1	Revised Version Ms. #7764
2	
3	
4	Are the Thermodynamic Properties
5	of Natural and Synthetic Mg ₂ SiO ₄ -Fe ₂ SiO ₄ Olivines the Same?
6	
7	Charles A. Geiger*, Noreen M. Vielreicher and Edgar Dachs
8	
9	Department of Chemistry and Physics of Materials
10	Section Materials Science and Mineralogy
11	Salzburg University
12	Jakob Haringer Strasse 2a
13	A-5020 Salzburg, Austria
14	
15	*Corresponding author
16	Tel. (0431) 662-8044-6226
17	E-mail: ca.geiger@sbg.ac.at
18	
19	Submitted to American Mineralogist - Oct. 2, 2020
20	
21	
22	Short Title: Thermodynamics of Natural and Synthetic Olivines
23	

24

ABSTRACT

25	It is not known if the thermodynamic behavior of some rock-forming minerals and their
26	synthetic analogues are quantitatively the same. Olivine is an important rock-forming
27	substitutional solid solution consisting of the two end-members forsterite, Mg ₂ SiO ₄ , and fayalite,
28	Fe ₂ SiO ₄ . We undertook first C_p measurements on two natural olivines between 2 and 300 K;
29	nearly end-member fayalite and a forsterite-rich crystal $Fo_{0.904}Fa_{0.096}$. Their $C_p(T)$ behavior is
30	compared to that of synthetic crystals of similar composition, as found in the literature. The two
31	natural olivines are characterized by X-ray powder diffraction and ⁵⁷ Fe Mössbauer spectroscopy.
32	The X-ray results show that the crystals are well crystalline. The Mössbauer hyperfine
33	parameters, obtained from a fit with two Fe ²⁺ quadrupole split doublets, are similar to published
34	values measured on synthetic olivines. There are slight differences in the absorption line widths
35	(i.e., FWHM) between the natural and synthetic crystals. C_p (2 to 300 K) is measured by
36	relaxation calorimetry. The C_p results of the natural nearly end-member fayalite and published
37	values for two different synthetic Fa ₁₀₀ samples are in excellent agreement. Even C_p resulting
38	from a Schottky anomaly and a paramagnetic-antiferromagnetic phase transition with both
39	arising from Fe ²⁺ are similar. There are slight differences in the Néel temperature between the
40	natural, 63 K, and synthetic, ~65 K, fayalites. This is probably related to the presence of
41	additional minor elements (e.g., Mn^{2+}) in the natural crystal. The S° value is 151.6 ± 1.1
42	J/mol·K. C_p behavior of the natural forsterite, Fo _{0.904} Fa _{0.096} , and a synthetic Fo ₉₀ Fa ₁₀ olivine are
43	in excellent agreement between about 7 and 300 K. The only difference lies at $T < 7$ K, as the
44	former does not show Debye T^3 behavior, but, instead, a plateauing of C_p values. The S° value
45	for the natural forsterite is 99.1 ± 0.7 J/mol·K.

46

47 Key Words: Thermodynamics, Calorimetry, Heat Capacity, Entropy, Olivine, ⁵⁷Fe Mössbauer
48 Spectroscopy

50

INTRODUCTION

51	The database of thermodynamic properties of rock-forming minerals is large. However,
52	in spite of the great amount of research that has been done, there are still various outstanding
53	issues. One important issue concerns the thermodynamic behavior of minerals and their synthetic
54	analogues. This is critical because there is an underlying assumption in the community that there
55	are no or negligible energetic differences between synthetic and natural crystals. The
56	compilation of calorimetrically determined properties of Robie and Hemingway (1995) contains,
57	for example, results obtained on both natural and synthetic phases. Internally consistent
58	thermodynamic databases use phase-equilibrium and calorimetric results, obtained on the two
59	types of crystals as well, to derive "best-fit" values of different thermodynamic functions. There
60	could be, though, quantitative differences in the thermodynamic properties for some minerals.
61	Helgeson et al. (1978) wrote in their "Summary and Critique of the Thermodynamic
62	Properties of Rock-Forming Minerals" that the two types of phases could behave differently.
63	However, since then, little research has addressed this issue. Geiger and Dachs (2018) did
64	analyze the standard third-law entropy, S° , value of various "end-member" silicate garnets both
65	synthetic and natural. In two cases (i.e., almandine and andradite), there was no marked
66	difference between synthetic and natural crystals in terms of calorimetric heat-capacity
67	measurements, $C_p(0-300 \text{ K})$, which were used to obtain S°. They noted, though, that older
68	calorimetric $C_p(0-300 \text{ K})$ measurements may not have been fully quantitative in some cases
69	because of different technical issues. On the other hand, in the case of grossular, Ca ₃ Al ₂ Si ₃ O ₁₂ ,
70	where multiple calorimetric studies on various natural and synthetic crystals have been made and
71	in several independent laboratories, there are small but measurable variations in $C_p(T)$ behavior
72	and S° values (Dachs et al. 2012; Geiger and Dachs 2018).

Constant pressure heat capacity, $C_p(T)$, is an essential thermodynamic function of any crystalline substance, especially at low temperatures (Westrum 1962)¹. It can be measured directly via calorimetry. It is defined as

76
$$C_p = \left(\frac{dH}{dT}\right)_P \tag{1},$$

77 where *H* is the enthalpy. From it, S° can be calculated via:

78
$$S^{o} - S^{T=0K} = \int_{0}^{298.15} \frac{C_{P}}{T} dT$$
(2),

assuming $S^{T=0K} = 0$. S° can also be considered the calorimetric entropy.

Olivine is an important substitutional solid-solution silicate consisting of the two end-80 81 members forsterite, Mg₂SiO₄, and fayalite, Fe₂SiO₄. It occurs in meteorites, asteroids and in solid 82 planets and their moons, and it is the most abundant phase in Earth's upper mantle. A precise 83 knowledge of olivine's thermodynamic properties is crucial for undertaking a variety of mineralogical, petrological, geochemical and geophysical investigations. One area of current 84 85 geochemical and metamorphic research is focusing on mineral carbonation and serpentinization 86 of peridotite (Keleman et al. 2011). Here, relatively low-temperature olivine-bearing reactions 87 are of importance. Olivine's thermodynamic behavior is complex and involves the atomic mixing of Fe²⁺ and Mg over two crystallographically independent octahedrally coordinated sites 88 89 M1 and M2. Their mixing is temperature and composition dependent. Moreover, intermediate 90 Fe²⁺-bearing olivines show a low-temperature magnetic phase transition and a Schottky 91 anomaly. Robie et al. (1982a, b) measured the low-temperature C_p (5-300 K) of synthetic end-92 member forsterite and fayalite, respectively, using adiabatic calorimetry. Dachs et al. (2007) also 93 measured both end-members and, in addition, a number of synthetic intermediate-composition,

¹ "The solid state researcher so often has occasion to acknowledge the extraordinary wealth of information that can be obtained about substances from low-temperature heat capacity determinations that one is tempted to attribute to such measurements a more fundamental significance than to any other unique method of investigation."

94 $(Mg_{1-x}, Fe^{2+}_{x})_2 SiO_4$, crystals using relaxation calorimetry. As best we know, no $C_p(0-300 \text{ K})$ 95 measurements have been made on natural olivine. 96 In light of this, this study presents first low-temperature C_p measurements of two 97 different composition natural olivines. The results are compared to those obtained on synthetic 98 crystals and an analysis of the thermodynamic behavior is made and conclusions drawn. 99 100 **METHODS** 101 Samples 102 Two natural olivine samples with different compositions, including a nearly end-member 103 favalite and a forsterite ($Fo_{0.904}Fa_{0.096}$), were selected for study. They are described in Table 1. 104 Their compositions are given in Table 2. A favalite-rich rock chip (Rockport, MA) roughly two 105 cm size was crushed to a sand size and clear olivine grains were carefully hand-picked under a 106 binocular to obtain a clean separate. The forsterite-rich olivine (Pyaung-gaung Mine, Myanmar) 107 was prepared as a doubly polished platelet, about 3.3 x 4.3 x 1.0 mm, as taken from a larger 108 single crystal. 109 X-ray powder diffraction, ⁵⁷Fe Mössbauer spectroscopy, and low-temperature C_p 110 111 measurements 112 Sample purity was checked via x-ray powder diffraction (XRPD) using a Bruker D8 Advance with DaVinci-Design diffractometer (Bruker AXS, Karlsruhe, Germany). Splits from 113 114 both samples were ground, mounted on a single-crystal silicon holder and measured using Cu K α radiation (40 kV, 40 mA) in continuous mode between 5° $\leq 2\theta \leq 95^{\circ}$ with a step size of 115 116 0.015° and 0.15 sec/step. The diffractometer has a Bragg-Brentano beam geometry with a fixed 117 0.3° divergence slit, primary and secondary side 2.5° Soller slits, a 4.0° antiscatter slit and an 118 energy dispersive Lynxeye detector (opening angle 2.934°). Silicon powder NBS SRM 640b was

119 used as an external calibration standard. Data were plotted using DIFFRAC.EVA (Version

120 5.0.0.22, 2019, Bruker AXS Inc., WI, USA).

121 The experimental ⁵⁷Fe Mössbauer spectroscopic set-up has been described before (Palke 122 et al. 2015). In brief, ⁵⁷Fe Mössbauer transmission spectra were recorded with a horizontal arrangement using a ⁵⁷Co/Rh single-line source with constant acceleration and a symmetric 123 124 sawtooth velocity shape. The absorption data were collected with a multi-channel analyzer 125 having 1024 channels and the velocity calibration was made using a 30 μ m thick α -Fe foil. The FWHM associated with the ⁵⁷Co source is 0.243 ± 0.015 . A powdered sample was contained in a 126 plastic disc held a Cu-ring of 10 mm inner diameter, covered with high-purity Al-foil on the 127 128 backside. The folded spectrum was evaluated by using Lorentzian-shaped doublets using the 129 program RECOIL. 130 $C_p(T)$ was measured three times at 60 different temperature increments from 300 down to 131 2 K. The mass of the polycrystalline fayalite sample was 15.47 mg. The mass of the forsterite 132 crystal platelet was 30.57 mg. The Quantum Design relaxation calorimeter and the experimental set-up used to measure C_p have been described before (Dachs and Bertoldi 2005; Geiger and 133 134 Dachs 2018) and are not repeated here. Measurements on standard Al₂O₃ and/or MgO single 135 crystals (Geiger and Dachs 2018) are made on a regular basis to check the experimental 136 accuracy.

- 137
- 138

RESULTS

The X-ray results show that both samples are primarily olivine with only minor amounts of other phases (Supplementary Fig. 1a and Fig. 1b). The ⁵⁷Fe Mössbauer spectra are shown in Fig. 1a and 1b and they can be fitted well with two Fe²⁺ doublets. The fit parameters are given in Table 3. The amount of Fe³⁺ in both samples is very minor based on the minimal to nil absorption between 0.0 and 1.0 mm/s. No attempt was made to account for possible differences in the recoil-free fraction for Fe²⁺ at M1 and M2.

145	The $C_p(T)$ data from the relaxation-calorimetry measurements of the two natural olivines
146	are compared with the C_p behavior of synthetic olivines of similar compositions in Fig. 2a and
147	Fig. 2b. The data for the former samples are average values obtained from three separate $C_p(2-$
148	300 K) measurements (cf. raw data in Supplementary Tables 1a and 1b and one sigma errors).
149	The data for the two different synthetic fayalite samples are the smoothed values given in Robie
150	et al. (1982b) and Dachs et al. (2007). A pronounced paramagnetic-antiferromagnetic magnetic
151	transition and a Schottky anomaly, both related to Fe^{2+} , are apparent in the data of the fayalites.
152	The Néel temperature, T_N , of the magnetic transition is 64.9 K (Robie et al. 1982b) or 64.5 K
153	(Dachs et al. 2009) for synthetic fayalite and 63.1 K for the natural Rockport sample. A weak
154	and broad Schottky anomaly, arising from the spin-orbit interaction for Fe ²⁺ , is centered at about
155	19 K for both types of crystals (Fig. 2a). The S° value calculated (eqn. 2) for the Rockport
156	sample is 151.6 ± 1.1 J/mol·K (S° is taken to be equal to S ^{calorimetric} at 298.15 K and the entropy
157	contribution for the temperature region between 0 and 2 K is negligible being about 0.003
158	J/mol·K). Uncertainties in S° associated with relaxation calorimetry are discussed in Geiger and
159	Dachs (2018 - Table 1). The S° value for Rockport olivine is indistinguishable from the values
160	obtained for synthetic fayalite of 151.0 ± 0.2 J/mol·K (Robie et al. 1982b) and 151.4 ± 0.1
161	J/mol·K (Dachs et al. 2009).
162	Figure 2b shows the $C_p(2-300 \text{ K})$ results for the natural forsterite of composition
163	Fo _{0.904} Fa _{0.096} and a synthetic olivine of comparable composition of Fo _{0.90} Fa _{0.10} (Dachs et al.
164	2009). The intensity of the magnetic phase transition (i.e., magnon contribution to C_p) and T_N
165	decrease with decreasing Fe^{2+} in olivine (Dachs et al. 2009; Geiger et al. 2019). For this
166	forsterite-rich olivine, the C_p data show a weak and broad feature that is centered roughly at 20 K
167	and that probably is magnetic in nature. A very weak possible Schottky anomaly is centered at
168	about 13 K. Both can only be resolved, and separated from the vibrational (phonon) C_p , by

169 model calculations (Dachs et al. 2009). S° for this synthetic Fo_{0.90}Fa_{0.10} sample is 99.5 J/mol·K

170 (Dachs et al. 2009) and for the natural crystal we calculate 99.1 ± 0.7 J/mol·K (this includes 0.03 171 J/mol·K for the temperature region between 0 and 2 K).

- 172
- 173

DISCUSSION

174 Natural vs synthetic crystals

175 Olivine can be synthesized in the laboratory without the use of a flux and from high-176 purity component oxides. The experiment involves relatively short sintering times at high temperature (e.g. T > 1000 °C). For Fe²⁺- bearing crystals the f_{O_2} conditions must be controlled. 177 178 The resulting crystals are typically fine grained, roughly 1 to 100 micrometers in site. In nature, 179 on the other hand, crystals can grow at lower temperatures (e.g. metamorphic regimes) and they 180 do so over geologic time periods. They can be coarse grained ranging up to centimeters in size 181 (of course, natural crystals can have varying modes of origin). Consequently, differences in structural state, that is Fe²⁺-Mg order-disorder over the M1 and M2 sites, between synthetic and 182 183 natural olivines can occur because of the different crystallization processes. Natural crystals 184 from metamorphic or plutonic settings can, in general, be more ordered in terms of atomic 185 structure compared to their synthetic analogues. Ordered crystals typically have stronger 186 chemical bonding than disordered ones of the same composition. It follows that $C_p(T)$ and S° 187 values for the former should be smaller than the latter. Heat capacity and entropy effects related to long-range cation order-disorder in Fe²⁺-Mg olivine solid solutions have not been investigated 188 189 in a quantitative manner.

Natural olivine is expected to generally contain higher concentrations of minor or trace elements compared to synthetic crystals prepared from high purity reactants. Finally, there is also the issue of defect chemistry and point defects to consider and, here, there could also possibly be differences between synthetic and natural crystals. Some natural olivines may contain a little Fe³⁺ (Ejima et al. 2012), and minor structural OH⁻ can be present as well (Miller et al. 1987). What do the results of our X-ray, ⁵⁷Fe Mössbauer and C_p measurements show?

196

197 X-ray diffraction and ⁵⁷Fe Mössbauer spectroscopic interpretation

The X-ray results indicate that both olivine samples are nearly pure. Only small amounts (about < 1 %) of other phases could be identified. The olivine diffraction peaks are intense and narrow in width indicating good crystallinity (Supplementary Fig. 1). The ⁵⁷Fe Mössbauer spectra can be fit well with two Fe²⁺ quadrupole-split doublets (Bancroft et al. 1967; Dyar et al. 2009). The amount of Fe³⁺ in both samples is very minor based on the minimal to nil absorption between about 0.0 and 1.0 mm/sec (Fig. 1).

In terms of high-spin Fe²⁺ in olivine and for a first-order analysis, the magnitude of the 204 205 quadrupole splitting gives a measure of the asymmetry of the charge distribution around the Fe 206 nucleus (i.e., octahedral M-site distortion). It consists of valence and lattice terms, whereby the 207 latter decreases with increasing distortion. The isomer shift measures the s electron contact 208 density at the Fe nucleus (i.e., is a function of the ligand coordination). Diffraction results on 209 olivine indicate that M1 is smaller in volume and more distorted than M2 at room temperature (Princivalle 1990). The assignments of the two Fe^{2+} doublets in Table 3 follow this reasoning. 210 211 The areas of the two doublets are similar. For the fayalite, the areas should be similar (assuming that the small amount of Mn^{2+} in the olivine is not located largely at either M1 or M2). The 212 213 spectrum of the forsterite sample may show a slight tendency for Fe^{2+} to favor M2, but the 214 difference in doublet areas is within experimental error. The hyperfine parameters of both natural 215 olivines (Table 3) are in good agreement with those obtained on synthetic samples of similar 216 composition (Dyar et al. 2009), except possibly for the quadrupole split value for doublet 2 for 217 our fayalite (i.e., 2.71 mm/s) versus that of an end-member composition synthetic fayalite (i.e., 218 2.76 mm/s).

A possible systematic difference between the spectra of natural and synthetic olivines may lie in the values of the absorption line widths (i.e., FWHM). For the two natural crystals they are the same with values of 0.24 mm/sec, whereas synthetics give values of about 0.29

222	mm/s for Fa ₁₀₀ and 0.27 mm/s for Fo ₉₀ Fa ₁₀ (Dyar et al. 2009) A precise crystal-chemical
223	interpretation of the line widths is difficult to make, but larger widths may reflect more nearest
224	or next-nearest neighbor atomic disorder (i.e., structural heterogeneity).

225

226 $C_p(T)$ and S° behavior

227 The $C_p(2-300 \text{ K})$ behavior of natural fayalite and synthetic Fa₁₀₀ is in excellent 228 agreement. Even C_p arising from magnon contributions and the Schottky anomaly is the same for 229 the two crystal types. This agreement is a rather remarkable result, we think, considering the 230 very different origins of the two olivine samples. There is a slight difference of about 2 K 231 between the T_N values (~65 K for synthetic samples vs 63 K for the natural crystal). In the case 232 of "end-member composition" silicate garnets, small variations in T_N can arise from minor 233 concentrations of "impurity" cations occurring in solid solution (Geiger et al. 2019). This is possibly the case here as well, because the natural fayalite contains some Mn²⁺ substituting for 234 235 Fe^{2+} . Because Mn²⁺ and Fe^{2+} have similar masses (54.94 and 55.85 amu, respectively) and ionic radii in six-fold coordination (83 pm vs 78 pm), their vibrational (phonon) behavior in olivine 236 should be similar. There is excellent agreement among the S° values for synthetic fayalite of 237 238 151.0 ± 0.2 J/mol·K (Robie et al. 1982b) and 151.4 ± 0.1 J/mol·K (Dachs et al. 2007) and for the 239 natural fayalite ($151.6 \pm 1.1 \text{ J/mol} \cdot \text{K}$).

240 The $C_p(T)$ behavior of the natural forsterite Fo_{0.894}Fa_{0.106} and the synthetic Fo₉₀Fa₁₀ 241 sample (Dachs et al. 2009) are in excellent agreement between about 7 and 300 K. It would appear that any phonon differences arising from possible variations in Fe²⁺-Mg order-disorder 242 243 are minimal to nil. The only observable differences in C_p behavior lie at T < 7 K. The natural crystal does not show Debye T^3 behavior, but instead a quasi-plateauing of C_p between about 2 244 245 and 7 K (Fig. 2b). A physical interpretation for this result is difficult to make. There is very little 246 research, of any type, on silicates at such low temperatures. Many older adiabatic calorimetry 247 investigations were only made down to roughly 8 K. However, one could speculate that the

248	plateauing is due to an "impurity" atom such as Fe^{3+} . Gmelin (1969) showed in very low C_p
249	measurements down to 0.5 K on MgO that 340 ppm Fe ³⁺ gives rise to an anomaly centered at
250	roughly 1-2 K. Such concentrations of Fe ³⁺ in natural olivine are possible, but more work is
251	required to fully explain the nature of this C_p anomaly. This very low-temperature behavior is
252	not of great significance for chemical thermodynamic calculations but rather for its thermal
253	physical nature. The S° of the crystal is 99.1 \pm 0.7 J/mol·K and, thus, the same as that measured
254	for synthetic $Fo_{0.90}Fa_{0.10}$ having a value of 99.5 ± 0.1 J/mol·K (Dachs et al. 2007).
255	
256	IMPLICATIONS
257	This work shows that there are no significant $C_p(T)$ differences in a chemical
258	thermodynamic sense between two selected natural olivine samples and their synthetic
259	equivalents, despite their contrasting crystallization histories and small differences in chemistry.
260	Further $C_p(T)$ measurements on additional intermediate olivine compositions are required to get
261	a more complete handle on any possible thermodynamic differences between both types of
262	phases. In addition, calorimetric measurements to determine enthalpies of formation and mixing
263	could be useful as well. $\Delta C_p(298 \text{ K})$ mixing behavior for olivines across the forsterite-fayalite
264	join, calculated from IR spectra, may be nonideal according to Hofmeister and Pitman (2007).
265	For silicates, most low-temperature calorimetric studies have concentrated on end-member
266	compositions in the case of substitutional-solid-solution systems. Moreover, older calorimetric
267	work was sometimes done on minerals that were not always well characterized structurally (e.g.,
268	structural state) and sometimes even compositionally. For these reasons, $C_p(T)$ and S° behavior
269	for various silicate solid solutions and phases showing atomic order-disorder are, in general, still
270	not fully understood.
071	

271

272

ACKNOWLEDGMENTS

- 273 We thank Dr. P. Pohwat of the Department of Mineral Sciences of the Smithsonian Institute,
- 274 Washington D.C., USA, for supplying the fayalite sample (NMNH R 3517 00) and Dr. E. Ferré
- 275 (University of Louisiana at Lafayette) for the forsterite crystal (NFo90/C1). G. Tippelt
- 276 (Salzburg) kindly undertook the X-ray and Mössbauer measurements. This research was
- supported by a grant to C.A.G. from the Austrian Science Fund (FWF: P 30977-NBL). He also
- thanks the "Land Salzburg" for financial support through the initiative "Wissenschafts- und
- 279 Innovationsstrategie Salzburg 2025".

280	REFERENCES
281	
282	Bancroft, G.M., Maddock, A.G., and Burns, R.G. (1967) Applications of the Mössbauer effect to
283	silicate mineralogy – I. Iron silicates of known crystal structure. Geochimica et
284	Cosmochimica Acta, 31, 2219-2246.
285	Belley, F. et al. (2009) The magnetic properties of natural and synthetic $(Mg_{1-x}Fe^{2+}_x)_2SiO_4$
286	olivines. Earth and Planetary Sciences Letters, 284, 516-526.
287	Cloutis, E.A. (2015) Mineral and rock sample database. Planetary Spectrophotometer Facility
288	(PSF), University of Winnipeg. 1-1026. <u>https://ctape.uwinnipeg.ca/Samples_Directory/</u>
289	Dachs, E. and Bertoldi, C. (2005) Precision and accuracy of the heat-pulse calorimetric
290	technique: low-temperature heat capacities of milligram-sized synthetic mineral samples.
291	European Journal of Mineralogy, 17, 251-261.
292	Dachs, E., Geiger, C.A., Benisek, A., and Grevel, K-D. (2012) Grossular: A crystal-chemical,
293	calorimetric, and thermodynamic study. American Mineralogist, 97, 1299-1313.
294	Dachs, E., Geiger, C.A., von Seckendorff, V., and Grodzicki, M. (2007) A low-temperature
295	calorimetric study of synthetic (forsterite-fayalite) $\{(Mg_2SiO_4-Fe_2SiO_4)\}$ solid solutions:
296	An analysis of vibrational, magnetic and electronic contributions to the molar heat
297	capacity and entropy of mixing. Journal of Chemical Thermodynamics, 39, 906-933.
298	Dyar, M.D., Delaney, J.S., Sutton, S.R., and Schaefer, W. (1998) Fe ³⁺ distribution in oxidized
299	olivine: A synchrotron micro-XANES study. American Mineralogist, 83, 1361-1365
300	(1998).
301	Dyar, M.D. et al. (2009) Spectroscopic characteristics of synthetic olivine: An integrated multi-
302	wavelength and multi-techniques approach. American Mineralogist, 94, 883-898.
303	Ejima, T., Akasaka, M., Nago, T., and Ohfuji, H. (2012) Oxidation state of Fe in olivine in
304	andesitic scoria from Kasayama volcano, Hagi, Yamaguchi Prefecture, Japan. Journal of
305	Mineralogical and Petrological Sciences, 107, 215-222.

306 Geiger, C.A. and Dachs, E. (2018) Recent developments and the future of low-T calorimetric 307 investigations in the Earth sciences: Consequences for thermodynamic calculations and 308 databases. Journal of Metamorphic Geology, 36, 283-295. 309 Geiger, C.A., Grodzicki, M., and Dachs, E. (2019) An analysis of the magnetic behavior of 310 olivine and garnet substitutional solid solutions. American Mineralogist, 104, 1246-1255. 311 Gmelin, E. (1969) Anomalies in the low temperature heat capacities of BeO and MgO, containing Fe³⁺. Journal Physics and Chemistry of Solids, 30, 2789-2792. 312 313 Harlow, G. and Thu, K. (2014) Peridot from Pyaung-gaung, Mogok Tract, Myanmar: 314 Similarities to Sapat and Zabargad deposits. Twelfth Annual Sinkakas Symposium 315 - Peridot and Uncommon Green Gem Minerals, 83-95. 316 Helgeson, H.C., Delany, J.M., Nesbitt, H.W., and Bird, D.K. (1978) Summary and critique of the 317 thermodynamic properties of rock-forming minerals. American Journal of Science, 278-318 A, 1-229. 319 Hofmeister, A.M. and Pitman, K.M. (2007) Evidence for kinks in structural and thermodynamic 320 properties across the forsterite-favalite binary from thin-film IR absorption spectra. 321 Physics and Chemistry of Minerals, 34, 319-333. 322 Keleman, P.B. et al. (2011) Rates and mechanisms of mineral carbonation in peridotite: Natural 323 processes and recipes for enhanced, in situ CO₂ capture and storage. Annual Reviews of 324 Earth and Planetary Sciences, 39, 545-576. 325 Miller, G.H., Rossman, G.R., and Harlow, G.E. (1987) The natural occurrence of hydroxide in 326 olivine. Physics and Chemistry of Minerals, 14, 461-472. 327 Palke, A.C., Stebbins, J.F., Geiger, C.A., and Tippelt, G. (2015) Cation order-disorder in Febearing pyrope and grossular garnets: An ²⁷Al and ²⁹Si MAS NMR and ⁵⁷Fe Mössbauer 328 spectroscopy study. American Mineralogist, 100, 536-547. 329 330 Palache, C. (1950) Fayalite at Rockport, Massachusetts. American Mineralogist, 35, 877-881. Princivalle, F. (1990) Influence of temperature and composition on Mg-Fe²⁺ intracrystalline 331

distribution in olivines. Mineralogy and Petrology, 43, 121-129.

- 333 Rose, T.R., Sorensen, S.S., and Post, J.E. (2009) The impurities in the Rockport fayalite
- 334 microbeam standard: How bad are they? American Geophysical Union, abstract id.
 335 V31E-2008.
- 336 Robie, R.A. and Hemingway B.S. (1995) Thermodynamic properties of minerals and related
- 337 substances at 298.15 K and 1 bar (10⁵ pascals) pressure and at higher temperatures. 461 p.
- 338 United States Geological Survey Bulletin, Washington D.C. 2131.
- 339 Robie, R.A., Hemingway, B.S., and Takei, H. (1982a) Heat capacities and entropies of Mg₂SiO₄,
- 340 Mn₂SiO₄, and Co₂SiO₄ between 5 and 380 K. American Mineralogist, 67, 470-482.
- 341 Robie, R.A., Finch, C.B, and Hemingway, B.S. (1982b) Heat capacity and entropy of fayalite
- 342 (Fe₂SiO₄) between 5.1 and 383 K: comparison of calorimetric and equilibrium values for
- 343 the QFM buffer reaction. American Mineralogist, 67, 463-469.
- 344 Westrum, E.F. Jr. (1962) Cryogenic calorimetric contributions to chemical thermodynamics.
- Journal of Chemical Education, 39, 443-454.
- 346
- 347
- ~ •
- 348
- 349
- 350

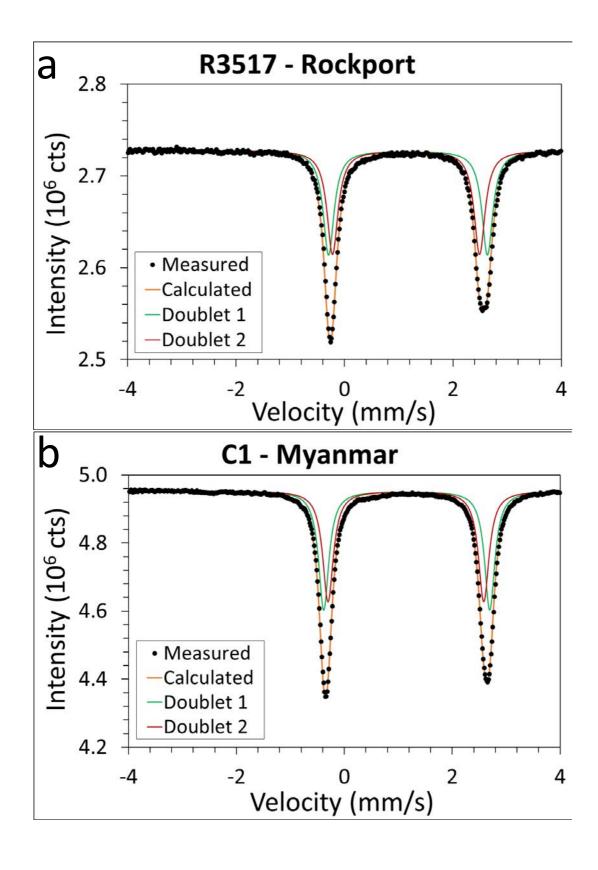
351

352

Figure Captions

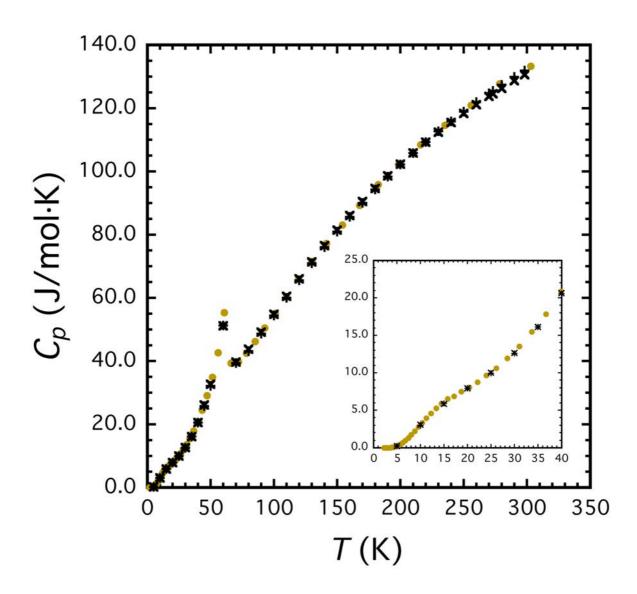
353

- Figure 1. ⁵⁷Fe Mössbauer spectra of natural olivine samples. (a) NMNH R3517 fayalite from
- 355 Rockport, MA, USA and (b) C1/NFo90 forsterite from Mogok, Myanmar. The spectra are fitted
- 356 with two different symmetric quadrupole split doublets. The green doublet with the larger
- 357 quadrupole split value corresponds to Fe²⁺ at the octahedrally coordinated M2 site and the red
- doublet with the smaller value to Fe^{2+} at M1 (see Table 3).


359

- 360 Figure 2. C_p data from 2 to 300 K. (a) The brown circles are data for nearly end-member fayalite
- 361 NMNH R3517 from Rockport, MA, USA, the "x" symbols (Dachs et al. 2007) and the "+"
- 362 symbols (Robie et al. 1982b) for synthetic fayalite. The inset shows the lowest temperature
- 363 region and note the Schottky anomaly. (b) The green circles are data for the natural forsterite,
- 364 Fo_{0.904}Fa_{0.096}, from the Pyaung-gaung Mine, Mogok, Katha District, Myanmar and the "+"
- 365 symbols for synthetic Fo₉₀Fa₁₀ (Dachs et al. 2007). The inset shows the lowest temperature

region and note the plateauing of C_p values below about 7 K.


- 368
- 369
- 370
- 371
- 372
- 373
- 374

375 Figure 1.

376


380 Figure 2a

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America.
The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press.
DOI: https://doi.org/10.2138/am-2021-7764CCBY. http://www.minsocam.org/

389 Figure 2b

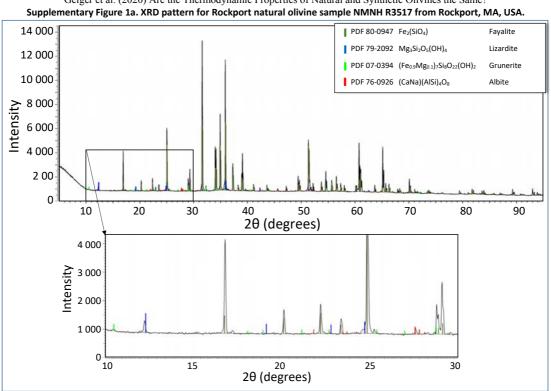
395

396

397 Table 1. Olivines used for investigation.

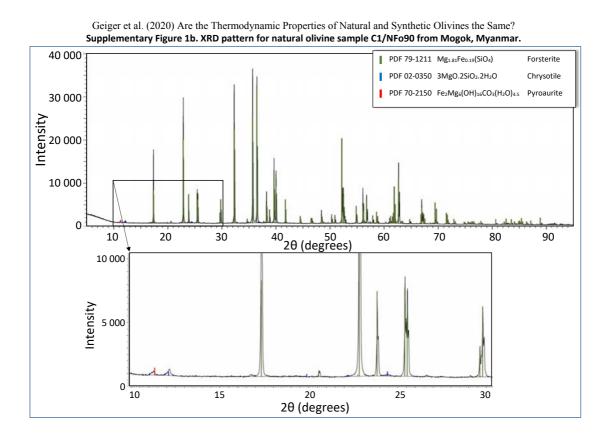
Label	Locality (Source)	Sample Description and References ~5 mm size gemmy-like crystals within metamorphosed dolomitic limestone ^{1,2}				
NF090/C1	Pyaung-gaung Mine, Mogok, Katha District, Myanmar (E. Ferré)					
NMNH	Rockport, Massachusetts, USA	Isolated fayalite-rich rock masses in				
R 3517 00	(Smithsonian Institute)	pegmatite and granite; xenolithic ^{3,4,5,6}				
	. (2009), ² Harlow and Thu (2014), ³ Palac utis et al. (2015)	che (1950), ⁴ Dyar et al. (1998), ⁵ Rose et al.				

- 419 Table 2. Published microprobe results for the two studied
- 420 olivine samples in oxide wt. % and the calculated crystal-chemical
- 421 formulae based on four oxygens.


Sample	NMNH R3517 ¹	NF090/C1 ²		
SiO ₂	29.78	40.9		
FeO	66.48	9.4		
MgO	0.05	49.4		
MnO	2.14	-		
ZnO	0.54	-		
NiO/Ni ₂ O ₃	0.04	0.3		
CaO	0.05	-		
TiO ₂	Trace	-		
CoO	0.10	-		
Total	99.18	100.0		
Si	1.01	1.00		
Fe ²⁺	1.89	0.19		
Mg	-	1.80		
Mn^{2+}	0.06	-		
Zn^{2+}	-	-		
Ni	_	0.01		
Total	2.96	3.00		

422 ¹Cloutis et al. (2015) and ²Belley et al. (2009).

Table 3. Fit parameters for the ⁵⁷ Fe Mössbauer spectra. Two Fe ²⁺ quadrupole split doublets were
fit to the spectra of both olivine samples.


	Doublet 1 - Fe ²⁺ at M2			Doublet 2 - Fe ²⁺ at M1					
Sample	Δ mm/s	δ mm/s	Г mm/s	Area %	Δ mm/s	δ mm/s	Г mm/s	Area %	χ^2
Fayalite NMNH R3517	2.93	1.17	0.24	50.0	2.71	1.13	0.24	50.0	1.17
Forsterite NFo90/C1	3.08	1.15	0.24	50.9	2.89	1.14	0.24	49.1	1.94

The parameters for Δ (quadrupole splitting), δ (isomer shift relative to α -Fe foil) and Γ (FWHM) are given to the second decimal and one decimal for the areas. Errors in the former are less than \pm 0.02 mm/s, whereas for the areas they are less than about \pm 5%.

Geiger et al. (2020) Are the Thermodynamic Properties of Natural and Synthetic Olivines the Same?

Supplementary Fig. 1a

Supplementary Fig. 1b

Geiger et al. (2020) Are the Thermodynamic Properties of Natural and Synthetic Olivines the Same?											
			-	nthetic Oliv ary Table 1a							
latural Oli	vine Sample			-							
	ght 203.199 g			····	,						
ample Weig	ght 15.47 mg										
	PPMS-1		PPMS-2			PPMS-3					
Т	Ср	1 sigma	Т	Ср	1 sigma	Т	Ср	1 sigma			
(K)	(J/mol.K)	(J/mol.K)	(K)	(J/mol.K)	(J/mol.K)	(K)	(J/mol.K)	(J/mol.K)			
2.20	0.0068	0.0002	2.20	0.0068	0.0002	2.20	0.0068	0.0002			
2.38 2.58	0.0080	0.0002	2.38 2.58	0.0080	0.0002	2.38 2.58	0.0081	0.0002			
2.56	0.0097 0.0123	0.0002 0.0003	2.56	0.0097 0.0123	0.0002 0.0003	2.56	0.0098 0.0124	0.0002 0.0003			
3.02	0.0167	0.0004	3.02	0.0166	0.0004	3.03	0.0169	0.0004			
3.27	0.0241	0.0005	3.27	0.0241	0.0005	3.28	0.0242	0.0004			
3.54	0.0366	0.0006	3.54	0.0366	0.0006	3.56	0.0376	0.0007			
3.84 4.16	0.0579 0.0926	0.0009 0.0012	3.84 4.16	0.0583 0.0929	0.0001 0.0012	3.85 4.16	0.0588 0.0930	0.0009 0.0012			
4.51	0.1471	0.0012	4.51	0.1475	0.0012	4.52	0.1486	0.0012			
4.89	0.2281	0.0027	4.89	0.2284	0.0027	4.90	0.2299	0.0024			
5.31	0.3439	0.0036	5.31	0.3447	0.0039	5.32	0.3457	0.0033			
5.77	0.5062	0.0051	5.78	0.5070	0.0055	5.78	0.5074	0.0044			
6.27 6.82	0.7208 1.0004	0.0072 0.0098	6.28 6.82	0.7225 0.9989	0.0072 0.0096	6.28 6.83	0.7177 0.9987	0.0059 0.0085			
0.82 7.41	1.3344	0.0098	7.41	1.3392	0.0090	7.41	1.3382	0.0083			
8.05	1.7392	0.0114	8.05	1.7429	0.0170	8.06	1.7422	0.0169			
8.76	2.2158	0.0200	8.76	2.2215	0.0217	8.76	2.2224	0.0217			
9.52	2.7615	0.0258	9.53	2.7608	0.0268	9.53	2.7601	0.0266			
10.36	3.3500	0.0324	10.36	3.3548	0.0319	10.36	3.3542	0.0319			
11.26 12.25	3.9786 4.6135	0.0389 0.0462	11.26 12.25	3.9749 4.6138	0.0392 0.0451	11.27 12.25	3.9776 4.6196	0.0384 0.0452			
13.32	5.2579	0.0402	13.32	5.2562	0.0431	13.32	5.2573	0.0452			
14.48	5.8798	0.0598	14.49	5.9095	0.0610	14.50	5.8737	0.0587			
15.74	6.5071	0.0670	15.76	6.5207	0.0675	15.78	6.4785	0.0574			
17.14	6.9134	0.0114	17.16	6.9102	0.0128	17.17	6.7812	0.0132			
18.62	7.4938	0.0122	18.64	7.5036	0.0143	18.68	7.5259	0.0635			
20.30 22.07	8.1667 8.9081	0.0173 0.0196	20.30 22.07	8.2270 8.8544	0.0271 0.0173	20.32 22.12	7.8208 8.5896	0.0382 0.0420			
24.02	9.6664	0.0163	24.03	9.6696	0.0162	24.04	9.5823	0.0190			
26.13	10.6953	0.0188	26.15	10.6894	0.0186	26.15	10.6029	0.0318			
28.44	11.9478	0.0216	28.44	11.9868	0.0426	28.45	11.9561	0.0219			
30.95	13.4968	0.0265	30.95	13.5651	0.0375	30.95	13.5059	0.0262			
33.67 36.64	15.4585 17.8513	0.0314 0.0376	33.67 36.65	15.6108 17.9522	0.0496 0.0526	33.68 36.65	15.4695 17.8434	0.0310 0.0381			
39.87	20.8453	0.0070	39.88	20.8375	0.0020	39.88	20.9730	0.0667			
43.38	24.4836	0.0534	43.39	24.4936	0.0539	43.40	24.6192	0.0805			
47.20	29.0521	0.0639	47.20	29.0571	0.0644	47.24	29.0730	0.0685			
51.36	34.8574	0.0782	51.36	34.8503	0.0793	51.41	34.8735	0.0814			
55.89 60.74	42.6333 55.1386	0.1011 0.1802	55.89 60.82	42.6257 55.4469	0.1014 0.1598	55.96 60.83	42.7261 55.4948	0.1050 0.1621			
66.15	39.6367	0.1802	66.17	39.2105	0.1598	66.19	39.2024	0.1621			
72.01	39.9202	0.0927	72.02	39.6035	0.0844	72.03	39.6440	0.0900			
78.36	42.4239	0.0941	78.36	42.6452	0.0983	78.38	42.4516	0.0919			
85.26	46.6527	0.1250	85.28	46.0886	0.1400	85.30	45.8705	0.1124			
92.78	50.3582	0.1149	92.78	50.7406	0.1242	92.79	50.2828	0.1105			
100.95 109.86	55.0453 60.1981	0.1216 0.1551	100.96 109.86	54.9349 60.2876	0.1332 0.1319	100.96 109.87	55.3364 60.5970	0.1315 0.1655			
119.52	66.1514	0.1551	119.55	66.1321	0.1568	119.56	65.6792	0.1655			
130.07	71.6593	0.1634	130.09	71.4437	0.1591	130.09	71.4813	0.1597			
141.58	77.2592	0.1710	141.58	77.2863	0.1680	141.59	77.0910	0.1624			
154.05	83.0177	0.1707	154.07	83.1261	0.1763	154.10	82.9307	0.1685			
167.66	89.3509	0.1988	167.67	89.2028	0.1863	167.70	89.3459	0.1801			
182.47 198.56	95.8952 102.1175	0.2188 0.2127	182.48 198.57	95.8418 102.1106	0.1968 0.2033	182.51 198.58	95.7908 102.1659	0.1978 0.2096			
216.05	102.1175	0.2127	216.09	102.1100	0.2033	216.10	102.1039	0.2030			
235.08	114.6084	0.2075	235.16	114.6105	0.2192	235.17	114.5771	0.2254			
255.81	120.8214	0.2208	255.92	120.9454	0.2274	255.92	120.9204	0.2361			
278.35 302.92	127.8001 133.1141	0.2539 0.2400	278.49 303.04	127.6240 133.2912	0.2634 0.2532	278.50 303.05	127.7032 133.3933	0.2648 0.2580			

Geiger et al. (2020) Are the Thermodynamic Properties of Natural and Synthetic Olivines the Same?													
Supplementary Table 1b: PPMS Data													
latural Oli	vine Sample					.a							
	ight 146.441 c		nom mogo	k, myannai									
	ght 30.57 mg												
PPMS-1 PPMS-2 PPMS-3													
Т (К)	Cp (J/mol.K)	1 sigma (J/mol.K)	Т (К)	Cp (J/mol.K)	1 sigma (J/mol.K)	Т (К)	Cp (J/mol.K)	1 sigma (J/mol.K)					
2.20	0.3741	0.0010	2.22	0.3746	0.0011	2.22	0.3745	0.0011					
2.38	0.3764	0.0009	2.39	0.3763	0.0010	2.39	0.3763	0.0010					
2.57 2.78	0.3747 0.3703	0.0008 0.0007	2.59 2.80	0.3744 0.3700	0.0009 0.0008	2.59 2.80	0.3744 0.3700	0.0009 0.0008					
3.02	0.3654	0.0007	3.03	0.3649	0.0007	3.03	0.3649	0.0007					
3.27	0.3618	0.0008	3.29	0.3601	0.0007	3.29	0.3601	0.0007					
3.54	0.3557	0.0007	3.56	0.3554	0.0007	3.56	0.3553	0.0006					
3.84 4.16	0.3505 0.3453	0.0006 0.0006	3.86 4.18	0.3504 0.3449	0.0006 0.0006	3.86 4.18	0.3502 0.3449	0.0006 0.0006					
4.10	0.3455	0.0006	4.18	0.3449	0.0005	4.18	0.3449	0.0005					
4.90	0.3387	0.0006	4.91	0.3390	0.0005	4.92	0.3389	0.0005					
5.32	0.3411	0.0006	5.33	0.3411	0.0005	5.33	0.3408	0.0005					
5.78	0.3465	0.0006	5.79	0.3454	0.0004	5.79	0.3454	0.0004					
6.29 6.84	0.3569 0.3755	0.0006 0.0005	6.30 6.85	0.3566 0.3759	0.0004 0.0005	6.31 6.85	0.3514 0.3757	0.0008 0.0005					
7.40	0.3995	0.0006	7.42	0.3998	0.0005	7.42	0.4000	0.0005					
8.05	0.4321	0.0007	8.06	0.4324	0.0006	8.07	0.4326	0.0006					
8.75	0.4720	0.0008	8.76	0.4726	0.0007	8.77	0.4725	0.0007					
9.52 10.35	0.5226	0.0009	9.53	0.5226	0.0007	9.53 10.37	0.5225	0.0008					
10.35	0.5801 0.6471	0.0010 0.0011	10.36 11.28	0.5813 0.6476	0.0009 0.0010	10.37	0.5812 0.6480	0.0008 0.0009					
12.25	0.7193	0.0013	12.27	0.7200	0.0010	12.27	0.7199	0.0000					
13.33	0.7973	0.0014	13.34	0.7964	0.0011	13.34	0.7975	0.0011					
14.49	0.8811	0.0015	14.51	0.8834	0.0013	14.51	0.8803	0.0011					
15.76 17.15	0.9693 1.0602	0.0017 0.0013	15.77 17.15	0.9681 1.0622	0.0012 0.0017	15.78 17.17	0.9692 1.0612	0.0012 0.0012					
18.64	1.1589	0.0013	18.66	1.1601	0.0017	18.67	1.1667	0.0012					
20.29	1.2672	0.0021	20.30	1.2656	0.0016	20.32	1.2565	0.0029					
22.07	1.3857	0.0025	22.08	1.3957	0.0023	22.10	1.3819	0.0018					
24.00	1.5319	0.0023	24.01	1.5319	0.0026	24.04	1.5068	0.0035					
26.12 28.42	1.7124 1.9476	0.0025 0.0034	26.12 28.44	1.7350	0.0045 0.0029	26.16 28.45	1.7032	0.0027 0.0053					
20.42 30.92	2.2617	0.0034	20.44 30.95	1.9501 2.2647	0.0029	20.45 30.96	1.9293 2.2374	0.0053					
33.65	2.6820	0.0045	33.67	2.6831	0.0043	33.67	2.6685	0.0066					
36.61	3.2347	0.0054	36.63	3.2205	0.0080	36.63	3.2356	0.0052					
39.84	3.9760	0.0082	39.84	3.9709	0.0070	39.86	3.9699	0.0067					
43.36 47.18	4.9101 6.1083	0.0080 0.0101	43.36 47.18	4.9457 6.1577	0.0093 0.0119	43.37 47.19	4.9144 6.1098	0.0079 0.0098					
47.16 51.33	7.6026	0.0101	47.18 51.34	7.6515	0.0119	51.34	7.6045	0.0098					
55.85	9.4486	0.0150	55.86	9.5348	0.0187	55.87	9.4500	0.0120					
60.77	11.6749	0.0181	60.78	11.7758	0.0222	60.79	11.6727	0.0175					
66.13	14.3422	0.0216	66.14	14.4550	0.0267	66.15	14.3345	0.0212					
71.96 78.29	17.4638 21.0272	0.0248 0.0288	71.98 78.30	17.5456 21.0562	0.0290 0.0333	71.98 78.32	17.4479 21.2053	0.0240 0.0380					
76.29 85.19	25.2178	0.0288	78.30 85.20	25.1929	0.0353	76.32 85.21	25.3134	0.0380					
92.71	29.6847	0.0446	92.71	29.7228	0.0417	92.73	29.9075	0.0516					
100.86	34.6914	0.0418	100.88	34.6930	0.0475	100.89	34.8604	0.0474					
109.77	40.1889	0.0503	109.77	40.3561	0.0519	109.80	40.4910	0.0638					
119.44 129.98	46.1130 52.3869	0.0525 0.0580	119.46 129.98	46.0715 52.4046	0.0534 0.0607	119.46 129.98	46.0247 52.4847	0.0695 0.0666					
129.96	52.3009 58.9585	0.0580	129.96	52.4046 59.1419	0.0807	129.96	52.4647 58.9270	0.0666					
153.91	65.7995	0.0726	153.93	65.4681	0.0701	153.93	65.5457	0.0721					
167.41	72.6399	0.0770	167.41	72.5775	0.0713	167.46	72.5135	0.0754					
182.14	79.7860	0.0871	182.15	79.5801	0.0782	182.20	79.5904	0.0807					
198.18	86.6540	0.0858	198.19	86.5538	0.0786	198.20	86.6685	0.0824					
215.63 234.56	93.6645 100.6279	0.0874 0.0943	215.65 234.61	93.5563 100.6279	0.0868 0.0921	215.65 234.62	93.6308 100.5808	0.0864 0.0918					
234.56 255.16	100.6279	0.0943	255.25	100.6279	0.0921 0.1002	234.62 255.26	100.5808	0.0918					
277.56	114.1500	0.1285	277.70	114.1214	0.1239	277.71	114.0653	0.1095					
302.11	120.2111	0.1116	302.12	120.3084	0.1062	302.13	120.1889	0.1071					