	Yuan_et_al_AM_7637_Revision_2_November 25_2020
1	Revision 2
2	Word Count (total): 12,775
3	Word Count (minus references and figure captions): 9,307
4	
5	Formation of miarolitic-class, segregation-type pegmatites in
6	the Taishanmiao batholith, China: The role of pressure
7	fluctuations and volatile exsolution during pegmatite
8	formation in a closed, isochoric system
9	
10	Yabin Yuan ^{1, 2} , Lowell R. Moore ² , Ryan J. McAleer ³ , Shunda Yuan ¹ , Hegen Ouyang ¹ , Harvey
11	E. Belkin ³ , Jingwen Mao ¹ , D. Matthew Sublett Jr. ² , Robert J. Bodnar ^{2*}
12	¹ MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral
13	Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
14	² Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA
15	³ U.S. Geological Survey, Reston, Virginia 20192, USA
16	* Corresponding author
17	
18	ABSTRACT
19	The Taishanmiao granitic batholith, located in the Eastern Qinling Orogen in Henan
20	Province, China, contains numerous small (mostly 10s of cm in maximum dimension) bodies
21	exhibiting textures and mineralogy characteristic of simple quartz and alkali feldspar

Yuan_et_al_AM_7637_Revision_2_November 25_2020

22	pegmatites. Analysis of melt (MI) and fluid inclusions (FI) in pegmatitic quartz, combined
23	with Rhyolite-MELTS modeling of the crystallization of the granite, have been applied to
24	develop a conceptual model of the physical and geochemical processes associated with
25	formation of the pegmatites. These results allow us to consider formation of the Taishanmiao
26	pegmatites within the context of various models that have been proposed for pegmatite
27	formation.
28	Field observations and geochemical data indicate that the pegmatites represent the latest
29	stage in the crystallization of the Taishanmiao granite and occupy ≤ 4 vol% of the syenogranite
30	phase of the batholith. Results of Rhyolite-MELTS modeling suggest that the
31	pegmatite-forming melts can be produced through continuous fractional crystallization of the
32	Taishanmiao granitic magma, consistent with designation of the pegmatites as miarolitic class,
33	segregation-type pegmatites rather than the more common intrusive-type of pegmatite. The
34	mineral assemblage predicted by Rhyolite-MELTS after $\sim 96\%$ of the original granite-forming
35	melt had crystallized consists of ~51 vol% alkali feldspar, 34 vol% quartz, 14 vol%
36	plagioclase, 0.1 vol% biotite, and 1 vol% magnetite, similar to the alkali feldspar + quartz
37	dominated mineralogy of the pegmatites. Moreover, the modeled residual melt composition
38	following crystallization of ~96% of the original melt is similar to the composition of
39	homogenized MI in quartz within the pegmatite. Rhyolite-MELTS predicts that the
40	granite-forming melt remained volatile-undersaturated during crystallization of the batholith
41	and contained ~6.3 wt% H ₂ O and ~500 ppm CO ₂ after ~96% crystallization when the
42	pegmatites began to develop. The Rhyolite-MELTS prediction that the melt was

Yuan_et_al_AM_7637_Revision_2_November 25_2020

43	volatile-undersaturated at the time the pegmatites began to form, but became volatile-saturated
44	during the early stages of pegmatite formation, is consistent with the presence of some
45	inclusion assemblages consisting of only MI, while others contain coexisting MI and FI. The
46	relationship between halogen (F and Cl) and Na abundances in MI is also consistent with the
47	interpretation that the very earliest stages of pegmatite formation occurred in the presence of a
48	volatile-undersaturated melt, and that the melt became volatile saturated as crystallization
49	progressed.
50	We propose a closed system, isochoric model for the formation of the pegmatites.
51	Accordingly, the Taishanmiao granite crystallized isobarically at ~3.3 kbar, and the pegmatites
52	began to form at ~734°C and ~ 3.3 kbar, after ~96 % of the original granitic melt had
53	crystallized. During the final stages of crystallization of the granite, small pockets of the
54	remaining residual melt became isolated within the enclosing granite and evolved as constant
55	mass (closed), constant volume (isochoric) systems, similar to the manner in which
56	volatile-rich melt inclusions in igneous phenocrysts evolve during post-entrapment
57	crystallization under isochoric conditions. As a result of the negative volume change
58	associated with crystallization, pressure in the pegmatite initially decreases as crystals form
59	and this leads to volatile exsolution from the melt phase. The changing <i>PTX</i> conditions
60	produce a pressure-induced "liquidus deficit" that is analogous to liquidus undercooling, and
61	results in crystal growth as required to return the system to equilibrium <i>PTX</i> conditions.
62	Owing to the complex closed system, isochoric PVTX evolution of the melt-crystal-volatile
63	system, the pressure does not decrease rapidly or monotonically during pegmatite formation

Yuan_et_al_AM_7637_Revision_2_November 25_2020

64	but, rather, gradually fluctuates such that at some stages in the evolution of the pegmatite the
65	pressure is decreasing while at other times the pressure increases as the system cools to
66	maintain mass and volume balance. This behavior, in turn, leads to alternating episodes of
67	precipitation and dissolution that serve to coarsen (ripen) the crystals to produce the
68	pegmatitic texture. The evolution of the pegmatitic melt described here is analogous to that
69	which has been well-documented to occur in volatile-rich MI that undergo closed system,
70	isochoric, post-entrapment crystallization.
71	
72	Keywords: Melt inclusion, fluid inclusion, Taishanmiao batholith, liquidus
73	deficit, volatile-saturated melt, Rhyolite-MELTS, pegmatite
74	
75	INTRODUCTION
76	Granitic pegmatites are characterized by coarse- to giant-sized (cm to m-scale)
77	crystals, and vary in mineralogy from simple to complex (London, 2008).
78	Considerable debate surrounds the processes that lead to the formation of
79	pegmatite textures, and a model that explains all pegmatite characteristics has yet
80	to be developed (Simmons and Webber, 2008). Based on experimental data and
81	observations, Jahns and Burnham (1969) suggested that exsolution of an aqueous
82	phase from the silicate melt following extensive crystallization is the most critical
83	step in the genesis of pegmatites, and that water saturation characterizes the
84	transition from a granitic (phaneritic) to pegmatitic texture. However, London

Yuan_et_al_AM_7637_Revision_2_November 25_2020

85	(2005) noted similarities in pegmatite textures and zonation produced in
86	experiments conducted at both anhydrous and vapor-saturated conditions (London
87	et al., 1988; London et al., 1989), and concluded that pegmatitic textures could
88	develop in the absence of volatile-saturation. Furthermore, Fenn (1986) and
89	London et al. (1989) asserted that a large degree of liquidus undercooling of a
90	water-undersaturated silicate melt can produce the large crystals that are a
91	characteristic feature of pegmatites. Despite the general consensus requiring an
92	igneous source, it has also been suggested that pegmatitic melt could be formed by
93	direct anatexis of rocks with appropriate composition, and this model does not
94	require protracted fractional crystallization (Nabelek et al., 1992; Simmons et al.,
95	1995; Falster et al., 1997)
95 96	1995; Falster et al., 1997) More recently, Sirbescu et al. (2017) and Maneta and Anderson (2018) studied
95 96 97	1995; Falster et al., 1997) More recently, Sirbescu et al. (2017) and Maneta and Anderson (2018) studied pegmatite formation using the hydrothermal diamond anvil cell (HDAC). This
95 96 97 98	 1995; Falster et al., 1997) More recently, Sirbescu et al. (2017) and Maneta and Anderson (2018) studied pegmatite formation using the hydrothermal diamond anvil cell (HDAC). This method offers the advantage that the process can be monitored continuously and in
95 96 97 98 99	 1995; Falster et al., 1997) More recently, Sirbescu et al. (2017) and Maneta and Anderson (2018) studied pegmatite formation using the hydrothermal diamond anvil cell (HDAC). This method offers the advantage that the process can be monitored continuously and in real time to observe changes as the pegmatite texture forms. Sirbescu et al. (2017)
95 96 97 98 99 100	 1995; Falster et al., 1997) More recently, Sirbescu et al. (2017) and Maneta and Anderson (2018) studied pegmatite formation using the hydrothermal diamond anvil cell (HDAC). This method offers the advantage that the process can be monitored continuously and in real time to observe changes as the pegmatite texture forms. Sirbescu et al. (2017) studied pegmatite formation in the haplogranite-Li-B-H₂O system in the HDAC
95 96 97 98 99 100	1995; Falster et al., 1997) More recently, Sirbescu et al. (2017) and Maneta and Anderson (2018) studied pegmatite formation using the hydrothermal diamond anvil cell (HDAC). This method offers the advantage that the process can be monitored continuously and in real time to observe changes as the pegmatite texture forms. Sirbescu et al. (2017) studied pegmatite formation in the haplogranite-Li-B-H ₂ O system in the HDAC and were able to reproduce many of the textures commonly observed in zoned
95 96 97 98 99 100 101	1995; Falster et al., 1997)More recently, Sirbescu et al. (2017) and Maneta and Anderson (2018) studiedpegmatite formation using the hydrothermal diamond anvil cell (HDAC). Thismethod offers the advantage that the process can be monitored continuously and inreal time to observe changes as the pegmatite texture forms. Sirbescu et al. (2017)studied pegmatite formation in the haplogranite-Li-B-H2O system in the HDACand were able to reproduce many of the textures commonly observed in zonedpegmatites, including skeletal, graphic, unidirectional, radiating, spherulitic,
95 96 97 98 99 100 101 102 103	1995; Falster et al., 1997) More recently, Sirbescu et al. (2017) and Maneta and Anderson (2018) studied pegmatite formation using the hydrothermal diamond anvil cell (HDAC). This method offers the advantage that the process can be monitored continuously and in real time to observe changes as the pegmatite texture forms. Sirbescu et al. (2017) studied pegmatite formation in the haplogranite-Li-B-H ₂ O system in the HDAC and were able to reproduce many of the textures commonly observed in zoned pegmatites, including skeletal, graphic, unidirectional, radiating, spherulitic, massive, and replacement textures. Maneta and Anderson (2018) were able to

Yuan et al AM 7637 Revision 2 November 25 2020

determined growth rates for quartz and alkali feldspars that ranged from 3 to 31

- 106 cm/yr and 18 to 58 cm/yr, respectively.
- Melt (and fluid) inclusions in plutonic igneous rocks provide important information on 107 petrologic processes (Student and Bodnar, 1996; Bodnar and Student, 2006; Thomas et al., 108 109 2006) and can contribute to evaluate the various models proposed for pegmatite formation (Thomas et al., 2000; Thomas et al., 2006). In particular, the coexistence of melt inclusions 110 (MI) and fluid inclusions (FI) (see, for example, Audétat and Pettke, 2003, their Figure 3B; 111 Thomas and Davidson, 2013) provides conclusive evidence that the silicate melt was 112 volatile-saturated at the time of inclusion trapping. Moreover, MI trapped in pegmatite 113 minerals can be analyzed to obtain compositions of pegmatitic melt that are more reliable 114 recorders of the melt composition during pegmatite formation compared to whole rock 115 compositions, owing to uncertainties in bulk compositions obtained from pegmatites with 116 coarse and variable grain size. 117 The Taishanmiao granitic batholith, located in the Eastern Qinling Orogen in Henan 118 Province, China (Fig. 1), contains numerous small bodies with textural and mineralogical 119 characteristics similar to those reported in granitic pegmatites and miarolitic cavities. The 120 121 geology, petrology and mineralogy of the granitic batholith have been studied in detail previously (Ye et al., 2008; Gao et al., 2014; Qi, 2014; Wang et al., 2016; Jin et al., 2018), and 122 the results provide a solid foundation for modeling the crystallization history of the pegmatites. 123 In this study, FI and MI in coarse quartz crystals intergrown with alkali feldspar from the 124 Taishanmiao pegmatites have been examined. Some inclusion assemblages (Bodnar and 125

Yuan_et_al_AM_7637_Revision_2_November 25_2020

126	Student, 2006) contain only melt or fluid inclusions, while other assemblages consist of
127	coexisting MI and aqueous-carbonic FI. MI and FI were analyzed by a variety of methods,
128	including microthermometry, Raman spectroscopy, and electron probe microanalysis that
129	included EDS (Energy Dispersive X-ray Spectroscopy) and WDS (Wavelength Dispersive
130	Spectroscopy), to determine the Pressure-Volume-Temperature-Composition-time (<i>PVTXt</i>)
131	evolution of melts and aqueous fluids associated with formation of the Taishanmiao
132	pegmatites. Additionally, magmatic-hydrothermal evolution in the Taishanmiao batholith was
133	examined by applying the Rhyolite-MELTS (Gualda et al., 2012) model, and the residual melt
134	composition after 96% crystallization of the original melt was compared with the
135	compositions of MI in pegmatitic quartz. The good agreement between PVTXt results from
136	analysis of MI and FI and modeling predictions suggest that the Taishanmiao pegmatites
137	formed by the continued fractional crystallization of volatile-enriched silicate melt that
138	evolved from the magma that produced the Taishanmiao granite. The melt was
139	volatile-undersaturated during the initial stages of pegmatite formation, but became volatile
140	saturated during the early stages of pegmatite formation as a result of pressure fluctuations
141	associated with crystallization in a closed, isochoric system. These observations have
142	important implications concerning the role of volatile saturation and pressure fluctuations in
143	the formation of pegmatitic textures.
144	Here, we use the term "pegmatite" to refer to an igneous rock composed of large
145	(cm-scale or larger), subhedral to euhedral crystals. Our goal is to better understand the
146	physical and chemical conditions that cause a melt that is crystallizing an equilibrium

Yuan_et_al_AM_7637_Revision_2_November 25_2020

147	assemblage of anhedral, medium-to-coarse grained phases (mostly quartz and alkali feldspar)
148	in the enclosing granite to begin to form much larger subhedral crystals of those very same
149	phases, i.e., a pegmatitic texture, with little or no apparent change in the bulk melt
150	composition or physical environment associated with the abrupt change in crystal morphology
151	and texture.
152	The Taishanmiao pegmatites described here are thought to represent the end-stage of
153	crystallization of the enclosing host granites, and do not represent an externally-derived melt
154	that was intruded into a compositionally-different and cooler host rock. As such, the pegmatite
155	bodies studied here represent "segregations" as described by London (2008), and Candela and
156	Blevin (1995) describe segregation pegmatites as "lacking intrusive contacts, and are thought
157	to represent the last volumes of residual melt in the plutons that host them". Moreover, the
158	textural, mineralogical and petrologic features place the pegmatites in the miarolitic class of
159	pegmatites that show an abundance of open space and/or clay-filled or crystal-lined cavities.
160	We note that London (2008) describes two different types of miarolitic pegmatites – one type
161	is represented by segregations within shallowly emplaced granites that produce crystal-lined
162	cavities with open space, and the other is hosted in intrusive pegmatites that are concentrically
163	zoned or layered, such as those in the well-known San Diego County, California, pegmatite
164	deposits. The Taishanmiao pegmatites described here represent the former type of miarolitic
165	pegmatite, i.e., the miarolitic class, segregation-type pegmatites described by London (2008).
166	For simplicity, throughout this presentation we refer to these bodies simply as "pegmatites"
167	unless additional characterization is required for clarification.

Yuan et al AM 7637 Revision 2 November 25 2020

168

169

GEOLOGIC BACKGROUND AND SAMPLE DESCRIPTION

170	The Taishanmiao batholith is located in the Eastern Qinling Orogen in Henan Province,
171	China (Fig. 1). The orogen is part of the Qinling-Dabie orogenic belt that was formed by
172	collision of the North China Block and the Yangtze Craton during the Early Mesozoic (Zhang
173	et al., 1996; Mao et al., 2002; Ratschbacher et al., 2003). The Taishanmiao batholith is
174	exposed at the surface over an area of \sim 290 km ² , and intrudes to the north and east into the
175	Proterozoic Xiong'er Group (Fig. 2), which is mainly composed of ~1.78 Ga volcanic rocks
176	(Peng et al., 2008). At the western margin, an extension of the batholith is intruded into the
177	slightly older Early Cretaceous Heyu granite batholith (Fig. 2) that has been dated at \sim 127 Ma
178	(Mao et al., 2010). To the south, the Checun fault separates the Taishanmiao batholith from
179	the Mesozoic Funiushan granite batholith (Fig. 2).
180	The Early-Middle Cretaceous Taishanmiao granite (125-113 Ma, Ye et al., 2008; Gao et
181	al., 2014; Qi, 2014; Wang et al., 2016) consists of three syenogranite lithologies that are
182	differentiated based on crystal size and texture. Here, we use the term "Taishanmiao batholith"
183	to describe the physical intrusive body, and use the term "Taishanmiao granite" to refer to the
184	undifferentiated lithologies that make up the batholith and which are distinguished from each
185	other based mostly on texture. The undifferentiated Taishanmiao granite is classified as an
186	aluminous, high-K, calc-alkaline A-type granite that was generated in a post-orogenic or

- intraplate extensional setting (Xie et al., 2007; Ye et al., 2008; Wang et al., 2013; Wang et al.,
- 188 2016). It includes medium- to coarse-grained syenogranite, fine- to medium-grained

Yuan_et_al_AM_7637_Revision_2_November 25_2020

189	syenogranite, and porphyritic syenogranite (Ye et al., 2008) (Fig. 2). These three phases have
190	similar chemical compositions and mineral assemblages, although the proportions of the
191	mineral phases differ slightly. Pegmatites and quartz veins are found in all three granite phases
192	(Ye et al., 2008; Qi, 2014). The pegmatites mostly occur as irregular or elongated features (Fig.
193	3a, c, d), and occupy \sim 2 to 4 vol% of the syenogranite phase (Ye et al., 2008). The pegmatites
194	are generally tens of centimeters in outcrop length, and are mainly composed of
195	coarse-grained, intergrown quartz and K-rich alkali feldspar with crystal size typically 0.5 - 3
196	cm (Fig. 3b, d). Open space, with faceted crystals extending into the open space, is a common
197	feature of the pegmatites (Fig. 3c).
198	The samples studied here were collected from a pegmatite body that is ~ 70 cm long and
199	10-20 cm wide (Fig. 3c) and is typical of pegmatites within the Taishanmiao medium- to
200	coarse-grained syenogranite. In the field and in hand samples, the boundary between
201	pegmatitic and granitic texture is easily recognized based on the abrupt change in crystal size
202	without an associated change in mineralogy (Figs. 3a, c, d). The melt (and fluid) inclusion
203	assemblages studied occur in the coarse-grained quartz that is intergrown with K-feldspar
204	(area labeled "Intergrown coarse quartz & K-feldspar" in Fig. 3c). MI are not observed in
205	coarse quartz crystals that extend into open space and are interpreted to represent the latest
206	stage of crystallization of the pegmatites, although FI do occur in these crystals. This suggests
207	that either melt was not present during the final stages of quartz crystal growth or,
208	alternatively, melt was present but was not trapped as melt inclusions. We note that the
209	crystals are complexly intergrown and individual crystals do not show growth zoning or other

Yuan_et_al_AM_7637_Revision_2_November 25_2020

210	macro- or microscopic features that can be used to establish a relative chronology of
211	individual crystals, although we recognize that other methods, such as cathodoluminescence
212	or trace element zoning, could provide such paragenetic information (Peppard et al., 2001).
213	MI in pegmatite quartz appear to be completely crystallized (although we cannot exclude
214	the possibility that some amount of glass may be present), which is typical of MI in plutonic
215	rocks (Bodnar and Student, 2006) (Fig. 4a-c). Two-phase, liquid + vapor (L+V) FI coexist
216	with crystallized MI in several cases (Fig. 4c). Fluid inclusions similar to those observed
217	coexisting with MI are also observed randomly distributed in some quartz crystals, without
218	any associated MI (Fig. 4d, e). These FI are interpreted to have trapped magmatic fluid similar
219	to the fluid trapped along with MI in other parts of the crystal. Some secondary FI along late,
220	healed fractures were also observed (Fig. 4d), but these were not studied here. A detailed
221	petrographic description of the MI and FI is included in the Supplementary Material.
222	
223	ANALYTICAL METHODS AND MODELING
224	In order to constrain the physical conditions and geochemical processes associated with
225	formation of the Taishanmiao pegmatites, various methods were applied to analyze MI and FI,
226	including microthermometry, Raman spectroscopy, and EDS and WDS analyses. In addition,
227	the Rhyolite-MELTS algorithm (Gualda et al., 2012; Ghiorso and Gualda, 2015) was applied
228	to reconstruct the igneous evolution of the Taishanmiao granite to test the hypothesis that the
229	Taishanmiao pegmatites crystallized from a late-stage (residual) melt, and thus represent
230	segregation-type pegmatites. Details of the analytical methods are provided in Supplementary

	Yuan_et_al_AM_7637_Revision_2_November 25_2020
231	Materials.
232	RESULTS
233	The H ₂ O and CO ₂ concentrations in the MI were estimated through a combination of
234	analyses of the glass and vapor bubbles in MI by Raman spectroscopy. The H_2O content of
235	glass in the homogenized MI (Fig. 5a, b) ranges from $3.2 - 4.5$ wt%, with an average content
236	of 4.1 wt% and a standard deviation of ~0.5 wt% (Supplemental Table S1; Supplemental Fig.
237	S3). After heating, some MI still contained crystals and/or a large vapor bubble (Fig. 5c) and
238	these MI were assumed to have leaked or trapped multiple phases and were not selected for
239	further analysis. Details of the analytical procedures and assumptions are included in
240	Supplemental Materials.
241	Raman analysis of the glass phase in the MI failed to detect CO ₂ , and we have assumed
242	that the trapped melt contains 500 ppm CO ₂ (based on results of the Rhyolite-MELTS
243	modeling) (see Supplemental Materials for additional details). The assumed CO ₂
244	concentration is within the range reported for MI in other silicic magmatic systems (Anderson
245	et al., 2000; Wallace, 2005). We note that the actual CO_2 concentration selected for the trapped
246	melt has little effect on the conclusions reached below because we are only considering
247	relative changes in the MI properties during pegmatite formation.
248	Raman analyses of fluid inclusions that coexist with MI in quartz crystals Z2 and A5
249	indicate the presence of CO_2 in the bubble, and only liquid H_2O was detected in the liquid
250	phase when analyzed at room temperature. The data confirm that the fluid phase in
251	equilibrium with the melt during pegmatite formation contained both H ₂ O and CO ₂ . The FI

Yuan_et_al_AM_7637_Revision_2_November 25_2020

252	homogenize to the liquid phase at 278.4° to 306.4°C, and salinity ranges from $5.0 - 5.7$ wt%
253	NaCl equivalent. Homogenization temperatures of other randomly distributed FI that do not
254	coexist with MI (cf. Fig. 4e) range from 283°C to 370°C. As noted above, these randomly
255	distributed FI that do not coexist with MI do not occur along healed fractures and not of
256	obvious secondary origin. Here, we assume that these FI were trapped at magmatic conditions
257	when the pegmatite minerals were forming. Details concerning the microthermometric
258	analyses are included in Supplemental Materials.
259	Crystallized MI in quartz crystals A2, A5 and Z1 were analyzed by Raman spectroscopy.
260	Owing to the fine-grained and intergrown texture of the crystals in the MI, it was generally
261	not possible to obtain an analysis of a single phase without some contribution to the spectrum
262	from other nearby phases, including the quartz host. Raman spectra of all MI were consistent
263	with a mixture of quartz and mica (most likely muscovite).
264	EDS data were collected on 14 MI from three melt inclusion assemblages contained in 3
265	different quartz crystals. We emphasize that owing to the complex intergrown nature of the
266	crystals in the pegmatite, relative ages of the three different crystals and their contained MI
267	could not be determined. One MI from crystal A5 yielded an anomalously high SiO_2 content
268	and is interpreted to be compromised by contribution from the host quartz, or alternatively, the
269	elevated SiO_2 content is the result of overheating the MI during homogenization, as described
270	above, and is not considered further. Two MI from crystal A5 yielded high Al_2O_3 and TiO_2
271	concentrations that are interpreted to reflect mixed analyses that included glass plus
272	incompletely dissolved muscovite, as was clearly observed in 1 of the 2 MI analyzed

Yuan_et_al_AM_7637_Revision_2_November 25_2020

273	(Supplemental Fig. S4) and are not considered further. The remaining 11 analyses are listed in
274	Supplemental Table S3 along with 3 replicate analyses of MI from crystal Z1 collected by
275	WDS methods.
276	The Rhyolite-MELTS simulations assumed a constant pressure of 3.3 kbar during
277	crystallization, with oxygen fugacity buffered at QFM+2. From the initiation of crystallization
278	(0%) up to ~96 wt% crystallization, the model predicts crystallization of quartz,
279	alkali-feldspar, plagioclase, biotite, and spinel (classified as magnetite here from the simulated
280	mineral chemical result) (Fig. 6). The predicted mineral assemblage and proportions of
281	individual phases obtained from thermodynamic modeling are consistent with petrographic
282	observations. (Table 2). After ~96% crystallization, representing the beginning of the
283	pegmatite stage, the melt contains 6.3 wt% H_2O and 500 pm CO_2 and is
284	volatile-undersaturated. Details of the Rhyolite-MELTS simulations are included in
285	Supplemental Materials.
286	
287	DISCUSSION
288	Is the melt that produced the Taishanmiao pegmatites a late-stage product of felsic
289	magma evolution?
290	Field and hand sample observations indicate that the Taishanmiao pegmatites represent the
291	miarolitic class of segregation-type pegmatites (London, 2008) that crystallize from the
292	residual melt remaining after crystallization of the bulk of the magma that produced the
293	enclosing host granites. Candela (1997) suggests that melts are not present during the

Yuan_et_al_AM_7637_Revision_2_November 25_2020

294	formation of miarolitic cavities in granites, and that the crystals grow directly from a
295	magmatic volatile phase. Conversely, several more recent studies, such as those of Audétat
296	and Pettke (2003) and Zajacz et al. (2008), show clear evidence for the coexistence of silicate
297	melts and aqueous fluids during formation of miarolitic cavities in granites. These differing
298	interpretations suggest that multiple processes may be responsible for generating miarolitic
299	cavities containing large crystals, just as various processes have been shown to produce
300	similar pegmatitic textures.
301	Based on occurrences of MI and FI observed in the present study, it appears that at some
302	times during the formation of the Taishanmiao pegmatites only a volatile-undersaturated melt
303	was present (perhaps early in the formation of the pegmatites), while at other times both a
304	melt and H ₂ O-CO ₂ fluid phase coexisted, and at yet other times (perhaps during the latest
305	stages of formation of the pegmatites) only an H ₂ O-CO ₂ fluid was present without melt. We
306	also emphasize that it is well known amongst FI and MI researchers that the absence of a
307	given type of inclusion does not necessarily indicate that the phase was not present in the
308	system, as the mechanisms and processes of inclusion trapping are poorly understood. As such,
309	while the presence of a given type of inclusion (MI or FI) provides solid evidence that the
310	phase was present at the time that the inclusions were trapped, the converse is not true. As
311	such, crystals could have grown from the fluid (non-melt) phase, even if a melt was present in
312	the system. Thus, assemblages of FI (without MI) of indeterminate origin in some quartz
313	crystals that extend into open space in the pegmatites could have been trapped while melt was
314	still present, but they could also have been trapped after all of the melt had crystallized.

Yuan_et_al_AM_7637_Revision_2_November 25_2020

315	From the initiation of crystallization (0%) to \sim 96% crystallization under isobaric
316	conditions (3.3 kbar), the temperature of the magma decreases from the liquidus temperature
317	(~1074°C) to ~734°C. The predicted volatile-free normalized residual melt composition after
318	96 wt% crystallization is 73.8 wt% SiO ₂ , 15.2 wt% Al ₂ O ₃ , 5.1 wt% K ₂ O, 2.8 wt% Na ₂ O, 1.0
319	wt% CaO, 0.29 wt% FeO, 0.26 wt% Fe $_2O_3,$ 0.15 wt% MgO, 0.52 wt% P_2O_5 and 0.79 wt% F
320	(Table 1). The melt-free normalized mineral assemblage at this stage consists of 51.1 vol%
321	K-feldspar, 33.6 vol% quartz, 14.1 vol% plagioclase, 0.1 vol% biotite, and 1.0 vol% magnetite
322	(Table 2).
323	MI trapped in pegmatitic quartz in the Taishanmiao batholith are characterized by high
324	silica (78.2 - 81.7 wt%), 13.20 wt% Al ₂ O ₃ (11.5 - 14.9 wt%), 1.90 wt% Na ₂ O (0.8 - 3.0 wt%),
325	2.85 wt% K ₂ O (1.8 - 3.9 wt%), 0.3 wt % CaO (0.1 - 0.5 wt%), MgO (below detection limit),
326	and 0.65 wt% FeO (0.5 - 0.8 wt%). The melts are variably enriched in F (0.3 -1.4 wt%) and Cl
327	(0.03 - 0.30 wt%). The trapped silicate melt is peraluminous with variable but high aluminum
328	saturation index (A/CNK: $1.41 \sim 2.92$). The model-predicted composition is similar to the
329	peraluminous granitic composition exhibited by MI in pegmatite quartz, with some minor
330	differences. The K_2O and Al_2O_3 contents in the modeled melt are slightly higher and the SiO_2
331	is modestly lower than that in the analyzed MI. However, when differences in predicted and
332	observed biotite contents are taken into consideration, the predicted lower amounts of biotite
333	result in increased Al_2O_3 and K_2O contents and decreased SiO_2 content. The difference in
334	predicted versus observed biotite content is probably mainly responsible for the minor
335	discrepancy in Al ₂ O ₃ and K ₂ O contents between the simulated residual melt and the MI, and

Yuan et al AM 7637 Revision 2 November 25 2020

336	the elevated SiO ₂ contents most likely reflect excess melting of quartz from the MI walls.
337	Recognizing the minor differences described above, compositions of MI agree reasonably
338	well with the modeled residual melt composition after \sim 96% crystallization at \sim 734°C, and
339	we conclude that pegmatite melt represented by the MI can be derived by extensive fractional
340	crystallization of the Taishanmiao granitic magma.

341

342 Pressure-temperature conditions of formation of the Taishanmiao pegmatites

343 The samples described here and their properties observed in the field, in hand sample and in thin section show characteristics of the miarolitic class of segregation-type pegmatites 344 described by London (2008). During formation of the pegmatites, some portion of the 345 346 miarolitic cavity is thought to have been filled with a non-silicate (H₂O-CO₂) fluid phase that exsolved from the melt during the late stages of crystallization - today the volume occupied by 347 the fluid during pegmatite formation is represented by open space within the pegmatite. While 348 pegmatites can form over a wide range of pressures, miarolitic cavities are thought to require 349 low pressure formation conditions, and Candela (1997) notes that miarolitic cavities become 350 less common with increasing formation pressure and are uncommon at crystallization 351 352 pressures of 3 kbar or higher. A common textural feature of both segregation-type pegmatites and miarolitic cavities is that they both show external (heterogeneous) nucleation, whereby 353 the crystals nucleate on an existing substrate rather than nucleating in and precipitating 354 directly from a fluid or melt phase (homogeneous nucleation). The samples studied here 355

consist of large quartz and K-feldspar crystals, some of which are in contact with and appear

Yuan_et_al_AM_7637_Revision_2_November 25_2020

357	to have nucleated on the enclosing granitic substrate. The crystals are inferred to have grown
358	into an open space, and open spaces are common in the samples as found in the field. As such,
359	the samples described here fit into the miarolitic class of segregation-type pegmatites
360	described by London (2008), and represent melt segregations that evolved over time to
361	produce cavities filled with large crystals that formed in the presence of both silicate melt and
362	an H ₂ O-CO ₂ fluid phase.
363	As noted above, the input pressure for Rhyolite-MELTS that predicts a melt composition
364	and mineral assemblage that is most consistent with observations is \sim 3.3 kbar. We accept the
365	PT conditions predicted by Rhyolite-MELTS after 96% crystallization of the granitic melt
366	(734°C, 3.3 kbar) to represent the PT conditions at the beginning of pegmatite formation,
367	when the pegmatitic melt becomes isolated and starts to evolve as a closed, isochoric system.
368	Moreover, we assume that the FI in pegmatitic quartz were trapped during pegmatite
369	formation and that the melt was volatile saturated when the FI were trapped. As such, the
370	pressure of pegmatite formation may be constrained by the intersection of the FI isochores
371	with the vapor-saturated solidus (Student and Bodnar, 1996). Figure 7 shows the bounding
372	isochores for fluid inclusions in quartz, calculated using the model of Steele-MacInnis (2018),
373	and the gray-shaded area represents the complete PT range of intersection of all the FI
374	isochores (including those FI that do not coexist with MI) with the three solidi shown. The
375	choice of which solidus to use when interpreting the MI and FI data affects the estimated
376	formation conditions. Based on results of Rhyolite-MELTS modelling, analysis of FI and MI
377	in quartz, and comparison with other pegmatites, we include the H ₂ O-saturated granite solidus,

Yuan_et_al_AM_7637_Revision_2_November 25_2020

378	the vapor-saturated solidus for volatile-saturated haplogranite melt in equilibrium with an
379	H_2O - CO_2 fluid containing 25 mol% CO_2 , and the vapor-saturated solidus for a flux-rich melt
380	represented by the Spruce Pine Pegmatite (Fig. 7).
381	The fluid inclusion isochores intersect the various volatile-saturated solidi over a
382	pressure range from ~1.7 to ~4.5 kbar (Fig. 7), and we interpret the pegmatite formation
383	pressure to be in this broad range. The temperatures of intersection of the isochores with the
384	volatile-saturated solidi range from about 625° to 710°C and are broadly consistent with
385	observations during MI microthermometry.
386	The results of Rhyolite-MELTS modeling and FI and MI data suggest that the
387	Taishanmiao pegmatites began to form at \sim 730°C and \sim 3.3 kbar, at which point the original
388	granitic melt had undergone ~96 wt% crystallization; pegmatite formation continued during
389	cooling to ~625°C. During pegmatite formation, the melt became volatile saturated and
390	exsolved a magmatic H ₂ O-CO ₂ fluid phase.
391	
392	Evolution of the melt-volatile system during formation of the Taishanmiao pegmatites
393	Various hypotheses have been put forward related to the processes and conditions required
394	to generate a pegmatitic texture in granitic rocks. Among these, the two most commonly
395	invoked models are that pegmatitic textures develop when a crystallizing melt reaches water
396	saturation and exsolves a magmatic aqueous phase (Jahns and Burnham, 1969), the other
397	being that large crystals form when a water-undersaturated silicate melt undergoes a large
398	degree of liquidus undercooling (Fenn, 1986; London et al., 1989). We note that this latter

Yuan et al AM 7637 Revision 2 November 25 2020

interpretation applies mostly to intrusive pegmatites that form when a hotter melt is intrudedinto a cooler host rock.

- 401 Results of Rhyolite-MELTS modeling, combined with examination of mineral phases and
- 402 bulk rock compositions and compositions of melt inclusions, suggest that the Taishanmiao

403 batholith transitioned from crystallization of a medium-to-coarse grained granite to abrupt

404 formation of pegmatites having essentially the same bulk composition and mineralogy as the

405 granite. Field and laboratory observations, combined with Rhyolite-MELTS modeling,

suggest that crystallization of the batholith, including both the granite and the late pegmatites,

407 was a continuous process with no abrupt changes in temperature or pressure. We also note that

408 the silicate melt was volatile saturated during at least some portion of the time when

409 pegmatites were forming, as evidenced by CO₂-bearing aqueous FI that coexist with MI in

410 some assemblages (Fig. 4c).

411 Sodium-chloride-fluoride (Na-Cl-F) systematics observed in melt inclusions are also

412 consistent with the interpretation that the melt became volatile saturated during pegmatite

413 formation. In general, halogens such as F and Cl behave as incompatible components in

silicate melt systems (i.e., these elements are not incorporated into crystallizing phases) in the

absence of topaz or zinnwaldite formation (Webster et al., 2004). As such, their concentrations

in the melt increase as crystallization proceeds under volatile-undersaturated conditions.

However, once the melt reaches volatile saturation and an aqueous phase exsolves, F and Cl

show differing behavior. Experimental studies (Burnham, 1967; Hards, 1976; London, 1987;

419 Webster and Holloway, 1987) have shown that the partition coefficient of F, D_F (defined as the

Yuan_et_al_AM_7637_Revision_2_November 25_2020

420	ratio of F concentration in the aqueous phase to that in the granitic melt) typically ranges from
421	0.1-0.4 at magmatic-hydrothermal PT conditions. This suggests that F would remain in the
422	melt during exsolution of a magmatic aqueous phase. The silicate melt would be continuously
423	enriched in F as fractional crystallization proceeds, even in the presence of an exsolving
424	aqueous phase, as is observed in many natural systems (Li et al., 2017). In contrast, once
425	volatile saturation is achieved, Cl is strongly partitioned into the aqueous phase, especially in
426	rhyolitic systems, with D_{Cl} varying from 16 to 115 based on experiment results (Webster et al.,
427	2009). This leads to a decrease in the Cl concentration in the silicate melt during aqueous
428	phase exsolution.
429	A correlation diagram showing the relationship between Cl and F concentrations in MI
430	shows that the Cl concentration increases with increasing F for MI containing between about
431	0.3 - 0.9 wt% F (Fig. 8). Then, the Cl concentration decreases as F continues to increase from
432	0.9 to 1.4 wt%. The trend is consistent with the petrographic observation that MI with F
433	concentrations ≥ 0.9 wt% are from crystal A5 that shows coexisting FI and MI, indicating that
434	the MI trapped a volatile-saturated melt (Student and Bodnar, 1999). Previously, Webster et al.
435	(2015) showed that Cl concentrations in the fluid-absent melt increase as the magma
436	fractionally crystallizes, and reaches its maximum or solubility limit when the melt becomes
437	saturated in hydrosaline liquid and/or vapor. Likewise, the Cl concentration in the MI of this
438	study shows a positive correlation with F in the range 0.3 - 0.9 wt% F as melt crystallization
439	proceeds, and reaches a maximum of 0.3 wt% Cl when an aqueous phase starts to exsolve
440	from the melt. Then, as magma continues to evolve, F increases from 0.9 to 1.4 wt% in the MI

Yuan_et_al_AM_7637_Revision_2_November 25_2020

441	that are coeval with the aqueous fluid inclusions, while Cl decreases from 0.3 to 0.1 wt%. The
442	sodium concentration in the MI is also lower in MI that trapped a volatile-saturated melt (Fig.
443	8), consistent with transport of Na in the fluid as an NaCl complex. Thus, Cl and Na vs F
444	trends observed here are consistent with the interpretation that the melt was volatile
445	undersaturated during the early stages of pegmatite formation, but became volatile saturated at
446	some point during formation of the pegmatites.
447	
448	Model for formation of the Taishanmiao pegmatites
449	As noted above, the two most commonly invoked models for the formation of pegmatites
450	involve liquidus undercooling (Fenn, 1986; London et al., 1989) or volatile saturation (Jahns
451	and Burnham, 1969) of the melt. These models generally apply to intrusive pegmatites that
452	form when a hotter melt is intruded into a cooler host rock and the melt cools quickly to
453	temperatures well below its equilibrium liquidus (or solidus) temperature. Internal nucleation
454	of phases occurs and the crystals grow rapidly in this non-equilibrium environment to produce
455	a pegmatitic texture.
456	In petrology, the term <i>liquidus undercooling</i> is used to describe the process whereby a
457	magma (melt-crystal±volatile system) existing at equilibrium PT conditions on the liquidus
458	for that system is abruptly inserted into a lower temperature environment such that the system
459	is no longer at equilibrium. This, in turn, can lead to rapid crystal growth driven by a change
460	in melt composition as the system attempts to return to an equilibrium state at the new
461	liquidus PT conditions. Alternatively, if the shift to lower temperatures is sufficiently large

Yuan et al AM 7637 Revision 2 November 25 2020

that the new temperature is in the subsolidus region, all of the melt may crystallize as a resultof undercooling.

464	While decreasing the temperature (liquidus undercooling) represents one mechanism to
465	drive the magma system away from equilibrium, it is not the only process that can cause a
466	system that is initially at equilibrium to suddenly experience a non-equilibrium environment
467	(Grove and Till, 2015). For example, pressure-induced crystallization may result if the
468	pressure decreases for a system with a liquidus or solidus curve that shows a negative slope in
469	PT space, such as the volatile-saturated solidus in most volatile-bearing silicate melt systems,
470	including the granite-H ₂ O±CO ₂ system (see Burnham and Davis, 1971; Keppler, 1989).
471	Similarly, crystallization may result if the composition of one or more of the phases in the
472	system changes. As an example, consider a haplogranite melt that is in equilibrium with an
473	H_2O-CO_2 fluid phase containing 25 mol% CO_2 . If the CO_2/H_2O ratio of the fluid that coexists
474	with the melt were to suddenly increase while the temperature and pressure remain constant as,
475	for example, during flux of mantle-sourced CO ₂ -rich fluid into a magma undergoing
476	crystallization, the temperature of the system would be lower than the temperature on the
477	liquidus corresponding to the new CO ₂ -enriched fluid composition at the same pressure. This
478	would drive crystallization to bring the melt back into equilibrium with the new fluid
479	composition (see Keppler, 1989, his Figure 2). These various processes that can lead to
480	non-equilibrium conditions to produce a "liquidus deficit", as defined by Labrosse (2014).
481	Accordingly, a liquidus deficit is the result of any change in the physical or chemical
482	properties of a system that causes the system to depart from equilibrium liquidus conditions,

Yuan_et_al_AM_7637_Revision_2_November 25_2020

483	and the units of the liquidus deficit are Kelvins (or degrees Celsius), identical to the units for
484	liquidus undercooling. Thus, a change in composition or pressure that leads to a liquidus
485	deficit would be described in terms of the difference in temperature on the equilibrium
486	liquidus before the perturbation, and the temperature of the system after the temperature,
487	pressure or composition of the system has changed to move the system away from
488	equilibrium.
489	The model proposed here for formation of the Taishanmiao pegmatites involves
490	development of a pressure-induced, vapor-saturated liquidus deficit that promotes episodic
491	crystal dissolution and precipitation in an attempt to return the system to equilibrium
492	conditions. This interpretation is consistent with results presented by Candela (1997) who
493	reports that "the formation of miarolitic cavities requires bubble growth during magma ascent
494	and decompression". We propose that "decompression" (decreasing pressure), as well as
495	increasing pressure, can occur in the absence of magma ascent if the miarolitic cavity
496	represents a closed, isochoric system.
497	The Taishanmiao pegmatites represent miarolitic class, segregation-type pegmatites that
498	form in the very latest stages of crystallization of a larger granitic body. During the waning
499	stages of crystallization of the granite, pockets of melt became isolated and enclosed within a
500	rigid container represented by the previously crystallized granite surrounding the melt pocket.
501	As crystallization of the pegmatites proceeds in this closed (constant mass), isochoric
502	(constant volume) system, the <i>PVTX</i> conditions within the pegmatite body evolve in a manner
503	that diverges from that of the larger granitic body. The model proposed here for the PVTX

Yuan_et_al_AM_7637_Revision_2_November 25_2020

504	evolution of the melt remaining after ~96% of the granite-forming melt has crystallized is
505	analogous to the <i>PVTX</i> evolution of a melt inclusion trapped in an igneous phenocryst. We
506	apply those same principles here to infer the <i>PVTX</i> evolution of the pegmatite melt. We
507	assume that the melt from which the pegmatite forms is represented by the melt that is present
508	after ~96% of the original granitic melt has crystallized, in agreement with both field
509	observations and results of Rhyolite-MELTS modeling. We further assume that the total
510	volume of the system melt + crystals + vapor remains constant during pegmatite formation.
511	Thus, the melt pocket (pegmatite) represents a closed (constant mass), isochoric (constant
512	volume) system.
513	The composition of the residual melt remaining after \sim 96 % crystallization of the original
514	granitic melt is listed in Table 1, and this is the starting composition for formation of the
515	pegmatites. Results of the Rhyolite-MELTS model suggest that the pegmatites began to form
516	at about ~734°C, and microthermometric results suggest that pegmatite formation continued
517	to ~625°C. The mineral assemblage predicted to form during crystallization of the residual
518	melt consists of 24.3 mol% K-spar, 68.8 mol% quartz, 6.8 mol% plagioclase plus minor
519	biotite and magnetite (Table 2). As crystals begin to form in the very earliest stages of
520	pegmatite formation, the volume occupied by crystals + remaining melt is less than that
521	occupied by the melt before crystallization began because the crystals are more dense (occupy
522	a smaller volume) than the melt from which they precipitated. We assume that the proportions
523	of minerals that are forming is the same as the mineral proportions in the pegmatites (Table 2)
524	and the volume change during crystallization may be calculated from the volume of fusion of

Yuan_et_al_AM_7637_Revision_2_November 25_2020

525	the minerals, multiplied by their molar proportions. The volumes of fusion used to calculate
526	the volume change are: microcline (9.75 cm ³ /mol); β -quartz (3.85 cm ³ /mol); albite (8.64
527	cm ³ /mol) (Lange and Carmichael, 1990). We note that most of the inferred <i>PT</i> range of
528	formation of the pegmatites is in the β -quartz field, rather than the α -quartz field (Fig. 7).
529	Accordingly, the mineral-averaged volume of fusion for the pegmatite melt is $5.6 \text{ cm}^3/\text{mol of}$
530	melt crystallized. That is, the volume occupied by crystals + melt decreases by 5.6 cm^3 for
531	every mole of melt that crystallizes. We assume that the volume of the pegmatite is equal to
532	the volume of melt before crystals began to form, i.e., the system is isochoric; as such, the
533	decrease in the volume of the system as melt crystallizes (melt \rightarrow crystals) requires the
534	formation of a void space in the cavity that is analogous to the shrinkage bubble that forms in
535	a melt inclusion during post-entrapment crystallization on the inclusion walls. The formation
536	of the shrinkage bubble requires that the pressure in the MI decrease and this results in a
537	liquidus deficit – i.e., the new pressure is not the pressure corresponding to the liquidus at the
538	temperature of the pegmatite body. This, in turn, leads to crystal growth combined with
539	exsolution of volatiles from the melt into the shrinkage volume, resulting in an increase in
540	pressure in the cavity (Figure 9). The decrease in pressure and concomitant decrease in
541	volatile solubility in the melt, and decrease in the amount of melt available to dissolve the
542	volatiles as a result of crystallization, are processes that are well known in the
543	magmatic-hydrothermal community and are referred to as "first boiling" and "second boiling",
544	respectively. Exsolution of volatiles from the melt ceases once the pressure in the pegmatite
545	has stabilized at the pressure required to maintain equilibrium.

Yuan_et_al_AM_7637_Revision_2_November 25_2020

546	The conceptual model for formation of the Taishanmiao pegmatites assumes a starting
547	melt composition predicted by Rhyolite-MELTS after ~96% crystallization of the original
548	granitic melt (Table 1). As such, Rhyolite-MELTS predicts that the residual melt has a broadly
549	rhyolitic (granitic) composition and contains 6.3 wt% H_2O and 500 ppm CO_2 . At 3.3 kbars
550	and 734°C, the melt is volatile undersaturated and the VolatileCalc solubility simulator
551	(Newman and Lowenstern, 2002) predicts that a rhyolite composition melt would become
552	volatile saturated and contain 6.3 wt% H_2O and 500 ppm CO_2 when the pressure decreases to
553	2.653 kbar. Additionally, the H_2O-CO_2 vapor phase in equilibrium with the melt at these
554	conditions (734°C, 2.653 kbar) would contain 20.4 mol% CO_2 and 79.6 mol% H_2O . The
555	density of the vapor phase calculated using the equation of state for H ₂ O-CO ₂ of Connolly and
556	Bodnar (1983) would be 0.618 g/cm ³ .
557	Developing a rigorous quantitative model to calculate the exact <i>PT</i> evolution of the
558	pegmatite is beyond the scope of this study. However, we have conducted some simple mass
559	and volume balance calculations to constrain the PT evolution of the pegmatite during its
560	formation, applying the same methodology that has been used successfully to model
561	post-entrapment crystallization of volatile-bearing melt inclusions (Steele-MacInnis et al.,
562	2011) and H ₂ O-saturated haplogranite melts (Student and Bodnar, 1996). Steele-MacInnis et
563	al. (2011) developed a quantitative model that predicts the PT evolution of a melt inclusion
564	based on <i>PVTX</i> and thermodynamic data for the system albite-H ₂ O. As crystallization
565	proceeds, the volume of the shrinkage bubble (vapor bubble) is equal to the difference in
566	volume of albite melt and crystals at the PT conditions of interest. Accordingly, the volume of

Yuan_et_al_AM_7637_Revision_2_November 25_2020

567	fusion of albite is 8.64 cm ³ /mol (Lange and Carmichael, 1990). That is, for each mole of albite
568	that crystallizes in the melt inclusion, a void space of 8.64 cm ³ is generated. Stated differently,
569	assuming a melt molar volume of 112.83 cm ³ /mol and an albite molar volume of 104.13
570	cm^3/mol (Lange and Carmichael, 1990), the volume occupied by the crystal is ~7.7 vol%
571	smaller than that of the melt from which it crystallized. The pressure in the MI at any PT
572	condition is a function of the volume of the void space generated by crystallization, the
573	amount and composition of the volatile phase that exsolves from the melt as a result of the
574	pressure decrease and melt crystallization, and the relative difference between the molar
575	volume of the volatile phase and the partial molar volumes of H_2O and CO_2 in the melt. As
576	such, the partial molar volumes of H_2O and CO_2 in a granitic melt are estimated to be ~18
577	cm^3/mol for H_2O (Burnham and Davis, 1971) and ${\sim}34~cm^3/mol$ for CO_2 (Lange and
578	Carmichael, 1990). For comparison, the molar volume of H_2O at 700°C ranges from 36.1
579	$cm^3/mole$ at 2 kbar to 26.0 cm^3/mol at 4 kbar. Similarly, the molar volume of CO_2 ranges from
580	69.2 to 50.1 cm ³ /mol over this same pressure range. Assuming ideal mixing in the exsolved
581	vapor phase, the volume occupied by H_2O in the vapor phase (assuming a pure H_2O
582	composition) ranges from \sim 45 to 100% greater than the volume when dissolved in the melt.
583	Similarly, the volume occupied by the CO_2 vapor phase is ~47 to 103 vol% larger than the
584	volume in the melt phase. These differences in partial molar volumes compared to molar
585	volumes, combined with the pressure dependence of the partitioning behavior of $\mathrm{H_2O}$ and $\mathrm{CO_2}$
586	between the melt and coexisting vapor, lead to complex trends in the PT evolution within the
587	MI. As such, Steele-MacInnis et al. (2011) report that the internal pressure in a melt inclusion

Yuan_et_al_AM_7637_Revision_2_November 25_2020

588	that trapped a CO ₂ -saturated albitic melt at 1,500 bars and 1,165°C decreases from the
589	pressure at trapping (1,500 bars) to <500 bars as the amount of melt crystallized increases
590	from 0 to 25 wt%. In the case of this simple system, as melt begins to crystallize, a shrinkage
591	bubble forms in the MI owing to the smaller volume of crystals relative to the volume of melt
592	before crystallization. This, in turn leads to a pressure decrease and loss of volatiles from the
593	melt that drives the PTX conditions further from the equilibrium conditions, promoting
594	addition crystallization to drive the conditions back towards the CO ₂ -saturated solidus, which
595	in turn, promotes additional fluid loss from the melt to the vapor phase and a concomitant
596	decrease in pressure. These two competing effects, decreasing pressure and volatile loss from
597	the melt into the vapor that drive the conditions away from the equilibrium conditions, and
598	crystallization that works to drive conditions back towards equilibrium, continue until a steady
599	state condition is reached whereby the proportions and compositions of melt, crystals, and
600	vapor are in equilibrium at some new set of PTX condition. Conversely, during
601	post-entrapment crystallization of an albite melt containing only H ₂ O, the pressure in the MI
602	increases along the H ₂ O-saturated solidus until crystallization is complete. This same behavior
603	was reported by Student and Bodnar (1996) for crystallization in the haplogranite-H ₂ O system.
604	Finally, Steele-MacInnis et al. (2011) report that during closed system isochoric crystallization
605	of an albite melt containing both H ₂ O and CO ₂ , the pressure in the MI initially decreases as
606	mostly CO_2 is exsolved, followed by an increase in pressure as the exsolving fluid becomes
607	more H ₂ O-rich. We propose that this same process that leads to a complex <i>PT</i> evolution
608	within MI undergoing crystallization in a closed, isochoric system is applicable to formation

Yuan_et_al_AM_7637_Revision_2_November 25_2020

609	of the miarolitic class, segregation-type pegmatites in the Taishanmiao granite.
610	At any temperature in the range from ~725°C to ~625°C, representing the assumed range
611	of pegmatite formation in this study, the physical and chemical conditions that satisfy mass
612	and volume balance based on known solubilities of H_2O and CO_2 in silicate melts, the
613	partitioning behavior of H ₂ O and CO ₂ between melt and vapor as a function of temperature
614	and pressure, and the density of the exsolved vapor, may be calculated. As such, at 734°C,
615	mass and volume balance can be achieved over the pressure range 2,320 to 4,836 bars, and as
616	crystallization proceeds the pressure in the pegmatite must increase to maintain mass and
617	volume balance (Table S4). As temperature decreases, the pressure range over which mass and
618	volume balance may be achieved decreases, such that at 675°C mass and volume balance are
619	only possible at pressures of 2,225 to 2,255 (Table S4). At temperatures lower than 675°C the
620	pressure range over which mass and volume balance are possible again increases, and at
621	625°C balance constraints can be satisfied between 1,737 and 2,155 bars. Importantly during
622	cooling from 734°C to 675°C, pressure in the cavity must increase as crystallization proceeds
623	to maintain mass and volume balance, whereas at temperatures <675°C pressure in the cavity
624	must decrease as crystallization proceeds to maintain mass and volume balance (Table S4). It
625	is this pressure cycling in the cavity that occurs as temperature slowly decreases that leads to
626	the liquidus deficit and the concomitant episodic dissolution and precipitation of minerals that
627	results in ripening (coarsening) to produce the pegmatitic texture, as described below.
628	The pressure-driven liquidus deficit model described here may explain some
629	inconsistencies related to an undercooling-driven model for pegmatite formation in some

Yuan_et_al_AM_7637_Revision_2_November 25_2020

630	cases. In discussing textures of granites in magmatic-hydrothermal ore-forming systems,
631	Candela (1997) notes that while undercooling may be valid in more shallow systems,
632	"magmas at deeper levels, or magmas in regions of high flow, will cool more slowly and
633	acquire an equilibrium [i.e., finer-grained?] texture." Candela (1997) also notes that rounded
634	cores of quartz "eyes" (phenocrysts) in these deposits suggest that at some stage in its growth
635	history the quartz experienced an episode of dissolution, followed by continued growth.
636	Similar resorption of quartz phenocrysts in the Red Mountain, Arizona, porphyry copper
637	deposit was observed by Bodnar and Student (2006; their Figure 1-15). Candela (1997) relates
638	the resorption and rounding of quartz eyes to changes in the water content of the melt, but we
639	emphasize here that pressure-induced liquidus deficits could produce this same result. Candela
640	(1997) also notes that, owing to the inverse relationship between nucleation rate and crystal
641	growth rate, undercooling can produce both a pegmatitic (coarse-grained) and aplitic
642	(fine-grained) texture. Thus, during the initial pressure decrease in the pegmatite volume that
643	results when crystallization begins, a fine-grained mixture of quartz and K-feldspar may be
644	precipitated and with time, as the PT conditions in the pegmatite volume fluctuate, the crystals
645	may undergo ripening (coarsening) to produce the pegmatite texture (Fig. 9). Moreover,
646	evidence for the early formation of finer-grained crystals that coarsen as a result of fluctuating
647	dissolution and precipitation processes may not be preserved in the final texture, as suggested
648	by Sirbescu et al. (2017) who report that "early products of crystallization may be hidden or
649	reprocessed by superimposed crystal generations, recrystallization, and deformation."
650	Based on petrographic studies of the Taishanmiao granite, combined with thermodynamic

Yuan_et_al_AM_7637_Revision_2_November 25_2020

651	simulation of the crystallization history of the Taishanmiao granite-forming melt, and
652	petrographic and compositional analyses of MI and FI in pegmatite quartz, the PVTXt
653	conditions associated with formation of the Taishanmiao pegmatite can be summarized. After
654	\sim 96% of the original Taishanmiao felsic melt had crystallized at \sim 3.3 kbar to produce an
655	igneous rock with a phaneritic texture, small pockets of residual melt became isolated and
656	evolved as a closed (constant mass), isochoric (constant volume) system, and the PT path
657	within the melt pockets diverged from that of the enclosing host granite (Figure 9). While the
658	pegmatite melts remained in thermal equilibrium with the surrounding host granite, the
659	pressure in the melt pockets varied in a complex manner in response to crystallization because
660	the volume occupied by the crystals was less than that of the melt from which they
661	precipitated. The pressure fluctuations resulted in a liquidus deficit (analogous to
662	undercooling) whereby the melt and crystals in the pegmatite were no longer in equilibrium
663	with the new PT environment. This drove crystallization to change the melt and H ₂ O-CO ₂
664	fluid composition in an attempt to return the system to an equilibrium condition. As the
665	temperature of the pegmatite decreased over time, the response to varying pressure in the
666	pockets led to episodes of mineral growth and dissolution which served to coarsen the grain
667	size to reduce total surface area and minimize surface free energy. The model proposed here
668	that large crystals may be generated by ripening (coarsening) of an originally fine-grained
669	mixture is analogous to that which is commonly observed during microthermometric analysis
670	of fluid inclusions (Fig. S6).

The transition from formation of a coarse-grained granite to formation of pegmatites is

Yuan_et_al_AM_7637_Revision_2_November 25_2020

672	temporally associated with the evolution from a volatile-undersaturated to a volatile-saturated
673	melt. However, while the generation of an H ₂ O-CO ₂ volatile phase within the pegmatite may
674	have facilitated the movement of mineral-forming components from the melt to the site of
675	crystallization, we do not suggest that the generation of a volatile phase was necessary for
676	pegmatite formation. Even in a dry (anhydrous and CO ₂ -free) melt, the pressure in the system
677	will decrease during constant mass, constant volume evolution owing to the volume of fusion
678	that results in a decrease in total volume of melt + crystals.
679	While the presence of an H ₂ O-CO ₂ volatile phase is not required to cause the pressure to
680	fluctuate in a closed, isochoric system undergoing crystallization, the volatile phase does
681	facilitate and promote crystal growth. As reported by Maneta and Anderson (2018), who
682	experimentally studied the crystallization of H ₂ O-saturated granitic melts, "The experimental
683	results underscore the important role of water as a medium for the transport of essential
684	elements such as Si, Al, Na, and K from the silicate melt to the newly formed crystals."
685	Moreover, Zajacz et al. (2008) analyzed coexisting melt and fluid inclusions in quartz crystals
686	from miarolitic cavities in several granitic to intermediate composition plutons, and found
687	significant concentrations of Al, Na and K in the fluid inclusions. For example, the following
688	ranges in average concentrations of these elements from 13 different melt/fluid inclusion
689	assemblages were reported: A1 – 635 to 27,796 ppm; Na – 12,147 to 109,418 ppm; K – 6,885
690	to 124,871 ppm. These results emphasize the significant carrying-capacity of the
691	magmatic-hydrothermal fluids present during the formation of the crystals in the miarolitic
692	cavities and suggest that a volatile phase plays a critical role in transferring elements from the

Yuan et al AM 7637 Revision 2 November 25 2020

693 melt to the growing crystal surfaces.

The presence of volatiles also affects the viscosity of the melt phase which, in turn, affects 694 the movement of crystal-forming components by either diffusion or advection, or both, in the 695 evolving melt-volatile system. Audétat and Keppler (2004) showed that adding ~5 wt% H₂O 696 to an albite melt at 800°C decreased the viscosity by about 8 orders of magnitude, and with 10 697 wt% H₂O the viscosity is more similar to that of pure H₂O at the same conditions than it is to 698 that of the anhydrous melt. Similarly, Bartels et al. (2011) report that granitic melts containing 699 a few weight percent of Li₂O, F, B₂O₃ and P₂O₅ had viscosities at 773K that were similar to 700 those of water-saturated granitic melts at 973-1,023K. While we do not believe that melt 701 viscosity had a significant effect on the formation of the Taishanmiao pegmatites, the lowered 702 703 viscosities would favor the transfer and re-distribution of dissolved species within the 704 melt-crystal-fluid system. 705 **IMPLICATIONS** 706 The petrogenesis of pegmatites has intrigued professional mineralogists, petrologists, and 707 geochemists for at least the past century, and serious mineral collectors continuously seek the 708 709 elusive mineralized cavity filled with giant crystals. Two different processes to explain the formation of large crystals in granitic rocks are supported to greater or lesser extent by 710 experimental studies. In one case, pegmatites are interpreted to form when a crystallizing melt 711 achieves water saturation, while the other popular model suggests undercooling as the 712 mechanism associated with pegmatite formation. Both of these processes likely contribute to 713

Yuan et al AM 7637 Revision 2 November 25 2020

- the formation of the more common intrusive-type pegmatites that are generated when a hottermelt is intruded into a cooler host rock.
- Here, we document that MI and FI contained within pegmatite minerals provide a record of the crystallization history during pegmatite formation. Coexisting MI and FI confirm that the melts became volatile saturated during pegmatite formation, and provide information on the composition of melts and fluids that exsolved from the melts – these data are not otherwise obtainable.

The pegmatites studied here represent the miarolitic class of segregation-style pegmatites 721 that are the result of *in situ* crystallization of the last remnants of residual melt remaining after 722 the larger enclosing and cogenetic igneous body has almost completely crystallized. Field and 723 compositional data support the interpretation that the Taishanmiao pegmatites began to form 724 after ~96 % crystallization of the host granite and the melt became saturated in volatiles 725 shortly after the pegmatites began to form. Given the environment and mode of formation of 726 these bodies, the undercooling model for pegmatite formation is not supported as it is difficult 727 to envision a scenario that could generate significant temperature differences between the 728 pegmatite melt and the surrounding, cogenetic granitic body. However, the petrological 729 consequences of undercooling can be achieved by other means, including variations in the 730 pressure and/or the composition of the system. Thus, a liquidus deficit may be related to 731 changes in the temperature, or pressure, or composition of the magmatic system, and here we 732 provide a model for generation of a pressure-induced liquidus deficit that drives crystallization 733 in a closed system. It is unclear if the pegmatitic (very coarse-grained) texture observed today 734

Yuan_et_al_AM_7637_Revision_2_November 25_2020

735	was generated during the initial precipitation of quartz and K-feldspar in the pegmatite
736	volume, or if a fine-grained mixture of these phases was originally precipitated, and
737	subsequently underwent coarsening (ripening) to reduce total crystal surface area to minimize
738	surface free energy (Figure 9). We suggest the conclusions and the model described here may
739	be applicable to other miarolitic class, segregation style pegmatitic bodies elsewhere.
740	
741	ACKNOWLEDGEMENTS: The authors dedicate this contribution to the memory of
742	James (Jim) D. Webster. Jim provided valuable advice to YY concerning melt inclusions, and
743	YY was originally scheduled to work with Jim in his laboratory. When Jim became aware of
744	his illness, he contacted RJB and asked if he could accept Yabin as a visiting PhD student.
745	This gesture epitomizes Jim's unselfish nature and desire to help others, even when he was
746	facing serious health issues. RJB and Jim were friends and professional colleagues for almost
747	4 decades, and during the last several years co-taught (along with Leonid Danyushevsky,
748	Maria Luce Frezzotti and Benedetto DeVivo) a highly successful short course on Fluids in the
749	Earth. RJB very much misses the many discussions of science, politics and world affairs that
750	Jim and he shared over food and beer at many locations around the world.
751	Sampling and petrographic section preparation was supported by the National Nonprofit
752	Institute Research Grant of the Chinese Academy of Geological Sciences (YYWF201711). We
753	thank Charles Farley for providing technical assistance with Raman analyses. Eszter Sendula
754	helped with the FI and MI microthermometric analyses. Luca Fedele provided assistance with
755	sample preparation for EMP analyses of MI and I-Ming Chou provided several helpful

Yuan_et_al_AM_7637_Revision_2_November 25_2020

suggestions to YY.

757	While it is a common courtesy to acknowledge and thank reviewers for their comments
758	and suggestions related to a manuscript, we believe that special recognition should go to the
759	reviewers of this paper, including Rainer Thomas and Mona Sirbescu. Their insightful, yet
760	kind, criticisms of the earlier version of this paper led us to step back and take a more careful
761	and critical look at our samples and to specifically consider more carefully the type of
762	pegmatite we were dealing with. Much of our earlier interpretation was based on what we now
763	recognize was an incorrect assumption that the Taishanmiao pegmatites were similar to the
764	more commonly studied intrusive pegmatites. Questions from the reviewers about the
765	relationships between our pegmatites and conventional miarolitic cavities in granitic rocks,
766	and the nature of the pegmatite-host rock contact led us to re-think and develop what we now
767	believe is a more scientifically robust interpretation of the pegmatites. We offer our very
768	sincere thanks to the reviewers for opening our eyes!
769	YY acknowledges the support of Chinese Scholarship Council. This material is based in
770	part on work supported by the National Science Foundation under grant number EAR-1624589
771	to RJB. Any use of trade, firm, or product names is for descriptive purposes only and does not
772	imply endorsement by the U.S. Government.

- 773
- 774
- 775

Yuan_et_al_AM_7637_Revision_2_November 25_2020

776

REFERENCES CITED

- Anderson, A.T., Davis, A.M., Lu, F. (2000) Evolution of Bishop Tuff rhyolitic
 magma based on melt and magnetite inclusions and zoned phenocrysts.
 Journal of Petrology, 41, 4449-4473.
- Audétat, A., Pettke, T. (2003) The magmatic-hydrothermal evolution of two barren granites: A melt and fluid inclusion study of the Rito del Medio and Canada
 Pinabete plutons in northern New Mexico (USA). Geochimica et Cosmochimica Acta, 67, 97-121.
- Audétat, A., Keppler, H. (2004) Viscosity of fluids in subduction zones. Science,
 303, 513-516.
- Bartels, A., Vetere, F., Holtz, F., Behrens, H., Linnen, R.L. (2011) Viscosity of
 flux-rich pegmatitic melts. Contributions to Mineralogy and Petrology, 162,
 51-60.
- Bodnar, R.J., Student, J.J., (2006) Melt inclusions in plutonic rocks: petrography
 and microthermometry. In: Webster, J.D. (Ed.), Melt Inclusions in Plutonic
 Rocks, p. 1–25. Mineralogical Association of Canada, Montreal, Québec,
 Canada.
- Bodnar, R.J., Frezzotti, M.L. (2020) Microscale chemistry: Raman analysis of fluid
 and melt inclusions. Elements, 16, 201-205.
- Burnham, C.W. (1967) Hydrothermal fluids at the magmatic stage. Geochemistry
 of hydrothermal ore deposits, 34-76.
- Burnham, C.W., Davis, N.F. (1971) The role of H₂O in silicate melts; I, PVT
 relations in the system NaAlSi₃O₈-H₂O to 10 kilobars and 1000 degrees
 C. American Journal of Science, 270, 54-79.
- Candela, P.A., Blevin, P.L. (1995) Do some miarolitic granites preserve evidence of
 magmatic volatile phase permeability? Economic Geology, 90, 2310-2316.
- Candela, P.A. (1997) A review of shallow, ore-related granites: textures, volatiles,
 and ore metals. Journal of petrology, 38, 1619-1633.
- Connolly, J.A.D., Bodnar, R.J. (1983) A modified Redlich-Kwong equation of state
 for H₂O-CO₂ mixtures: Application to fluid inclusion studies. EOS, 64, 350.
- Falster, A., Simmons, W.B., Webber, K. (1997) The origin of evolved LCT-type
 granitic pegmatites in the Hoskin Lake granite-pegmatite field, Florence Co.
 Wisconsin. IAVCEI General Assembly.
- Fenn, P.M. (1986) On the Origin of Graphic Granite. American Mineralogist, 71,
 325-330.
- Gao, X.Y., Zhao, T.P., Bao, Z.W., Yang, A.Y. (2014) Petrogenesis of the early
 Cretaceous intermediate and felsic intrusions at the southern margin of the
 North China Craton: Implications for crust-mantle interaction. Lithos,
 206-207, 65-78.
- Ghiorso, M.S., Gualda, G.A.R. (2015) An H₂O–CO₂ mixed fluid saturation model
 compatible with rhyolite-MELTS. Contributions to Mineralogy and Petrology,
 169, 1-30.

Yuan et al AM 7637 Revision 2 November 25 2020

- Goldstein, R.H., Reynolds, T.J. (1994) Systematics of fluid inclusions in diagenetic
 minerals: SEPM Short Course, 31, 199.
- Grove, T.L., Till, C.B. (2015) Melting the Earth's Upper Mantle. In The
 Encyclopedia of Volcanoes, p. 35-47. Academic Press.
- Gualda, G.A.R., Ghiorso, M.S., Lemons, R.V., Carley, T.L. (2012)
 Rhyolite-MELTS: a Modified Calibration of MELTS Optimized for Silica-rich,
 Fluid-bearing Magmatic Systems. Journal of Petrology, 53, 875-890.
- Hards, N. (1976) Distribution of elements between the fluid phase and silicate melt
 phase of granites and nepheline syenites. Progress in experimental petrology,
 3, 88-90.
- Helgeson, H.C. (1969) Thermodynamics of hydrothermal systems at elevated
 temperatures and pressures. American Journal of Science, 267, 729-804.
- Jahns, R.H., Burnham, C.W. (1969) Experimental studies of pegmatite genesis; l, A
 model for the derivation and crystallization of granitic pegmatites. Economic
 Geology, 64, 843-864.
- Jin, C., Gao, X.Y., Chen, W.T., Zhao, T.P. (2018) Magmatic-hydrothermal
 evolution of the Donggou porphyry Mo deposit at the southern margin of the
 North China Craton: Evidence from chemistry of biotite. Ore Geology
 Reviews, 92, 84-96.
- Keppler, H. (1989) The influence of the fluid phase composition on the solidus
 temperatures in the haplogranite system NaAlSi₃O₈-KAlSi₃O₈-SiO₂-H₂O-CO₂.
 Contributions to Mineralogy and Petrology, 102, 321-327.
- Labrosse, S. (2014) Thermal and compositional stratification of the inner core.
 Comptes Rendus Geoscience, 346, 119-129.
- Lange, R.L., Carmichael, I.S. (1990) Thermodynamic properties of silicate liquids
 with emphasis on density, thermal expansion and compressibility. Reviews in
 Mineralogy and Geochemistry, 24, 25-64.
- Li, S., Li, J., Chou, I.M., Jiang, L., Ding, X. (2017) The formation of the Yichun
 Ta-Nb deposit, South China, through fractional crystallization of magma
 indicated by fluid and silicate melt inclusions. Journal of Asian Earth Sciences,
 137, 180-193.
- London, D. (1987) Internal differentiation of rare-element pegmatites: effects of
 boron, phosphorus, and fluorine. Geochimica et Cosmochimica Acta, 51,
 403-420.
- London, D. (2005) Granitic pegmatites: an assessment of current concepts and
 directions for the future. Lithos, 80, 281-303.
- London, D. (2008) Pegmatites. 347 p. The Canadian Mineralogist Special
 Publication, Québec, Canada.
- London, D., Hervig, R.L., Morgan, G.B. (1988) Melt-vapor solubilities and
 elemental partitioning in peraluminous granite-pegmatite systems:
 experimental results with Macusani glass at 200 MPa. Contributions to
 Mineralogy and Petrology, 99, 360-373.
- London, D., Morgan, G.B., Hervig, R.L. (1989) Vapor-undersaturated experiments

Yuan et al AM 7637 Revision 2 November 25 2020 with Macusani glass+H₂O at 200 MPa, and the internal differentiation of 861 granitic pegmatites. Contributions to Mineralogy and Petrology, 102, 1-17. 862 Maneta, V., Anderson, A.J. (2018) Monitoring the crystallization behavior of 863 water-saturated granitic melts in real time using the hydrothermal diamond 864 anvil cell. Contributions to Mineralogy and Petrology, 173:83. 865 https://doi.org/10.1007/s00410-018-1509-7 866 Mao, J.W., Goldfarb, R.J., Zhang, Z., Xu, W., Qiu, Y., Deng, J. (2002) Gold 867 deposits in the Xiaoqinling-Xiong'ershan region, Qinling Mountains, central 868 China. Mineralium Deposita, 37, 306-325. 869 Mao, J.W., Xie, G.Q., Pirajno, F., Ye, H.S., Wang, Y.B., Li, Y.F., Xiang, J.F., Zhao, 870 H.J. (2010) Late Jurassic-Early Cretaceous granitoid magmatism in Eastern 871 Qinling, central-eastern China: SHRIMP zircon U-Pb ages and tectonic 872 implications. Australian Journal of Earth Sciences, 57, 51-78. 873 Moore, L.R., Gazel, E., Tuohy, R., Lloyd, A.S., Esposito, R., Steele-MacInnis, M., 874 Hauri, E.H., Wallace, P.J., Plank, T., Bodnar, R.J. (2015) Bubbles matter: An 875 assessment of the contribution of vapor bubbles to melt inclusion volatile 876 budgets. American Mineralogist, 100, 806-823. 877 Morizet, Y., Brooker, R.A., Iacono-Marziano, G., Kjarsgaard, B.A. (2013) 878 Quantification of dissolved CO₂ in silicate glasses using micro-Raman 879 spectroscopy. American Mineralogist, 98, 1788-1802. 880 Nabelek, P.I., Russ-Nabelek, C., Denison, J. (1992) The generation and 881 crystallization conditions of the Proterozoic Harney Peak leucogranite, Black 882 Hills, South Dakota, USA: petrologic and geochemical constraints. 883 Contributions to Mineralogy and Petrology, 110, 173-191. 884 Newman, S., Lowenstern, J.B. (2002) VolatileCalc: a silicate melt-H₂O-CO₂ 885 solution model written in Visual Basic for excel. Computers & Geosciences, 886 28, 597-604. 887 Peng, P., Zhai, M., Ernst, R.E., Guo, J., Liu, F., Hu, B. (2008) A 1.78 Ga large 888 igneous province in the North China craton: The Xiong'er Volcanic Province 889 and the North China dyke swarm. Lithos, 101, 260-280. 890 Peppard, B.T., Steele, I.M., Davis, A.M., Wallace, P.J., Anderson, A.T. (2001) 891 Zoned quartz phenocrysts from the rhyolitic Bishop Tuff. American 892 Mineralogist, 86, 1034-1052. 893 Qi, Y. (2014) Petrogenesis of Laojunshan and Taishanmiao Granite Plutons in 894 Eastern Qinling, central China. 50 p. M. Sc. Thesis, University of Science and 895 Technology of China, Hefei (in Chinese with English abstract). 896 Ratschbacher, L., Hacker, B.R., Calvert, A., Webb, L.E., Grimmer, J.C., 897 McWilliams, M.O., Ireland, T., Dong, S., Hu, J. (2003) Tectonics of the 898 Qinling (Central China): tectonostratigraphy, geochronology, and deformation 899 900 history. Tectonophysics, 366, 1-53. Roedder, E. (1984) Fluid Inclusions, vol. 12. Reviews in Mineralogy, 901 Mineralogical Society of America, Chantilly, Virginia. 902 Severs, M.J., Azbej, T., Thomas, J.B., Mandeville, C.W., Bodnar, R.J. (2007) 903 40

Yuan et al AM 7637 Revision 2 November 25 2020

904	Experimental determination of H ₂ O loss from melt inclusions during
905	laboratory heating: Evidence from Raman spectroscopy. Chemical Geology,
906	237, 358-371.

- Simmons, W.B., Foord, E., Falster, A., King, V. (1995) Evidence for an anatectic
 origin of granitic pegmatites, western Maine, USA. Geological Society of
 America Annual Meeting, New Orleans, Abstract Program, 27, A411.
- Simmons, W.B., Webber, K.L. (2008) Pegmatite genesis: state of the art. European
 Journal of Mineralogy, 20, 421-438.
- Sirbescu, M-L.C., Schmidt, C., Veksler, I.V., Whittington, A.G., Wilke, M. (2017)
 Experimental crystallization of undercooled felsic liquids: Generation of
 pegmatitic texture. Journal of Petrology, 58, 539-568.
- Steele-MacInnis, M. (2018) Fluid inclusions in the system H₂O-NaCl-CO₂: An
 algorithm to determine composition, density and isochore. Chemical Geology,
 498, 31-44.
- Steele-MacInnis, M., Esposito, R., Bodnar, R.J. (2011) Thermodynamic Model for
 the Effect of Post-entrapment Crystallization on the H₂O-CO₂ Systematics of
 Vapor-saturated, Silicate Melt Inclusions, Journal of Petrology, 52, 2461-2482.
- Student, J.J., Bodnar, R.J. (1996) Melt inclusion microthermometry: Petrologic
 constraints from the H₂O-saturated haplogranite system. Petrology, 4,
 291-306.
- Student, J.J, Bodnar, R.J. (1999) Synthetic fluid inclusions XIV: coexisting silicate
 melt and aqueous fluid inclusions in the haplogranite-H₂O-NaCl-KCl system.
 Journal of Petrology, 40, 1509-1525.
- Swanson, S.E. (1977) Relation of nucleation and crystal-growth rate to the
 development of granitic textures. American Mineralogist, 62, 966-978.
- Thomas, R. (2000) Determination of water contents of granite melt inclusions by
 confocal laser Raman microprobe spectroscopy. American Mineralogist, 85,
 868-872.
- Thomas, R., Davidson, P. (2013) The missing link between granites and granitic
 pegmatites. Journal of Geosciences, 58, 183-200.
- Thomas, R., Webster, J.D., Heinrich, W. (2000) Melt inclusions in pegmatite quartz:
 complete miscibility between silicate melts and hydrous fluids at low pressure.
 Contributions to Mineralogy and Petrology, 139, 394-401.
- Thomas, R., Webster, J.D., Davidson, P. (2006) Understanding pegmatite formation:
 the melt and fluid inclusion approach. Melt inclusions in plutonic rocks, 36,
 189-210.
- Vaughan, D. (1963) The crystallization ranges of the Spruce Pine and Harding
 pegmatites, 61 p. M. Sc. Thesis, The Pennsylvania State University.
- Wallace, P.J. (2005) Volatiles in subduction zone magmas: Concentrations and
 fluxes based on melt inclusion and volcanic gas data. Journal of Volcanology
 and Geothermal Research, 140, 217-240.
- Wang, C., Chen, L., Bagas, L., Lu, Y., He, X., Lai, X. (2016) Characterization and
 origin of the Taishanmiao aluminous A-type granites: implications for Early

Yuan et al AM 7637 Revision 2 November 25 2020

- 947 Cretaceous lithospheric thinning at the southern margin of the North China948 Craton. International Journal of Earth Sciences, 105, 1563-1589.
- Wang, X.X., Wang, T., Zhang, C.L. (2013) Neoproterozoic, Paleozoic, and
 Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on
 orogenic process. Journal of Asian Earth Sciences, 72, 129-151.
- Webster, J.D., Holloway, J.R. (1987) Partitioning of halogens between topaz
 rhyolite melt and aqueous and aqueous-carbonic fluids, Geological Society of
 America, Abstracts with Program, 19, 884.
- Webster, J.D, Thomas, R., Förster, H.J., Seltmann, R., Tappen, C. (2004)
 Geochemical evolution of halogen-enriched granite magmas and mineralizing
 fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany.
 Mineralium Deposita, 39, 452-472.
- Webster, J.D., Tappen, C.M., Mandeville, C.W. (2009) Partitioning behavior of
 chlorine and fluorine in the system apatite-melt-fluid. II: Felsic silicate
 systems at 200MPa. Geochimica et Cosmochimica Acta, 73, 559-581.
- Webster, J.D., Vetere, F., Botcharnikov, R.E., Goldoff, B., McBirney, A., Doherty,
 A.L. (2015) Experimental and modeled chlorine solubilities in aluminosilicate
 melts at 1 to 7000 bars and 700 to 1250 °C: Applications to magmas of
 Augustine Volcano, Alaska. American Mineralogist, 100(2-3), 522-535.
- Xie, G., Mao, J., Li, R., Ye, H., Zhang, Y., Wan, Y., Li, H., Gao, J., Zheng, R. (2007)
 SHRIMP zircon U-Pb dating for volcanic rocks of the Daying Formation from
 Baofeng basin in eastern Qinling, China and its implications. Acta Petrologica
 Sinica, 23, 2387-2396 (in Chinese with English abstract).
- Ye, H., Mao, J., Xu, L., Gao, J., Xie, G., Li, X., He, C. (2008) SHRIMP zircon
 U-Pb dating and geochemistry of the Taishanmiao aluminous A-type granite
 in western Henan Province. Geological Review, 54, 699-711 (in Chinese with
 English abstract).
- Zajacz, Z., Halter, W.E, Pettke, T., Guillong, M. (2008) Determination of fluid/melt
 partition coefficients by LA-ICP-MS analysis of co-existing fluid and silicate
 melt inclusions: Controls on element partitioning. Geochimica et
 Cosmochimica Acta, 72, 2169-2197.
- Zhang, G., Meng, Q., Yu, Z., Sun, Y., Zhou, D., Guo, A. (1996) The orogenic
 process and dynamic analysis of the Qinling Orogen. Science in China Series
 D, 39, 1-9 (in Chinese).
- 981

Yuan_et_al_AM_7637_Revision_2_November 25_2020

983 Figure Captions

984	Figure 1. Simplified geologic map of China showing the location of the
985	Taishanmiao batholith within the Eastern Qinling Orogen (modified after
986	Wang et al., 2016). The study area outlined by the black dashed line is
987	shown in more detail in Figure 2.
988	
989	Figure 2. Simplified geologic map of the Taishanmiao batholith in Henan Province
990	(modified after Ye et al., 2008). Also shown by the star is the location
991	within the batholith where the samples studied here were collected.
992	
993	Figure 3. Photographs of pegmatite outcrops within the Taishanmiao granite. White
994	dashed lines in panels "a" and "d" denote the boundary between the
995	coarse-grained K-feldspar and quartz assemblage in the pegmatite and the
996	similar but finer-grained assemblage in the surrounding granite. (a)
997	Pegmatite body that surrounds and envelops a granite clast; (b) Intergrowth
998	of coarse-grained K-feldspar and quartz in the pegmatite, with crystal sizes
999	ranging from ~ 0.5 - 3 cm; (c) The melt (and fluid) inclusion assemblages
1000	studied mostly occur in the coarse-grained quartz from the intergrowth
1001	texture shown here. Also shown is open space within the pegmatite that is
1002	interpreted to have been filled with an H2O-CO2 magmatic fluid during
1003	pegmatite formation; (d) Pegmatite body showing the boundary between

Yuan et al AM 7637 Revision 2 November 25 2020

the pegmatite and surrounding granite. Note the absence of dendritic quartz
that is often interpreted as evidence of undercooling that leads to formation
of the pegmatitic texture in intrusive-style pegmatites.

1007

1008	Figure 4. Photomicrographs of melt and fluid inclusions entrapped in quartz. (a) An
1009	assemblage consisting of crystallized melt inclusions outlining a crystal
1010	surface in quartz; (b) Crystallized melt inclusions containing crystals +
1011	vapor + aqueous liquid from the assemblage shown in "a"; (c) An inclusion
1012	assemblage consisting of coeval melt inclusions (MI) and fluid inclusions
1013	(FI) in quartz. The FI contain CO ₂ -bearing aqueous liquid + vapor, with the
1014	vapor phase occupying ~ 20 - 50 vol% of the inclusion; (d) Secondary
1015	liquid-rich inclusions along a healed fracture and two CO2-vapor-rich,
1016	negative-crystal shaped two-phase FI in pegmatitic quartz; (e) Two
1017	negative-crystal shaped, two-phase FI that homogenized at 370°C (left FI)
1018	and 359°C (right FI).

Yuan_et_al_AM_7637_Revision_2_November 25 2020

1025	relatively large bubble (usually >25 vol%) as shown by the MI in the upper
1026	right. These MI likely leaked during heating or trapped some vapor along
1027	with the melt and are not considered further in the interpretation of results;
1028	(b) MI after heating to 850°C that contain glass \pm a small vapor bubble
1029	occupying 0.5 - 2 vol% of the inclusion; (c) MI that contain a relatively
1030	large bubble (usually >25 vol%) and crystals after heating and quenching.
1031	These and similar MI are interpreted to have leaked during heating and
1032	were not studied further. Details of the homogenization of MI are provided
1033	in Supplementary Materials.

1034

Figure 6. Mineral phases and their relative abundances (in volume percent) predicted by Rhyolite-MELTS during crystallization of the granitic melt that formed the Taishanmiao batholith. After ~96% crystallization, the predicted mineral assemblage and their relative abundances are consistent with the mineralogy of the granite in the Taishanmiao batholith at the time that the pegmatites began to form (Table 2).

1041

Figure 7. Estimated *PT* conditions for the formation of the Taishanmiao pegmatite based on the intersection of the isochores for fluid inclusions with the Spruce Pine granitic pegmatite solidus (SP; Vaughan, 1963), the H₂O-saturated granite solidus (0; Student and Bodnar, 1996), and the

Yuan et al AM 7637 Revision 2 November 25 2020

haplogranite-H₂O-CO₂ solidus for melt in equilibrium with a vapor phase 1046 containing 25 mol% CO₂ (25; Keppler, 1989). Only the isochores that 1047 intersect at the solidi at the highest and lowest pressures are shown; all 1048 other isochores intersect the solidi at pressures between these two limiting 1049 values. The green box represents the PT conditions (3.3 kbar; 734°C) after 1050 ~96% of the melt that formed the Taishanmiao granite had crystallized, and 1051 is interpreted to represent the PT conditions at the beginning of pegmatite 1052 formation. The gray shaded area represents the PT range defined by 1053 pressures along the FI isochores in the temperature range from 625° to 1054 734°C, and is interpreted to represent the range in PT conditions 1055 corresponding to pegmatite formation. Also shown are the α/β quartz 1056 transition PT coordinates. 1057

1058

Figure 8. Relationship between the concentration of Cl (left) and Na (right) versus 1059 F concentration in MI based on data from EDS and WDS analyses. (Left) 1060 Cl concentration increases with increasing F concentration over the range 1061 1062 0.3 - 0.9 wt% F, after which the Cl concentration decreases with continued increase in F from 0.9 wt% to 1.4 wt%. The change from increasing Cl with 1063 F to decreasing Cl with F is interpreted to represent the stage in the 1064 crystallization history at which the melt becomes volatile saturated. The 1065 line is not a fitted line to the data, but rather is meant to highlight the trend 1066

Yuan_et_al_AM_7637_Revision_2_November 25 2020

1067 of increasing Cl with F, followed by a decrease in Cl with co	ontinued
1068 increase in F concentration. (Right) Na content versus F conce	ntration
measured in MI. The concentration of Na_2O in MI that coexist with	ı FI (0.8
- 2.2 wt%; red dots) is lower than the Na concentration in in	nclusion
assemblages where MI do not coexist with FI (Na ₂ O: $2.2 - 3.0$ wt	%; blue?
dots). This is consistent with the fact that Cl is likely transported f	rom the
1073 melt into the magmatic aqueous phase as an alkali chloride (NaCl) s	pecies.

1074

Figure 9. Schematic representation of the conceptual model proposed for formation 1075 of the Taishanmiao pegmatites. At 734°C and 3.3 kbar, residual melt that 1076 1077 remains after crystallization of ~96% of the Taishanmiao granite becomes isolated and continues to evolve as a closed, isochoric system (Stage 1). 1078 The melt at this stage contains 6.3 wt% H₂O and 500 ppm CO₂ and is 1079 volatile undersaturated. During the initial phase cooling, crystals nucleate 1080 on preexisting crystals on the walls (heterogeneous nucleation; Stage 2) and 1081 this, in turn, generates a shrinkage bubble (Stage 3) because the volume 1082 1083 occupied by the crystals is ~7.7 vol% smaller than the volume of melt from which the crystals grew owing to the volume of fusion. The formation of 1084 the shrinkage bubble and the decrease in pressure causes a liquidus deficit 1085 and moves the PTX conditions within the pegmatite-forming melt away 1086 from the equilibrium liquidus. This, in turn promotes crystal growth and an 1087

Yuan_et_al_AM_7637_Revision_2_November 25_2020

1088	H ₂ O-CO ₂ fluid continues to exsolve from the melt in an attempt to return to
1089	an equilibrium state. Owing to the complex relationship between pressure,
1090	volatile solubility in the melt, and the H ₂ O-CO ₂ ratio in the fluid in a closed,
1091	isochoric system, the pressure in the MI fluctuates until a new equilibrium
1092	pressure is achieved, resulting in episodes of dissolution and growth of the
1093	crystals in the pegmatite (Stage 4). Ripening (coarsening) leads to
1094	development of fewer, larger crystals to reduce the surface area and surface
1095	free energy, and this results in the pegmatitic texture that characterizes
1096	miarolitic class, segregation-type pegmatites. At some later subsolidus stage
1097	(Stage 5), fractures intersect the fluid-filled cavity and the $\mathrm{H_{2}O\text{-}CO_{2}}$
1098	escapes, leaving behind a cavity containing large crystals and a void space.

Yuan_et_al_Tables_Version_November_25_2020

	Range in reported	Starting composition	Residual melt	Volatile-free residual	Compositions
Major oxide	bulk composition for	used to model	composition at	melt composition at	of MI in
components	the Taishanmiao	crystallization of	beginning of pegmatite	beginning of	quartz (wt%)
	granite**	Taishanmiao granite	Taishanmiao graniteformation (wt%)		
	(wt%)	(wt%)		(wt%)	
SiO ₂	70.28-78.98	75.73	69.1	73.8	78.2-81.7
TiO ₂	0.09-0.44	0.1	0.23	0.25	-
Al ₂ O ₃	11.20-14.57	12.64	14.2	15.2	11.5-14.9
Fe ₂ O ₃	-	0.60	0.24	0.26	-
FeO	1.07-2.35*	1.09	0.27	0.29	0.5-0.8*
MgO	0.07-0.62	0.07	0.14	0.15	-
CaO	0.21-1.23	0.42	0.95	1.0	0.1-0.5
Na ₂ O	2.92-4.30	3.58	2.6	2.8	0.8-3.0
K ₂ O	4.51-6	5.38	4.7	5.1	1.8-3.9
P ₂ O ₅	0.01-0.11	0.02	0.49	0.52	-
F	0.02-0.5	0.03	0.74	0.79	0.3-1.4
H ₂ O	-	0.26	6.3	-	-
CO ₂	-	0.0022	0.05	-	-

Table 1. Bulk rock and melt compositions for the Taishanmiao granite.

* Note that total Fe is reported as FeO.

** Data summarized from Ye et al. (2008); Gao et al. (2014); Wang et al. (2016); Jin et al. (2018).

Yuan_et_al_Tables_Version_November_25_2020

Table 2. Observed and predicted mineralogy of the Taishanmiao granite.

Major mineral	Mineralogy of	Mineralogy of	Mineral assemblage
components	lithologies 1	lithology 3	of the pegmatite
	and 2 (vol%)*	(vol%)**	predicted by
			Rhyolite-MELTS
			(vol%) [mol%]
K-feldspar	45-65	~50	51.1 [24.3]
Quartz	25-35	~35	33.6 [68.8]
Plagioclase	10-20	~12	14.1 [6.8]
Biotite	1-5	~2	0.1
Magnetite	minor	minor	1.0

 * Lithologies 1 and 2 include the medium- to coarse-grained syenogranite and the fine- to medium-grained syenogranite. Mineral proportions are summarized from Qi (2014);
 Wang et al. (2016); Jin et al. (2018).

** Lithology 3 represents the porphyritic syenogranite. Mineral proportions are summarized from Wang et al. (2016).

Figure 6

Figure 8

