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ABSTRACT 21 

The new mineral jingsuiite (TiB2, IMA-2018-117b), together with osbornite-22 

khamrabaevite solid solution (TiN-TiC), deltalumite and a potential new mineral, 23 

hexagonal Ti10(Si,P,)7, constitute four inclusions up to 50 μm across in corundum 24 

recovered from the Cr-11 podiform chromitite orebody near Kangjinla, Luobusa 25 

ophiolite, Tibet, China. EELS, EDS and 3D electron diffraction were applied to study 26 

the phases. In one inclusion, jingsuiite forms a rounded grain 40 μm across. 27 

Associated osbornite-khamrabaevite solid solution forms an irregular mass up to 10 28 

μm across having the composition Ti(N0.5C0.5) and the Ti10(Si,P,)7 phase forms an 29 

incomplete overgrowth up to 20 μm thick around the grain of jingsuiite. In a second 30 

inclusion, jingsuiite, osbornite-khamrabaevite solid solution, Ti10(Si,P,)7 and 31 

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. 
 The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. 

DOI: https://doi.org/10.2138/am-2021-7647.  http://www.minsocam.org/

Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld



deltalumite form a lamellar intergrowth 100 μm long composed of tablets of the three 32 

phases up to 50 μm long x 4 μm in thickness. Jingsuiite has a primitive hexagonal cell 33 

with a = 3.04(6), b = 3.04(6), c = 3.22(6) Å, α = 90°, β = 90°, γ = 120°, V = 25.8 (9) 34 

Å3, space group P6/mmm, Z = 1. Its structure was determined ab-initio and 35 

dynamically refined on the basis of 3-dimension electron diffraction data; it is 36 

equivalent to that of synthetic TiB2. Results of EELS analyses of jingsuiite in foil 37 

#5357 (N = 20) gave B 61.87(1.22), C 1.53 (1.26), Ti 36.62 (1.45) atomic% from 38 

which an empirical formula of Ti1.10(B1.86C0.05)∑1.91 was calculated on the basis of 3 39 

atoms. The ideal formula is TiB2. Our preferred scenario is that corundum with 40 

entrapped Ti-Si-P-Fe intermetallic melts was precipitated from basaltic magmas 41 

during exhumation following deep subduction. Enrichment of B in the melt pockets is 42 

attributed to the highly reducing conditions that led to the segregation of siderophile 43 

elements into intermetallic melts and to the siderophile behavior of B, thereby 44 

concentrating it in the intermetallic melts in preference to silicate melt. Experimental 45 

work on the Ti-Fe-Si system indicates that minerals enclosed in corundum grains such 46 

as Ti, FeTiSi2, and TiSi2 could have crystallized from alloy melts at the lowest T 47 

accessible on the liquidus, i.e., <1300 ºC. The presence of TiB2 in four inclusions in 48 

the Cr-11 ore body suggests incorporation of crustal sediments in the ophiolite 49 

followed by deep subduction to the Transition Zone where qingsongite (cubic BN) is 50 

inferred to have crystallized and subsequently exhumed to shallower levels where 51 

hexagonal BN and jingsuiite presumably crystallized. 52 

 53 

Keywords: boron, jingsuiite, intermetallic melts, crystal structure, transmitting 54 

electron microscopy, 3-dimensional electron diffraction 55 

*E-mail: esgrew@maine.edu 56 

Introduction 57 

Boron is a quintessential crustal element. Of the 300 known minerals containing 58 

essential B, qingsongite, cubic BN, is the first B mineral believed to have originated 59 

in Earth’s mantle (Dobrzhinetskaya et al. 2009, 2014). It occurs in trace amounts with 60 

osbornite (TiN) in a kyanite and coesite-bearing zone adjacent to a rim of α-Ti (native 61 
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titanium, Fang et al. 2013) surrounding a core of Fe-Ti alloy in a fragment less than 1 62 

mm across extracted from the Cr-31 chromitite orebody, Luobusa ophiolite, Tibet 63 

(Fig. 1)(Yang et al. 2007). Dobrzhinetskaya et al. (2014) interpreted the fragment to 64 

be a hybrid consisting of crustal material subducted to 400-500 km depth, where 65 

mantle components were incorporated. Other super-reduced species extracted from 66 

the Cr-31 chromitite include linzhiite, FeSi2 (Li et al. 2012) and zangboite, TiFeSi2 (Li 67 

et al. 2009). 68 

 69 

Super-reduced intermetallic phases have also been reported in the Cr-11 podiform 70 

chromitite orebody (Fig. 2), which located at an elevation of 5 300 m at 29°11′ N, 71 

92°18′ E in the Kangjinla district, 11 km east of the Cr-31 chromitite orebody (Fig. 1). 72 

However, the mode of occurrence is very different – the phases are enclosed in 73 

vitreous corundum grains (Fig. 3) that were found in mineral separates prepared from 74 

1100 kg of chromitite. Xu et al. (2009, 2013, 2018) reported compounds that appear 75 

to correspond to known minerals, such as native titanium (Feng et al. 2013), Ti-Fe-Si 76 

(probably zangboite, FeTiSi2, Li et al. 2009), Ti-N (osbornite) and Ti-C 77 

(khamrabaevite), as well as several Ti-Si, Ti-Si-P and Ti-B phases. Our studies using 78 

3-dimension electron diffraction have confirmed the identity of TiN and TiC 79 

intermetallic compounds as osbornite-khamrabaevite, which constitute a continuous 80 

solid solution (e.g., Duwez and Odell 1950), and another five intermetallic 81 

compounds as distinct minerals with the compositions TiB2, TiSi2, TiP, Ti10(Si,P,)7 82 

and Ti11(Si,P)10. The first three have been approved by the International Mineralogical 83 

Association Commission on New Minerals, Nomenclature and Classification (IMA 84 

CNMNC) as new minerals, respectively jingsuiite (Xiong et al. 2019a, this paper), 85 

badengzhuite (Xiong et al. 2019b, 2020c) and zhiqinite (Xiong et al. 2019c, 2020c), 86 

while proposals for the latter two are being prepared for submission to the 87 

Commission.  88 

 89 

Jingsuiite was first reported in 2016 as an unnamed TiB2 phase in a similar suite of 90 

highly reduced phases, which subsequent studies have shown to include osbornite, 91 
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khamrabaevite, tistarite, hibonite and several Ti-Fe-Si-P compounds occurring as 92 

inclusions in corundum from Mount Carmel, Israel (e.g., Griffin et al. 2016a, 2020; Q. 93 

Xiong et al. 2017). 94 

 95 

Because of potential industrial applications, the compounds TiN-TiC, TiSi2, Ti5Si3, 96 

Ti5P3, TiP and TiB2, have all been synthesized, but largely at atmospheric pressure 97 

(e.g., Novotny 1963; Snell 1967; Murray et al. 1986, Munro 2000, Okamoto et al. 98 

2013). Oxygen fugacities for their stability are estimated to be as much as 10 log units 99 

less than the iron-wüstite buffer (e.g., Xiong et al. 2020c). Although there is no reason 100 

why these highly reduced phases could not have formed at higher pressures implied 101 

by the presence of diamond recovered from the Cr-11 orebody (Xu et al. 2009, 2015), 102 

e.g., TiSi2 and TiB2 have been synthesized at pressures of 5.5 GPa or more (Li et al. 103 

2013; Zhong et al. 2020), the occurrence of these phases in the Luobusa ophiolite has 104 

become increasingly controversial. Ballhaus et al. (2017, 2018) argued that the mix of 105 

highly reduced and ultrahigh pressure minerals could be the result of lightning strikes 106 

rather than exhumation of material from deep in the mantle. Their argument is 107 

supported by the presence of similarly highly reduced phases in fulgurites, e.g., 108 

Essene and Fisher (1986, summarized in Hawthorne et al. 1988) described phases 109 

similar to those reported from the Luobusa ophiolite: stoichiometric TiP (could be 110 

badengzhuite) and quasi-stoichiometric FeTi(Si,P)2 (could be P-bearing zangboite) on 111 

the basis of electron microprobe analysis. 112 

 113 

However, Ballhaus et al. (in press) went further in reporting new experimental 114 

evidence interpreted to exclude the possibility of such highly reduced phases 115 

occurring in Earth’s mantle. Furthermore, they noted that complex textures such as the 116 

symplectites involving Ti-Fe alloys and α-Ti in the qingsongite-bearing fragment 117 

(Yang et al. 2007; Fang et al. 2013; Dobrzhinetskaya et al. 2014) have unfavourable 118 

surface to volume ratios, and thus would be very unstable. In addition, on the basis of 119 

a detailed petrological and mineralogical study, Litasov et al. (2019a,b) contended that 120 

corundum grains enclosing the super-reduced phases in the Cr-11 chromitite orebody 121 
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in the Luobusa ophiolite are brown fused alumina abrasive of anthropogenic origin, a 122 

contamination that was inadvertently introduced into separates prepared from the 123 

chromitite despite the great care taken, thereby providing evidence in support of the 124 

case being made by Ballhaus et al. (2017, 2018, in press). 125 

 126 

After reviewing the arguments for and against a natural origin, Xiong et al. (2020c), 127 

concluded the preponderance of evidence favored a natural origin of the corundum 128 

grains and the highly reduced phases enclosed in these grains at Cr-11. As regards Cr-129 

31, Dobrzhinetskaya et al. (2009, 2014) reported nitrogen isotopic evidence (δ15N = ‒130 

10.4 ± 3‰) for a deep mantle origin of a fragment containing both UHP minerals 131 

(coesite pseudomorphs after stishovite; TiO2-II, the mineral srilankaite, which is 132 

included in coesite and kyanite) and highly reduced minerals (osbornite, α-titanium, 133 

Ti-Fe intermetallics, qingsongite). 134 

 135 

Another leading question is whether B could have originated in recycled crustal 136 

material, which could be the source of B for qingsongite at mantle depths and for 137 

jingsuiite at shallower levels in the crust, as well as for the unnamed natural analogue 138 

of hexagonal BN reported in situ in chromitite from Cr-11 (Zhang et al. 2016). 139 

Another mineral from mantle depths reported to contain B at concentrations 140 

exceeding 1 ppm is type IIb blue diamond (1–8 ppm B, Gaillou et al. 2012). Smith et 141 

al. (2018) cited evidence that such B-bearing blue diamonds could have crystallized 142 

from fluids associated with deeply subducted crust. 143 

 144 

Mineral name and type material 145 

The TiB2 mineral and its name jingsuiite have been approved by the IMA CNMNC 146 

(IMA2018-117b, Xiong et al. 2019a). The mineral was named in honor of Jingsui 147 

Yang (born June 6, 1950) of the Center for Advanced Research on the Mantle 148 

(CARMA), Key Laboratory for Continental Dynamics, Institute of Geology, Chinese 149 

Academy of Geological Sciences for his many contributions on the mineralogy of the 150 

chromitites associated with the Luobusa ophiolite. He was the Ph.D. advisor of the 151 
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first author. Jingsui Yang has given his acceptance.  152 

Type material is deposited in the collections of the Geological Museum of China, 15 153 

Yangrouhutong, Xisi, West District, Beijing 100034, PR China, catalog number 154 

M13816. 155 

Methods 156 

 157 

Preparation of corundum separates from the Cr-11 chromitite and evidence for 158 

a natural origin of the corundum 159 

Corundum and the unusual minerals included therein were extracted by processing 160 

~1100 kg of chromitite at the Institute of Multipurpose Utilization of Mineral 161 

Resources, Chinese Academy of Geological Sciences, Zhengzhou, including massive, 162 

disseminated, and nodular ores from the Cr-11 orebody near Kangjinla, a process 163 

carried out with great care as described in detail by Xu et al. (2009, 2015). In brief, 164 

the samples were first passed through a jaw crusher and then ground in stages to three 165 

sizes, and the minerals were separated from each size fraction by a combination of 166 

gravity, magnetic and electrostatic techniques. The mineral concentrates were 167 

handpicked under a binocular microscope, and the selected minerals mounted in 168 

epoxy and then ground to about half their thickness. The grains were polished using 169 

man-made diamond grinding grease and cleaned in an ultrasonic bath. As far as we 170 

are aware, no industrial alumina was used at any stage of the extraction process. 171 

  172 

Transmission electron microscopy and focused ion beam methodology 173 

At the at GFZ Potsdam transmission electron microscopy (TEM) and focused ion 174 

beam (FIB) technology were used to determine the composition of the minerals 175 

included in corundum (for details of method in general, see Wirth 2004, 2009). TEM 176 

requires that samples be prepared as foils sufficiently thin to be transparent to 177 

electrons (generally, the foil thickness is less than 200 nm). Electron transparent foils 178 

were prepared with a FIB. Typical TEM foils have the dimensions 15×10×0.20 μm. A 179 

FIB single beam device (FEI FIB 200 TEM) was used for sample preparation. For 180 

this, a Ga-ion beam (30 keV acceleration voltage) is focused onto a selected location 181 
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of the sample surface to sputter material from the sample. 182 

 183 

Electron energy loss spectroscopy (EELS) 184 

Measurement conditions for the EELS analysis of jingsuiite was carried out at the 185 

GFZ German Research Centre for Geosciences under the following conditions: 186 

 200 keV, diffraction mode 187 

 camera length 650 mm 188 

 dispersion 0.1 eV/channel 189 

 collection angle, 4 mrad 190 

 acceptance angle 10 mrad 191 

 convergence half-angle: 2 mrad 192 

 collection half-angle: 10 mrad 193 

 acquisition time 30 x 1 second 194 

 The 20 measurements covered the whole sample at constant thickness 195 

 Model: Hartree Slater 196 

 Background model: Power law 197 

 0.3 eV/channel 198 

 Gatan software package. 199 

 200 

Experimental: 3-dimensional electron diffraction and structure analysis 201 

3-dimensional electron diffraction (3D ED) data (Gemmi et al. 2019) were acquired 202 

with a Zeiss Libra TEM operating at 120 kV and equipped with a LaB6 source at the 203 

Istituto Italiano di Tecnologia (IIT), Center for Nanotechnology Innovation@NEST, 204 

Pisa. 3D ED was performed in STEM mode after defocusing the beam in order to 205 

have a parallel Köhler illumination on the sample. A beam size of about 150 nm in 206 

diameter was obtained by inserting a 5 μm C2 condenser aperture. An extremely low 207 

dose illumination was used in order to avoid any possible amorphization of the 208 

sample.  209 

The best data collection used for structure solution and refinement was performed 210 

with an angular step of 1° and in total tilt range of 90° (from -50° to +40°). The useful 211 
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tilt range was limited by the thickness of the FIB lamella. After each tilt, a diffraction 212 

pattern was acquired and crystal position tracked by defocused STEM imaging. 213 

During the experiment, the beam was precessed around the optical axis by an angle of 214 

1° (Vincent and Midgley 1994), as first described by Mugnaioli et al. (2009). 215 

Precession was obtained using a Nanomegas Digistar P1000 device. Diffraction 216 

patterns were recorded by an ASI Timepix single-electron camera (Nederlof et al. 217 

2013).  218 

3D ED data were analyzed using the software PETS (Palatinus et al. 2019). Ab-initio 219 

structure determination was obtained by standard direct methods (SDM) as 220 

implemented in the software SIR2014 (Burla et al. 2015). Data were treated with a 221 

fully kinematical approximation, i.e. neglecting dynamical scattering and assuming 222 

that Ihkl was proportional to |Fhkl|2. Least-squares structure refinement was performed 223 

with the software JANA2006 (Petříček et al. 2014) using the dynamical refinement 224 

procedure described by Palatinus et al. (2015). Only 29 out of 91 diffraction patterns, 225 

mostly belonging to the central part of the data set, were actually used for the 226 

refinement, because the quality of the high tilt patterns were severely spoiled by the 227 

absorption connected with the thickness of the FIB lamella. During the refinement 228 

process, the thickness of the lamella at 0° tilt was estimated in about 75 nm. 229 

The visualization of the 3D ED data was obtained by the software ADT3D (Kolb et 230 

al. 2011) and structure sketches were drawn by the software VESTA (Momma and 231 

Izumi 2011). 232 

 233 

Occurrence, appearance, morphology, physical and optical properties 234 

Jingsuiite has been found in isolated grains or aggregates of intermetallics included in 235 

corundum as follows: 236 

(1) The material used to characterize the mineral, including its crystal structure, is 237 

a rounded grain of jingsuiiite about 40 μm across associated with osbornite-238 

khamrabaevite solid solution close to the midpoint in composition, Ti(C0.5N0.5), and a 239 

potential new mineral, Ti10(Si,P,)7 (foil #5357, Fig. 4). 240 

(2) A second rounded grain of jingsuiite, but only 10 µm across, is associated with 241 
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a Ti-N phase (foil#4106, Fig. 5) originally reported as sample KCr-13-1-4 by Xu et al. 242 

(2013); identification of the Ti-B phase in foil #4106 as jingsuiite was confirmed by 243 

3D electron diffraction. 244 

(3) Jingsuiite is found with osbornite-khamrabaevite solid solution and the 245 

Ti10(Si,P,)7 phase in a lamellar intergrowth 50 μm long and 4 μm in thickness in foil 246 

#6034 (Fig. 6, 7). Identification of jingsuiite is based on EDX spectra (Fig. 8), on the 247 

indexing of a Fourier transform of an HREM image consistent with the TiB2 structure, 248 

which was obtained on one of the tablets, and on 3-dimensional electron diffraction. A 249 

phase isostructural with dmisteigbergite, (KCa3)(Al7Si9)O32, is found in one area 250 

suggestive of a pool of melt between jingsuiite, the Ti10(Si,P,)7 phase and corundum 251 

(Fig. 7). A grain 1 µm long of deltalumite is surrounded by the Ti10(Si,P,)7 phase 252 

and jingsuiite. 253 

(4) The fourth occurrence of jingsuiite is a planar grain 58 µm x 10 µm of TiB2 in 254 

sample KCr-13-1-1 (Xu et al. 2018), the chemical composition of which is consistent 255 

with its identification as jingsuiite.  256 

 257 

The relative orientation of the phases in the lamellar intergrowth enclosed by 258 

corundum in foil #6034 was determined by 3D ED and can be expressed as follows: 259 

jingsuiite (001) // osbornite (111) // deltaluminite (111) // dmisteinbergite-like mineral 260 

(001) // Ti10(Si,P, )7 (100). Beside sharing the (001) vector, jingsuiite and the 261 

dmisteinibergite-like phase structures are reciprocally rotated of about 90° around 262 

[001], so that jingsuiite (100) // dmisteinibergite-like (110) and jingsuiite (110) // 263 

dmisteinibergite-like (100). There is no obvious relationship between jingsuite and 264 

surrounding corundum. Moreover, corundum areas all have the same orientation, 265 

which implies that these areas belong to a single crystal.  266 

 267 

No crystal faces are evident in the grains studied by us. Higashi and Atoda (1970) 268 

reported synthesis of crystals having four forms: hexagonal platelets showing large 269 

{001} faces, plates with {100} faces, needles elongated in the [110] direction and 270 

hexagonal prisms with distinct {100} and {001} faces. Griffin et al. (2020) show 271 
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jingsuiite grains with a hexagonal outline or a tabular habit, but provide no 272 

crystallographic information on the visible forms. 273 

 274 

Because jingsuiite is found only as a few grains not exceeding 50 µm across, 275 

characterization of its physical and optical properties must rely for the most part on 276 

observations of the synthetic analogue. The mineral is presumably opaque and black 277 

in color. Commercially available synthetic TiB2 powder is dark-brown (product CAS# 278 

12045-63-5) as is a TiB2 sputtering target. Otani and Ishizawa (1994) reported (100) 279 

cleavage in a synthetic crystal. 280 

 281 

 282 

Chemical data 283 

The EDX spectra for foils #5357 and #6034 show peaks for boron (B), titanium (Ti) 284 

and carbon (C), but the signal at C is subordinate (Fig. 8). The Cu and Ga peaks in the 285 

spectra originated from the Cu-grid and from Ga implantation during the TEM foil 286 

preparation with the focused ion beam (FIB). The presence of B and Ti was 287 

additionally verified with electron energy loss spectroscopy (EELS, Fig. 9). 288 

 289 

Analysis of the planar grain in sample KCr-13-1-1 (fourth occurrence cited above) 290 

with the JEOL JXA-8100 electron microprobe analyzer at the Key Laboratory of 291 

Nuclear Resources and Environment, East China Institute of Technology, gave B 292 

29.55, Ti 68.66, Mn 0.03, Fe 0.02, Zr 0.08 Sum 98.33 wt% (Xu et al., 2018), close to 293 

the ideal composition B 31.1, Ti 68.9 wt %. P, N, Cr, Si, V, C were sought but not 294 

detected. 295 

 296 

The Ti L3,2-edge onset at 456 eV in the EELS spectrum (Fig. 9) for jingsuiite in 297 

foil#5357 is consistent with the presence of Ti as Ti2+ (Stoyanov et al., 2007; Griffin 298 

et al. 2020). Results of EELS analyses of jingsuiite in this foil (N = 20, Table 1) gave 299 

an empirical formula of Ti1.10(B1.86C0.05)∑1.91 calculated on the basis of 3 atoms. 300 

However, the presence of C and N in the spectrum (Fig. 9) suggests the beam hit 301 
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osbornite-khamrabaevite solid solution, Ti(C0.5N0.5) located nearby (Fig. 4). The ideal 302 

formula is TiB2 and the corresponding wt% are B 31.1, Ti 68.9. We attribute the wide 303 

range of values, high standard deviations and the presence of C and N in the spectrum 304 

to the grain being very small relative to the beam size, which resulted in the beam 305 

striking associated phases. 306 

 307 

 308 

 309 

Crystallography 310 

3D electron diffraction of the material in foil #5357 (Fig. 10) gave a primitive 311 

hexagonal cell with a = 3.04(6), b = 3.04(6), c = 3.22(6) Å, α = 90°, β = 90°, γ = 120°, 312 

V = 25.8 (9), Z = 1. No further extinctions were detected, making the space group 313 

P6/mmm (#191) very probable. The ab-initio structure solution based on 3D ED data 314 

(CCDC Deposition Number 2046670) confirms indeed jingsuiite as the natural 315 

analogue of synthetic TiB2 (AlB2 structure type, Ehrlich, 1947, 1949; Zacharison, 316 

1949; Kiessling, 1950; Tian et al., 2018), consistent with the crystal structure of 317 

jingsuiite from Mount Carmel determined by X-ray diffraction (Griffin et al. 2020).  318 

 319 

The jingsuiite structure comprises alternating layers of Ti and B atoms (Fig. 11). Both 320 

atoms occupy crystallographic special positions (1a and 2d, respectively) with no 321 

positional degrees of freedom. Titanium atoms are arranged in a hexagonal tiling and 322 

coordinated to twelve B atoms in a hexagonal-prismatic polyhedron. The only 323 

possible valences are +2 for Ti and -1 for B. The interatomic distance Ti-B in 324 

jingsuiite is 2.38(3) Å. 325 

 326 

Discussion 327 

Comparison with the Mount Carmel jingsuiite parageneses 328 

The only other reported natural occurrence of TiB2 is Mount Carmel, Israel (Griffin et 329 

al. 2016a, 2020). The paragenesis of jingsuiite at Mount Carmel is similar to that in 330 

the Cr-11 chromitite in that jingsuiite is found in aggregates of super-reduced 331 

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. 
 The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. 

DOI: https://doi.org/10.2138/am-2021-7647.  http://www.minsocam.org/

Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld



intermetallic compounds enclosed in corundum. In some places, the aggregates are 332 

associated with dmisteinbergite-like phases. However, the occurrences differ in the 333 

identity of many of the associated phases, number of occurrences and mineralogical 334 

and chemical diversity. Jingsuiite has been found only with osbornite-khramabaevite, 335 

deltalumite and the Ti10(Si,P,)7 phase in four samples from the Cr-11 chromitite. 336 

These phases all lie in the 6-component system Ti-B-C-N-P-Si with Cr, V, Mn, and Fe 337 

present in much subordinate amounts. In contrast, Griffin et al. (2020) reported a large 338 

number of relatively diverse assemblages involving not only osbornite-khramabaevite 339 

and a Mg-Al spinel resembling deltalumite, but also ZrP, TiS and several Fe-Ti 340 

silicides, including a TiFe2(Si,P) phase, as well as the oxides carmeltazite, hibonite 341 

and tistarite. The mineralogical diversity can be attributed in part to the chemical 342 

diversity of jingsuiite-bearing assemblages at Mount Carmel, in which Cr and V are 343 

major constituents in several phases. 344 

 345 

 346 

Conditions of formation 347 

Griffin et al. (2020) emphasized the role of melting in the origin of jingsuiite at Mount 348 

Carmel, where it is a widespread albeit minor constituent in melt pockets trapped in 349 

corundum aggregates, which are found as xenoliths in basalt in Cretaceous volcanoes. 350 

Textures are cited as evidence of immiscibility between metallic (Fe-Ti-C-Si) melts, 351 

Ti-(oxy)nitride melts and Ca-Al-Mg-Si-O “oxide” melts. The metallic melts 352 

commonly form spherules in oxide glass. Griffin et al. (2020) reported that jingsuiite 353 

crystallized predominantly from the metallic melts, and to a lesser extent from the 354 

oxide melts. The parageneses in the melt pockets of the xenoliths require oxygen 355 

fugacities 6 orders of magnitude more reducing than the iron-wüstite buffer; 356 

conditions they believed were generated by interaction between evolved silicate melts 357 

and mantle-derived CH4+H2 fluids near the crust-mantle boundary. Estimates of the 358 

pressure are constrained to be near 1 GPa by (1) the abundance of corundum since 359 

experiments in the model CaO-Al2O3-SiO2 system indicate anorthite melts 360 

incongruently to give corundum only above 1 GPa (Hariya and Kennedy 1968, 361 
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Goldsmith 1980, Ottonelli et al. 2013) and (2) the presence of grossite (CaAl4O7) in 362 

some highly reduced xenoliths, which implies that pressures should not have 363 

exceeded 1 GPa (Ottonelli et al. 2013). As regards temperature, Griffin et al. (2020) 364 

suggested it decreased from >1450°C to ca 1200°C by comparing the mineral 365 

parageneses in the melt pockets with experimental studies. Lastly, Griffin et al. (2020) 366 

concluded that under these highly reducing conditions B behaved mainly as a 367 

siderophile element with a strong preference for the metallic melts over the oxide 368 

melts. 369 

 370 

Applying the scenario proposed for Mount Carmel to Luobusa ophiolite raises several 371 

questions. As pointed out by Griffin et al. (2020), the Luobusa and Mount Carmel 372 

parageneses have many features in common, notably evidence for intermetallic melts 373 

and silicate melts in pockets enclosed in corundum and association of jingsuiite with 374 

the minerals crystallized from the intermetallic melts. However, in contrast to Mount 375 

Carmel, the only evidence for silicate melts in the jingsuiite-bearing pockets is the 376 

dmisteinbergite-like mineral, which is found in nano-scale melt pools in foil #6034 377 

(Fig. 7). A similar dmisteinbergite-like mineral forms a halo around an intermetallic 378 

spheroid in foil #5358 lacking jingsuiite; this spheroid is interpreted to be a droplet of 379 

Ti-Si-P melt (Xiong et al. 2020c). Compositionally, the dmisteinbergite-like mineral 380 

corresponds to an aluminous granodioritic melt (approximately 40% anorthite, 10% 381 

orthoclase, 5% SrAl2Si2O8, 11% Al2SiO5 and 35% quartz, Xiong et al., 2020c). The 382 

dmisteinbergite-like mineral could have resulted from the quenching of this 383 

aluminous granodioritic melt consistent with the interpretation suggested for other 384 

occurrences of dmisteinbergite, the hexagonal analogue of anorthite, CaAl2Si2O8, 385 

which crystallized metastably instead of feldspar during rapid cooling from a silicate 386 

melt (Krivovichev et al., 2012; Zolotarev et al., 2019). Less obvious is whether the 387 

granodioritic melt is from the larger magmatic body from which corundum 388 

precipitated as Griffin et al. (2020) interpreted the oxide melts at Mount Carmel to be. 389 

Instead, the granodioritic melt in foils #6034 and #5358 could have formed by 390 

exsolution of a much subordinate immiscible silicate melt from a dominantly 391 
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intermetallic melt, and thus have a local origin. In this case, the granodioritic 392 

composition of these melts would give no indication of the composition of the 393 

presumably basaltic melt from which the corundum precipitated. We can only 394 

speculate that this melt was sufficiently close to anorthite in composition that the 395 

minimum pressure can be estimated from the experimental data to be 1 GPa when the 396 

melt cooled. Grossite has not yet been found in the Cr-11 chromitite, and thus there 397 

are no constraints on the upper limit of pressure. 398 

 399 

We are not aware of any experimental work on ternary phases in the Ti-Si-P system, 400 

which best approximates the intermetallic phases in foil #5358, the most thoroughly 401 

characterized inclusion from the Cr-11 chromitite (Xiong et al. 2020c). However, we 402 

can draw an analogy with the Ti-Fe-Si system (Weitzer et al., 2008), in which ternary 403 

Ti-Fe-Si minerals were reported to crystallize at temperatures much lower than binary 404 

phases, i.e., 1034-1230 ºC. Consequently, it is likely ternary Ti-Si-P phases would 405 

crystallize at temperatures below the 1330 – 1600 °C indicated for TiSi2 and TiP, 406 

respectively in the Ti-Si and Ti-P binaries (Xiong et al. 2020c). 407 

 408 

To provide a broader context for interpreting the P-T conditions under which 409 

jingsuiite and other B minerals crystallized, we have adopted the P-T-t loop suggested 410 

by Griffin et al. (2016, Fig. 11) as the basis for discussion (Fig. 12). Several highly 411 

reduced minerals potentially could provide constraints on the P-T path during 412 

exhumation, the most likely time for jingsuiite to have crystallized. One is the 413 

unnamed natural analogue of the hexagonal modification of BN, which was reported 414 

in situ in chromitite at Cr-11 (Zhang et al. 2016). Hexagonal BN implies pressures did 415 

not exceed 4 GPa at ~1100 °C during exhumation (Fig. 12). 416 

 417 

A second highly reduced indicator is native Ti, which has been found in two 418 

inclusions in corundum at Cr-11 (Xu et al. 2013, F. Xiong and R. Wirth, unpublished 419 

data), as well as at Cr-31 in the qingsongite-bearing fragment (Fang et al. 2013). The 420 

diffraction data reported by F. Xiong and R. Wirth are consistent with the α 421 
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polymorph, which implies a temperature less than the α-β transition in Ti, i.e., less 422 

than 882 °C (Fig. 12; Murray 1990; Deweale et al. 2015). This temperature constraint 423 

could apply either to crystallization of the included assemblages or to later annealing 424 

that inverted β-Ti to α-Ti. 425 

 426 

A similar ambiguity is encountered in applying Ti polymorphism to estimate P-T 427 

conditions from native Ti associated with texturally complex symplectic intergrowths 428 

of several Ti-Fe intermetallics. Fang et al. (2013) reported powder X-ray diffraction 429 

data consistent with the α polymorph. Ballhaus et al. (in press) suggested that such 430 

complex textures have unfavourable surface to volume ratios, and thus would be very 431 

unstable and not be expected in material subjected to mantle conditions. In our view, 432 

the complex intergrowths of α-Ti with several different Fe-Ti alloys suggests the 433 

possibility that the metal portion of the qingsongite-bearing fragment at the deepest 434 

levels consisted dominantly of β-Ti, which broke down during exhumation to give α-435 

Ti. Unlike α-Ti, the β polymorph can incorporate significant Fe (Murray 1990), which 436 

could account for the appearance of Fe-Ti phases associated with α-Ti in the 437 

qingsongite-bearing fragment.  438 

 439 

Source and recycling of boron 440 

Three B minerals have been reported from the Luobusa ophiolite: qingsongite, cubic 441 

BN, in a loose fragment from Cr-31 (Dobrzhinetskaya et al. 2009, 2014), hexagonal 442 

BN enclosed in chromite from chromitite Cr-11 (Zhang et al. 2016) and jingsuiite. A 443 

fourth B mineral, B carbide, has been reported from the qingsongite-bearing fragment, 444 

but it has not been characterized (Dobrzhinetskaya et al. 2009, 2014). 445 

 446 

The paragenesis of the three minerals couldn’t be more different. Qingsonite is 447 

associated with coesite pseudomorphs after stishovite, kyanite and “TiO2 II”, which is 448 

the TiO2 end member of srilankaite (Tschauner et al. 2020). The assemblage 449 

stishovite-kyanite-srilankaite constrains pressures to `12 GPa or 400 km depth, which 450 

is close to the upper boundary of the Transition Zone (Fig. 12 from Dobrzhinetskaya 451 
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et al. 2014). The N and C in associated osbornite, Ti(N,C), have a mantle isotopic 452 

signature, δ15N = ‒10.4 ± 3‰ and δ13C = +5 ± 7‰ (Dobrzhinetskaya et al. 2009, 453 

2014), and thus the N composing qingsongite was also sourced in the mantle. In our 454 

view, the scenario proposed by Dobrzhinetskaya et al. (2009, 2014) is valid, that is, 455 

the silicate-nitride portion of the fragment sourced crustal material for Al and B and 456 

mantle material for N and C, thereby showing that B-bearing crustal material had 457 

been subducted deeply into the mantle and subsequently exhumed, as indicated by the 458 

green arrows in Figure 12. Replacement of stishovite by coesite and the presence of α-459 

Ti instead of β-Ti implies that the fragment was subjected to partial recrystallization 460 

during exhumation. 461 

 462 

Zhang et al. (2016) reported hexagonal BN as an inclusion in chromite from Cr-11, 463 

from which it can be inferred B had been incorporated in the Cr-11 chromitite, most 464 

likely from mixing in of crustal material such as sediments prior to burial of the 465 

ophiolite and subsequent exhumation (Fig. 12). Thus, B could also have been 466 

available for incorporation in the intermetallic melts from which it was precipitated as 467 

TiB2 (jingsuiite).  468 

 469 

The enrichments indicated by the presence of jingsuiite as a major constituent in the 470 

melt pockets implies additional processes concentrating B in crustal rocks were at 471 

work. Griffin et al. (2020) concluded that the highly reducing conditions led to the 472 

segregation of siderophile elements into intermetallic melts and that B displays 473 

siderophile behavior, thereby concentrating it in the intermetallic melts in preference 474 

to silicate melt. Thus, two concurrent processes were concentrating B in intermetallic 475 

melts, which can better explain how B concentrations could reach the amount 476 

necessary for a B phase such as jingsuiite to crystallize.  477 

 478 

 479 

Implications 480 

The lithophile element B is generally taken to be quintessentially crustal, since it is 481 
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greatly enriched in the upper continental crust relative to primitive mantle, 17 µg/g 482 

versus 0.019 µg/g, by processes such as weathering, adsorption onto clay minerals in 483 

marine sediments, partial melting of sedimentary rocks and differentiation of the 484 

resulting granitic melts (Grew 2017). However, under conditions six orders of 485 

magnitude more reducing than the iron-wüstite buffer, B becomes siderophile, much 486 

preferring intermetallic melts to silicate melts (Griffin et al. 2020). This switch in 487 

behavior has resulted in the crystallization of a B mineral in association with Ti 488 

intermetallics such as osbornite, khamrabaevite, Ti10(Si,P,)7, and Ti-Fe silicides 489 

during rapid exhumation from the upper mantle. In pursuing the implications of the 490 

siderophile behavior of B and of diamond growth in pools of metallic melt (Smith et 491 

al. 2016), Griffin et al. (2020) speculated that much of the B in the mantle could be 492 

held in intermetallic melts.  493 

 494 

However, the possibility that siderophile behavior could also play a role in retaining B 495 

in crustal rocks being subducted has not yet been considered. The presence of 496 

qingsongite (cubic BN) in a fragment of crustal rock that had been buried at 400 km 497 

depth implies B can be recycled back to the mantle, yet how B is retained in the 498 

subducting slab is an open question. Dehydration and melting, the processes receiving 499 

the most attention for their impact on the subducted rocks, lead to extraction of B 500 

from the subducting slab (e.g., Grew 2017). Could the siderophile behavior of B 501 

under highly reducing conditions play a major role in retaining B in the subducted 502 

slab as it does in rapidly exhumed rocks at Mount Carmel and Cr-11? Although the 503 

minerals associated with qingsongite and N isotopes in osbornite indicate 504 

crystallization at 12 GPa at 400 km depth (Dobrzhinetskaya et al. 2014), there are 505 

several striking similarities between the qingsongite-bearing fragment and jingsuiite-506 

bearing assemblages included in corundum. In both cases, the B mineral is associated 507 

with an osbornite-khmrabaevite solid solution and Ti-rich intermetallic phases 508 

resulting from crystallization under highly reducing conditions. The present-day 509 

assemblage in the qingsongite-bearing fragment does not preclude the possibility that 510 

at much shallower depths in the mantle during subduction (Fig. 12) the fragment was 511 
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subjected to conditions sufficiently reducing and temperatures high enough for B 512 

behave as a siderophile element. In this setting, B could have been incorporated in a 513 

Ti-rich intermetallic alloy or melt. In other words, retention of B in deeply subducted 514 

crustal rocks could depend on exposure of these rocks to highly reducing conditions 515 

under which B behaves as a siderophile element.  516 

 517 
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Table 1. Electron-energy-loss spectroscopic analyses (in atomic %) for jingsuiite in 792 

foil #5357 (n = 20) 793 

Constituent Mean  Range Stand. Dev. 

B 61.87 58.65-63.08 1.22 

C 1.53 0.00-6.17 1.26 

Ti 36.62 34.97-41.00 1.45 

Total 100.02   
 794 

  795 
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 796 

Figure captions 797 

Figure 1. Map of the Luobusa ophiolite, Tibet showing the Cr-31 and Cr-11 chromitite 798 

orebodies.  799 

 800 

Figure 2. Exposure showing the Cr-11 chromitite orebody from which jingsuiite was 801 

recovered. The chromitite is enveloped by dunite. The adit entrance is approximately 802 

3 m high. 803 

 804 

Figure 3. Photograph of corundum grains with inclusions recovered from the Cr-11 805 

chromitite orebody, Luobusa ophiolite. 806 

 807 

 808 

Figure 4 Images of jingsuiite. (a). Backscattered electron (BSE) image of corundum 809 

fragments with inclusions of jingsuiite and other Ti compounds. The dark-grey 810 

material is epoxy resin disk (the grains were handpicked and mounted in an epoxy 811 

resin disk, and then polished). (b) BSE image of inclusion from which foil #5357 was 812 

taken. The inclusion is composed of osbornite-khamrabaevite solid solution, 813 

Ti(C0.5N0.5), a potentially new mineral, Ti10(Si,P,)7, and jingsuiite, TiB2. (c) High-814 

angle annular dark-field (HAADF) image of foil #5357, showing areas of osbornite-815 

khamrabaevite solid solution, Ti(C0.5N0.5), a potentially new mineral, Ti10(Si,P,)7, 816 

and jinguiite, TiB2. The section shown in the HAADF image is perpendicular to the 817 

surface shown in the BSE images. BSE images taken at the Center for Advanced 818 

Research on the Mantle and images and the HAADF image obtained at the GFZ 819 

German Research Centre for Geosciences. 820 

 821 

Figure 5. Secondary electron images showing a corundum fragment (Al2O3) with 822 

inclusions of jingsuiite and other Ti compounds. (a) The dark-grey material 823 

surrounding corundum is epoxy (b) Enlargement of inclusion from which foil #4106 824 

was taken, showing an unidentified Ti-N phase and jingsuiite, TiB2, the identification 825 
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of which was confirmed by 3D electron diffraction.  Images taken at the Chinese 826 

Academy of Geological Sciences. 827 

 828 

Figure 6 (a) BSE image of jingsuiite, TiB2, and associated osbornite-khamrabaevite, 829 

Ti(N,C) and Ti10(Si,P,)7 in foil #6034. Yellow line – source of HAADF image in (b). 830 

(b) High-angle annular dark-field image that is oriented perpendicular to the BSE 831 

image. Areas labeled as TiB2 have cell parameters consistent with jingsuiite. Yellow 832 

rectangle is outline for Figure 7a. The section shown in the HAADF image is 833 

perpendicular to the surface shown in the BSE image. BSE image taken at the Center 834 

for Advanced Research on the Mantle. HAADF image taken at the GFZ German 835 

Research Centre for Geosciences. 836 

 837 

Figure 7. (a) Bright field image showing location of jingsuiite and the 838 

dmisteinbergite-like mineral (b) High-angle annular dark-field image of a part of (a) 839 

enlarged. The area found to be amorphous was most likely the dmisteinbergite-like 840 

mineral whose crystal structure was destroyed by previous HRTEM analyses. Images 841 

taken at the GFZ German Research Centre for Geosciences 842 

 843 

Figure 8. Energy-dispersive X-ray spectra of jingsuiite in foils #5357 and #6034. 844 

Spectra obtained at the GFZ German Research Centre for Geosciences. 845 

 846 

Figure 9. Deconvolved electron energy-loss (EEL)-spectra of jingsuiite: (a) B K-edge 847 

with the edge onset at 188 eV, C K-edge with edge onset at 284 eV and Ti-L3,2 edge 848 

onset at 456 eV and (b) C K-edge with edge onset at 284 eV, N K-edge with the edge 849 

onset at 401 eV, and Ti L3,2-edge onset at 456 eV.  850 

 851 

Figure 10. 3D reconstruction of electron diffraction data taken from jingsuiite in foil 852 

#5357. Images of the 3D reciprocal space along the most relevant crystallographic 853 

directions in reciprocal space: 100*, 010*, 001* and 110*. These patterns are 854 
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projections of a 3D diffraction volume and are not conventional 2D SAED patterns. 855 

No systematic extinctions are visible. Unit cell is sketched in yellow. Vector a* is in 856 

red, b* is in green, c* is in blue. Patterns were obtained at the Istituto Italiano di 857 

Tecnologia. 858 

 859 

Figure 11. Crystal structure of jingsuiite. Blue – Ti; green – B. (a) [001] projection. 860 

(b) [100] projection. H = B atoms in an array approximating a hexagonal net; A = Ti 861 

atoms closely packed in a hexagonal tiling (cf. Kiessling 1950). Unit cell is outlined 862 

by black lines. Drafted with VESTA (Momma and Izumi 2011). 863 

 864 

Figure 12. Pressure-temperature diagram summarizing evolution of the Luobusa 865 

ophiolite as it relates to the super-reduced minerals and B (modified from Griffin et 866 

al. 2016b, Fig. 11, Xiong et al. 2020c, Fig. 11) with P-T estimate for qingsongite, 867 

cubic BN, from Dobrzhenitskaya et al. (2014) shown as cube labeled cBN. Graphite 868 

 diamond (Gr-Dia) from Day (2012); hexagonal BN  qingsongite (hBN-cBN) 869 

from Corrigan and Bundy (1975, Fig. 3, “graphitization” line); coesite  stishovite 870 

(Coe-Sti) from Akaogi et al. (2011); rutile  srilankaite (Rt-Sri) from Withers et al. 871 

(2003); kyanite  stishovite + corundum (Ky-Sti + Crn) from Schmidt et al. 1997); 872 

triple point for titanium polymorphs (olive-green), α-Ti, β-Ti and ω-Ti modified from 873 

Deweale et al. (2015, Fig. 2). Boron for the unnamed natural analogue of hexagonal 874 

BN and jingsuite (hexagons labeled hBN and TiB2, respectively) is interpreted to have 875 

been recycled through the mantle (green arrows, e.g., Zhang et al. 2016).  876 
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