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Abstract 12 

Mixing of cogenetic magmas represents an important process in granite 13 

petrogenesis but is difficult to identify, and is consequently often overlooked, due to 14 

the absence of obvious isotopic distinctions between the mixed melts. We have 15 

conducted in-situ elemental and O isotope analyses on apatite from Cretaceous 16 

Zhangzhou calc-alkaline granite in SE China. We integrated these data with 17 

microanalyses on other minerals (plagioclase, zircon and titanite) as well as 18 

whole-rock geochemistry to decipher the mixing history of this granitic complex. The 19 

apatite occurs as an early crystallizing phase forming inclusions in biotite, plagioclase 20 

and titanite, and is characterized by core-rim zonation textures with a dark core and 21 

bright rims in back-scattered images. The core domains have remarkably higher SO3 22 

and Li concentrations but much lower SiO2, REE, and Y concentrations than the rim 23 

domains. However, both the cores and rims show geochemical compositions similar 24 

to that from typical I-type granite and also have mantle-like O isotope compositions 25 

(the core has 18O = 5.3-6.8‰ and the rim has 18O = 5.2-6.4‰, respectively), 26 

indicating crystallization from granitic melts derived from newly accreted crust. The 27 

combined major and trace element and O isotope compositions of apatite and 28 

whole-rock geochemistry suggests that compositional evolution of the Zhangzhou 29 

granite involved mixing between two cogenetic magma batches, with variable degrees 30 

of subsequent differentiation. Batch I magma was a low-SiO2 and high-SO3 melt, 31 

whereas Batch II magma was a high-SiO2 and low-SO3 melt that experienced 32 
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devolatilization. The high S content in apatite cores further suggests the parental 33 

magma of the Zhangzhou granite likely originated from a sulfur-rich source 34 

comprising mainly newly accreted arc crust in response to subduction of the 35 

paleo-Pacific Ocean. The geochemical records of these magmatic processes are rarely 36 

observed in coeval zircon, titanite and plagioclase. Our study therefore demonstrates 37 

that apatite geochemistry is potentially a more suitable monitor of complex magmatic 38 

evolution, including devolatilization and mixing of isotopically indistinguishable 39 

magmas.  40 

  Keywords: Apatite geochemistry; mixing; devolatilization; cogenetic magmas; 41 

Cretaceous; SE China  42 

Introduction 43 

Granitic rock (hereafter simply referred to as granite) is a major constituent of 44 

the upper continental crust and contains abundant mineral resources essential for 45 

sustained economic development. The compositions of granite vary extensively and 46 

can be broadly divided into I-, S-, M- and A-type based on geochemical features and 47 

melting sources (Chappell and White 1974; Whalen et al. 1987). Many petrogenetic 48 

hypotheses, e.g., fractional crystallization, assimilation via fractional crystallization 49 

(AFC, DePaolo 1981), and magma mixing (Griffin et al. 2002), have been proposed 50 

to interpret the geochemical diversity of granite. Nevertheless, it remains difficult to 51 

fully understand the magmatic evolution of granite since clear geochemical evidence 52 
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for many hypothesized petrogenetic processes is lacking.  53 

Recent techniques in studying chemistry and isotopic composition of minerals 54 

such as plagioclase, titanite, zircon and apatite have become widely used petrogenetic 55 

tools in supplementing or even replacing conventional bulk-rock analyses (e.g., Streck 56 

2008; Lisowiec et al. 2015; Nathwani et al. 2020). However, the sensitivity or 57 

applicability of these minerals in tracking magmatic processes is extremely variable 58 

because they each partition (or exclude) elements (or isotopes) of specific 59 

geochemical behavior and are typically relevant to only parts of a given crystallization 60 

sequence. Minerals that indelibly record geochemical proxies of changing magma 61 

compositions over a wide crystallization interval are rare. 62 

Apatite is one such mineral, containing measurable concentrations of a range of 63 

elements of various geochemical behavior, including halogens, S, rare earth elements 64 

(REEs), Sr, Y (Ayers and Watson 1993; Pan and Fleet 2002; Marks et al. 2012; Harlov 65 

2015; Webster and Piccoli 2015; Bruand et al. 2017), that are sensitive to specific 66 

magmatic/petrogenetic processes. For example, the textural and compositional 67 

variations in apatite from the Pingtan complex in SE China records both magmatic 68 

evolution and post-crystallization fluid activity regardless of a narrow range in Nd 69 

isotopic composition (Zhang et al. 2020). As a near-liquidus phase, apatite crystallizes 70 

early in metaluminous felsic magma (Piccoli and Candela 2002; Webster and Piccoli 71 

2015) and hence records early high-temperature magma compositional variations. 72 

Subsequent changes in magma composition can be reflected in compositional 73 

zonations of apatite because of the insignificant intracrystalline elemental diffusion 74 
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rates, especially for REE, S and Si (e.g., Dowty 1980; Tepper and Kuehner 1999; 75 

Cherniak 2010). Accordingly, apatite may have significant advantages in terms of 76 

deciphering magmatic evolution trends and processes compared with other commonly 77 

used minerals such as plagioclase, titanite and zircon.  78 

In this contribution, we present detailed petrographic observations and 79 

systematic in-situ geochemical analyses (major and trace element compositions and O 80 

and Sr isotopes) on apatite, zircon, titanite and plagioclase from granite of Zhangzhou 81 

igneous complex, SE China. These new data, together with whole-rock geochemistry, 82 

provide a fresh perspective on the role of mixing between cogenetic magmas involved 83 

in the generation of Zhangzhou calc-alkaline granite and show the advantage of using 84 

apatite geochemistry to track the magmatic evolution of granitoid batholiths.  85 

 86 

Geological backgrounds 87 

The geology of South China consists of Yangtze block in the northwest and 88 

Cathaysia block in the southeast, which were amalgamated in the Neoproterozoic 89 

along the Jiangnan Orogenic Belt (Fig. 1; Zhang et al. 2013). It underwent extensive 90 

tectonic and magmatic activity associated with the subduction of paleo-Pacific Ocean 91 

during Mesozoic (Zhou et al. 2006). The distribution of Mesozoic igneous rocks in SE 92 

China is mainly controlled by several large-scale NE-trending faults such as the 93 

Zhenghe-Dafu and Changle-Nan’ao faults. The magmatism consists of predominant 94 
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felsic lavas with minor intrusive mafic rocks (Zhou et al. 2006; Xu et al. 2020). 95 

Granitic rocks exposed in this region are mainly shallow-level, calc-alkaline, I-type 96 

granitoids that range from granodiorite, monzogranite to alkali-feldspar granite (Zhou 97 

et al. 2006; Li et al. 2014). These rocks also show hybrid geochemical signatures 98 

reflecting crust-mantle interaction that are typically observed at subduction zones (e.g., 99 

Griffin et al. 2002; Zhou et al. 2006; Guo et al. 2012; Xu et al. 2020). The 100 

contemporaneous mafic intrusive rocks are mainly hornblende gabbros, which show 101 

geochemical features similar to mafic arc cumulates (e.g., Li et al. 2014; Zhang et al. 102 

2019).  103 

The Zhangzhou batholith is located in the coastal region of Fujian province, SE 104 

China. Previous studies showed emplacement ages of this batholith ranging from 97 105 

to 107 Ma (Chen et al. 2013). The calc-alkaline granite occurs as the main body of the 106 

batholith, consisting of granodiorite and monzogranite. In the field, abundant mafic 107 

microgranular enclaves (MMEs) occur in the monzogranite and both show a sharp 108 

contact relationship (Fig. 2a and b). The granodiorite is equigranular and consists of 109 

plagioclase (~45 vol.%), K-feldspar (~25 vol.%), quartz (~20 vol.%) and biotite (5-8 110 

vol.%), with accessory zircon, apatite, titanite, allanite and epidote. The major 111 

minerals in the monzogranite are K-feldspar (~35 vol.%), quartz (~30 vol.%), 112 

plagioclase (~ 25 vol.%) and biotite (~5 vol.%), with accessory zircon, apatite, 113 

allanite and Fe-Ti oxides. The MMEs consist of plagioclase, biotite and quartz, with 114 

or without K-feldspar, and accessory minerals include apatite, zircon, titanite, allanite, 115 
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and Fe-Ti oxides (Chen et al. 2013). In the granite, apatite occurs as euhedral 116 

inclusions hosted in biotite, plagioclase and titanite (Fig. 2c-f). Based on field 117 

observations and geochemical studies, Chen et al. (2013) proposed that the 118 

calc-alkaline granite in the Zhangzhou batholith was formed by mixing between 119 

mantle- and crust-derived magmas.  120 

Analytical methods 121 

Whole-rock geochemical analyses 122 

Whole-rock major oxides were determined by wavelength X-ray fluorescence 123 

spectrometry (XRF) at the Sample Solution Analytical Technology Co., Ltd., Wuhan, 124 

China. About 0.5g of powder was thoroughly mixed with 3.6g Li2B4O7, 0.4g LiF, 0.3g 125 

NH4NO3, and minor LiBr in a platinum crucible. It was then melted in a furnace to 126 

form a glass disk for major element analysis. Trace element concentrations of the 127 

samples were determined by a Perkin-Elmer ELAN 6000 inductively coupled plasma 128 

mass spectrometry (ICP-MS) after acid digestion in high-pressure Teflon bombs at 129 

Guangzhou Institute of Geochemistry (GIG), Chinese Academy of Sciences (CAS). 130 

This involved mixing ~50 mg sample powder with 1 mL HF and 0.5 mL HNO3 in a 131 

Teflon beaker. Then the Teflon beaker was sealed in a stainless-steel bomb and heated 132 

at 190°C for 48 hours. The detailed analytical procedure was reported by Liu et al. 133 

(1996). The analytical errors were 5% for rare earth element (REE) and high field 134 

strength element (HFSE), and 5 to ~ 10% for the other elements, based on repetitive 135 
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analyses of USGS standards GSR-1 (granite), GSR-2 (andesite) and GSR-3 (basalt).  136 

Whole-rock Sr and Nd isotope analyses were performed with a Finnigan 137 

Neptune multi-collector ICP-MS at the GIG-CAS, following the analytical procedures 138 

described by Li et al. (2006). The REE and Sr were separated via cation columns, and 139 

Nd fractions were further separated by HDEHP-coated Kef columns. The procedural 140 

blanks were less than 200 pg for Sr and about 30 pg for Nd. The measured 87Sr/86Sr 141 

and 143Nd/144Nd ratios were normalized to 86Sr/88Sr = 0.1194 and 146Nd/144Nd = 142 

0.7219, respectively. The reported 87Sr/86Sr and 143Nd/ 144Nd ratios were adjusted to 143 

the NBS SRM 987 standard (87Sr/ 86Sr=0.710247 ± 8, 2σ) and the JNdi-1 standard 144 

(143Nd/144Nd= 0.512115 ± 4, 2σ, n=4), respectively. Repeated analyses of NBS SRM 145 

987 standard and the Shin Etsu JNdi-1 standard separately yielded mean values of 146 

0.710247 ± 9 and 0.512115 ± 6 (2σ, n = 3). During whole-rock Sr-Nd isotope 147 

analyses, the USGS reference BHVO-2 (basalt) yielded 87Sr/86 Sr = 0.703475 ± 8 (2σ, 148 

n = 6), 143Nd/144Nd = 0.512981 ± 5 (2σ, n = 6), consistent with the recommended 149 

values reported in Weis et al. (2005).  150 

Electron microprobe (EMP) analysis 151 

Backscattered electron (BSE) and cathodoluminescence (CL) images were 152 

performed with a SUPRA 55 SAPPHIRE equipped with a secondary electron and 153 

energy-dispersive X-ray spectrometry (EDS) detector. The concentrations of major 154 

elements in apatite, titanite, and plagioclase were determined by a Cameca SX FiveFe 155 

electron microprobe and JOEL JXA-8100 electron microprobe at the GIG-CAS. The 156 
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operating conditions were 15 kV accelerating voltage, 20 nA probe current, and 5 µm 157 

spot diameter. The standards for adjustment include apatite for Ca and P, fluorite for F, 158 

sodalite for Cl, albite for Na, sanidine for K, Si and Al, pyroxene for Mn, Fe, and Mg, 159 

and rutile for Ti respectively. The analytical errors were within 1%.  160 

LA-ICP-MS trace element analysis 161 

Trace-element analyses of apatite, titanite and zircon were performed with a 162 

Resolution M-50 laser ablation (LA) system coupled to an Agilent 7900a type 163 

inductively coupled plasma-mass spectrometer (ICP-MS) at the GIG-CAS. The 164 

detailed analytical procedure was reported in Tu et al. (2011). The diameter of the 165 

laser beam was 31μm for zircon, apatite and titanite (with 80 mJ laser energy, 6 Hz 166 

ablation frequency). Helium gas carrying the ablated sample aerosol is mixed with 167 

argon carrier gas prior to introduction into the ICP-MS. Each analysis included 168 

approximately 20 s of background acquisition (from a gas blank) followed by 45 s of 169 

data acquisition. 43Ca was used as the internal standard for apatite and titanite and 29Si 170 

was used as the internal standard for zircon. The content of CaO in apatite and titanite 171 

was measured by EMPA and SiO2 in zircon was assumed to be stoichiometric in 172 

zircon with a concentration of ca. 32.8 wt%. NIST SRM 610 and 612 were employed 173 

as external standards, respectively, which were analyzed twice after every 8 sample 174 

analyses. Data reduction was performed off-line by the ICPMSDataCall software (Liu 175 

et al. 2008). The corresponding mean element concentrations of standards during this 176 

study are listed after the trace element concentrations for apatite, zircon and titanite 177 
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respectively. 178 

In-situ Sr isotopic analysis of plagioclase 179 

All in-situ Sr isotope analyses in this study were performed on a Neptune Plus 180 

MC-ICP-MS (Thermo Scientific), coupled with a RESOlution M-50 193 nm laser 181 

ablation system (Resonetics) at the GIG-CAS. The laser parameters were set as follow: 182 

beam diameter, 112-155 μm; repetition rate, 6 Hz; energy density, ~4 J cm-2. Each 183 

analysis consisted of 250 cycles with an integration time of 0.262 s per cycle. During 184 

the first 30s, the gas blank of the system was monitored with the laser beam off. In the 185 

following 30s, the signals of ablated plagioclase were collected with the laser beam on. 186 

The gas blank of 83Kr and 88Sr were less than 2.5 mv and 0.5 mv during the 187 

measurement of this study. The interferences of 84Kr and 86Kr on 84Sr and 86Sr were 188 

corrected by subtracting gas blank from the raw time-resolved signal intensities. The 189 

mass bias of 87Sr/86Sr was normalized to 86Sr/88Sr = 0.1194 with an exponential law. 190 

The detailed data reduction procedure is reported in Zhang et al. (2015). Repeated 191 

analyses of the external standard NKT-1G yielded a weighted 87Sr/86Sr value of 192 

0.70355 ± 0.00003 (2SD, n = 7), which is consistent with the reference value 193 

(0.70351 ± 0.00002, Elburg et al. 2005). The corresponding standard data during this 194 

study are listed after the Sr isotope of plagioclase.  195 

In-situ O isotope analyses of apatite and zircon 196 

In-situ oxygen isotope compositions of apatite were obtained using the Cameca 197 
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IMS-1280 SIMS at the Institute of Geology and Geophysics, CAS. Separated apatite 198 

grains were embedded in epoxy disks together with apatite standards (Qinghu and 199 

Durango apatite). The Cs+ primary ion beam was accelerated at 10 kV, with an 200 

intensity of ~2 nA, with spot sizes of about 20 m in diameter. The normal-incidence 201 

electron flood gun was used to compensate for the charge at the surface of the 202 

gold-coated samples. Oxygen isotopes were measured using multi-collection mode on 203 

two off-axis Faraday cups. The analytical procedures of apatite were similar to those 204 

used for zircon oxygen isotopes as described by Li et al. (2010). In-situ oxygen 205 

isotopes of zircon were also obtained using the Cameca IMS-1280 HR SIMS at the 206 

GIG-CAS. The analytical procedures of zircon are described by Xia et al. (2019). 207 

Measured 18O/16O ratios were normalized by using Vienna Standard Mean Ocean 208 

Water and compositions (VVSMOW, 
18O/16O = 0.0020052), reported in standard per mil 209 

notation, and corrected for the instrumental mass fractionation factor (IMF). The IMF 210 

was obtained using the Durango fluorapatite and Penglai zircon as references for 211 

apatite and zircon, respectively. The average value of measured δ18O of Durango 212 

apatites was 10.15‰ (2SD = 0.56, n = 26), which is similar to the result in Trotter et 213 

al. (2008). The Qinghu apatite was also analyzed as an external reference for apatite, 214 

with a δ18O value of 5.59‰ (2SD = 0.52, n = 31). The δ18O values of the Durango and 215 

Qinghu apatite and Penglai and Qinghu zircon are listed after the δ18O values for 216 

apatite and zircon, respectively.  217 

 218 
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Results 219 

Whole‑rock geochemistry 220 

Whole‑rock compositions are listed in Supplementary Table S1. The rocks of the 221 

Zhangzhou batholith show large variations in SiO2 contents. The gabbro and diorite 222 

together have SiO2 ranging from 49.9 to 60.1 wt% with relatively high Mg-number 223 

(Mg # = 48 to 52). The calc-alkaline granites (monzogranites and granodiorites) span 224 

a SiO2 range from 63.0 to 71.0 wt%, with a Mg-number ranging from 34 to 43. The 225 

granites are metaluminous with A/CNK between 0.92 and 0.99. Monzogranites 226 

(Sample No. 17ZZ05 and 17ZZ06) generally contain higher SiO2 content than the 227 

granodiorites (67.8 -71.0 wt% vs. 63.0-66.8 wt%), ∑REE (212-309 ppm vs. 135-235 228 

ppm) and K2O (3.59-4.51 wt% vs. 2.83-3.50 wt%) but lower CaO (2.22 to 2.87 wt% 229 

vs. 3.86-4.79 wt%) and MgO (0.79-1.12 vs. 1.33-2.07 wt%). In contrast, the alkali 230 

feldspar granite has the highest SiO2 content with a range from 76.4 to 77.6 wt% and 231 

the lowest Mg-number (Mg# = 16 to 22). All rock types have similar initial 87Sr/86Sr 232 

ratios, ranging from 0.70602 to 0.70742. The mafic rocks have εNd(t) values ranging 233 

from -2.7 to -2.8, while the felsic rocks have slightly lower εNd(t) values between -3.2 234 

and -4.2 (Supplementary Table S1). Thus, the mafic and felsic rocks together form an 235 

igneous complex with almost similar isotope compositions. 236 

Texture and geochemistry of apatite 237 

Representative BSE images for apatite from the calc-alkaline granite are 238 
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presented in Fig. 3. These apatite grains are mostly prismatic with sizes ranging from 239 

100 to 200 μm (Figs. 2c-f and 3). They commonly occur as inclusions hosted in the 240 

major mineral phases (Fig. 2c-f), indicating apatite was an early crystallizing phase. 241 

Most of the apatite grains exhibit a core-rim zonation texture with a dark core and 242 

bright rims in the BSE images (Fig. 3). The dark core spans a range of 30-100 μm in 243 

size and the bright rims range from 20 to 40 μm in width (Fig. 3).  244 

The compositions of the analyzed apatite are listed in Supplementary Table S2. 245 

Both the apatite core and rim domains are fluorapatite with F > 2.5 wt% and F/Cl 246 

ratio > 11.5 (Fig. 4a and b). They show similar P2O5 (41.1-43.3 wt%), CaO (53.4-57.9 247 

wt%), FeO (0.01-0.12 wt%) and MnO (0.16-0.29 wt%). However, the apatite core 248 

domains generally contain higher SO3 (0.28-1.00 wt% vs. 0.10-0.42 wt%), Na2O 249 

(0.08-0.30 wt% vs. 0.02-0.11 wt%) and lower SiO2 (0.01-0.20 wt% vs. 0.26-0.58 wt%) 250 

contents than the rim domains. Also, the core domains generally have higher Li 251 

concentrations (2.0 to 19.2 ppm vs. 0.6 to 4.3 ppm) but lower REE (∑REE = 3989 to 252 

9743 ppm vs. 9380 to 16417 ppm) and Y (Y =259 to 894 ppm vs. 517 to 1781 ppm) 253 

concentrations than the rim domains. Nevertheless, all apatite domains have relatively 254 

high Ce/Y ratios, within the compositional fields of apatite from ‘I-type granitoids’ 255 

(Fig. 4c, Laurent et al., 2017), and show right-declined chondrite-normalized REE 256 

patterns with similar Ce/Ce* and Eu/Eu* ratios (Fig. 4d). Major and trace element 257 

analyses from a profile across a representative zoned apatite grain show abrupt 258 

compositional variations (Fig. 5, Supplementary Table S2). From core to rim, the SO3 259 

concentration decreases from 0.73 to 0.16 wt% and Cl decreases from 0.11 to 0.05 260 
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wt%, whereas SiO2 increases from 0.27 to 0.70 wt% (Fig. 5b-d). The apatite rims 261 

have 6587 to 7009 ppm Ce and 866 to 1017 ppm Y, up to three times the 262 

concentrations in the core domain (Ce = 2354 to 2874 ppm, Y = 338 to 428 ppm, Fig. 263 

5f and g). The apatite rims also have higher Sr (Sr = 223 to 230 ppm vs. 135 to 166 264 

ppm, Fig. 5h). In contrast, the apatite cores contain 5.1-7.4 ppm Li and 0.11-0.18 wt% 265 

Na2O, much higher than those in the rims (Li = 1.3-3.0 ppm, Na2O= 0.03-0.04 wt%, 266 

Fig. 5e and i). 267 

The O isotope compositions of apatite are listed in Supplementary Table S2 and 268 

plotted in Fig. 6. Both the apatite core and rim domains have mantle-like O isotopic 269 

compositions regardless of their difference in REE (Fig. 6). The core domains have 270 

δ18O values ranging from 5.3 ‰ (2SE = 0.28) to 6.8 ‰ (2SE = 0.26) with an average 271 

of 6.0 ‰ (n = 21), and the apatite rim domains have δ18O values ranging from 5.2 ‰ 272 

(2SE = 0.32) to 6.4 ‰ (2SE = 0.37) with an average of 5.8 ‰ (n = 21).  273 

Textures and geochemistry of other minerals 274 

Zircon. The compositions of zircon are listed in Supplementary Table S3. Zircon 275 

is hosted in main mineral phases such as plagioclase and biotite. It exhibits a euhedral 276 

prismatic form, ranges from 50 to 200 µm in diameter with length/width ratios from 277 

2:1 to 3:1, and typical igneous oscillatory zoning in CL images (Supplementary 278 

Materials, Fig. S1). The Hf concentration of zircon ranges from 7695 to 11489 ppm, is 279 

negatively correlated with the concentrations of Ti (3.1 to 16.7 ppm) and P (332 to 280 

696 ppm) and with Th/U (0.54 to 1.48) and Eu/Eu* (0.4 to 1.2), but is positively 281 
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correlated with Yb/Gd (7.9 to 27.8). The Ti-in-zircon (TTi-Zr) thermometer yields 282 

values ranging from 674 to 835C (Supplementary Table S3) using the equations of 283 

Ferry and Watson (2007). Zircon also has mantle-like δ18O values ranging from 5.3 ‰ 284 

to 6.9 ‰ with an average of 5.8 ‰ (SD = 0.44, n = 20).  285 

Titanite. The compositions of titanite are listed in Supplementary Table S4. 286 

Titanite crystals always display continuous and oscillatory zoning in BSE images, 287 

showing small intracrystalline compositional changes. Some titanite crystals show an 288 

obvious zoned texture with a bright core and dark rim. The bright core often shows 289 

fir-tree and oscillatory zonation. The dark rim shows a uniform texture and is 290 

occasionally surrounded by bright domains (Supplementary Materials, Fig. S2). 291 

Titanite frequently contains inclusions of the zoned apatite (Fig. 2e). Titanite from the 292 

granites has weakly variable SiO2 (29.02–30.74 wt%), TiO2 (34.04–36.81wt%), CaO 293 

(26.37–29.33 wt%), Al2O3 (1.02–1.65 wt%) and FeO (1.48–2.49 wt%) and F 294 

(0.05-0.42 wt%). However, the total REE concentrations of titanite varies greatly 295 

from 1.7 wt% to 2.9 wt%. The bright domains generally have much higher REE 296 

concentrations than the dark parts.  297 

Plagioclase. The compositions of plagioclase are listed in Supplementary Table 298 

S5. Plagioclase crystals in the granite show complex textures and zoning patterns. 299 

Some grains have a strong dissolution texture, with sodic patches in the dissolved 300 

calcic cores and less calcic rims (Supplementary Fig. S3). The dissolved core has a 301 

sieved texture and higher Ca contents (An38 - An48), whereas the dark patches in the 302 

core and the rim have lower Ca contents (An14 - An30). Such a compositional zonation 303 
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might be caused during decompression of the magma. Twelve analytical spots on 304 

plagioclase from the granite show a narrow variation of initial 87Sr/86Sr ratios from 305 

0.7064 to 0.7067 with an average of 0.7066 (n = 12). This value is quite similar to the 306 

host bulk rock (87Sr/86Sr(i) = 0.7066).  307 

 308 

Discussion 309 

Core-rim zonation texture in apatite: a record of magma mixing 310 

The apatite in Zhangzhou granite is characterized by textural and compositional 311 

zonation with abrupt core to rim increases in SiO2 and REE concentrations and 312 

decreases in SO3 and Li (Figs. 3 and 5). Compositional zoning of minerals in igneous 313 

rocks results from various processes including fractional crystallization, AFC 314 

processes, post-crystallization hydrothermal activity and magma mixing. In the 315 

following, we discuss the possible effects of these processes on the compositional 316 

variations observed in the apatite from Zhangzhou granite.  317 

(1) Fractional crystallization plays an important role in progressive mass and 318 

ionic exchange between magma and minerals. Compositional zonation in the 319 

crystallizing phase typically follows “normal” igneous trends (i.e., increases in 320 

incompatible elements and decreases in compatible elements from core to rims, Gao 321 

et al. 2007; Guo et al. 2007; Streck 2008). Since REEs behave as incompatible 322 

elements in plagioclase, biotite and quartz (Nash and Crecraft 1985) – the major 323 
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mineral assemblage in the Zhangzhou granite, fractionation of these minerals would 324 

lead to increasing REE concentrations in the crystallizing apatite. Biotite-dominated 325 

fractionation may also cause halogen variation in a crystallizing magma and possibly 326 

results in Cl/F zonation in apatite (Teiber et al. 2014; Ansberque et al. 2019). 327 

Fractionation of biotite + plagioclase + quartz might explain the core to rim increases 328 

in REE concentrations and decreasing Cl/F in zoned apatite from the Zhangzhou 329 

granite, but it cannot explain the observed rim to core trends to higher SiO2 and Sr 330 

concentrations (Fig. 5b and h) and similar Fe concentrations. Fractional crystallization 331 

of significant amounts of apatite might explain progressive core to rim decreases in 332 

REE concentrations in zoned apatite (e.g., Bruand et al. 2014) because REEs are 333 

compatible in apatite (e.g., Prowatke and Klemme 2006). However, such trends 334 

contrast with the abrupt increase in concentration from the core to rim that we observe 335 

(Fig. 5f and g). In any case, fractional crystallization is a continuous process which 336 

likely forms continuous compositional zonations, or predictable changes reflected in 337 

changing modal mineral assemblages, e.g., a progressive increase of La in 338 

clinopyroxene from core to rim during fractional crystallization (Gao et al. 2007). 339 

Therefore, it is clear that the sharp core to rim compositional variations in apatite of 340 

the Zhangzhou granite could not be generated by fractional crystallization alone (Figs. 341 

5 and 7).  342 

(2) Similar to fractional crystallization, AFC processes also generally result in 343 

the crystallization of minerals with normal compositional zonation (e.g., Jung et al. 344 

1999). However, in the Zhangzhou granite, there are weak correlations between the 345 
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87Sr/86Sr(i) and εNd(t) and SiO2 (SiO2 = 67.8-71.0 wt%, 87Sr/86Sr(i) = 0.7062-0.7066, 346 

and εNd(t)= -3.0 to -4.2, Supplementary Table S1). The plagioclase in these granites, 347 

with variable An contents, has a uniform Sr isotope composition (An=16-48, 348 

87Sr/86Sr(i) = 0.7064-0.7067, Supplementary Table S5), similar to the whole rock value 349 

(87Sr/86Sr(i) = 0.7066). Apatite core and rim domains as well as zircon have similar 350 

oxygen isotope compositions (Supplementary Table 3). All these geochemical features 351 

do not support a significant role for crustal contamination or assimilation.  352 

(3) Hydrothermal fluids have been shown to leach REE from apatite, resulting in 353 

substantial decreases in REE concentrations and variations in LREE/HREE ratios as 354 

well as O isotopes in apatite with the formation of new REE-phosphates such as 355 

monazite and xenotime (e.g., Rae et al. 1996; Harlov and Förster 2003; Harlov et al. 356 

2005; Broom-Fendley et al. 2016; Zeng et al. 2016; Birski et al. 2019). Whilst apatite 357 

crystals in the Zhangzhou granite have REE-poor cores, it is unlikely that this 358 

compositional zonation resulted from post-crystallization hydrothermal activity 359 

because the apatite core domains have La/Sm ratio and 18O value similar to the rim 360 

domains (Figs. 4d and 6), and coexisting secondary mineral phases are absent (Figs. 361 

2c-f and 3).  362 

(4) Magma mixing can produce textural and compositional zoning in apatite 363 

(Tepper and Kuehner 1999; Słaby et al. 2012; Bruand et al. 2014; Laurent et al. 2017), 364 

accounting for sharp compositional variations like those observed in apatite from the 365 

Zhangzhou granite. Experimental results have shown nonlinear element exchange 366 

between the interacting magmas due to variations in diffusion behavior (De Campos 367 
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et al. 2008; Perugini et al. 2008). The direction of compositional change in mineral 368 

compositions is largely a reflection of the new bulk magma composition after each 369 

mixing step and might reverse trends expected from fractional crystallization (with or 370 

without crustal contamination) alone. In the case of the Zhangzhou granite, magma 371 

mixing is strongly supported by the presence of MMEs and granodiorite inclusions in 372 

the monzogranite, at the locality from which the samples were taken (Fig. 2a and b). 373 

Mixing is also reflected in abrupt ΣREE variations in the zoned titanite 374 

(Supplementary Materials). Thus, magma mixing is our preferred model in explaining 375 

the composition zonations that we see in apatite from the Zhangzhou granite.  376 

Composition of end-member melts during magma mixing 377 

The rapid core to rim increases in SiO2, REE and Y concentrations and decreases 378 

in SO3 and Li of apatite from the Zhangzhou granite can probably be attributed to 379 

abrupt changes in bulk melt composition and/or the resultant change in partition 380 

coefficients during the apatite crystallization (Fig. 5). For simplicity, we assume a 381 

single mixing event and name the magma that crystallized the apatite cores as Batch I, 382 

and the mixed magma that crystallized the apatite rims as Batch II. 383 

Previous studies have demonstrated that the REE contents in apatite are 384 

primarily controlled by magma composition and mineral/melt partition coefficients (D) 385 

(Sha and Chappell 1999; Prowatke and Klemme 2006). Increasing SiO2 content in a 386 

fractionating melt is expected to promote the coupled substitution reaction: 387 

REE3++SiO4
4- = Ca2+ + PO4

3- (Pan and Fleet 2002), and to further increase the degree 388 
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to which REE preferentially partition into apatite rather than melt (i.e., increasing D389 

Ap/melt 
REE ) (Prowatke and Klemme 2006). Experimental results have also shown that DAp/melt 

REE  390 

values depend largely on the composition of magma, showing a strong positive 391 

correlation with silica content of magma (e.g., Watson and Green 1981; Prowatke and 392 

Klemme 2006; Laurent et al. 2017). This is consistent with the previous investigations 393 

on apatite from a wide range of magmatic suites, which found that REE 394 

concentrations in apatite increase from the primitive to evolved rocks (Sha and 395 

Chappell 1999; Belousova et al. 2002; Chu et al. 2009; Zhang et al. 2020). Therefore, 396 

apatite crystallized from a high-SiO2 magma tends to contain high SiO2 and REE 397 

concentrations (Ladenburger et al. 2016). Given that the REE and SiO2 398 

concentration of apatite rims can be three times higher than cores (Fig. 5b, f and g), 399 

we suggest that the SiO2 content of Batch II magma was relatively high, with a 400 

correspondingly high DAp/melt 
REE .  401 

Theoretically, sulfur concentration in apatite depends largely on the S content of 402 

the melt and it can be used as a proxy to track the sulfur evolution of magma (Parat et 403 

al. 2002, 2011; Van Hoose et al. 2013; Brounce et al. 2019). The partition coefficient 404 

of sulfur in apatite (DAp/melt 
S ) is additionally controlled by complex physio-chemical 405 

conditions, including oxygen fugacity (ƒO2) and temperature (Peng et al. 1997; Parat 406 

and Holtz 2004). Both apatite core and rim domains show similar Eu/Eu* and Ce/Ce* 407 

(Fig. 4d), probably suggesting crystallization under similar oxidizing conditions (e.g., 408 

Sha and Chappell 1999; Cao et al. 2012). On the other hand, because the apatite cores 409 

and rims occur in the same samples, the similar apatite saturation temperature should 410 
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have little effect on DAp/melt 
S . Therefore, the high S content in apatite cores, which can 411 

be four times higher than the apatite rims, is likely attributed to higher sulfur 412 

concentration in Batch I magma (Figs. 5c and 7).  413 

Constraints on the magma source 414 

Both core and rim domains in apatite from the Zhangzhou granite exhibit 415 

mantle-like δ18O values in equilibrium with the coeval zircon (Fig. 6, Supplementary 416 

Table S3). The granites have whole-rock 87Sr/86Sr(i) and ɛNd(t) values similar to those 417 

of MMEs and mafic rocks in the Zhangzhou batholith (Chen et al. 2013). These 418 

geochemical features suggest derivation of the Zhangzhou granite from newly 419 

accreted crust.  420 

As mentioned early, the core and rim domains in apatite from the Zhangzhou 421 

granite have distinct chemical compositions, especially the high SO3 content (up to 422 

1.00%) in the core domain. Apatite incorporates sulfur in multiple oxidation states 423 

(i.e., S6+, S4- and S2-) via complex substitutions (Piccoli and Candela 2002; Konecke 424 

et al. 2017; Brounce et al. 2019). However, previous studies have shown that apatite 425 

favors coupled substitution mechanisms involving oxidized S (Streck and Dilles 1998; 426 

Kim et al. 2017) and S-rich apatite always crystallizes at a high oxygen fugacity (e.g., 427 

Parat et al. 2011; Chelle-Michou and Chiaradia 2017). This is consistent with the 428 

oxidized nature of the I-type, or magnetite-series, Zhangzhou granite (e.g., Ishlhara 429 

1977; Carmichael 1991; Blevin and Chappell 1995).  430 

At subduction zones, seawater sulfate can be absorbed by the sediments 431 
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overlying the mafic oceanic crust during seafloor hydrothermal alteration. During 432 

subduction of the oceanic crust and overlying sulfate-bearing sediments, oxidized 433 

sulfur is released into the mantle wedge (e.g., Sasaki and Ishihara 1979; de Hoog et al. 434 

2001; Wallace and Edmonds 2011). Arc mafic magmas derived from the mantle 435 

wedge metasomatized by sulfate-bearing sediments should correspondingly contain 436 

high S (e.g., Sharma et al. 2004), consistent with previous experiments that oxidized 437 

arc mafic magmas have a high capacity to contain sulfur (Jugo et al. 2005). For 438 

instance, olivine-hosted melt inclusions from the arc mafic magmas can contain high 439 

S content up to 7000 ppm (Wallace and Edmonds 2011). An oxidized mafic melt can 440 

transport large amounts of sulfur from the mantle to shallow crustal levels and even to 441 

the atmosphere (e.g., de Hoog et al. 2004; Richards 2015; Zellmer et al. 2015). 442 

Underplated mafic magmas might be the source of high-S arc crust formed during the 443 

subduction of paleo-Pacific Ocean in the Cretaceous. Previous studies have also 444 

suggested that mafic intrusions might supply sulfur to long-lived felsic magma 445 

chambers (Edmonds et al. 2010; Wallace and Edmonds 2011), in which high-S apatite 446 

crystallizes (Van Hoose et al. 2013). Thus, underplated mafic magmas releasing S-rich 447 

fluid and/or resultant melting of the high-S arc crust could have been the source of the 448 

high-S felsic Batch I magma that crystallizes the cores of apatite in the Zhangzhou 449 

granite. 450 

Devolatilization of Batch II magma 451 

Liquid-vapour fractionation is considered to be an important process of 452 
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magmatic differentiation where a separate vapor phase coexists with a magma 453 

(Webster and Vivo 2002; Baker and Alletti 2012). This process can cause geochemical 454 

variations related to difference in element partitioning between the coexisting vapor 455 

and magma. In the case of the Zhangzhou granite, liquid-vapour fractionation 456 

probably contributes to the large variations in concentrations of fluid-mobile elements 457 

such as S, Cl and Li in the apatite.  458 

As discussed above, Batch II magma had higher SiO2 but lower S than Batch I 459 

magma. Considering the evidence, based on tightly constrained isotopic variations, 460 

that both magma batches shared a common source, there must have been an additional 461 

geological process that rapidly decreases the S content during the evolution of Batch 462 

II magma. Possible mechanisms to reduce the S content of magma include: (1) 463 

fractionation of sulfide and sulfate (e.g., anhydrite and pyrite); and (2) devolatilization 464 

(evaporation of magmatic H2S and/or SO2-rich fluid exsolution). Since anhydrite and 465 

pyrite are not observed in the studied samples, it seems unlikely that the granitic 466 

magma was saturated in sulfide or sulfate minerals. Hence, the reduced S content is 467 

unlikely to be supplied by sulfate and sulfide fractionation. Therefore, SO2 468 

disproportionation in an exsolved fluid (e.g., Mavrogenes and Blundy 2017) and/or 469 

direct degassing as magmatic H2S (e.g., Oppenheimer et al. 2011), might be realistic 470 

alternative means of lowering the S content in Batch II magma. The oxidation state of 471 

I-type granitic magma implies that the majority of S in the magma existed as SO4
2- 472 

instead of H2S (Baker and Moretti 2011; Richards 2015), suggesting a more important 473 

role of fluid exsolution than degassing of H2S during magmatic evolution.  474 
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Since Cl preferentially partitions into fluids but F is soluble in melts (Baker and 475 

Alletti 2012; Webster et al. 2018), devolatilization can also lead to a decrease in Cl 476 

concentration of a melt, and in any crystallizing apatite, without significantly 477 

affecting F concentrations (e.g., Piccoli and Candela 2002; Webster 2004; Aiuppa et 478 

al. 2009; Balcone‐Boissard et al. 2010; Zhang et al. 2012; Teiber et al. 2014; Wang et 479 

al. 2018). Apatite rims have lower Cl content and Cl/F than the core for any given 480 

zoned apatite, consistent with the effect of devolatilization (Fig. 5d and 481 

Supplementary Table S2). The indistinguishable ranges in F and Cl concentrations of 482 

all apatites (Fig. 4a) are probably due to variable crystallization conditions (Boyce et 483 

al. 2014).   484 

Devolatilization is also evidenced by the lower Li concentration in the apatite 485 

rims (Fig. 5i). Since Li preferentially enters aqueous fluid rather than the silicate melt, 486 

devolatilization would lead to a Li decrease in both the melt and crystallizing apatite 487 

(Webster et al. 1989; Duan and Jiang 2018). Collectively, Barch II magma 488 

experienced strong devolatilization, which is consistent with the previous 489 

observations that exsolved fluids have the capacity to sequester Li, Cl and S away 490 

from the magmatic systems (e.g., Bai and Koster van Groos 1999; Kamenetsky et al. 491 

1999; Webster 2004; Zajacz et al. 2008; Pokrovski et al. 2013).  492 

Petrogenetic implications 493 

It is commonly assumed that elevated εNd(t) or εHf(t) values in granitoids implies 494 

mixing by mantle-derived magma, whereas more constant isotopic compositions in 495 
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granite reflects the predominant role of fractional crystallization. For example, various 496 

degrees of mixing between mantle-derived mafic and crust-derived felsic magmas 497 

result in a wide εHf(t) range of the calc-alkaline felsic rocks in SE China (Griffin et al. 498 

2002; Guo et al. 2012). However, in many magmatic systems and tectonic 499 

environments, interaction of cogenetic magmas is also inevitable as magma chambers 500 

are incrementally, or episodically, filled by magma batches from common sources 501 

over time (Taylor 2004; Annen 2009; Farina et al. 2012). In such cases, important 502 

magmatic processes such as crystal-melt segregation, liquid-vapor fractionation and 503 

self-mixing in crustal magma chamber can be difficult to monitor by traditional 504 

bulk-rock geochemical analyses (Turner and Campbell 1986; Couch et al. 2001; Alves 505 

et al. 2009; Edmonds and Woods 2018; Sun et al. 2019; Yan et al. 2020). Mixing of 506 

cogenetic granitic magmas and devolatilization process, as shown here for the 507 

Zhangzhou granite, have occurred with little or no isotopic variation.  508 

More recent studies on granite petrogenesis have benefited from advances in 509 

analytical techniques that enable in-situ analysis of minerals for stable and radiogenic 510 

isotopes, including O, S, Rb-Sr, Sm-Nd and Lu-Hf systems (e.g., Griffin et al. 2002; 511 

Yang et al. 2014; Economos et al. 2017; Bruand et al. 2019; Cao et al. 2019). Such 512 

studies have shown that in-situ geochemical analysis on minerals (e.g., apatite, 513 

plagioclase, zircon and titanite) has many advantages over whole-rock chemistry in 514 

petrogenetic discussion (e.g., Yu et al. 2018; Gros et al. 2020; Zhang et al. 2020). 515 

Apatite performs particularly well as a recorder of petrogenetic processes and our 516 

study provides an example illustrating the advantages of using compositional 517 
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zonations in apatite to track obscure magma processes such as mixing of cogenetic 518 

granitic magmas and devolatilization. There is no doubt that in-situ compositional and 519 

isotopic analysis of apatite will provide significant advances in the range of data 520 

available for understanding igneous petrogenesis.  521 
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List of figure captions 887 

Fig. 1 Simplified geological maps showing tectonic setting (after Zheng et al. 888 

2013), and the distribution of Mesozoic granites in the coastal region of SE China 889 

(after Zhou et al., 2006).   890 

Fig. 2 (a-b) Field photos showing the contact relationship between the host 891 

granite (monzogranite) and mafic microgranular enclaves. (c-d) Columnar apatite 892 

inclusions occurring in biotite and plagioclase. (e-f) BSE images showing zoned 893 

apatite hosted in titanite and biotite.  894 

 Fig. 3 Representative BSE images of apatite from the Zhangzhou calc-alkaline 895 

granite. Most crystals show a core-rim zonation texture.  896 

Fig. 4 Plots of Cl vs. F (a), Cl-OH-F (b), Y vs. Ce (ppm) (c) of apatite, and 897 

chondite-normalized REE patterns of apatite (d). In (b) the concentrations of volatile 898 

components (atomic proportions) in apatite is estimated by using the method by 899 

Piccoli and Candela (2002). In (c), the variation fields of apatite in S-type and I-type 900 

granite are from Laurent et al. (2017). Normalization values (d) are from McDonough 901 

and Sun (1995). 902 
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Fig. 5 Core-to-rim profiles of major and trace element compositions of a zoned 903 

apatite crystal from the Zhangzhou calc-alkaline granite. (a) The BSE image showing 904 

the core-to-rim analyzed profiles. (b-e) EPMA analysis, variations in SiO2 (b), SO3 (c), 905 

Cl (d) and Na2O (e) across the profile. (f-i) LA-ICPMS analysis, variations in Ce (f), 906 

Y (g), Sr (h) and Li (i) across the profile. 907 

Fig. 6 Plot of ΣREE (ppm) vs. δ18O, the bars denote the analytical errors given as 908 

2. 909 

Fig. 7 Plots of SiO2 (wt%) vs. SO3 (wt%).  910 

Supplementary Tables 911 

Table 1 Whole-rock major and trace elements and Sr-Nd isotopic compositions 912 
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Table 4 In-situ major and trace elements compositions of titanite from 918 
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