- 1 REVISION 1
- 2 Word count: 8375

3 Trace element segregation to dislocation loops in experimentally

4 heated zircon

- 5 Emily M. Peterman¹*, Steven M. Reddy^{2,3}, David W. Saxey³, Denis Fougerouse^{2,3}, M. Zakaria
- 6 Quadir⁴, Michael J. Jercinovic⁵
- ⁷ ¹ Department of Earth & Oceanographic Science, Bowdoin College, Brunswick, ME 04011,
- 8 USA
- 9 ² School of Earth and Planetary Sciences, Curtin University, Perth, Western Australia, AUS
- 10 ³ Geoscience Atom Probe, John de Laeter Centre, Curtin University, Perth, Western Australia,
- 11 AUS
- ⁴ Microscopy and Microanalysis Facility, John de Laeter Centre, Curtin University, Perth,
- 13 Western Australia, AUS
- ⁵ Department of Geosciences, University of Massachusetts, Amherst, MA 01003
- 15 *Corresponding author <u>emily.peterman@bowdoin.edu</u>
- 16
- 17

Abstract

- 18 To evaluate the mechanisms driving nanoscale trace element mobility in radiation damaged
- 19 zircon, we analyzed two well-characterized Archean zircons from the Kaapvaal craton (southern
- 20 Africa): one zircon remained untreated and the other was experimentally heated in the laboratory
- 21 at 1450°C for 24h. Atom probe tomography (APT) of the untreated zircon reveals
- 22 homogeneously distributed trace elements. In contrast, APT of the experimentally heated zircon
- shows that Y, Mg, Al, Pb + Yb segregate to a set of two morphologically and

43	Introduction
42	
41	Keywords: zircon, radiation damage, APT, TEM, dislocation loop, annealing
40	
39	mineralogical entrapment of significant nuclear elements.
38	laboratory conditions over human timescales, which may have practical implications for the
37	also suggest that the processes driving cluster formation in zircon can be replicated under
36	significance of clustered trace elements and their isotopic characteristics in zircon. Our findings
35	original composition of the zircon. These findings provide a framework for interpreting the
34	zircon are a function of the radiation dose, the pressure-temperature-time history, and the
33	distribution, density, and composition between experimentally heated and geologically affected
32	in zircon affected by natural geologic processes. We interpret that differences in cluster
31	our experimental treatment. These experimentally-induced loops are similar to clusters observed
30	consistent with present-day segregation and confirms that the dislocation loops formed during
29	207 Pb/ 206 Pb measured from Pb atoms located within all of the loops (0.264 ± 0.025; 1 σ) is
28	characterized by high concentrations of Mg and Al, which are aligned with <001>. The
27	$\{101\}$, and $\{001\}$. The largest loops (up to 25 nm diameter) are located in $\{100\}$ and
26	(TEM). The dislocation loops lie in $\{100\}$ and $\{001\}$ planes; the edges are aligned with $\{100\}$,
25	polyhedra, which are confirmed to be dislocation loops by transmission electron microscopy
24	crystallographically distinct cluster populations that range from 5 nm tori to 25 nm toroidal

Zircon (ZrSiO₄) is commonly used across the geosciences to determine the timing and tempo of
geologic events because it is chemically and physically robust, it incorporates U (and Th) during
crystallization whilst excluding Pb, and trace element characteristics within the grain can be

47	correlated with conditions of growth and recrystallization (e.g., Rubatto, 2002; Hoskin and
48	Schaltegger, 2003). When subjected to changes in pressure (P), temperature (T), and/or fluids,
49	zircon can anneal and/or recrystallize (Nasdala et al., 2001; 2002; Geisler, 2002), which can
50	potentially redistribute trace elements within the crystal (Rubatto, 2002; Geisler et al., 2007;
51	Harley et al., 2007).
52	
53	One of the correlative factors associated with the mobility of trace elements in zircon is the
54	accumulated radiation damage (Murakami et al., 1991; Meldrum et al., 1998; Cherniak and
55	Watson, 2003; Ewing et al., 2003). In recent years, quantitative analyses of zircon by atom probe
56	tomography have revealed heterogeneous distributions of trace elements at the nanoscale.
57	Examples include: Pb + Y + Al diffusion to radiation damaged sites (Valley et al., 2014; 2015),
58	pipe diffusion of Pb along dislocation arrays into metamict domains within zircon (Piazolo et al.,
59	2016), diffusive transport of trace elements to deformation microstructures (Piazolo et al., 2016;
60	Reddy et al., 2016; Montalvo et al., 2019), and Pb + Y migration and entrapment within
61	dislocation loops during prograde metamorphism (Peterman et al., 2016; 2019). These findings
62	suggest that trace elements, including Pb, can be mobilized to discrete sites in radiation damaged
63	zircon, consistent with results from ion imaging (Kusiak et al., 2013; Ge et al., 2018). However,
64	each of these studies were carried out on metamorphosed natural zircon specimens that record
65	complex geologic and thermal histories. As a result, the details of the interpreted mechanisms of
66	trace element mobility are difficult to unravel in these complex samples.
67	

Here, we evaluate the relationships among radiation damage, recrystallization, and trace element
mobility in zircon by integrating scanning electron microscopy (SEM), atom probe tomography

70 (APT), and transmission electron microscopy (TEM) to analyze an experimentally-heated 71 Archean zircon with a well-characterized and simple thermal history. We compare our findings 72 with results from an untreated zircon from the same sample. Our objectives are to evaluate if 73 short duration, high-temperature (1450°C for 24h) heating produces new nanoscale defects and, 74 if so, whether these features exhibit similar trace element characteristics to those observed in natural zircon affected by geologic processes. Because the zircon originally crystallized in the 75 76 Archean eon, sufficient quantities of both radiogenic Pb isotopes should have accumulated, enabling the calculation of 207 Pb/ 206 Pb dates and the quantification of the timing of trace element 77 migration. By comparing these nanoscale datasets, we aim to elucidate the primary drivers of 78 trace element mobility and segregation in zircon, the crystallographic control on the distribution 79 of these clusters, and the possible implications for treatment of materials used for nuclear 80 81 storage.

- 82
- 83

Sample description

This study examined euhedral zircon extracted from an Archean granitoid (sample SA16-24 84 85 from -26.045497, 31.428056; Baughman and Flowers, 2020) within the Southeastern Kaapvaal 86 craton, southern Africa. From the Archean through the Phanerozoic eons, the Kaapvaal craton was involved in a series of terrane accretions and orogenic events, including the Namaqua-Natal 87 orogenesis, the assembly of Rodinia, and the assembly and breakup of Pangea (e.g., de Wit et al. 88 89 1992; Baughman and Flowers, 2020). The Kaapvaal craton was initially stabilized in the 90 Archean eon (3.6 to 3.0 Ga) and cooled to <300°C by 2.7 Ga, as constrained by U-Pb titanite and apatite geochronology (Schoene and Bowring, 2006) and ⁴⁰Ar/³⁹Ar biotite thermochronology 91 92 (Layer et al., 1992). The crystallization age of the studied granitoid has been best constrained by

93	analyses of 15 air-abraded zircon grains from a nearby granitoid of the same gneiss complex,
94	which yield a mean age of 3.13 ± 0.06 Ga (1σ) (AGC01-4; Schoene and Bowring, 2006). The
95	post-crystallization thermal history of the studied granitoid as constrained by (U-Th)/He zircon
96	analysis includes a low-temperature event (150–250°C) between 1.2 and 1.0 Ga and burial at up
97	to 160°C c. 200 Ma ago (Baughman and Flowers, 2020).
98	
99	Methods
100	Five euhedral zircon grains \sim 350 x 150 μ m were air-annealed in a covered Pt crucible at 1450°C
101	for 24h in a Deltech furnace at Stanford University. The temperature was increased at 400°C/h
102	until reaching the 1450°C set point. A representative grain from this aliquot was selected for
103	APT analysis and mounted in a 1" (2.54 cm) epoxy round along with representative zircon grains
104	that were untreated. The mount was progressively polished to expose the interior. Following a 1
105	μ m polishing step, the mount was affixed to a halved brass rod and polished with colloidal silica
106	for 3h on a Buehler Vibromet2 vibratory polisher. The mount was thoroughly rinsed with water
107	and ethanol and dried in a desiccator overnight. A 10 nm carbon coat was evaporated onto the
108	mount to minimize charging during imaging. Secondary electron and cathodoluminescence (CL)
109	images (Fig. 1) were collected on the Tescan Vega3 SEM at Bowdoin College operated at 14
110	kV, 0.3 to 1 nA. Post-APT and post-TEM CL images were acquired on the Tescan CLARA field
111	emission SEM at Curtin University using a 10 kV, 300 pA beam.
112	
113	Crystallographic orientations were measured using an Oxford Instruments NordlysMax ³ electron
114	backscatter diffraction (EBSD) system attached to the Tescan Vega3 SEM at Bowdoin College.
115	The SEM was operated at 20 kV, 10 nA at a working distance of 25 mm, with the mount tilted

116	70° toward the EBSD detector. EBSD data were acquired with Oxford Instruments AZtec 3.4
117	software. Acquisition settings were $4 \ge 4$ binning, gain = 7, Hough resolution = 60, 7 bands.
118	Lattice parameters for the zircon match unit were from Hazen and Finger (1979); the measured
119	mean angular deviations (MAD) for the 7 indexed bands were <1°. Data were post-processed
120	with Oxford Instruments Channel 5.12 software suite to remove non-systematic misindexed
121	points (wild spikes) and a 6-nearest neighbors routine was used to interpolate unindexed pixels.
122	
123	Atom probe and TEM specimens were prepared at Curtin University using a Tescan Lyra3 Ga^+
124	focused ion beam SEM (FIB-SEM) at Curtin University. APT specimens were mounted onto
125	prefabricated Si posts on a specimen coupon and progressively sharpened by a Ga^+ ion beam
126	using an annular milling routine. The TEM specimen was mounted on a Cu grid and thinned to
127	\sim 50 nm. For both APT and TEM specimens, the final stage of sample preparation involved a
128	low-voltage (2 kV) step to remove Ga implantation artefacts. Additional details of the specimen
129	preparation technique are provided in Rickard et al. (2020).
130	
131	Atom probe specimens were analyzed using laser-assisted APT on the Cameca LEAP 4000X HR
132	at the Geoscience Atom Probe Facility at Curtin University. The atom probe was operated with a
133	laser pulse energy of 300 pJ, at a frequency of 200 kHz. Field evaporation was controlled by
134	maintaining a constant detection rate as voltage was steadily increased throughout the analysis.
135	Reconstructions of the time-of-flight data were undertaken using a voltage evolution model and
136	an assumed evaporation field of 32 V/nm (Saxey et al., 2019). The full acquisition and
137	reconstruction parameters are given in Supplementary Data Table A1 and a representative mass
138	spectrum is included as Fig. A1 in the Supplementary Materials. Run conditions and our

139	procedure for calculating and applying background corrections to the ²⁰⁷ Pb/ ²⁰⁶ Pb ratio are also
140	provided in the Supplementary Materials. Details of the APT methodology are described in
141	Reddy et al. (2020). To evaluate the trace element concentrations within nanoscale features, we
142	used Cameca's IVAS 3.8.4 software to construct proximity histograms (proxigrams; Hellman et
143	al., 2000). Proxigrams are aggregated 1-D radial histograms and were calculated using a
144	designated isoconcentration surface (0.03 at % Mg) and are measured from this surface into the
145	nanoscale features within each specimen.
146	
147	TEM analyses were performed on the experimentally-heated zircon using Curtin University's
148	FEI Talos FS200X FEG TEM operated at 200 kV and equipped with a Super-X EDS detector. A
149	double tilt holder was used to tilt the sample towards the intended crystallographic zone axis.
150	The orientation was determined by navigating through the convergent beam electron diffraction
151	generated Kikuchi patterns and measuring the lattice spacing.
152	
153	U and Th concentrations were measured along a transect (Fig. 1A) by electron probe
154	microanalysis (EPMA) on the Cameca UltraChron at the University of Massachusetts-Amherst.
155	Analyses were done at 20 kV, 400nA with a focused beam. Th and U were analyzed using the Th
156	$M\alpha$ and U M\beta emission lines using large PET (LPET) and very large PET (VLPET)
157	monochromators, integrating counts from two spectrometers for each element, using a count time
158	of 730 seconds each. Background estimation was done through multipoint acquisition for Th M α
159	and U M β (Allaz et al., 2019) and exponential regression; interference corrections for Th M γ and
160	Ho L α 2 on the U M β emission line were applied. Matrix corrections were implemented via the
161	PAP method (Pouchou and Pichoir, 1984) and included a stoichiometric zircon composition

162	along with measured values of Y, Hf, and heavy rare earth elements. Analysis was performed
163	using Cameca's Peaksight interface for hardware setup (beam tuning, imaging for analysis
164	positioning), and quantitative analysis was done using Probe for EPMA software (Probe
165	Software, Inc.).
166	
167	Results
168	Prior to annealing, portions of some zircon grains were rusty red. After annealing, rusty red
169	domains changed color to cloudy white and transparent domains remained transparent.
170	
171	SEM-CL
172	The center of the experimentally-heated zircon grain features complexly-zoned domains that are
173	surrounded by a mottled texture (Fig. 1). The zircon surrounding these smaller domains is
174	characterized by fine-scale zoning; this domain is truncated by zircon that has higher contrast,
175	fine-scale CL zoning. These internal textures are all consistent with igneous processes. The grain
176	has a network of intersecting healed fractures that are dark in CL and several through-going
177	fractures. The APT specimens and TEM foil were prepared from the domain showing fine-scale
178	zoning. The untreated zircon (Fig. A2, Supplementary Materials) contains an inclusion-rich core
179	with oscillatory zoning patterns consistent with igneous growth. This grain also has a network of
180	intersecting healed fractures that are dark in CL and several intersecting, through-going fractures.
181	The APT specimen was prepared from the zircon core (see Fig. A3, Supplementary Materials).
182	

183 SEM-EBSD

184	Crystallographic orientation data, as measured by EBSD, confirms that <001> and one of the
185	<100> axes are along the plane of the polished surface for both analyzed zircons. The $<001>$
186	direction is oriented parallel to the long axis of the zircon; <100> axes are perpendicular to
187	<001>, with one <100> direction oriented perpendicular to the sample surface (inset, Fig. 1A).
188	Neither zircon exhibit evidence of misorientation associated with crystal plasticity (Fig. A2,
189	Supplementary Materials) (Reddy et al. 2007). The APT specimens were prepared normal to the
190	polished surface (Fig. 1B) such that the z-axis of each atom probe specimen corresponds to the
191	<100> axis normal to the polished surface. The TEM specimen was prepared normal to the
192	polished surface and parallel to the crystallographic {100}, as shown schematically in Fig. 1B.

193

194 Atom probe tomography (APT)

195 Experimentally-treated zircon

Anomalously high concentrations of trace elements are found in clusters distributed throughout 196 197 the two atom probe specimens measured from the experimentally-treated zircon (Fig. 2). The 198 clusters can be classified into two categories based upon size, crystallographic orientation, and 199 composition. An isoconcentration surface of 0.03 at. % Mg was used to define the spatial extent of both sets of clusters; the proxigrams show radial profiles of trace elements concentrations 200 201 from the isoconcentration surface into the clusters. Large clusters with a toroidal polyhedral 202 morphology ($\sim 10-25$ nm diameter, 10 nm thick) are parallel to {100}, with the toroidal axis 203 oriented parallel to one of the <100> directions (Fig. 2C). These large clusters yield high 204 concentrations of Y, Mg, and Al (Fig. 3). Within the clusters, Y exceeds 6.2 at. %; Mg and Al are ~ 2 at. % and preferentially aligned with <001>. Yb and Pb are above background (up to 0.5 205 206 at. % and 0.17 at. %), but concentrations of Ca, P, U, and Hf are not elevated within the clusters.

207	For comparison, trace element concentrations (in at. %, 1σ) in the matrix are as follows: Y =
208	$0.218 \pm 0.009, Mg$ = 0.006 \pm 0.001, Al = 0.022 \pm 0.003, Yb = 0.019 \pm 0.001, and Pb ~0.004 \pm
209	0.001.
210	
211	Smaller, similarly-shaped clusters (\sim 5–15 nm diameter) are oriented parallel to {100} and {001};
212	these clusters are characterized by high concentrations of Y, Mg, and Al (Fig. 2D, 3). Clusters
213	with the toroidal axis oriented parallel to the z-axis of the specimen can be difficult to recognize
214	as torus-shaped features, which may be related to an evaporation effect wherein the geochemical
215	difference between the clusters and the specimen matrix leads to a local field effect and ion
216	trajectory aberrations (e.g., Fougerouse et al., 2016; Peterman et al., 2016). Y concentrations are
217	as high as 7 at. % whereas Mg and Al reach 1.5 at. %. Similar to the larger clusters, Yb and Pb
218	are above background (up to 0.5 at. %), but Ca, P, U, and Hf are not elevated within the clusters.
219	
220	The background-corrected 207 Pb/ 206 Pb calculated from within the clusters is 0.264 ± 0.025 (1 σ),
221	with no significant difference observed between the large and small clusters (0.302 ± 0.067 and
222	0.255 ± 0.027 , respectively; both 1 σ). Assuming concordance, no initial common Pb, and
223	accepted decay constants (Schoene, 2014), the calculated ratio corresponds to a crystallization
224	age of 3268 ± 150 Ma (1 σ).
225	
226	Untreated zircon
227	Atom probe reconstructions of a specimen prepared from the untreated zircon show that all trace

elements are distributed homogeneously—there is no evidence of any trace element clustering

229 (Fig. 4).

230

231 Transmission Electron Microscopy (TEM)

232 Bright field TEM images (Fig. 5) show heterogeneously-distributed, lens-shaped features, many 233 of which exhibit multiple sets of Moiré fringes that are the product of the superposition of the 234 matrix lattice over the lattice within the lens-shaped feature. The size, density, and morphology 235 of these features compare favorably with the clusters observed via APT. These features can be 236 subdivided into two dominant size distributions: 10-25 nm and 5-15 nm. The edges of these 237 features are aligned with the {100} and {001} (Fig. 5A, B); some edges are also aligned with 238 {101} (Fig. 5C). Close inspection shows that the rounded edge segments are defined by steps 239 across the lattice along the $\{100\}$, $\{001\}$ and $\{101\}$ planes, indicating that the features are 240 crystallographically constrained and best described as having a toroidal polyhedral morphology. 241 Compositional analysis by STEM-EDS indicates high concentrations of Al and Mg (Fig. 5D, E) 242 within the dislocation loops; Y concentrations are also high and Pb is below detection (0.2 at%). 243

244 EPMA

Across the region of interest in the experimentally heated grain, U concentrations range from 177 to 346 ppm and Th concentrations from 99 to 255 ppm. Individual spot analyses have measurement uncertainties of ~4%. Because we cannot directly correlate the U and Th concentrations with the atom probe specimens, we used the mean concentrations for U and Th (249 ± 43 and 163 ± 43 ppm (1 σ), respectively) from the domain proximal to our APT specimens in our calculations. For the untreated grain, mean U is 233 ± 48 ppm (1 σ) and Th is 116 ± 30 ppm (1 σ).

252

2	Е	2
2	5	3

254

Discussion

Atom probe and TEM analyses of experimentally-heated zircon reveal two types of clusters,

255	neither of which are observed in APT specimens from the untreated zircon. Although the cluster
256	types differ with respect to composition, morphology and size, the Pb isotopic ratio extracted
257	from both types of clusters is the same, within the uncertainty of our measurements. The
258	contemporaneous formation of these cluster types merits discussion regarding the timing and
259	mechanisms of trace element segregation in zircon.
260	
261	The timing of Pb cluster formation
262	To determine the timing of Pb clustering, we first consider the geological context. After initial
263	assembly and stabilization, the Kaapvaal craton was affected by several accretionary tectonic
264	events, the most significant of which was the Namaqua-Natal orogenic event, which spanned
265	from 1.2 to 1.0 Ga (Baughman and Flowers, 2020). If the clusters formed in response to a
266	geologic event, such as the assembly of the Kaapvaal craton ~3.0 Ga or the Namaqua-Natal
267	orogenesis and the emplacement of large igneous bodies ~ 1.2 Ga, the 207 Pb/ 206 Pb of the clusters
268	would have effectively ceased to evolve from the time of the geologic event because the clusters
269	contain no elevated U (Valley et al., 2015; Peterman et al., 2016, 2019; Lyon et al., 2019). At U
270	concentrations of 249 ppm, we calculate a U density of \sim 2 atoms U per 500 nm ³ volume (the
271	approximate size of the clusters). Given the half-lives of the ²³⁸ U and ²³⁵ U and assuming the
272	maximum interval over which U within the clusters could have decayed (3.1 Ga), these
273	concentrations would correspond to a maximum of 2 atoms of ²⁰⁶ Pb and 1 atom of ²⁰⁷ Pb that
274	could have been produced from U located within the clusters. These uncertainties are equivalent
275	to our counting statistics, so the potential contribution of Pb atoms from U trapped in the clusters

276 is negligible. Assuming no common Pb at the time of zircon growth and a crystallization age of 277 3.13 Ga, the modeled cluster Pb ratios are 0.569 or 0.320 for 3.0 Ga and 1.2 Ga events, respectively. However, the measured ${}^{207}\text{Pb}/{}^{206}\text{Pb}$ ratios from the clusters of 0.264 ± 0.025 are 278 279 consistent with modern-day Pb isotopic ratios from an undisturbed 3.27 ± 0.15 Ga (1 σ) zircon; 280 this date is broadly consistent with dates measured from a nearby granitoid $(3.13 \pm 0.06 \text{ Ga} (1\sigma))$ 281 from the air-abraded grains; Schoene and Bowring, 2006). Therefore, we conclude that the 282 clustering of Pb, and the spatially associated trace elements, was produced by the laboratoryinduced heating of the grain for 24h at 1450°C, and there has been no nanoscale disruption to the 283 284 U-Pb isotopic system by geologic processes since original crystallization. These interpretations 285 are further corroborated by the absence of nanoscale features in the untreated zircon from the 286 same sample. Notably, the absence of clusters in this untreated zircon, as well as results from 287 other zircon specimens (e.g., Exertier et al., 2018; Saxey et al., 2018; Peterman et al., 2019; Reddy et al., 2020) precludes sample preparation as a cause of cluster formation. 288

289

290 Mechanisms of cluster formation

291 Previous work on nanoscale trace element clustering in zircon and monazite suggest a range of 292 possible mechanisms for trace element segregation, including the production of metallic Pb 293 nanospheres via phase separation in response to UHT metamorphism (Kusiak et al., 2015; 294 Whitehouse et al., 2017), exsolution of distinct mineral inclusions during secondary processes 295 (Fougerouse et al., 2018; Seydoux-Guillaume et al., 2019), spinodal decomposition of zircon-296 xenotime solid solution (Peterman et al., 2019), and the accumulation of trace elements in either amorphous domains (Valley et al., 2014; 2015) or dislocation loops (Peterman et al., 2016; 2019) 297 in response to diffusion. Compositional analysis of the experimentally-induced clusters indicate 298

that the clusters are trace-element-enriched zircon, not a compositionally distinct phase (Fig. 3).

300	Therefore, despite the high T of our experimental heating conditions, there is no evidence for
301	phase separation to produce metallic Pb nanospheres (cf. Kusiak et al., 2015; Whitehouse et al.,
302	2017) or the exsolution of distinct mineral inclusions (Fougerouse et al., 2018, Seydoux-
303	Guillaume et al., 2019). Furthermore, Y and P do not co-vary (Fig. 3), which rejects the
304	possibility that these trace element clusters were produced by spinodal decomposition of zircon-
305	xenotime (Peterman et al., 2019).
306	
307	The other postulated mechanism for trace element clustering is segregation to defects. Because
308	of the low diffusivity of Pb in crystalline zircon (e.g., Cherniak et al., 1991; Cherniak, 2010),
309	diffusive transport of Pb (and other trace elements) of more than a few nm under most geologic
310	conditions is greatly facilitated by significant accumulation of radiation damage (Geisler et al.,
311	2001; Ewing et al., 2003; Cherniak, 2010). Using the measured concentrations for U and Th (249
312	and 163 ppm, respectively) and the known age of crystallization, we calculate an integrated α -
313	dose of 4.4 x $10^{18} \alpha/g$, which is near the second percolation point for zircon (Murakami et al.,
314	1991; Salje et al., 1999; Ewing et al. 2003; Pidgeon, 2014). By 1.2 Ga-the timing of the
315	Namaqua-Natal orogenic event-the zircon would have accumulated most of its radiation
316	damage (3.2 x $10^{18} \alpha/g$), but large-scale structural recovery is not expected to have occurred at
317	temperatures of 200°C (Meldrum et al. 1998; Garver et al., 1999; Geisler et al. 2001; Nasdala et
318	al. 2001; 2004; Ginster et al., 2019), which is the peak temperature of the Namaqua-Natal
319	orogenic event (Baughman and Flowers, 2020).

320

299

In sum, these data indicate that the analyzed zircon had accumulated significant radiation 321 322 damage prior to our experiments, despite a low-T thermal event at ~ 1.2 Ga. Pb was mobilized 323 during laboratory heating, consistent with the high rates of Pb diffusion at our experimental 324 conditions, particularly in radiation damaged zircon (Cherniak, 2010), and confirmed by the Pb isotopic ratio extracted from the clusters. These results also show that a single, high-T, short-325 326 duration thermal event can lead to the formation of morphologically different clusters at the 327 nanoscale, indicating that morphology alone cannot be used to infer that multiple cluster 328 populations means multiple thermal events. 329 330 Crystallographic controls on trace element segregation

331

like structure (Fig. 2). The TEM data show that these loop-like structures have Moiré fringes 332 333 associated with loop-parallel defects (Fig. 5) and high concentrations of particular trace elements 334 (Figs. 2, 5D, 5E). We therefore interpret these features as trace-element-enriched dislocation 335 loops. In contrast with the well-known annealing of fission tracks and other point defects at 336 relatively low temperatures (~200°C; e.g., Garver et al., 1999), the production of dislocation loops requires significantly higher temperatures. Dislocation loops measuring 10-100 nm have 337 338 been shown to form in radiation damaged zircon in response to 24h heating experiments at 339 1250°C and 1450°C (Bursill and McLaren, 1966), which is consistent with our experiments. 340 341 We also observe a crystallographic control on the size and composition of the dislocation loops. Our TEM data show that the loops lie in $\{100\}$ and $\{001\}$, with the loop edges aligned with 342

The clusters observed in APT are preferentially located in {100} and {001} and exhibit a loop-

 $\{100\}, \{001\}$ and $\{101\}$. The largest loops are preferentially located in $\{100\}$ planes that are

344 parallel to the z-axis of the atom probe specimen. Notably, higher concentrations of Mg and Al 345 are found parallel to <001> within these larger loops (Fig. 2C, 3). Smaller loops found in {100} 346 and {001} contain the same trace elements, but Mg, Al, and Y are homogeneously distributed 347 and do not appear to define loop-like features (Fig. 2D). Mg and Al are commonly interstitial in 348 zircon (Hoskin and Ireland, 2000; Hoskin and Schaltegger, 2003) and more mobile than trace 349 elements incorporated into the zircon lattice, as demonstrated by anomalously high 350 concentrations of Mg and Al associated with Cottrell atmospheres around dislocations (Reddy et 351 al., 2016; 2020). As dislocations moved through the crystal, we suggest that mobile, interstitial 352 trace elements segregated to lower energy sites associated with dislocation loops, which were 353 being produced simultaneously. The distribution of Mg + Al in $\{100\}$ planes is consistent with 354 slip along the {100} previously identified in zircon (Reddy et al., 2007). Although our results 355 differ from earlier work by Bursill and McLaren (1966), which suggested that dislocation loops lie in $\{101\}$ planes with Burgers vectors parallel to <101>, our findings are consistent with 356 357 energetically favorable slip systems in zircon (Reddy et al., 2007; Timms et al., 2012), yielding a 358 self-consistent result for the formation, composition, and distribution of dislocation loops within 359 the zircon.

360

361 Comparison with naturally formed dislocation loops

The dislocation loops observed in this study are similar in size and morphology to those
observed by our prior analyses of radiation damaged zircon from the Rhodope Metamorphic
Complex, located in eastern Greece (Peterman et al., 2016). We also observe similarities in the
distribution of elements within the loops. As with the Kaapvaal zircon, Pb in the Rhodope zircon
is concentrated into two bands and the 3-D reconstructions of the loops (cf. Supplemental

367	Materials, Peterman et al., 2016) show that the loops themselves are flattened and inclined with
368	respect to the z-axis of the atom probe specimen. These data are consistent with some
369	crystallographic control on the distribution of trace elements within the loops. Although we lack
370	the precise orientation of the atom probe specimen to be able to assess if the Pb-rich loops are
371	similarly aligned with $\{100\}$, results from EBSD analysis (Peterman et al., 2016) suggests that
372	this is probable, which is consistent with the results of this study.
373	
374	We observe two key differences between the dislocation loops in Rhodope and Kaapvaal zircon
375	grains. First, the Rhodope loops contain high concentrations of Y + Pb, whereas the Kaapvaal
376	loops contain high concentrations of Y, Pb, Mg, Al, and Yb. In both cases, the trace elements
377	found at high concentration are interstitial and relatively incompatible in zircon. We suspect that
378	differences in composition among dislocation loops are related to the original composition of the
379	zircon, but the dataset is not yet large enough to directly test this hypothesis.
380	
381	A second key difference is that a typical atom probe specimen from the core of the Rhodone

A second key difference is that a typical atom probe specimen from the core of the Rhodope 201 zircon contains fewer than five dislocation loops whereas the experimentally heated Kaapvaal 382 grain contains hundreds of loops in each APT specimen. Differences in dislocation loop density 383 384 may be related to: the radiation dose at the time of heating, the P-T conditions under which the 385 loops formed, or the rate of heating and/or structural recovery and annealing. We observe fewer dislocation loops in the Rhodope zircon than the Kaapvaal grain, despite the significantly higher 386 radiation dose at the time of cluster formation (8.8 x $10^{18} \alpha/g$ for Rhodope vs. 4.4 x $10^{18} \alpha/g$ for 387 Kaapvaal), indicating that dislocation loop density is not directly correlated with radiation dose. 388 389 Instead, we suggest that the difference in dislocation loop density between the Rhodope and

390 Kaapvaal grains is a function of the amount of recrystallization that occurred prior to dislocation 391 loop formation, which is a function of the P-T history. Geologic storage at 700°C for 370 Myr 392 can result in complete structural recovery (Geisler et al., 2001), but storage at these conditions 393 for such an extended interval is unlikely. At lower temperatures, the zircon may partially 394 recover, but we would not expect to observe dislocation loops. In contrast, relatively short 395 duration geologic events (> 100 kya) at elevated temperature (> 900°C) would likely mobilize Pb 396 (and other incompatible trace elements) while structural recovery is ongoing, thereby simultaneously producing dislocation loops. These findings suggest that the production and 397 398 density of dislocation loops may depend on the rate, duration, and absolute temperature of 399 geologic heating.

400

401 To explore the geologic significance of differences in cluster density, we sought additional 402 context by comparing the P-T histories of three additional radiation damaged zircon grains that 403 have been analyzed by APT, some of which have clusters that are similar in composition and 404 size to those observed in the Kaapvaal and Rhodope grains (Table 1). Two examples come from 405 the Jack Hills (Western Australia) and a third was sampled from the Grouse Creek Mountains 406 (Utah, USA). The Jack Hills zircon grains are 4.4 and 4.0 Ga; the 4.4 Ga grain has a 3.4 Ga rim 407 and the APT specimen contains hundreds of Y + Pb clusters. In contrast, the 4.0 Ga Jack Hills 408 grain does not have a younger rim and the APT specimen lacks any clusters (Valley et al., 2015). 409 The 2.5 Ga Grouse Creek grain has a young igneous rim attributed to a geologic event at 29 Ma 410 and the APT specimen from this sample contains a similar density of clusters to the 4.4 Ga Jack 411 Hills specimen (Valley et al., 2015). For comparison, the Kaapvaal specimens contain hundreds 412 of loops, and there is no geological evidence of moderate- to high-T annealing of the grain prior

to our laboratory experiments. The Rhodope zircon was metamorphosed during subduction to
UHP conditions along a relatively cold thermal gradient (Krenn et al., 2010); the younger rim
formed during upper amphibolite to granulite facies metamorphism following the UHP event
(Peterman et al., 2016; 2019). APT specimens from this grain contain a few clusters enriched in
trace elements.

418

Among the zircon specimens with high cluster densities, the Kaapvaal grain was subjected to a 419 420 steep dT/dt (400°C/h) and the rim-forming events for the 4.4 Ga Jack Hills and 2.5 Ga Grouse 421 were igneous and thus also high dT/dt, with no Pb loss. In contrast, dT/dt for the Rhodope grain 422 was more gradual and Pb loss was interpreted to have occurred early in the prograde history 423 (Peterman et al., 2016; 2019) because Pb is relatively mobile in radiation damaged zircon (Cherniak, 2010). As temperature increased with progressive metamorphism, structural recovery 424 425 began, which resulted in a more crystalline zircon and fewer defects available to produce 426 dislocation loops. As a direct consequence, the zircon contains fewer dislocation loops, despite 427 the high radiation dose. Migrating Pb, enabled by increasing temperatures, was trapped in dislocation loops, thereby yielding a ²⁰⁷Pb/²⁰⁶Pb model age consistent with Pb mobility at the 428 429 time of dislocation loop formation. These results suggest that the formation of dislocation loops 430 requires both accumulated radiation damage and high(er) temperature geologic events. 431 Importantly, dT/dt appears to play a significant role in both the density of clusters and amount of 432 Pb loss. 433

434 If the clusters in the 4.4 Ga Jack Hills grain are produced by the same processes, our model
435 suggests that they formed during the high-*T* geologic event that produced the 3.4 Ga rims; the

436	modeled Pb ages of the clusters and the observation of a preferred crystallographic orientation
437	for the clusters (parallel to (100) and (010); Valley et al., 2015) are consistent with this
438	interpretation. Similarly, the Grouse Creek grain is a xenocryst with a 29 Ma igneous rim; these
439	igneous processes could have thermally induced the formation of dislocation loops, which
440	trapped migrating Pb.
441	
442	Implications
443	The segregation of incompatible trace elements to clusters has been reported in natural samples
444	of metamorphically heated zircon (Valley et al., 2014; 2015; Peterman et al., 2016; 2019).
445	However, the observation that short interval, high- <i>T</i> heating of zircon (e.g., 1450°C, 24h) can
446	produce large numbers of similar segregation features suggests that the presence of decorated
447	dislocation loops may be useful in identifying short duration, high-T geologic events. Such
448	events may include thermal spikes associated with melt sheets formed during impact cratering or
449	the entrapment of zircon xenocrysts in volcanic rocks.
450	
451	In natural examples of trace element segregation to dislocation loops, the data indicate that these
452	features form during the prograde evolution of the metamorphosed zircon (Peterman et al., 2016)
453	and are therefore not destroyed at peak temperatures of >800°C over several million years. Once
454	formed, trace element segregations within dislocation loops are likely to serve as a durable
455	reservoir for trace element entrapment in zircon. This has potential implications for
456	understanding diffusion in zircon because diffusion out of these segregations will have a
457	fundamentally different activation energy than typical volume diffusion. In addition, the
458	segregations may continue to act as a local sink for trace elements diffusing through the zircon

459	lattice. In these cases, the behavior of trace elements within segregations may become decoupled				
460	from those that are not segregated, for example Pb and Ti respectively, which may have				
461	implications for deriving <i>T</i> - <i>t</i> histories from zircon at the nanoscale.				
462					
463	The entrapment of particular trace elements in nanoscale defects has potential minerals				
464	engineering applications. Zircon has been considered as a potential repository for nuclear waste				
465	materials (e.g., Ewing, 1999) because it is considered to be physically and chemically stable over				
466	geological timescales. The experimental data presented here indicate that nanoscale segregations				
467	of entrapped trace elements can be engineered under laboratory conditions over short timescales				
468	(hours to days), even in robust minerals such as zircon. These segregations provide an additional				
469	level of geochemical isolation from the environment and may prove useful in the storage of				
470	noxious materials, such as nuclear waste.				
471					
472	Acknowledgements				
473	The authors thank Callum Hetherington for editorial handling and Lee White and two				
474	anonymous reviewers for providing constructive comments. Peterman thanks Jaclyn Baughman				
475	(Bowdoin) for providing the zircon separate, Jonathan Stebbins (Stanford) for the use of his				
476	high-temperature furnaces, Marty Grove (Stanford) for supporting Peterman's Blaustein				
477	appointment at Stanford, and the Blaustein Visiting Researcher fund at Stanford University. This				
478	work was supported in part by Bowdoin College Research Funds. The SEMs at Bowdoin				
479	College and Curtin University were supported by NSF MRI-1530963 to E. Peterman and R.				
480	Beane and ARC LE 190100176 to S. Reddy and Z. Quadir, respectively. The development of the				
481	Geoscience Atom Probe Facility was supported by the Science and Industry Endowment Fund				

- 482 (SIEF) through grant SIEF RI13-01 to S. Reddy. D. Fougerouse is supported by the Australian
- 483 Research Council (ARC DE190101307).

485	References
486	Allaz, J.M., Williams, M.L., Jercinovic, M.J., Goemann, K., and Donovan, J. (2019) Multipoint
487	background analysis: Gaining precision and accuracy in microprobe trace element analysis.
488	Microscopy and Microanalysis, 25, 30-46.
489	
490	Baughman, J.S., and Flowers, R.M. (2020) Mesoproterozoic burial of the Kaapvaal craton,
491	southern Africa during Rodinia supercontinent assembly from (U-Th)/He thermochronology.
492	Earth and Planetary Science Letters, 531, 115930, https://doi.org/10.1016/j.epsl.2019.115930
493	
494	Blum, T.B., Darling, J.R., Kelly, T.F., Larson, D.J., Moser, D.E., Perez-Huerta, A., Prosa, T.J.,
495	Reddy, S.M., Reinhard, D.A., Saxey, D.W., Ulfig, R., and Valley, J.W. (2017) Best practices for
496	reporting atom probe analysis of geological materials. In Microstructural Geochronology:
497	Planetary Records Down to Atom Scale, 369-373.
498	
499	Bursill, L.A., and McLaren, A.C. (1966) Transmission electron microscope study of natural
500	radiation damage in zircon (ZrSiO4). Physica Status Solidi B, 13, 331-343.
501	
502	Cherniak, D.J., Lanford, W.A., and Ryerson, F.J. (1991) Lead diffusion in apatite and zircon
503	using ion implantation and Rutherford Backscattering techniques. Geochimica et Cosmochimica
504	Acta, 55, 1663-1673.
505	
506	Cherniak, D.J., and Watson, E.B. (2003) Diffusion in zircon. In: Hanchar J.M., Hoskin P.W.O.
507	(eds) Zircon. Reviews in Mineralogy and Geochemistry, 53, 113-143.

508

- 509 Cherniak, D.J. (2010) Diffusion in accessory minerals: zircon, titanite, apatite, monazite and
- 510 xenotime. Reviews in Mineralogy and Geochemistry, 72, 827–869.

511

- 512 de Wit, M.J., Roering, C., Hart, R.J., Armstrong, R.A., de Ronde, C.E.J., Green, R.W.E.,
- 513 Tredoux, M., Peberdy, E., and Hart, R.A. (1992) Formation of an Archean continent. Nature,
- 514 357, 553–562.

515

516 Ewing, R.C. (1999) Nuclear waste forms for actinides. Proceedings of the National Academy

517 Sciences of the United States of America, 96, 3432-3439.

518

- 519 Ewing, R.C., Meldrum, A., Wang, L., Weber, W.J., and Corrales, L.R. (2003) Radiation effects
- 520 in zircon. In: Hanchar J.M., Hoskin P.W.O. (eds) Zircon. Reviews in Mineralogy and
- 521 Geochemistry, 53, 387–425.

522

- 523 Exertier, F., La Fontaine., A., Corcoran, C., Piazolo, S., Belousova, E., Peng, A., Gault, B.,
- 524 Saxey, D.W., Fougerouse, D., Reddy, S.M., Pedrazzini, S., Bagot., P.A.J., Moody, M.P.,
- 525 Langelier, B., Moser., D.E., Botton, G.A., Vogel, F., Thompson, G.B., Blanchard, P.T.,
- 526 Chiaramonti, A.N., Reinhard, D.A., Rice, K.P., Schreiber, D.K., Kruska, K., Wang, J., and
- 527 Cairney, J.M. (2018) Atom probe tomography analysis of the reference zircon GJ-1: An
- 528 interlaboratory study. Chemical Geology, 495, 27-35.

	DOI: https://doi.org/10.2136/am-2021-7034. http://www.hinisocam.org/
530	Fougerouse, D., Reddy, S.M., Saxey, D.W., Rickard, W.D.A., van Riessen, A., and
531	Micklethwaite, S. (2016) Nanoscale gold clusters in arsenopyrite controlled by growth rate not
532	concentration: evidence from atom probe microscopy. American Mineralogist, 101, 1916–1919.
533	
534	Fougerouse, D., Reddy, S.M., Saxey, D.W., Erickson, T.M., Kirkland, C.L., Rickard, W.D.A.,
535	Seydoux-Guillaume, A.M., Clark C., and Buick, I.S. (2018) Nanoscale distribution of Pb in
536	monazite revealed by atom probe microscopy. Chemical Geology, 479, 251-258
537	
538	Garver, J.I., Brandon, M.T., Roden-Tice, M.K., and Kamp, P.J.J. (1999) Exhumation history of
539	orogenic highlands determined by detrital fission track thermochronology. In Ring, U., Brandon,
540	M.T., Willet, S.D., and Lister, G.S. (eds) Exhumation processes: normal faulting, ductile flow.
541	Geological Society of London Special Publications, 154, 283-304.
542	
543	Ge, R., Wilde, S.A., Nemchin, A.A., Whitehouse, M.J., Bellucci, J.J., Erickson, T.M., Frew, A.,
544	and Thern, E.R. (2018) A 4463 Ma apparent zircon age from the Jack Hills (Western Australia)
545	resulting from ancient Pb mobilization. Geology, 46, 303-306.
546	
547	Geisler, T., Pidgeon, R.T., van Bronswijk, W., and Pleysier, R. (2001) Kinetics of thermal
548	recovery and recrystallization of partially metamict zircon: a Raman spectroscopic study.
549	European Journal of Mineralogy, 13, 1163-1176.
550	
551	Geisler, T. (2002) Isothermal annealing of partially metamict zircon: evidence for a three-stage

recovery process. Physics and Chemistry of Minerals, 29, 420-429. 552

553

Geisler, T., Schaltegger, U., and Tomaschek, F. (2007) Re-equilibration of zircon in aqueous
fluids and melts. Elements, 3, 43–50.

556

557 Ginster, U., Reiners, P.W., Nasdala, L., and Chanmuang N., C. (2019) Annealing kinetics of

radiation damage in zircon. Geochimica et Cosmochimica Acta, 249, 225-246.

559

- 560 Harley, S.L., Kelly, N.M., and Möller, A. (2007) Zircon behaviour and the thermal histories of
- 561 mountain chains. Elements, 3, 25–30.

562

- Hazen, R.M., and Finger, L.W., 1979. Crystal structure and compressibility of zircon at high
 pressure. American Mineralogist, 64, 196-201.
- 565
- 566 Hellman, O.C., Vandenbroucke, J.A., Rüsing, J., Isheim, D., and Seidman, D.N. (2000) Analysis

567 of Three-dimensional Atom-probe Data by the Proximity Histogram. Microscopy and

568 Microanalysis, 6, 437–444.

569

Hoskin, P.W.O., and Ireland, T.R. (2000) Rare earth element chemistry of zircon and its use as a
provenance indicator. Geology, 28, 627–630.

572

- 573 Hoskin, P.W.O., and Schaltegger, U. (2003) The composition of zircon and igneous and
- 574 metamorphic petrogenesis. In: Hanchar J.M., Hoskin P.W.O. (eds) Zircon. Reviews in
- 575 Mineralogy and Geochemistry, 53, 27–62.

Krenn, K., Bauer, C., Proyer, A., Klötzli, U., and Hoinkes, G. (2010) Tectonometamorphic

578	evolution of the Rhodope orogen. Tectonics, 29, TC4001 https://doi.org/10.1029/2009TC002513
579	
580	Kusiak, M.A., Whitehouse, M.J., Wilde, S.A., Nemchin, A.A., and Clark C. (2013) Mobilization
581	of radiogenic Pb in zircon revealed by ion imaging: Implications for early Earth geochronology.
582	Geology, 41, 291-294.
583	
584	Kusiak, M.A., Dunkley, D.J., Wirth, R., Whitehouse, M.J., Wilde, S.A., and Marquardt, K.
585	(2015) Metallic lead nanospheres discovered in ancient zircons. Proceedings of the National
586	Academy of Sciences, 112, 4958-4963.
587	

- Layer, P.W., Kroner, A., and York, D. (1992) Pre-3000 Ma thermal history of the Archean Kaap
 valley pluton, South Africa. Geology, 20, 717–720.
- 590
- 591 Lyon, I.C., Kusiak, M.A., Wirth, R., Whitehouse, M.J., Dunkley, D.J., Wilde, S.A., Schaunlöffel,
- 592 D., Malherbe, J., and Moore, K.L. (2019) Pb nanospheres in ancient zircon yield model ages for
- zircon formation and Pb mobilization. Nature, 9, 13702. <u>https://doi.org/10.1038/s41598-019-</u>
- 594 <u>49882-8</u>
- 595
- 596 Meldrum, A., Boatner, L.A., Weber, W.J., and Ewing, R.C. (1998) Radiation damage in zircon
- and monazite. Geochimica et Cosmochimica Acta, 62, 2509–2520.
- 598

- 599 Montalvo, S.D., Reddy, S.M., Saxey, D.W., Rickard, W.D.A., Fougerouse, D., Quadir, Z., and
- Johnson, T.E. (2019) Nanoscale constraints on the shock-induced transformation of zircon to
- 601 reidite. Chemical Geology, 507, 85-95.
- 602
- 603 Murakami, T., Chakoumakos, B.C., Ewing, R.C., Lumpkin, G.R., and Weber, W.J. (1991)
- Alpha-decay event damage in zircon. American Mineralogist, 76, 1510-1532.
- 605
- 606 Nasdala, L., Wenzel, M., Vavr, G., Irmer, G., Wenzel, T., and Kober, B. (2001) Metamictization
- 607 of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage.
- 608 Contributions to Mineralogy and Petrology, 141, 125-144.
- 609
- 610 Nasdala, L., Lengauer, C.L., Hanchar, J.M., Kronz, A., Wirth, R., Blanc, P., Kennedy, A.K., and
- 611 Seydoux-Guillaume, A-M. (2002) Annealing radiation damage and the recovery of
- 612 cathodoluminescence. Chemical Geology, 191, 121-140.
- 613
- 614 Nasdala, L., Reiners, P.W., Garver, J.I., Kennedy, A.K., Stern, R.A., Balan, E., and Wirth, R.
- 615 (2004) Incomplete retention of radiation damage in zircon from Sri Lanka. American
- 616 Mineralogist, 89, 219-231.
- 617
- 618 Peterman, E.M., Reddy, S.M, Saxey, D.W., Snoeyenbos, D.R., Rickard, W.D.A., Fougerouse,
- D., and Kylander-Clark, A.R.C. (2016) Nanogeochronology of discordant zircon measured by
- atom probe microscopy of Pb-enriched dislocation loops. Science Advances, 2, e:1601218. doi:
- 621 10.1126/sciadv.1601318

622

623	Peterman, E.M., Reddy, S.M, Saxey, D.W., Fougerouse, D., Snoeyenbos, D.R., and Rickard,				
624	W.D.A. (2019) Nanoscale processes of trace element mobility in metamorphosed zircon.				
625	Contributions to Mineralogy and Petrology, 174, 92. https://doi.org/10.1007/s00410-019-1631-1				
626					
627	Piazolo, S., La Fontaine, A., Trimby, P., Harley, S., Yang, L., Armstrong, R., and Cairney, J.M.				
628	(2016) Deformation-induced trace element redistribution in zircon revealed using atom probe				
629	tomography. Nature Communications, 7, 10490. https://doi.org/10.1038/ncomms10490				
630					
631	Pidgeon, R.T. (2014) Zircon radiation damage ages. Chemical Geology, 367, 13-22.				
632					
633	Pouchou, JL. and Pichoir, F. (1984) A new model for quantitative X-ray				
634	microanalysis. 1. Application to the analysis of homogeneous samples. La Recherche				
635	Aerospatiale, 3, 167-192.				
636					
637	Reddy, S.M., Timms, N.E., Pantleon, W., and Trimby, P. (2007) Quantitative characterization of				
638	plastic deformation of zircon and geologic implications. Contributions to Mineralogy and				
639	Petrology, 153, 625-645.				
640					
641	Reddy, S.M., van Riessen, A., Saxey, D.W., Johnson, T.E., Rickard, W.D.A., Fougerouse, D.,				
642	Fischer, S., Prosa, T.J., Rice, K.P., Reinhard, D.A., Chen, Y., and Olson, D. (2016) Mechanisms				
643	of deformation-induced trace element migration in zircon resolved by atom probe and correlative				
644	microscopy. Geochimica et Cosmochimica Acta, 195, 158-170.				

645

- 646 Reddy, S.M., Saxey, D.W. Rickard, W.D.A., Fougerouse, D., Montalvo, S.D., Verberne, R., and
- 647 van Riessen A. (2020) Atom Probe Tomography: Development and Application to the
- 648 Geosciences. Geostandards and Geoanalytical Research, 44, 5-50.

649

- 650 Rickard, W.D.A., Reddy, S.M., Saxey, D.W., Fougerouse, D., Timms, N.E., Daly, L., Peterman,
- E., Cavosie, A.J., and Jourdan F. (2020) Novel Applications of FIB-SEM-Based ToF-SIMS in
- Atom Probe Tomography Workflows. Microscopy and Microanalysis, 26, 750-757.

653

Rubatto, D. (2002) Zircon trace element geochemistry: Partitioning with garnet and the link

between U–Pb ages and metamorphism. Chemical Geology, 184, 123–138.

656

Salje, E.K.H., Chrosch, J., and Ewing, R.C. (1999) Is "metamictization" of zircon a phase
transition?. American Mineralogist, 84, 1107-1116.

659

- 660 Saxey, D.W., Reddy, S.M., Fougerouse, D., and Rickard, W.D.A. (2018) The Optimization of
- 661 Zircon Analyses by Laser-Assisted Atom Probe Microscopy: Insights from the 91500 Zircon
- 662 Standard. *In Mi*crostructural Geochronology: Planetary Records Down to Atom Scale, 293–313.

663

- 664 Saxey, D., Fougerouse, D., Rickard, W., and Reddy, S. (2019) Spatial Reconstruction of Atom
- 665 Probe Data from Zircon. Microscopy and Microanalysis, 25, 2536-2537.

667	Schoene, B., and Bowring, S.A. (2006) Determining accurate temperature-time paths from U-Pb				
668	thermochronology: An example from the Kaapvaal craton, southern Africa. Geochimica et				
669	Cosmochimica Acta, 71, 165-185.				
670					
671	Schoene, B. (2014) U-Th-Pb geochronology. In Rudnick, R. (Ed.). Treatise on Geochemistry,				
672	4.10, 341-378.				
673					
674	Seydoux-Guillaume, AM., Fougerouse, D., Laurent, A., Gardés, E., Reddy, S., and Saxey, D.				
675	(2019) Nanoscale resetting of the Th/Pb system in an isotopically-closed monazite grain: A				
676	combined atom probe and transmission electron microscopy study. Geoscience Frontiers, 10, 65-				
677	76.				
678					
679	Timms, N.E., Reddy, S.M., Healy, D., Nemchin, A.A., Grance, M.L., Pidgeon, R.T., and Hart,				
680	R. (2012) Resolution of impact-related microstructures in lunar zircon: A shock-deformation				
681	mechanism map. Meteoritics and Planetary Science, 47, 120-141.				
682					
683	Valley, J.W., Cavosie, A.J., Ushikubo, T., Reinhard, D.A., Lawrence, D.F., Larson, D.J., Clifton,				
684	P.H., Kelly, T.F., Wilde, S.A., Moser, D.E., and Spicuzza, M.J. (2014) Hadean age for a post-				
685	magma-ocean zircon confirmed by atom-probe tomography. Nature Geoscience, 7, 219–223.				
686					
687	Valley, J.W., Reinhard, D.A., Cavosie, A.J., Ushikubo, T., Lawrence, D.F., Larson, D.J., Kelly,				
688	T.F., Snoeyenbos, DR., and Strickland, A. (2015) Nano-and micro-geochronology in Hadean and				

- 689 Archean zircons by atom-probe tomography and SIMS: New tools for old minerals. American
- 690 Mineralogist, 100, 1355-1377.
- 691
- 692 Whitehouse, M.J., Kusiak. M.A., Wirth. R., and Ravindra Kumar, G.R. (2017) Metallic Pb
- 693 nanospheres in ultra-high temperature metamorphosed zircon from southern India. Mineralogy
- 694 and Petrology, 111, 467-474.
- 695

696 697	Figure Captions					
698	Figure 1. A) Cathodoluminescence (CL) image of the analyzed zircon. Yellow box marks					
699	location of TEM foil; white box marks lift out location for atom probe specimens. Cyan dots					
700	mark the EPMA transect; box outlines the points used to determine U and Th concentrations.					
701	Pole figure shows the <100> and <001> of this grain, as measured by EBSD. B) Schematic					
702	diagram of zircon with relevant crystallographic axes and planes marked; APT specimens					
703	(orange) and TEM foil (yellow) shown in their crystallographic context.					
704						
705	Figure 2. Atom probe tomography reconstructions from the experimentally heated zircon. Each					
706	point represents an atom; colors reflect different elements. A) Whole specimen, multiple					
707	elements. B) Single element reconstructions. C & D) Close-up images of representative clusters.					
708	C is in the x- z plane of the specimen; D is in the x-y plane of the specimen.					
709						
710	Figure 3. Proxigram shows changes in concentration (at. %) with respect to the edge of the					
711	cluster in nm. Clusters were defined by an isoconcentration surface of 0.03 at. % Mg.					
712						
713	Figure 4. Atom probe tomography reconstructions from the untreated zircon. Each point					
714	represents an atom; colors reflect different elements. Crystallographic directions and specimen					
715	orientations as marked. Pb (green) is shown with Si (gray).					
716						
717	Figure 5. Bright field TEM images show the size and distribution of dislocation loops within the					
718	analyzed zircon. Inset: diffraction pattern with <001> and <100> identified; all images were					
719	collected in the same orientation. (A) White arrows mark strained regions of the lattice; black					

- arrow indicates Moiré fringes. The edges of the loop in (B) are aligned with {100} and {001};
- these planes are shown by white dashed lines. The edges of the loop in (C) are aligned with
- $\{101\}$ (shown by yellow dotted lines), $\{100\}$ and $\{001\}$. Compositional maps acquired via
- 723 STEM-EDS of A1 (D) and Mg (E) within dislocation loops; maps were collected from an area
- adjacent to the region shown in A.

725 Table 1: Attributes of zircons analyzed by APT

	Rhodope ¹	Kaapvaal	Jack Hills 4.4 ²	Jack Hills 4.0 ²	Grouse Creek ²
Crystallization age	$2144 \pm 33 \text{ Ma}$	3268 ± 150 Ma	4374 ± 6 Ma	$4007\pm22~Ma$	2542 ± 5 Ma
Cluster density	Low	High	High	None	High
% concordance of zircon core	66	n.d.	100	97	97
Rim age	180 – 150 Ma	n/a	3400 Ma	n/a	29 Ma
α/g at time of rim formation	8.1 x 10 ¹⁸	4.4 x 10 ¹⁸	³ Estimated at 1.83 x 10 ¹⁸	n/a	8.05 x 10 ¹⁸
Origin and d <i>T</i> /d <i>t</i> of	Metamorphic;	Laboratory;	Igneous;	n/a	Igneous;
second event	low dT/dt	high d <i>T</i> /dt	high d <i>T</i> /d <i>t</i>		high d <i>T</i> /d <i>t</i>

726 ¹ Peterman et al., 2016; ² Valley et al., 2015; ³ Estimated based on approximate U and Th

concentrations (145 ppm and 100 ppm, respectively) and ages of geologic events reported in

728 Valley et al. (2015).

729 n.d. – not determined; n/a – not applicable

730

- 732 Supplementary Materials Analytical Run Conditions
- Analytical run conditions for both specimens are provided in the table below, after Blum et al.
- 734 (2017).
- 735 Supplementary Table A1: Atom Probe Tomography Data Acquisition Settings and Data Summary

Specimen	M1	M2	M13
Instrument model	LEAP 4000X HR	LEAP 4000X HR	LEAP 4000X HR
Laser wavelength (nm)	355	355	355
Laser pulse energy (pJ)	300	300	300
Pulse frequency (kHz)	200	200	200
Evaporation control	Detection rate	Detection rate	Detection rate
Target detection rate (ions/pulse)	0.01	0.01	0.01
Nominal flight path (mm)	382	382	382
Set point temperature (K)	60	60	60
Sample temperature (K)	69.2	69.2	69.2
Chamber pressure (Torr)	3.1 x 10 ⁻¹¹	3.3 x 10 ⁻¹¹	2.9 x 10 ⁻¹¹
Data Summary			
LAS Root version	15.41.3421	15.41.3421	15.41.3421
CAMECAROOT Version	18.46.452d	18.46.452d	18.46.452d
Analysis software	IVAS 3.8.4sp1	IVAS 3.8.4sp1	IVAS 3.8.4sp1
Total ions (millions):	56.9	100.0	77.8
Single (%)	70.6	71.0	69.5
Multiple (%)	29.2	28.8	30.2
Partial (%)	0.2	0.2	0.3
Reconstructed ions (millions)	55.2	98.2	76.3
(complete dataset):			
Ranged (%)	89.2	83.2	84.7
Unranged (%)	10.8	16.8	15.3
Volt./bowl corr. peak (Da)	16	16	16

Mass calibration (peaks/interp.)	8/Linear	10/Linear	10/Linear
$(M/\Delta M)$ for ¹⁶ O ⁺	951	979	949
Time-dependent background (ppm/ns)	16.8	17.1	25.0
Reconstruction			
Final specimen state	Fractured	Intact	Intact
Pre-/post-analysis imaging	SEM/SEM	SEM/SEM	SEM/SEM
Radius evolution model	Voltage evolution	Voltage evolution	Voltage evolution
Field factor (k)	3.3	3.3	3.3
Image compression factor	1.65	1.65	1.65
Assumed E-field (V/nm)	28	28	28
Detector Efficiency (%)	36	36	36
Average atomic volume (nm ³)	0.01076	0.01076	0.01076
V _{initial} (V)	4866	5456	4547
V _{final} (V)	8135	10252	8880

736

 ΔM is full width at half maximum

737

738

Pb isotopic ratio calculations and corrections

The ²⁰⁷Pb/²⁰⁶Pb ratio was determined from the Pb⁺⁺ ion peaks located in the time-of-flight mass 739 spectrum at 103 and 103.5 Da. Equivalent proportions of each peak were measured by selecting 740 741 the counts in a central 0.1 Da mass range. Count values were then corrected for the local 742 background noise using an estimate of the background between 100.5 and 102.5 Da, where there are assumed to be no mass peaks. A further correction was applied to the ²⁰⁷Pb signal to account 743 for an overlap between the 103.5 Da peak (207 Pb⁺⁺) and the extended leading-edge of the 104 Da 744 peak (28 Si₂ $^{16}O_3^{++}$). The degree of this overlap was estimated by examining the spectrum from the 745 746 entire dataset (M2), in which the contribution of leading-edge counts in the 103.5 Da peak range

- 747 was found to be 20% of those found centered in the 104 Da peak. This correction further reduced
- 748 the 207 Pb counts, resulting in a lower 207 Pb/ 206 Pb ratio than would otherwise be measured.

Figure 1. A) Cathodoluminescence (CL) image of the analyzed zircon. Yellow box marks location of TEM foil; white box marks lift out location for atom probe specimens. Cyan dots mark the EPMA transect; box outlines points used to determine U and Th concentrations. Pole figure shows the <100> and <001> of this grain, as measured by EBSD. B) Schematic diagram of zircon with relevant crystallographic axes and planes marked; APT specimens (orange) and TEM foil (yellow) shown in their crystallographic context.

Figure 2. Atom probe tomography reconstructions from the experimentally treated zircon. Each point represents an atom; colors reflect different elements. A) Whole specimen, multiple elements. B) Single element reconstructions. C & D) Close-up images of representative clusters. C is in the xz plane of the specimen; D is in the x-y plane of the specimen.

Figure 3. Proxigram shows changes in concentration (at %) with respect to the edge of the cluster in nm. Clusters were defined by an isoconcentration surface of 0.03 at. % Mg.

Figure 4. Atom probe tomography reconstructions from the untreated zircon. Each point represents an atom; colors reflect different elements. Crystallographic directions and specimen orientations as marked. Pb (green) is shown with Si (in gray).

Figure 5. Bright field TEM images show the size and distribution of dislocation loops within the analyzed zircon. *Inset*: diffraction pattern with <001> and <100> identified; all images were collected in the same orientation. (A) White arrows mark strained regions of the lattice; black arrow indicates Moiré fringes. The edges of the loop in (B) are aligned with {100} and {001}; these planes are shown by white dashed lines. The edges of the loop in (C) are aligned with {101} (shown by yellow dotted lines), {100} and {001}. Compositional maps acquired via STEM EDS of Al (D) and Mg (E) within dislocation loops; maps were collected from an area adjacent to the region shown in A.