308.7 meters below seafloor (Fig. 1), and is dated at *ca* 17.3 Ma (Zhang et al. 2018a). The geological setting has been described previously by Li et al. (2015a; 2014). The sample includes a black core of mid-ocean-ridge basalt (MORB) glass, with a brown palagonite rim (Fig. 2) resulting

101 from low temperature (<5°C) alteration (Li et al. 2015a). The interface is markedly 102 optically different from either glass or outer palagonite crust (Fig. 2b). Palagonite 103 thickness is generally considered time-dependent (as the alteration reaction proceeds), and is often used as a chronological indicator in both archeology and geology (Crovisier 104 et al. 1992; Grambow et al. 1985; Morgenstein and Riley 1974; Stroncik and Schmincke 105 106 2002; Techer et al. 2001a; Techer et al. 2001b). The thickness of the individual grain here varies between 134 and 660 μ m, which yields a mean alteration rate of about 1.6×10^{-7} 107 $g.m^{-2}.d^{-1}$ according to the calculation proposed by Parruzot et al (2015). 108

109

Fig. 1 Geological setting of the South China Sea, showing the location of the U1434
sampling site and the lithostratigraphic details of the core (modified from Zhang et al.

113 (2018) and Li et al.(2015)).

114

Fig. 2 (a) Photomicrograph in plane polarized transmitted light of the altered basaltic glass sample showing brown palagonite alteration rims. Numbered circles indicate analysis spots for SIMS oxygen isotope, H₂O, and EPMA major element analyses. The sample vesicle is empty. (b) Photomicrograph showing a closer view of the interface between palagonite and glass.

120

121 **2.2 Instrumental and analytical procedures**

122 **2.2.1 Elemental imaging by LA–ICP–MS**

123 Elemental analyses involved ICP–sector field-MS (ICP–SFMS; Element XR, Thermo

124	Fisher Scientific, Bremen, Germany) with a 193-nm ArF Resonetics Resolution M-50 LA
125	system, at the State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of
126	Geochemistry, Chinese Academy of Sciences (SKLaBIG-CAS), Guangzhou, China. The
127	laser beam diameter was 33 $\mu m,$ frequency 6 Hz, and energy density ~4 $J \cdot cm^{-2},$ and each
128	spot analysis included 20 s background collection and 30 s sample signal detection. All
129	detected major and trace element signals were normalized to ²⁹ Si, using concentration
130	data acquired by EPMA prior to LA-ICP-MS analysis (as described in supplementary
131	information). This allowed active correction for drift, matrix effects, and fluctuations in
132	ablation parameters. US Geological Survey basaltic glass standards GSD-1G, BCR-2G,
133	and BHVO-2G were used as calibration standards. Molecular oxide interference was
134	estimated as <0.3% using the ${}^{238}U^{16}O/{}^{238}U$ ratio. Experimental and data reduction
135	techniques have been described previously by Zhang et al. (2019). Ten analyses of
136	another basaltic glass standard TB-1G, treated as an unknown, indicated that most
137	elemental results are within $\pm 8\%$ of reference values, with an analytical precision (2RSD)
138	of better than $\pm 10\%$. To visualize elemental distributions in the altered glass grain,
139	two-dimensional elemental imaging by LA-ICP-MS was undertaken using an array of 14
140	\times 12 spots at 33 μm intervals. The total acquisition time required for imaging was ~4 h.
141	Data were processed by a self-developed Excel program, and elemental images (in
142	concentration units) constructed using Surfer software.

143 2.2.2 Oxygen isotope and H₂O analyses by SIMS

144 Oxygen isotope ratios and H₂O concentrations were determined in situ using a CAMECA IMS 1280-HR ion microprobe at the SKLaBIG-CAS. Instrumental parameters 145 146 and sample preparation techniques have been described previously by Xia et al. (2019), and are summarized as follows. The primary Cs⁺ ion-beam current was 3–5 nA, and a 147 normal-incidence electron-flood gun was used to compensate for sample charge. 148 149 Pre-sputtering (30 s) to remove the gold coating covered an area of 30 µm diameter, larger than the 15 µm diameter analyzed area. A contrast aperture of 400 µm and field 150 aperture of 5000 \times 5000 μ m were applied. The ¹⁶O, ¹⁸O, and ¹⁶O¹H ions were collected 151 simultaneously in two off-axis Faraday cups (L'2 and H1) with mass resolutions (full 152 width at half maximum, FWHM) of 2400 and one electron multiplier (FC2) with a 153 FWHM of 7000 (to avoid interference of ¹⁷O). The sample and standards were mounted 154 155 in a Sn-based alloy mount and then stored in a vacuum oven and in SIMS ultra-vacuum 156 storage several days before performing analyses, which aims at ensuring the vacuum of the instrument and reducing the interfere deriving from background. 157

Matrix effects are common in O isotope analysis of glass by SIMS (Eiler et al. 1997; Hartley et al. 2012; Ickert et al. 2008), so the reference basaltic glasses BCR-2G ($\delta^{18}O =$ +7.01‰), BHVO-2G ($\delta^{18}O =$ +5.60‰), BIR-1G ($\delta^{18}O =$ +5.00‰) (Hartley et al. 2012), and GSD-1G were analyzed before natural samples to determine the relationship between instrumental mass fractionation (IMF) and matrix composition (SiO₂ content). The $\delta^{18}O$ values of GSD-1G and bulk palagonite were also determined by traditional laser

164 fluorination GSMS. Profile analyses of the altered grain involved scanning from the core of basaltic glass to the palagonite, with analysis spots as shown in Fig. 2a. H₂O contents 165 166 were calibrated by a series of glass reference materials reported by Li et al. (2015b) (supplementary Fig. 1). Oxygen isotopic compositions relative to Vienna Standard Mean 167 Ocean Water (VSMOW; ${}^{18}O/{}^{16}O_{V-SMOW} = 0.0020052$) and IMF corrections were 168 169 calculated as follows (Baertschi 1976; Yang et al. 2018): $\delta^{18}O_{\rm m} = (({}^{18}O/{}^{16}O_{\rm m})/({}^{18}O/{}^{16}O_{\rm V-SMOW}) - 1) \times 1000$ 170 (1) $IMF = \delta^{18}O_m - \delta^{18}O_{actual}$ 171 (2)where ${}^{18}O/{}^{16}O_m$ is the raw ratio measured by SIMS, and $\delta^{18}O_m$ and $\delta^{18}O_{actual}$ are measured 172

and recommended or corrected values, respectively.

174

175 **3. Results**

Two-dimensional spatial elemental distributions within a cross-section of the altered 176 basaltic glass grain were recorded by elemental imaging using LA-ICP-MS (Figs 3, 4 177 and 5). Individual patterns for each element indicate that alteration did not change the 178 179 chemical compositions stoichiometrically. The images indicate that the glass became 180 depleted in major elements Ca, Al, and Na, trace elements P, Mn, Sr, V, Ba, and Co, and rare-earth elements (REE) during alteration to palagonite, and the distribution patterns of 181 K, Rb, Li, Ni, and B mirrored or were negatively correlated with those of the former 182 elements. The most striking observation is that major elements Fe, Ti, and Mg and trace 183

184	elements U, Th, Pb, Cr, Sc, Ta, Nb, Zr, Hf, and Cu are not characterized by different
185	monotonic gradients from the remnant glass core to the altered margin, with their most
186	enriched or depleted areas being limited to the vicinity of the interface between glass and
187	palagonite. The average elemental contents of glass and palagonite, and their degrees of
188	enrichment or depletion, are provided in Table 1, with the greatest depletion occurring for
189	Ca, P, V, Y, and La, with >90% loss during palagonitization, and the greatest enrichment
190	(>500%) for Li, B, K, and Rb.
191	Oxygen isotope analyses of basaltic glass standards by SIMS indicate that IMF
192	depends on SiO ₂ content (Fig. 6a), so oxygen isotopic profile analyses from grain core to
193	palagonite rim (Fig. 6b) were corrected for IMF, giving the core section a uniform $\delta^{18}O$
194	value. The palagonite, however, has a distinctly higher δ^{18} O than the glass, mirroring the
195	offset in H ₂ O content (Fig. 6b).

196

197 4. Discussion

4.1 Redistribution of elements during palagonitization

Previous analysis of elemental flux resulting from glass palagonitization has focused mainly on elemental compositions in relation to an assumed glass–palagonite immobile element such as Fe, Ti, Al, or Zr (Crovisier et al. 1992; Gi Young and Sohn 2011; Staudigel and Hart 1983; Utzmann et al. 2002). However, actual immobility is questionable, and mobility may change during the alteration process (Knowles et al. 2013;

204 Stroncik and Schmincke 2001; Thorseth et al. 1991). The natural alteration environment is complex and variable, so magnitudes and directions of chemical changes during 205 206 alteration, as estimated by such methods, are likely to have appreciable uncertainties. Undistorted primary textures and tight contact between glass and palagonite suggest that 207 replacement of glass by palagonite involves little, if any, change in volume. Glass 208 209 alteration is thus an isovolumetric process, as indicated by previous studies (Hay and Iijima 1968; Staudigel and Hart 1983; Stroncik and Schmincke 2001). Therefore, the 210 chemical flux during alteration may be evaluated by a density correction of the alteration 211 212 product (palagonite) based on that of basaltic glass:

213
$$c_{i(p)}^{*} = (\rho_p / \rho_g) \times c_{i(p)}$$
 (3)

where $c_{i (p)}$ and $c_{i'(p)}$ are the contents of element *i* in palagonite, as directly measured by LA–ICP–MS and calculated by correction of the density difference between palagonite and basaltic glass, respectively, and ρ_p and ρ_g are the density of palagonite and basaltic glass, respectively. The values of ρ_p and ρ_g , determined by a liquid-filled pycnometer reported by Hay and Iijima (1968), are 2.56 ($2\sigma = 0.1$) and 2.19 ($2\sigma = 0.1$) g·cm⁻³, respectively. All elemental data for palagonite, including elemental imaging, were corrected using this method (density correction).

The elemental distribution coefficient (D) between basaltic glass and palagonite may be used to evaluate the extent of gain or loss of element during palagonitization. D>1 means gain of element and D<1 means loss of element from alteration system.

224
$$D_i = c_i'_{(p)} / c_i_{(g)}$$
 (4)

where D_i is the distribution coefficient of element *i*, and $c_{i(g)}$ is the content of element *i* in basaltic glass.

227

228 4.1.1 Major element distribution patterns

229 Average major element contents of palagonite measured by LA-ICP-MS, excluding 230 the interface, are very similar to those determined by EPMA (Table 1 and supplementary 231 Table 1), indicating that matrix effects between basaltic glass and palagonite in LA-ICP-232 MS analyses were negligible. Mapping for Na₂O, CaO, and MgO (Fig. 3b, c, d) show that their contents are lower in palagonite than in parental glass, indicating they were easily 233 mobilized and released into pore water during alteration. Their patterns are consistent 234 235 with those of previous analyses of altered sub-seafloor basaltic glasses, which indicate pronounced exchange between glass and pore water, causing depletion in Na, Ca, and Mg 236 237 (Staudigel and Hart 1983; Stroncik and Schmincke 2002; Walton et al. 2005). The roles of these elements as glass silicate network modifiers and their small hydration energies 238 may cause their high mobilities and early ion exchange with H^+ or H_3O^+ in pore water 239 (Belza et al. 2015; Petit et al. 1990b; Robinet et al. 2006). Magnesium has the lowest 240 241 concentration near the glass-palagonite interface, notably different from Na and Ca, possibly due to the incorporation of Mg(OH)₂ and/or scavenging of Mg from pore water 242 during the subsequent aging and maturing of palagonite (Alt 1995; Seyfried Jr and Mottl 243

244 1982; Utzmann et al. 2002), which leads to slight enrichment in Mg relative to early palagonite. This process could be regarded as post-palagonitization, representing the 245 246 continuing evolution of initial precipitation (early palagonite) towards а thermodynamically more stable layer (aging palagonite). However, Na and Ca show no 247 such effect, implying the adsorption site in palagonite is more basic and suitable for Mg, 248 249 with its hydroxide being less soluble than Na and Ca (supplementary Fig. 2). Although K is also an alkali metal, the K₂O distribution displays an opposite trend to 250 that of Na₂O, with enrichment in the palagonite (Fig. 3e) at a level of ~900% (Table 1). 251 Palagonite is thus a major sink for K, with an ability to trap K released during glass 252 dissolution and to scavenge additional K from pore water. This might be related to K 253 being preferentially incorporated into interlayer positions of palagonite, for it is regarded 254 255 as a possible precursor of smecities featuring the same behavior under submarine conditions of low temperature and high K content (Ghiara et al. 1993; Staudigel and Hart 256 1983), which is unlike high-temperature alteration or subaerial weathering where losses 257 of K occur during palagonitization (Furnes 1978; Hay and Iijima 1968). 258 259 Aluminum, as a glass network-forming element, was previously regarded as being immobile during alteration in natural waters at near-neutral pH (Crovisier et al. 1992; 260 Furnes 1978; Reesman et al. 1969), but the Al₂O₃ image (Fig. 3f) indicates otherwise, 261 with a significant change in content from the glass-palagonite. Its distribution may be 262

explained by the rupture of aluminate linkages because of a coordination change (from

264 tetrahedral to octahedral Al) after exchange of glass modifier cations with aqueous $H^{+}/H_{3}O^{+}$, with the resulting six-coordinated Al species being released to solution (Casey 265 266 et al. 1988; Hellmann 1995; Hellmann et al. 1990; Tsomaia et al. 2003). The Al released in highly alkaline alteration conditions (e.g., $pH \ge 10.4$) which could be achieved in the 267 alteration interface solution through ion-exchange between glass network-modifiers and 268 solution H^+ , as in this case, could be further transformed to soluble Al(OH)₄ from 269 undissolved Al(OH)₃ (Hay and Iijima 1968; Jercinovic et al. 1990). The distribution of 270 the other formative element, Si, is not discussed here, because of its use as the internal 271 272 standard element in LA-ICP-MS analyses, but the SiO₂ profile analyses by EPMA (Fig. 4) indicates a trend similar to that of Al, with relative depletion in palagonite due to 273 dissolution of the glass during palagonitization, and with highly basic conditions 274 275 promoting its dissolution and mobility (Gi Young and Sohn 2011).

276

15

Fig. 3 (a) Photomicrograph of altered basaltic glass and LA–ICP–MS major elemental imaging of the area (0.46×0.40 mm), marked by the red rectangle, for (b) Na₂O, (c) CaO, (d) MgO, (e) K₂O, (f) Al₂O₃, (g) TiO₂ and (h) FeO^t (total iron oxides). Color keys indicate the logarithm of concentration.

282

Iron and titanium were formerly regarded as the most immobile major elements during 283 alteration (Ailin-Pyzik and Sommer 1981; Drief and Schiffman 2004; Furnes 1978; 284 Furnes 1984; Knowles et al. 2013; Thorseth et al. 1991; Walton et al. 2005). However, in 285 this study, palagonite was enriched in FeO^t and TiO₂ relative to glass. In particular, the 286 \sim 30 µm interface between glass and palagonite showed significant enrichment (Fig. 3g, h 287 and Fig. 2b), distinctly different from that observed by Crovisier et al. (2003) and Pauly 288 289 et al. (2011), who detected no concentration gradient from the interior to exterior of the altered rim. The unique distributions of these elements could be attributable to 290 progressive passive accumulation, with the most soluble elements being removed from 291 the reaction interface by dissolution. Although reduced ferrous (Fe²⁺) iron derived from 292 the parent glass is soluble, it could be rapidly oxidized to the less soluble Fe^{3+} (Belza et al. 293 2015; Knowles et al. 2013). In addition to this endogenous passive accumulation, 294 significant exogenous Fe and Ti were also introduced into the interface. It could be 295 deduced from the distinctly different enrichment of Fe and Ti in the interface with about 296 3 and 8 times compared with glass, respectively, because if it was not the case, the only 297

298 passive accumulation should result in similar enrichment for Ti and Fe, but no such case happens. The alteration-interface solution would therefore be increasingly enriched in 299 300 low solubility components, and then Fe-Ti oxyhydroxides would firstly and quickly reach the supersaturation and precipitate (Crovisier et al. 1992; Petit et al. 1990b). 301 However, during subsequent reactions, such as the precipitation of other more soluble 302 303 compositions or the adsorption effect of the initial palagonite, the concentration of Fe and Ti would be diluted and decrease. The Fe and Ti contents in the aging palagonite would 304 thus be lower than those in the interface vicinity, but still higher than in the former glass, 305 306 giving the "jump" distribution in the transition zone between basaltic glass and aging palagonite. Another possibility involves the remobilization of these relatively insoluble 307 308 compositions or their redistribution from inner to outer zone (Furnes 1984; Gin et al. 309 2015a).

310

312 Fig. 4 SiO₂ profile from core (left, low number spots) to rim of altered glass, as

313 determined by EPMA. The spot 7 is basically on the interface. Palagonite values are 314 density-corrected as per Eq. (3). "Location" = spot number (Fig. 2a). Analytical 315 uncertainties were about $\pm 2.5\%$ (1 σ).

316

317 4.1.2 Trace element distribution patterns

318 There have been many studies of changes in major element compositions, but relatively few of trace element patterns during glass alteration (Berger et al. 1994; 319 Crovisier et al. 1987; Crovisier et al. 1983; Furnes 1978; Ghiara et al. 1993). Quantitative 320 321 elemental mapping of altered glass allows the direct examination of the mobilization of trace elements during glass dissolution and precipitation of secondary phases. Only two 322 mapping studies of altered glass have been reported to date, and they were based on 323 qualitative methods with limited analysis of trace elements (Belza et al. 2015; Utzmann et 324 al. 2002). 325

The alkali metals Li and Rb have distribution characteristics similar to those of K, with marked enrichment in palagonite (Figs 3e and 5a, b). This is attributed to the different free energies of hydration of alkali metal ions, with the decrease in absolute values from Li⁺ to Rb⁺ resulting in increasing preferential palagonite uptake of Li–Rb (i.e., with increasing distribution coefficients) (Berger et al. 1988; Staudigel and Hart 1983) (Table 1). However, alkali metal ions are the predominant silicate network modifiers. When glass is subjected to hydration (initial alteration), alkali metal ions are largely leached

(Petit et al. 1990b), particularly Na⁺ as it is the primary network modifier in basaltic glass,
and is more prevalent than Li, K, or Rb. However, when palagonite (during its
precipitation) scavenges network-modifiers from pore water, where Li, K, and Rb are
more abundant than in the glass, the ratio of Na⁺ to other alkali metals in palagonite
decreases, effectively resulting in depletion in Na and enrichment in Li, K, and Rb (Figs
3b, e and 5a, b; Table 1).

The trace alkaline earth metals Sr and Ba (Fig. 5c, d; Table 1), which have patterns 339 similar to those of Ca, are effectively removed from the glass during alteration because of 340 341 their mobility. Previous studies of altered samples based on bulk Sr isotope analyses determined that Sr in the altered phase is derived from both basaltic glass and seawater 342 (Hart et al. 1974; Menzies and Seyfried 1979). These elements are thus depleted in 343 344 palagonite, and their final concentration reflects the total budget of the exchange reaction between basaltic glass and pore water, with a significant fraction of the basaltic 345 346 composition having been leached out.

Vanadium and cobalt might become soluble through formation of VO_4^{3-} and CoO_2^{-} (rather than insoluble V(OH)₄ and Co(OH)₃) under highly alkaline alteration conditions and behave similarly to Al, as both are depleted during alteration to palagonite (Fig. 5e, f). The mobilities of Mn (Fig. 5g) and Fe are sensitive to redox conditions, and their different distribution patterns may be attributable to the higher redox potentials of Mn, resulting in greater mobility of Mn relative to Fe (Haese 2000; Utzmann et al. 2002). 353 Another possibility is the incompatible nature of these trace elements in palagonite, 354 which would lead to a strong preference for them to enter solution.

355 Boron displays marked enrichment patterns during alteration (Fig. 5h; Table 1), owing to its ability to substitute for Si in tetrahedral sites and being adsorbed in exchangeable 356 sites of palagonite (Pauly et al. 2014). Cu, Ni, and Zn are also strongly enriched in 357 358 palagonite (Fig. 5i and supplementary Fig. 3a, b), with a net flux of these elements from seawater to the alteration phase, possibly due to their ability to easily exchange for Mg or 359 Ca (Petit et al. 1990a), or the adsorption capacity of metal oxides. Manganese oxides, for 360 361 example, although they have a net loss during alteration of glass, have a high adsorption capacity for the cations Ni²⁺, Cu²⁺, and Zn²⁺ (Glasby 2006; Utzmann et al. 2002). As 362 adsorption is a surface effect, the retained elements should be restricted to the outer rim 363 364 of the grain, but our images indicate distributions throughout the entire palagonite layer (Fig. 5i-k), indicating the effect of the porosity of palagonite (Cailleteau et al. 2008; 365 Deruelle et al. 2000). 366

The elements Pb, Cr, Sc, Hf, Zr, Ta, Th, Nb and U (in order of relative enrichment) (Fig. 5j–m and supplementary Fig. 3 c–g) have behaviors paralleling those of Fe and Ti (Fig. 3f, g), as they are similarly enriched in the alteration product (Table 1), especially near the glass–palagonite interface where their highest content occurs. Their distributions indicate relatively strong enrichment during early-stage palagonitization, with insoluble "nuggets" of Fe–Ti-rich phases hosting most of these trace elements, although their

373 spatial distributions cannot be resolved by spot analyses. Their behaviors may relate to the field strength of cations. These HFSE were immobile during the aqueous alteration 374 375 process due to their high affinities and adsorption potential for the palagonite gel material (Belza et al. 2015; Petit et al. 1990b; Utzmann et al. 2002). These effects may be 376 enhanced in the interface zone, the precursor of aged palagonite, where there is greater 377 378 porosity (supplementary Fig. 4b) and more negatively charged surface sites than in aged palagonite. Localized differences in pH may also account for their distribution and 379 enrichment within a single grain. 380 381 The REE imaging (Fig. 50, p and supplementary Fig. 3h-t) indicates that the alteration

of glass to palagonite is accompanied by a loss of REE to hydrous solution, which is in 382 contrast to previous findings from a lake environment where they were relatively 383 enriched in palagonite because of the enhanced adsorption properties of colloids (Daux et 384 al. 1994; Jercinovic et al. 1990). This is consistent with observations of Belza et al. (2015) 385 and Staudigel and Hart (1983) that REE become remarkably depleted during glass 386 alteration. Their depletion may be due to the solubility of lanthanides being controlled 387 mainly by the availability of complex-forming ligands such as OH^- , CO_3^{2-} , and PO_4^{3-} 388 (Guy et al. 1999; Ridley 2010; Wood 1990). The anomalous depletion of highly charged 389 P^{5+} (Fig. 5n) may reflect its incorporation into a soluble complex anion such as PO_4^{3-} 390 (Walton et al. 2005), becoming a soluble chelate with the lanthanides (Gin et al. 2017; 391 Walton et al. 2005). 392

In summary, four patterns of elemental distribution can be distinguished with (1) strong depletion (D < 0.1; e.g., Ca, P, V, Y, and La); (2) slight depletion (1 > D > 0.1; e.g., Na, Mg, Al, Si, Sr, Ba, and REE); (3) slight enrichment (2 > D > 1; e.g., Fe, Ti, Cr, HFSE, Ni, Cu, and Zn); and (4) strong enrichment (D > 2; e.g., Li, B, K, and Rb) during

397 alteration.

398

399 Fig. 5 Trace element imaging for (a) Li, (b) Rb, (c) Sr, (d) Ba, (e) V, (f) Co, (g) Mn, (h) B,

400 (i) Cu, (j) Pb, (k) Cr, (l) Zr, (m) Th, (n) P, (o) Ce, and (p) Yb. Color keys indicate the

401 logarithm of concentration.

402

403

Table 1. Average element contents and distribution coefficients for basaltic glass and
palagonite, including data from LA–ICP–MS imaging, but excluding data for the glass–
palagonite interface and outliers.

Elements	palagonite		basaltic glass		
Elements	content	σ	content	σ	D_i
Na ₂ O wt%	1.25	0.22	2.96	0.04	0.42
MgO wt%	4.40	0.06	7.35	0.02	0.60
Al ₂ O ₃ wt%	8.61	0.08	14.65	0.02	0.59
SiO2 wt%	44.65	0.01	51.00	0.01	0.88
K ₂ O wt%	3.05	0.05	0.34	0.03	9.00
CaO wt%	0.68	0.21	10.09	0.03	0.07
TiO ₂ wt%	2.84	0.19	1.60	0.03	1.78
FeO wt%	15.96	0.08	10.47	0.02	1.52
Li ppm	36.80	0.09	6.27	0.15	5.63
B ppm	137.87	0.10	2.79	0.32	46.63
P ppm	28.30	0.31	830.73	0.02	0.03
Sc ppm	51.11	0.10	32.44	0.05	1.58
V ppm	6.92	0.21	265.87	0.03	0.03
Cr ppm	375.84	0.17	255.56	0.05	1.47
Mn ppm	267.24	0.09	1403.20	0.02	0.19
Co ppm	13.44	0.08	42.90	0.04	0.31
Ni ppm	186.34	0.09	116.56	0.04	1.60
Cu ppm	126.60	0.08	72.90	0.03	1.74
Zn ppm	112.17	0.12	85.85	0.05	1.31
Rb ppm	83.39	0.08	7.85	0.05	10.62
Sr ppm	75.91	0.13	167.58	0.03	0.45
Y ppm	2.77	0.29	29.52	0.03	0.09

Zr ppm	187.26	0.12	113.07	0.03	1.66
Nb ppm	14.59	0.25	8.12	0.04	1.80
Ba ppm	13.28	0.66	76.35	0.05	0.17
La ppm	0.43	0.38	7.09	0.06	0.06
Ce ppm	9.16	0.23	17.38	0.05	0.53
Pr ppm	0.34	0.37	2.40	0.06	0.14
Nd ppm	1.76	0.45	11.89	0.10	0.15
Sm ppm	0.88	0.52	3.67	0.13	0.24
Eu ppm	0.33	0.41	1.34	0.15	0.25
Gd ppm	1.09	0.37	4.91	0.10	0.22
Tb ppm	0.25	0.43	0.75	0.14	0.33
Dy ppm	1.54	0.34	4.95	0.12	0.31
Ho ppm	0.26	0.37	1.03	0.12	0.25
Er ppm	0.79	0.47	3.09	0.20	0.26
Tm ppm	0.12	0.43	0.40	0.20	0.29
Yb ppm	0.76	0.39	2.82	0.17	0.27
Lu ppm	0.08	0.56	0.41	0.24	0.19
Hf ppm	4.32	0.17	2.64	0.19	1.63
Ta ppm	0.78	0.14	0.45	0.29	1.73
Pb ppm	1.19	0.45	0.88	0.60	1.35
Th ppm	1.31	0.27	0.73	0.23	1.79
U ppm	0.36	0.23	0.19	0.23	1.88

408

409 **4.2** Oxygen isotope and H₂O profiles during palagonitization

Analyses of glass oxygen isotopes by SIMS are sensitive to matrix effects, as shown in Fig. 6a and consistent with previous studies (Eiler et al. 1997; Gurenko and Chaussidon 2002; Hartley et al. 2012; Ickert et al. 2008). Oxygen isotopic profiles from grain core to palagonite rim indicate a uniform core δ^{18} O value of +6.01‰ ± 0.25‰ (2 σ ; spots 1–6; Fig. 6b) within the range of MORB glass (5.3‰–6.2‰) (Eiler 2001; Ito et al. 1987). This indicates that the grain core is less influenced by alteration, and still represents fresh basaltic glass, consistent with the minor variation in elemental contents within the core

417	(Table 1; Figs 3 and 5). The palagonite (spots 7-10; Fig. 6b), however, is strongly
418	enriched in ¹⁸ O (δ^{18} O = +21.3‰ to +22.3‰), with the average SIMS δ^{18} O value being
419	consistent with that determined by laser fluorination (+21.80‰ \pm 0.24‰; 2 σ ; n = 3). The
420	matrix effect on SIMS oxygen isotope analyses between basaltic glass and palagonite is
421	thus negligible under the instrumental conditions used. Oxygen atoms are located mainly
422	within the glass tetrahedral silicate network (Garlick and Dymond 1970; Geisler et al.
423	2010), and cannot be displaced by exogenous oxygen in the core because of a lack of
424	dissolution-reprecipitation. However, the notably different $\delta^{18}O$ values of palagonite
425	indicate that exogenous ¹⁸ O from interstitial fluid or other sources is incorporated into the
426	silica network of palagonite, either by glass dissolution-reprecipitation or by palagonite
427	hydrolysis-recondensation (Gin et al. 2018; Gin et al. 2015a).
428	The H ₂ O content of glass and palagonite are usually calculated by assuming that its

429 concentration equals the difference between 100% and the total of oxides determined by EPMA analyses (Pauly et al. 2011; Utzmann et al. 2002; Walton et al. 2005), with 430 possible overestimation as the minor and trace element compositions are included in the 431 432 total. Here, in situ H₂O contents of altered basaltic glass were determined directly by 433 SIMS, and resulting values were around half those calculated by the indirect EPMA method in both parental glass and palagonite. The H₂O profile from grain core to rim 434 indicates a trend similar to that of δ^{18} O, with the core having a uniform H₂O content of 435 0.43 wt.% \pm 0.01% (2 σ ; spots 1–6; Fig. 6b), increasing to 3.72 wt.% \pm 0.14% (2 σ ; spots 436

437	7-10; Fig 6b) in the palagonite. Palagonite thus has a much higher water content than
438	basaltic glass, consistent with the alteration reaction requiring significant amounts of
439	water (Furnes 1978; Pauly et al. 2011; Staudigel and Hart 1983; Stroncik and Schmincke
440	2002). However, palagonite water contents measured here are lower than those reported
441	previously (Furnes 1978; Pauly et al. 2011; Staudigel and Hart 1983). This may be
442	attributed to the presence of two forms of water in palagonite, namely combined water
443	$(H_3O^+$, resulting from hydration of glass) and adsorbed water $(H_2O^-$, related only to the
444	rock porosity) (Furnes 1978). The latter may be present in larger amounts, but is easier to
445	remove as it is located mainly on larger-scale palagonite features such as vesicles and
446	fractures. Our sample was stored in a vacuum oven and in SIMS ultra-vacuum storage
447	before analyses, and the adsorbed water might have escaped, resulting in a lower
448	measured water content. Furthermore, compositional and crystallinity variations in
449	palagonite are factors that cannot be ignored (Pauly et al. 2011).

Fig. 6 (a) Instrumental mass fractionation (IMF) vs. SiO₂ content, showing the linear variation in IMF with respect to chemical compositions of reference materials in the SIMS oxygen isotope analysis of basaltic glass, where the $\delta^{18}O_{actual}$ of GSD-1G (9.64‰ ± 0.43‰; 2 σ) was first determined by laser fluorination. Error bars represent 2 σ of 15 SIMS analyses. (b) Oxygen isotopic and H₂O content profiles from core to rim of altered glass, (analysis-spot locations as in Fig. 2a). Error bars represent 1 σ .

458 4.3 Alteration process for submarine basaltic glass

451

Mechanisms proposed for the alteration of glass include hydration and ion exchange, hydrolysis of the silicate network, condensation–reprecipitation and dissolution– reprecipitation (Crovisier et al. 2003; Drief and Schiffman 2004; Frugier et al. 2008; Geisler et al. 2010; Gin et al. 2016; Hellmann et al. 2012; Ojovan et al. 2006; Putnis and Putnis 2007; Putnis et al. 2007; Stroncik and Schmincke 2002; Techer et al. 2000; Techer et al. 2001a). Dissolution–reprecipitation has become the generally accepted model for

465 alteration of basaltic glass to palagonite (Berger et al. 1987; Crovisier et al. 1987; Daux et al. 1994; Drief and Schiffman 2004; Hellmann et al. 2012; Jercinovic et al. 1990; Techer 466 467 et al. 2001b), but the question remains as to whether the dissolution is congruent or incongruent. Congruent dissolution could be readily identified in experimental studies by 468 monitoring elemental releases from glass to aqueous solution (Crovisier et al. 1987). 469 470 Incongruent dissolution, however, is more difficult to identify because reactions occurring on the glass surface are complex and variable (Crovisier et al. 1983; Drief and 471 Schiffman 2004). The second remaining question is whether palagonite becomes a 472 diffusion barrier for water and soluble elements. Comparison between mean dissolution 473 rates and initial dissolution rate could help answer this question (Parruzot, et al. 2015). 474 475 Another remaining question concerns the process of palagonitization from initial 476 precipitation to mature palagonite.

The oxygen isotope analysis and elemental imaging of an individual grain reveal the 477 sequential alteration from basaltic glass to palagonite. The sharp and distinct chemical 478 compositional changes at the evidently delimited interface (where the finer processes 479 480 revealed would rely on techniques with the higher spatial resolution reported by Hellmann et al. (2015) and Gin et al (2013, 2017)) between pristine glass and palagonite 481 may indicate that palagonite was formed through reprecipitation on the surface of 482 remnant glass after congruent dissolution of the glass network, rather than by simple 483 hydration and devitrification. This is supported by the difference in physical morphology 484

between glass and palagonite. Incongruent dissolution would result in a sponge-like
surface structure of dissolving materials, whereas congruent dissolution would form a
smooth and undistorted surface (Stroncik and Schmincke 2001); the morphological
features of the analyzed palagonite (Fig. 2) suggest the latter.

Based on the variations in elemental and oxygen isotopic compositions, and the morphological features between basaltic glass and palagonite, three reaction stages are suggested for the process of submarine basaltic glass alteration (Fig. 7): (1) ion exchange and formation of a leached layer; (2) congruent dissolution and precipitation; and (3) post-palagonitization.

In stage (1), elements in the glass might be selectively leached by ion exchange with 494 pore water H_3O^+ or H^+ , with the most leached species being network-modifier cations 495 such as Na^+ , Mg^{2+} , and Ca^{2+} , owing to their high solubility and relatively weak $-SiO^-$ (or 496 -AlO⁻) bonds (Petit et al. 1990b), resulting in the formation of a superficial leached layer. 497 The thickness of this layer might be in the range of nanometers (Gi Young and Sohn 498 2011; Gin et al. 2017; Gin et al. 2013; Hellmann et al. 2015; Thorseth et al. 1991), and 499 500 could not be resolved by laser sampling. However, its presence cannot be precluded, 501 because it is difficult to directly disrupt the silicate network of the basaltic glass under alteration conditions involving the near-neutral pH (pH = \sim 7.2) of pore water and low 502 temperatures (Li et al. 2015a). 503

504 After stage (1), the interface solution pH would increase with predominant transport of

505 H_3O^+ or H^+ into the glass and ion exchange with network-modifier cations. Stage (2) commences when the pH exceeds 9 and the glass Si-O tetrahedral network is destroyed 506 507 (Dran et al. 1988; Gin et al. 2015b; Petit et al. 1990b; Robinet et al. 2006) (Fig. 4). The pH is then much higher than that of surrounding pore water, with the reaction solution 508 being separated from pore water (to maintain such a difference while avoiding dilution) 509 510 (Crovisier et al. 2003; Gi Young and Sohn 2011; Lee et al. 2006; Ojovan et al. 2006; Robinet et al. 2006) in a semi-closed environment. If completely closed, it would be 511 expected that compositional gradients from the outermost palagonite toward the interior 512 513 (later-formed) portions would occur (Jercinovic et al. 1990), but no such effects were observed. Either covering by subsequent formation of palagonite rims (possibly a thin 514 innermost film within it), or polymerization of dissolved orthosilicic acid would obstruct 515 516 fluid pathways and lower fluid flow-rates (Belza et al. 2015; Crovisier et al. 2003; Geisler et al. 2010; Gin et al. 2018; Parruzot et al. 2015; Techer et al. 2001; Utzmann et al. 2002), 517 518 forming a more closed alteration system, whose barrier effects can also be ascertained from the residual rate (mean value is 1.6×10^{-7} g.m⁻².d⁻¹) which is approximately five 519 orders of magnitudes lower than the initial alteration rate (about 1.75×10⁻² g.m⁻².d⁻¹, 520 T=4°C, extrapolated from Parruzot et al. (2015)). During stage (2), the outer leached 521 layer would be dissolved congruently, with Ti^{4+} , Fe^{3+} (from oxidized Fe^{2+}), and most 522 HFSE (Zr, Nb, Sc, Hf, Th, and Ta) being the first to reach the solubility limits of their 523 hydroxides and precipitating on the outermost glass surface, almost simultaneously with 524

525 its congruent dissolution. The partial loss of non-modifiers such as Al, P, and REE would also occur in this stage. Although the reaction interface is gradually separated from pore 526 527 water by increasing thickness of palagonite, the nanometer-sized porosity of the palagonite (supplementary Fig. 4) may provide diffusion pathways for dissolved elements 528 to escape to solution, with elements such as Fe, Ti, and HFSE being scavenged from 529 530 some other source or passively enriched (Cailleteau et al. 2008; Deruelle et al. 2000; Gin et al. 2011; Hellmann et al. 2012; Kerisit and Liu 2009; Pauly et al. 2011; Tsomaia et al. 531 2003; Utzmann et al. 2002). 532 533 In stage (3) (post-palagonitization), the growing palagonite would incorporate additional species such as Mg(OH)₂ (Jercinovic et al. 1990), and the initial porous 534 palagonite may continue to evolve to a state of quasi-equilibrium with surrounding 535 536 solution (Belza et al. 2015; Pauly et al. 2011; Putnis 2009; Putnis et al. 2005), with the composition of aging palagonite being slightly modified in the process. 537 The alteration model proposed here (Fig. 7) describes the alteration of basaltic glass to 538

palagonite under submarine conditions, focusing on initial precipitation and the evolution to mature palagonite before the crystallization phase, possibly providing insight into the alteration of oceanic crust. We have characterized major and trace element and isotopic patterns during palagonitization, whereas most previous studies have reported mechanisms that focus more on leaching processes in confined media, and over short timescales in laboratory-based simulation experiments (Crovisier et al. 2003; Gin et al.

545	2017; Gin et al. 2015a; Gin et al. 2015b; Gin et al. 2013; Hellmann et al. 2012; Ojovan et
546	al. 2006; Parruzot et al. 2015; Putnis et al. 2007; Techer et al. 2000; Techer et al. 2001a).
547	Such conditions are significantly different to those of natural alteration, especially in
548	long-term submarine environments where aqueous chemistry is much more complex, and
549	involves free metal cations, ligand complexing agents, humic substances, and organic and
550	inorganic acids (Drever 2005). Furthermore, alteration processes and their corresponding
551	elemental features are strongly influenced by the composition and structure of the
552	parental glass, temperature, pH, and the composition of the alteration solution (Bunker
553	1994; Crovisier et al. 2003; Gin et al. 2012; Gin et al. 2015b; Gin et al. 2016; Hellmann
554	et al. 2012; Ojovan et al. 2006; Parruzot et al. 2015; Stroncik and Schmincke 2002;
555	Utzmann et al. 2002).

562

563 4. Implication

564 LA-ICP-MS elemental imaging and SIMS oxygen isotopic analysis on a submarine-altered basaltic glass specimen provide distribution patterns of major and trace 565 elements and δ^{18} O values from the glass to the palagonite (alteration product). Different 566 567 elements exhibit different behaviors during alteration, and are either added from pore water or removed during alteration. Geochemical distribution patterns from the glass to 568 the glass-palagonite interface and then to the palagonite rim indicate multiple reaction 569 570 stages, involving selective leaching and formation of a leached layer, congruent dissolution and initial precipitation, and palagonite maturation. Directions and intensities 571 of chemical fluxes vary within the individual grain, and may provide insight into 572 geochemical cycles and the mechanisms of palagonite formation during oceanic crust 573 574 alteration.

575 Acknowledgement

The English of the manuscript was improved by Stallard Scientific Editing. This work 576 577 was supported by the National Natural Sciences Foundation of China (41991325 and 41803010), the GIGCAS 135 Project (135PY201605), the Guangzhou Institute of 578 Geochemistry (TGC201804) and the State Key Laboratory of Isotope Geochemistry 579 (SKLaBIG-JY-19-04). The data for available 580 this paper on Zenodo are (doi.org/10.5281/zenodo.3786289). The authors have no conflict of interest to declare. 581

582 This is contribution IS-XXXX from GIGCAS.

583

```
584 References
```

- 585 Ailin-Pyzik, I., and Sommer, S. (1981) Microscale chemical effects of low temperature
- alteration of DSDP basaltic glasses. Journal of Geophysical Research: Solid Earth,
 86(B10), 9503-9510.
- 588 Alt, J.C. (1995) Subseafloor processes in mid-ocean ridge hydrothermal systems.
 589 Geophysical Monograph Series, 91, 85-114.
- Baertschi, P. (1976) Absolute ¹⁸O content of standard mean ocean water. Earth &
 Planetary Science Letters, 31(3), 341–344.

592 Belza, J., Goderis, S., Smit, J., Vanhaecke, F., Baert, K., Terryn, H., and Claeys, P. (2015)

- High spatial resolution geochemistry and textural characteristics of 'microtektite'
 glass spherules in proximal Cretaceous–Paleogene sections: Insights into glass
 alteration patterns and precursor melt lithologies. Geochimica et Cosmochimica
- 596 Acta, 152, 1-38.
- 597 Berger, G., Claparols, C., Guy, C., and Daux, V. (1994) Dissolution rate of a basalt glass
- in silica-rich solutions: implications for long-term alteration. Geochimica et
 Cosmochimica Acta, 58(22), 4875-4886.
- Berger, G., Schott, J., and Guy, C. (1988) Behavior of Li, Rb and Cs during basalt glass
 and olivine dissolution and chlorite, smectite and zeolite precipitation from

- seawater: Experimental investigations and modelization between 50° and 300°C.
- 603 Chemical Geology, 71(4), 297-312.
- Berger, G., Schott, J., and Loubet, M. (1987) Fundamental processes controlling the first
- 605 stage of alteration of a basalt glass by seawater: an experimental study between
- 606 200° and 320°C. Earth & Planetary Science Letters, 84(4), 431-445.
- Boksay, Z., Bouquet, G., and Dobos, S. (1968) Kinetics of the formation of leached
 layers on glass surfaces. Physics and Chemistry of Glasses, 9(2), 69-71.
- Bunker, B.C. (1994) Molecular mechanisms for corrosion of silica and silicate glasses.
- 610 Journal of Non-Crystalline Solids, 179, 300–308.
- 611 Cailleteau, C., Angeli, F., Devreux, F., Gin, S., Jestin, J., Jollivet, P., and Spalla, O. (2008)
- 612 Insight into silicate-glass corrosion mechanisms. Nature Materials, 7(12), 978–
 613 983.
- 614 Casey, W.H., Westrich, H.R., and Arnold, G.W. (1988) Surface chemistry of labradorite
- 615 feldspar reacted with aqueous solutions at pH = 2, 3, and 12. Geochimica et 616 Cosmochimica Acta, 52(12), 2795-2807.
- 617 Crovisier, J.L., Advocat, T., and Dussossoy, J.L. (2003) Nature and role of natural
- alteration gels formed on the surface of ancient volcanic glasses (Natural analogs
 of waste containment glasses). Journal of Nuclear Materials, 321(1), 91-109.
- 620 Crovisier, J.L., Honnorez, J., and Eberhart, J.P. (1987) Dissolution of basaltic glass in
- 621 seawater: Mechanism and rate. Geochimica et Cosmochimica Acta, 51(11),

622	2977-2990.
622	29//-2990.

623	Crovisier, J.L., Honnorez, J., Fritz, B., and Petit, J.C. (1992) Dissolution of subglacial
624	volcanic glasses from Iceland: laboratory study and modelling. Applied
625	Geochemistry, 7, 55-81.
626	Crovisier, J.L., Thomassin, J.H., Juteau, T., Eberhart, J.P., Touray, J.C., and Baillif, P.
627	(1983) Experimental seawater-basaltic glass interaction at 50°C: Study of early
628	developed phases by electron microscopy and X-ray photoelectron spectrometry.
629	Geochimica et Cosmochimica Acta, 47(3), 377-387.
630	Daux, V., Crovisier, J., Hemond, C., and Petit, J. (1994) Geochemical evolution of
631	basaltic rocks subjected to weathering: fate of the major elements, rare earth
632	elements, and thorium. Geochimica et Cosmochimica Acta, 58(22), 4941-4954.
633	Deruelle, O., Spalla, O., Barboux, P., and Lambard, J. (2000) Growth and ripening of
634	porous layers in water altered glasses. Journal of Non-Crystalline Solids, 261,
635	237–251.
636	Dran, JC., Della Mea, G., Paccagnella, A., Petit, JC., and Trotignon, L. (1988) The
637	aqueous dissolution of alkali silicate glasses: reappraisal of mechanisms by H and
638	Na depth profiling with high energy ion beams. Physics and Chemistry of Glasses,
639	29(6), 249-255.
640	Drever, J.I. (2005) Surface and Ground Water, Weathering, and Soils: Treatise on
641	Geochemistry, Volume 5. Elsevier.
642	Drief, A., and Schiffman, P. (2004) Very low-temperature alteration of sideromelane in
-----	---
643	hyaloclastites and hyalotuffs from Kilauea and Mauna Kea volcanoes:
644	Implications for the mechanism of palagonite formation. Clays and Clay Minerals,
645	52(5), 622–634.
646	Ducasse, T., Gourgiotis, A., Pringle, E., Moynier, F., Frugier, P., Jollivet, P., and Gin, S.
647	(2018) Alteration of synthetic basaltic glass in silica saturated conditions: Analogy
648	with nuclear glass. Applied Geochemistry, 97, 19-31.
649	Eiler, J.M. (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks.
650	Reviews in Mineralogy and Geochemistry, 43, 319–364.
651	Eiler, J.M., Graham, C., and Valley, J.W. (1997) SIMS analysis of oxygen isotopes:
652	matrix effects in complex minerals and glasses. Chemical Geology, 138(3-4),
653	221–244.
654	Frugier, P., Gin, S., Minet, Y., Chave, T., Bonin, B., Godon, N., Lartigue, J.E., Jollivet, P.,
655	Ayral, A., De Windt, L., and Santarini, G. (2008) SON68 nuclear glass dissolution
656	kinetics: Current state of knowledge and basis of the new GRAAL model. Journal
657	of Nuclear Materials, 380(1), 8–21.
658	Furnes, H. (1978) Element mobility during palagonitization of a subglacial hyaloclastite
659	in Iceland. Chemical Geology, 22(3), 249-264.
660	Furnes, H. (1984) Chemical changes during progressive subaerial palagonitization of a
661	subglacial olivine tholeiite hyaloclastite: A microprobe study. Chemical Geology,

662	43(3-4), 271-285.	
-----	-------------------	--

663	Garlick, G.D., and Dymond, J.R. (1970) Oxygen Isotope Exchange between Volcanic
664	Materials and Ocean Water. Geological Society of America Bulletin, 81(7), 2137-
665	2142.
666	Geisler, T., Janssen, A., Scheiter, D., Stephan, T., Berndt, J., and Putnis, A. (2010)
667	Aqueous corrosion of borosilicate glass under acidic conditions: A new corrosion
668	mechanism. Journal of Non-Crystalline Solids, 356(28), 1458–1465.
669	Ghiara, M.R., Franco, E., Petti, C., Stanzione, D., and Valentino, G.M. (1993)
670	Hydrothermal interaction between basaltic glass, deionized water and seawater.
671	Chemical Geology, 104(1-4), 125-138.
672	Gi Young, J., and Sohn, Y.K. (2011) Microtextures, microchemistry, and mineralogy of
673	basaltic glass alteration, Jeju Island, Korea, with implications for elemental
674	behavior. American Mineralogist, 96(7), 1129–1147.
675	Gin, S., Beaudoux, X., Angéli, F., Jégou, C., and Godon, N. (2012) Effect of composition
676	on the short-term and long-term dissolution rates of ten borosilicate glasses of
677	increasing complexity from 3 to 30 oxides. Journal of Non-Crystalline Solids,
678	358(18), 2559-2570.
679	Gin, S., Collin, M., Jollivet, P., and Fournier, M. (2018) Dynamics of self-reorganization
680	explains passivation of silicate glasses. Nature Communications, 9(1), 2169.
681	Gin, S., Guittonneau, C., Godon, N., Neff, D., Rebiscoul, D., Cabié, M., and Mostefaoui,

682	S. (2011) Nuclear glass durability: new insight into alteration layer properties.
683	The Journal of Physical Chemistry C, 115(38), 18696-18706.
684	Gin, S., Jollivet, P., Barba Rossa, G., Tribet, M., Mougnaud, S., Collin, M., Fournier, M.,
685	Cadel, E., Cabie, M., and Dupuy, L. (2017) Atom-Probe Tomography, TEM and
686	ToF-SIMS study of borosilicate glass alteration rim: A multiscale approach to
687	investigating rate-limiting mechanisms. Geochimica et Cosmochimica Acta, 202,
688	57-76.
689	Gin, S., Jollivet, P., Fournier, M., Angeli, F., Frugier, P., and Charpentier, T. (2015a)
690	Origin and consequences of silicate glass passivation by surface layers. Nature
691	Communications, 6, 6360.
692	Gin, S., Jollivet, P., Fournier, M., Berthon, C., Wang, Z., Mitroshkov, A., Zhu, Z., and
693	Ryan, J.V. (2015b) The fate of silicon during glass corrosion under alkaline
694	conditions: a mechanistic and kinetic study with the international simple glass.
695	Geochimica et Cosmochimica Acta, 151, 68-85.
696	Gin, S., Neill, L., Fournier, M., Frugier, P., Ducasse, T., Tribet, M., Abdelouas, A.,
697	Parruzot, B., Neeway, J., and Wall, N. (2016) The controversial role of
698	inter-diffusion in glass alteration. Chemical Geology, 440, 115-123.
699	Gin, S., Ryan, J.V., Schreiber, D.K., Neeway, J., and Cabié, M. (2013) Contribution of
700	atom-probe tomography to a better understanding of glass alteration mechanisms:
701	Application to a nuclear glass specimen altered 25 years in a granitic environment.

702 Chemical Geology, 349, 99-109.

- 703 Gislason, S.R., and Eugster, H.P. (1987) Meteoric water-basalt interactions. II: A field
- study in NE Iceland. Geochimica et Cosmochimica Acta, 51(10), 2841-2855.
- Glasby, G.P. (2006) Manganese: Predominant Role of Nodules and Crusts. Marine
 Geochemistry, 371-427.
- Grambow, B., Jercinovic, M., Ewing, R., and Byers, C. (1985) Weathered basalt glass: a
 natural analogue for the effects of reaction progress on nuclear waste glass
 alteration. Mater. Res. Soc. Symp. Proc., 50.
- 710 Gurenko, A.A., and Chaussidon, M. (2002) Oxygen isotope variations in primitive
- tholeiites of Iceland: evidence from a SIMS study of glass inclusions, olivine
 phenocrysts and pillow rim glasses. Earth & Planetary Science Letters, 205(1),
 63–79.
- Guy, C., Daux, V., and Schott, J. (1999) Behaviour of rare earth elements during
 seawater/basalt interactions in the Mururoa Massif. Chemical Geology, 158(1–2),
 21-35.
- 717 Haese, R.R. (2000) The reactivity of iron. Marine geochemistry, p. 233-261. Springer.
- Hart, R. (1970) Chemical exchange between sea water and deep ocean basalts. Earth &
 Planetary Science Letters, 9(3), 269-279.
- Hart, S. (1969) K, Rb, Cs contents and K/Rb, K/Cs ratios of fresh and altered submarine
 basalts. Earth & Planetary Science Letters, 6(4), 295-303.

722	Hart, S., Erlank, A., and Kable, E. (1974) Sea floor basalt alteration: some chemical and
723	Sr isotopic effects. Contributions to Mineralogy and Petrology, 44(3), 219-230.
724	Hartley, M.E., Thordarson, T., Taylor, C., Fitton, J.G., and Eimf. (2012) Evaluation of the
725	effects of composition on instrumental mass fractionation during SIMS oxygen
726	isotope analyses of glasses. Chemical Geology, 334, 312-323.
727	Hay, R.L., and Iijima, A. (1968) Nature and origin of palagonite tuffs of the Honolulu
728	group on Oahu, Hawaii. Geological Society of America Memoirs, 116, 331-76.
729	Hellmann, R. (1995) The albite-water system: Part II. The time-evolution of the
730	stoichiometry of dissolution as a function of pH at 100, 200, and 300°C.
731	Geochimica et Cosmochimica Acta, 59(9), 1669-1697.
732	Hellmann, R., Cotte, S., Cadel, E., Malladi, S., Karlsson, L.S., Lozano-Perez, S., Cabié,
733	M., and Seyeux, A. (2015) Nanometre-scale evidence for interfacial dissolution-
734	reprecipitation control of silicate glass corrosion. Nature Materials, 14(3), 307.
735	Hellmann, R., Eggleston, C.M., Hochella Jr, M.F., and Crerar, D.A. (1990) The formation
736	of leached layers on albite surfaces during dissolution under hydrothermal
737	conditions. Geochimica et Cosmochimica Acta, 54(5), 1267-1281.
738	Hellmann, R., Wirth, R., Daval, D., Barnes, JP., Penisson, JM., Tisserand, D., Epicier,
739	T., Florin, B., and Hervig, R.L. (2012) Unifying natural and laboratory chemical
740	weathering with interfacial dissolution-reprecipitation: A study based on the
741	nanometer-scale chemistry of fluid-silicate interfaces. Chemical Geology,

742 294-295, 203-216.

743	Ickert, R., Hiess, J., Williams, I., Holden, P., Ireland, T., Lanc, P., Schram, N., Foster, J.,			
744	and Clement, S. (2008) Determining high precision, in situ, oxygen isotope ratios			
745	with a SHRIMP II: analyses of MPI-DING silicate-glass reference materials and			
746	zircon from contrasting granites. Chemical Geology, 257(1-2), 114–128.			
747	Ito, E., White, W.M., and Göpel, C. (1987) The O, Sr, Nd and Pb isotope geochemistry of			
748	MORB. Chemical Geology, 62(3), 157–176.			
749	Jantzen, C., and Plodinec, M. (1984) Thermodynamic model of natural, medieval and			
750	nuclear waste glass durability. Journal of Non-Crystalline Solids, 67(1-3),			
751	207-223.			
752	Jercinovic, M.J., Keil, K., Smith, M.R., and Schmitt, R.A. (1990) Alteration of basaltic			
753	glasses from north-central British Columbia, Canada. Geochimica et			
754	Cosmochimica Acta, 54(10), 2679-2696.			
755	Kerisit, S., and Liu, C. (2009) Molecular Simulations of Water and Ion Diffusion in			
756	Nanosized Mineral Fractures. Environmental Science & Technology, 43(3),			
757	777-782.			
758	Knowles, E., Staudigel, H., and Templeton, A. (2013) Geochemical characterization of			
759	tubular alteration features in subseafloor basalt glass. Earth & Planetary Science			
760	Letters, 374(6), 239-250.			
761	Lee, W.E., Ojovan, M.I., Stennett, M.C., and Hyatt, N.C. (2006) Immobilization of			

- radioactive waste in glasses, glass composite materials and ceramics. Advances in
- 763 Applied Ceramics, 105(1), 3–12.
- Li, C.-F., Lin, J., Kulhanek, D., Williams, T., Bao, R., Briais, A., Brown, E., Chen, Y.,
- 765 Clift, P., and Colwell, F. (2015a) Expedition 349 summary.
- 766 Li, C.-F., Xu, X., Lin, J., Sun, Z., Zhu, J., Yao, Y., Zhao, X., Liu, Q., Kulhanek, D.K.,
- 767 Wang, J., Song, T., Zhao, J., Qiu, N., Guan, Y., Zhou, Z., Williams, T., Bao, R.,
- 768 Briais, A., Brown, E.A., Chen, Y., Clift, P.D., Colwell, F.S., Dadd, K.A., Ding, W.,
- 769 Almeida, I.H., Huang, X.-L., Hyun, S., Jiang, T., Koppers, A.A.P., Li, Q., Liu, C.,
- 770 Liu, Z., Nagai, R.H., Peleo-Alampay, A., Su, X., Tejada, M.L.G., Trinh, H.S., Yeh,
- 771 Y.-C., Zhang, C., Zhang, F., and Zhang, G.-L. (2014) Ages and magnetic
- structures of the South China Sea constrained by deep tow magnetic surveys and
- 773 IODP Expedition 349. Geochemistry Geophysics Geosystems, 15(12),
 774 4958-4983.
- Li, Y., Dasgupta, R., and Tsuno, K. (2015b) The effects of sulfur, silicon, water, and
 oxygen fugacity on carbon solubility and partitioning in Fe-rich alloy and silicate
 melt systems at 3 GPa and 1600 °C: Implications for core–mantle differentiation
 and degassing of magma oceans and reduced planetary mantles. Earth &
 Planetary Science Letters, 415, 54-66.
- Lutze, W., Malow, G., Ewing, R., Jercinovic, M., and Keil, K. (1985) Alteration of basalt
 glasses: implications for modelling the long-term stability of nuclear waste

782	glasses.	Nature,	314(6008)	, 252-	255
102	glasses.	mature,	314(0000)	, 232-	2

783	Menzies, M., and Seyfried, W.E. (1979) Basalt-seawater interaction: trace element and
784	strontium isotopic variations in experimentally altered glassy basalt. Earth &
785	Planetary Science Letters, 44(3), 463-472.
786	Morgenstein, M., and Riley, T.J. (1974) Hydration-rind dating of basaltic glass: A new
787	method for archaeological chronologies. Asian Perspectives, 17(2), 145-159.
788	Nikitczuk, M.P.C., Schmidt, M.E., and Flemming, R.L. (2016) Candidate microbial
789	ichnofossils in continental basaltic tuffs of central Oregon, USA: expanding the
790	record of endolithic microborings. Geological Society of America Bulletin,
791	128(7/8), 1270-1285.
792	Ojovan, M.I., Pankov, A., and Lee, W.E. (2006) The ion exchange phase in corrosion of
793	nuclear waste glasses. Journal of Nuclear Materials, 358(1), 57-68.
794	Parruzot, B., Jollivet, P., Rébiscoul, D., and Gin, S. (2015) Long-term alteration of
795	basaltic glass: Mechanisms and rates. Geochimica et Cosmochimica Acta, 154,
796	28–48.
797	Pauly, B.D., Schiffman, P., Zierenberg, R.A., and Clague, D.A. (2011) Environmental and
798	chemical controls on palagonitization. Geochemistry Geophysics Geosystems,
799	12(12), doi:10.1029/2011gc003639.
800	Pauly, B.D., Williams, L.B., Hervig, R.L., Schiffman, P., and Zierenberg, R.A. (2014)
801	Methods for in situ SIMS microanalysis of Boron and its isotopes in palagonite.

802	Clays and	Clay Mineral	ls, 62(3), 224–234.
-----	-----------	--------------	----------	-------------

- 803 Petit, J.C., Mea, G.D., Dran, J.C., Magonthier, M.C., Mando, P.A., and Paccagnella, A.
- 804 (1990a) Hydrated-layer formation during dissolution of complex silicate glasses
 805 and minerals. Geochimica et Cosmochimica Acta, 54(7), 1941-1955.
- 806 Petit, J.C., Mea, G.D., Dran, J.C., Magonthier, M.C., and Paccagnella, A. (1990b)
- 807 Hydrated-layer formation during dissolution of complex silicate glasses and 808 minerals. Geochimica et Cosmochimica Acta, 54(7), 1941-1955.
- 809 Putnis, A. (2009) Mineral replacement reactions. Reviews in Mineralogy and
 810 Geochemistry, 70(1), 87-124.
- Putnis, A., and Putnis, C.V. (2007) The mechanism of reequilibration of solids in the
 presence of a fluid phase. Journal of Solid State Chemistry, 180(5), 1783-1786.
- 813 Putnis, C.V., Geisler, T., Schmid-Beurmann, P., Stephan, T., and Giampaolo, C. (2007)
- 814 An experimental study of the replacement of leucite by analcime. American 815 Mineralogist, 92(1), 19-26.
- Putnis, C.V., Tsukamoto, K., and Nishimura, Y. (2005) Direct observations of
 pseudomorphism: compositional and textural evolution at a fluid-solid interface.
 American Mineralogist, 90(11-12), 1909-1912.
- Reeman, A., Pickett, E., and Keller, W. (1969) Aluminum ions in aqueous solutions.
 American Journal of Science, 267(1), 99-113.
- 821 Ridley, W. (2010) Petrology of associated igneous rocks in volcanogenic massive sulfide

822	occurrence model. US Geological Survey Scientific Investigations Report, 32.
823	Robinet, L., Coupry, C., Eremin, K., and Hall, C. (2006) Raman investigation of the
824	structural changes during alteration of historic glasses by organic pollutants.
825	Journal of Raman Spectroscopy, 37(11), 1278-1286.
826	Saheb, M., Loisel, C., Duhamel, R., and Remusat, L. (2015) Use of hydrogen isotopes to
827	understand stained glass weathering. Procedia Earth and Planetary Science, 13,
828	64-67.
829	Seyfried Jr, W.E., and Mottl, M.J. (1982) Hydrothermal alteration of basalt by seawater
830	under seawater-dominated conditions. Geochimica et Cosmochimica Acta, 46(6),
831	985-1002.
832	Staudigel, H., and Hart, S.R. (1983) Alteration of basaltic glass: Mechanisms and
833	significance for the oceanic crust-seawater budget. Geochimica et Cosmochimica
834	Acta, 47(3), 337–350.
835	Stroncik, N.A., and Schmincke, HU. (2002) Palagonite – a review. International Journal
836	of Earth Sciences, 91(4), 680–697.
837	Stroncik, N.A., and Schmincke, H.U. (2001) Evolution of palagonite: Crystallization,
838	chemical changes, and element budget. Geochemistry Geophysics Geosystems,
839	2(7), doi:10.1029/2000GC000102.
840	Techer, I., Advocat, T., Lancelot, J., and Liotard, JM. (2000) Basaltic glass: alteration
841	mechanisms and analogy with nuclear waste glasses. Journal of Nuclear Materials,

842 282(1), 40-46.

843	Techer, I., Advocat, T., Lancelot, J., and Liotard, JM. (2001a) Dissolution kinetics of
844	basaltic glasses: control by solution chemistry and protective effect of the
845	alteration film. Chemical Geology, 176(1-4), 235-263.
846	Techer, I., Lancelot, J., Clauer, N., Liotard, J.M., and Advocat, T. (2001b) Alteration of a
847	basaltic glass in an argillaceous medium: The Salagou dike of the Lodève
848	Permian Basin (France). Analogy with an underground nuclear waste repository.
849	Geochimica et Cosmochimica Acta, 65(7), 1071-1086.
850	Thorseth, I.H., Furnes, H., and Tumyr, O. (1991) A textural and chemical study of
851	Icelandic palagonite of varied composition and its bearing on the mechanism of
852	the glass-palagonite transformation. Geochimica et Cosmochimica Acta, 55(3),
853	731–749.
854	Tsomaia, N., Brantley, S.L., Hamilton, J.P., Pantano, C.G., and Mueller, K.T. (2003)
855	NMR evidence for formation of octahedral and tetrahedral Al and
856	repolymerization of the Si network during dissolution of aluminosilicate glass and
857	crystal. American Mineralogist, 88(1), 54-67.
858	Utzmann, A., Hansteen, T., and Schmincke, H.U. (2002) Trace element mobility during
859	sub-seafloor alteration of basaltic glass from Ocean Drilling Program site 953 (off
860	Gran Canaria). International Journal of Earth Sciences, 91(4), 661-679.
861	Walton, A., and Schiffman, P. (2003) Alteration of hyaloclastites in the HSDP 2 Phase 1

- 862 Drill Core 1. Description and paragenesis. Geochemistry Geophysics Geosystems,
- 863 4(5), doi: 10.1029/2002GC000368.
- 864 Walton, A.W., Schiffman, P., and Macpherson, G. (2005) Alteration of hyaloclastites in
- the HSDP 2 Phase 1 Drill Core: 2. Mass balance of the conversion of
 sideromelane to palagonite and chabazite. Geochemistry Geophysics Geosystems,
 6(9), doi: 10.1029/2004GC000903.
- 868 Wood, S.A. (1990) The aqueous geochemistry of the rare-earth elements and yttrium: 1.
- Review of available low-temperature data for inorganic complexes and the
 inorganic REE speciation of natural waters. Chemical Geology, 82, 159-186.
- 871 Xia, X.P., Cui, Z.X., Li, W., Zhang, W.F., Yang, Q., Hui, H., and Lai, C.K. (2019) Zircon
- water content: reference material development and simultaneous measurement of
 oxygen isotopes by SIMS. Journal of Analytical Atomic Spectrometry, 34(6),
- 874 1088-1097.
- 875 Yang, Q., Xia, X., Zhang, W., Zhang, Y., Xiong, B., Xu, Y., Wang, Q., and Wei, G. (2018)
- 876 An evaluation of precision and accuracy of SIMS oxygen isotope analysis. Solid
 877 Earth Sciences, 3(3), 81–86.
- 878 Zhang, G.L., Luo, Q., Zhao, J., Jackson, M.G., Guo, L.S., and Zhong, L.F. (2018a)
- 879 Geochemical nature of sub-ridge mantle and opening dynamics of the South
 880 China Sea. Earth & Planetary Science Letters, 489, 145–155.
- 881 Zhang, L., Ren, Z.Y., Xia, X.P., Yang, Q., Hong, L.B., and Wu, D. (2019) In situ

- determination of trace elements in melt inclusions using laser ablation inductively
- 883 coupled plasma sector field mass spectrometry. Rapid Communications in Mass
- 884 Spectrometry, 33(4), 361-370.