1

Revision 1

- 2 Word count: 7653
- 3
- 4 High-pressure syntheses and crystal structure analyses of a new low-density CaFe₂O₄-
- 5 related and CaTi₂O₄-type MgAl₂O₄ phases
- 6
- 7 Takayuki Ishii^{1,2,3}, Giacomo Criniti², Elena Bykova², Leonid Dubrovinsky², Tomoo
- 8 Katsura^{2,3}, Hidekazu Arii^{1†}, Hiroshi Kojitani¹, Masaki Akaogi¹
- 9
- ¹Department of Chemistry, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
- ²Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany
- ³Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China
- [†]Present address: Faculty of Education, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi,
- 14 Miyazaki, 889-2192 Miyazaki, Japan
- 15

17

Abstract 18

19	Single crystals of CaTi ₂ O ₄ (CT)-type, CaFe ₂ O ₄ (CF)-type, and new low-density CaFe ₂ O ₄ (LD-
20	CF) related MgAl ₂ O ₄ were synthesized at 27 GPa and 2500 °C, and also CT-type MgAl ₂ O ₄ at 45
21	GPa and 1727 °C using conventional and advanced multi-anvil technologies, respectively. The
22	structures of CT-type and LD-CF related MgAl ₂ O ₄ were analyzed by single-crystal X-ray
23	diffraction. The lattice parameters of the CT-type phases synthesized at 27 and 45 GPa were $a =$
24	2.7903(4) Å, $b = 9.2132(10)$ Å, and $c = 9.3968(12)$ Å, and $a = 2.7982(6)$ Å, $b = 9.2532(15)$ Å,
25	and $c = 9.4461(16)$ Å, respectively, ($Z = 4$, space group: <i>Cmcm</i>) at ambient conditions. This
26	phase has an AlO ₆ octahedral site and an MgO ₈ bicapped trigonal prism with two longer cation-
27	oxygen bonds. The LD-CF related phase has a novel structure with orthorhombic symmetry
28	(space group: <i>Pnma</i>), and lattice parameters of $a = 9.207(2)$ Å, $b = 3.0118(6)$ Å, $c = 9.739(2)$ Å
29	(Z = 4). The structural framework comprises tunnel-shaped spaces constructed by edge- and
30	corner-sharing of AlO ₆ and a 4+1 AlO ₅ trigonal bipyramid, in which MgO ₅ trigonal bipyramids
31	are accommodated. The CF-type MgAl ₂ O ₄ also has the same space group of <i>Pnma</i> but a slightly
32	different atomic arrangement, with Mg and Al coordination numbers of 8 and 6, respectively.
33	The LD-CF related phase has the lowest density of 3.50 g/cm^3 among MgAl ₂ O ₄ polymorphs,
34	despite its high-pressure synthesis from the spinel-type phase (3.58 g/cm ³), indicating that the

35	LD-CF related phase formed via back-transformation from a high-pressure phase during the
36	recovery. Combined with the previously determined phase relations, the phase transition between
37	CF- and CT-type MgAl ₂ O ₄ is expected to have a steep Clapeyron slope. Therefore, CT-type
38	phase may be stable in basaltic- and continental-crust compositions at higher temperatures than
39	the average mantle geotherm in the wide pressure range of the lower mantle. The LD-CF related
40	phase could be found in shocked meteorites, and used for estimating shock conditions.

41

Keywords 42

Single-crystal X-ray diffraction, crystal structure, high pressure, phase transition, spinel, post-43

44 §	spinel,	calcium	titanate,	calcium	ferrite
------	---------	---------	-----------	---------	---------

47	1. Introduction
48	$MgAl_2O_4$ spinel (Sp) is a minor but common mineral in lherzolite xenoliths from 20–50
49	km depths and in meteorites. The high-pressure polymorphs of $MgAl_2O_4$ with calcium ferrite
50	(CF)- and calcium titanate (CT)-type structures are considered important and abundant
51	components that are stable under lower-mantle conditions in Al ₂ O ₃ -rich rocks, such as basalt,
52	upper continental crust, and sediment (e.g., Irifune et al. 1994; Ono et al. 2005; Ishii et al. 2012,
53	2019). High-pressure transitions in MgAl ₂ O ₄ thus have been an important subject for
54	understanding hosts of aluminum in the Earth's mantle.
55	High-pressure and high-temperature phase transitions in MgAl ₂ O ₄ have been
56	investigated for more than four decades (Liu 1978; Irifune et al. 1991; Funamori et al. 1998;
57	Akaogi et al. 1999; Irifune et al. 2002; Ono et al. 2006; Enomoto et al. 2009; Kojitani et al. 2010;
58	Kojitani et al. 2012). At temperatures of 1200 to 1600 °C with pressures of 15 to 16 GPa,
59	$MgAl_2O_4$ Sp decomposes to MgO periclase (Pc) + Al_2O_3 corundum (Cor) at pressures of 15 to
60	16 GPa. They react at pressures of 25 to 27 GPa to form CF-type MgAl ₂ O ₄ (Akaogi et al. 1999;
61	Irifune et al. 2002; Kojitani et al. 2012). At temperatures above 2000 °C and pressures of 20 to
62	26 GPa, Sp first dissociates to modified ludwigite-type $Mg_2Al_2O_5 + Cor$ (Kojitani et al. 2010).
63	The dissociated phases again form a single phase with MgAl ₂ O ₄ composition at pressures above

64	26 GPa, and this single phase has been recovered as an unknown phase at ambient conditions
65	(Enomoto et al. 2009; Kojitani et al. 2010). Above 40 GPa, the CF phase transforms to a CT-type
66	phase in a wide temperature range of 1200 to 3000 °C (Funamori et al. 1998; Ono et al. 2006).
67	The structure of CT-type MgAl ₂ O ₄ has not yet been analyzed due to difficulty in collecting data
68	suitable for analyzing the structure. It is important to analyze the structure for clarifying that the
69	phase transformed from CF phase is CT phase. It was also reported that a poorly characterized
70	orthorhombic phase, ε -MgAl ₂ O ₄ , may be possibly stable between 25 and 50 GPa at 1100–2500
71	°C (Liu, 1978; Ono et al. 2006). Enomoto et al. (2009) showed that the powder X-ray diffraction
72	pattern of the unknown $MgAl_2O_4$ phase at ambient conditions differs from those of all known
73	MgAl ₂ O ₄ phases, including ε -MgAl ₂ O ₄ . Thus, stabilities and structures of ε -MgAl ₂ O ₄ and
74	Enomoto et al.'s (2009) unknown phase are under debate.
75	In this study, we synthesized single crystals of CT-type, CF-type, and new low-density
76	CF(LD-CF) related MgAl ₂ O ₄ at 27 GPa and 2500 °C in a single run. The pressure and
77	temperature conditions were identical to those from which Enomoto et al. (2009) recovered the
78	unknown phase. We also synthesized CT-type $MgAl_2O_4$ at 45 GPa and 1727 °C using an
79	advanced multi-anvil technique that we developed. We examined structures of the CT-type and
80	the new LD-CF related phases of MgAl ₂ O ₄ using single-crystal X-ray diffraction (XRD). We
81	also assessed the stability of these phases in the deep mantle and shocked meteorites.

82

2. Experimental methods

2.1. High-pressure and high-temperature experiment at 27 GPa and 2500 °C 83 Synthetic MgAl₂O₄ Sp (a = 8.0861(3) Å) was used as a starting material, which was 84 synthesized from a mixture of MgO + Al_2O_3 with a molar ratio of 1:1 by heating at 1500 °C for 85 24 h. The high-pressure and high-temperature synthesis was performed using a Kawai-type 86 87 multi-anvil high-pressure apparatus at the Department of Chemistry, Gakushuin University, in Japan. Tungsten carbide (WC) anvils with 2.5-mm truncated edge lengths (Grade TF05, 88 produced by Fuji Die Co., Ltd.) were used in combination with a 5 wt% Cr₂O₃-doped MgO 89 90 octahedral pressure medium with a 7-mm edge length. A cylindrical Re heater was put at the center of the pressure medium. The starting material was put directly in the central part of the 91 92 heater. A LaCrO₃ sleeve was placed outside the heater, with lids placed at both ends in the heater. Re disks were placed at the boundaries between the LaCrO₃ lids and sample to avoid 93 contamination. The sample pressure was estimated based on a pressure calibration curve at 94 95 1600–1800 °C (Ishii et al. 2011, 2012), in which the temperature effect on pressure was 96 neglected. Temperature was measured at the central part of the outer surface of the heater using a Pt/Pt-13%Rh thermocouple up to 1800 °C. We estimated a sample temperature of 2500 °C by 97 extrapolation of the power-temperature relationships up to 1800 °C. No pressure effect on 98 electromotive force of the thermocouple was corrected. Enomoto et al. (2009) estimated the 99

100	temperature error above 1800 °C to be ± 50 °C using a Pt/Pt-13%Rh thermocouple, when the
101	power-temperature relationship below 1800 °C was extended to higher temperatures. Pressure
102	uncertainty was estimated to be ± 0.5 GPa (Ishii et al. 2011, 2012).
103	The sample was compressed to a target pressure at an almost constant rate of 1 MN/h at
104	room temperature and then heated to the target temperature of 2500 °C at a rate of 100 °C/min.
105	After keeping this temperature for 5 min, the sample was quenched by turning the electrical
106	power off and slowly decompressed to ambient pressure for 12 hours. Colorless and light-green
107	single crystals in the run product (see sections 2.3 and 2.4 for details) were picked up for
108	compositional and structural analyses.
109	2.2. High-pressure and high-temperature experiment at 45 GPa and 1727 $^{\mathrm{o}}\mathrm{C}$
110	The high-pressure and high-temperature experiment was conducted using the
111	Kawai-type multi-anvil apparatus with the Osugi-type guide block system, which was referred as
112	DIA-type ¹ (IRIS-15) (Ishii et al. 2016, 2019) and installed at the Bayerisches Geoinstitut,
113	University of Bayreuth. TF05 WC anvils with 1°-tapering and 1.5-mm truncation were adopted

¹ This guide block system was first devised by Jiro Osugi's laboratory in the Department of Chemistry, Kyoto University. The system comprises upper and lower guide blocks, with four 45° slopes and four sliding wedges on the guide blocks. Each guide block and sliding wedge is equipped with an anvil. The six anvils in the [100] directions synchronously compress a cubic space via uniaxial force.

114	in combination with a Cr-doped MgO pressure medium with an edge length of 5.7 mm. The
115	tapering technique in combination with hard WC anvils allows generation of pressures higher
116	than 40 GPa, even using WC anvils (Ishii et al. 2016, 2017a, 2017b; Liu et al. 2017a). A Re foil
117	heater was placed at the center of the pressure medium. A ZrO ₂ thermal insulator was located
118	outside the heater. Mo electrodes at both ends of the heater were connected with the WC anvils.
119	A dense alumina tube (outer/inner diameter = $0.5 \text{ mm}/0.3 \text{ mm}$; height = 2.1 mm) was inserted
120	into the heater. A mixture of MgO-Mg(OH) ₂ -SiO ₂ -Al(OH) ₃ - ⁵⁷ Fe ₂ O ₃ was packed in a gold tube
121	capsule. The capsule was put inside the alumina tube, with MgO lids located at both ends. A W-
122	3%Re/W-25%Re thermocouple measured the surface temperature of the heater.
123	The cell assembly was compressed to the maximum press load of 15 MN for 5 h and
124	then heated to the target temperature of 1727 °C. After 2 h, the assembly was quenched by
125	turning off the electric power, and then the pressure was released for 15 hours. Temperature
126	fluctuated within 10 °C when the electric power was on. The generated pressure was estimated
127	based on results of pressure calibration with separate runs, which suggested a sample pressure of
128	45 GPa at a press load of 15 MN and a temperature of 1727 °C, based on alumina solubility in
129	
	MgSiO ₃ bridgmanite (Liu et al. 2017b; Ishii et al. 2016, 2017b). Pressure uncertainty based on
130	MgSiO ₃ bridgmanite (Liu et al. 2017b; Ishii et al. 2016, 2017b). Pressure uncertainty based on compositional error was ± 0.3 GPa. After recovering, we found a light-green crystal inside the

132 **2.3. Sample characterization**

133	Phases of the starting material of MgAl ₂ O ₄ Sp were identified using a powder X-ray
134	diffractometer (Rigaku RINT 2500V) with monochromatized Cr K α radiation operated at 45 kV
135	and 250 mA. Elements in crystals were checked using a field-emission-type scanning electron
136	microscope (Zeiss LEO 1530 Gemini) with an energy dispersive X-ray spectrometer (Oxford X-
137	Max ^N) (SEM-EDS). Compositions of crystals obtained by the high-pressure and high-
138	temperature syntheses were analyzed using an electron microprobe analyzer (EPMA) with
139	wavelength-dispersive spectrometers (JEOL, JXA-8200). Compositional data were collected at
140	an accelerated voltage and probe current of 15 kV and 10 nA, respectively, for 20 sec on the
141	peaks of Mg and Al and 10 sec on the background. Natural pyrope was used as the standard
142	material for Mg and Al. The compositions of the colorless and light-green crystals synthesized at
143	27 GPa and 2500 °C were Mg:Al = 0.998(5):2.000(3) and Mg:Al = 0.995(5):2.002(2),
144	respectively (Table 1). Origin of the light-green color may be due to chromium impurities from
145	the LaCrO ₃ thermal insulator or rhenium impurities from the Re heater, because crystals of this
146	color generally were found near the heater. However, these elements were undetectable by
147	EPMA analysis, and these impurities did not affect the single-crystal analyses.
148	The light-green crystal synthesized at 45 GPa has a composition of Mg:Al = $1.07(2)$:
149	1.94(2) (Table 1), although the capsule with a mixture of Mg(OH) ₂ (39.51 wt%), MgO (12.41

150	wt%), SiO ₂ (33.31 wt%), Al(OH) ₃ (4.80 wt%), and 57 Fe ₂ O ₃ (9.97 wt%) was put at the center of
151	the assembly. Fe, Al-bearing bridgmanite was found in the capsule. The composition of the light
152	green crystal thus may indicate that the crystal was formed by a reaction between the alumina
153	tube and magnesia lids outside the capsule (see section 2.2). We were unable to determine the
154	location of the light-green crystal due to a large deformation of the capsule. Although we
155	confirmed that the crystal has almost no Fe based on the EPMA analysis (Table 1), the color may
156	be due to trace amounts of Fe in the sample that were introduced when the gold capsule was
157	broken. We also checked existence of components originated from cell materials (LaCrO ₃ , ZrO ₂
158	and Cr ₂ O ₃ -doped MgO) by SEM-EDS, indicating no such elements in the crystal.
159	2.4. Single crystal X-ray structure analysis
159 160	 2.4. Single crystal X-ray structure analysis 2.4.1. Crystals synthesized at 27 GPa and 2500 °C. A colorless single crystal with MgAl₂O₄
159 160 161	 2.4. Single crystal X-ray structure analysis 2.4.1. Crystals synthesized at 27 GPa and 2500 °C. A colorless single crystal with MgAl₂O₄ composition, approximately 50×50×50 μm³ in size was used for the single crystal XRD
159 160 161 162	2.4. Single crystal X-ray structure analysis2.4.1. Crystals synthesized at 27 GPa and 2500 °C. A colorless single crystal with MgAl ₂ O ₄ composition, approximately 50×50×50 μm³ in size was used for the single crystal XRDmeasurement. The data were collected using a single-crystal X-ray diffractometer (Bruker AXS,
159 160 161 162 163	 2.4. Single crystal X-ray structure analysis 2.4.1. Crystals synthesized at 27 GPa and 2500 °C. A colorless single crystal with MgAl₂O₄ composition, approximately 50×50×50 µm³ in size was used for the single crystal XRD measurement. The data were collected using a single-crystal X-ray diffractometer (Bruker AXS, Smart APEX2) at Gakushuin University. The diffractometer used a charge-coupled device
159 160 161 162 163 164	2.4. Single crystal X-ray structure analysis2.4.1. Crystals synthesized at 27 GPa and 2500 °C. A colorless single crystal with MgAl ₂ O ₄ composition, approximately 50×50×50 µm³ in size was used for the single crystal XRDmeasurement. The data were collected using a single-crystal X-ray diffractometer (Bruker AXS,Smart APEX2) at Gakushuin University. The diffractometer used a charge-coupled devicedetector in the 2θ range, up to 57.18°, with Mo Kα radiation from a rotating anode at a voltage of
159 160 161 162 163 164 165	2.4. Single crystal X-ray structure analysis2.4.1. Crystals synthesized at 27 GPa and 2500 °C. A colorless single crystal with MgAl ₂ O ₄ composition, approximately 50×50×50 µm³ in size was used for the single crystal XRDmeasurement. The data were collected using a single-crystal X-ray diffractometer (Bruker AXS,Smart APEX2) at Gakushuin University. The diffractometer used a charge-coupled devicedetector in the 2θ range, up to 57.18°, with Mo Kα radiation from a rotating anode at a voltage of50 kV and current of 240 mA. The WinGX program (Farrugia 2012) was employed for
159 160 161 162 163 164 165 166	2.4. Single crystal X-ray structure analysis 2.4.1. Crystals synthesized at 27 GPa and 2500 °C. A colorless single crystal with MgAl ₂ O ₄ composition, approximately 50×50×50 µm ³ in size was used for the single crystal XRD measurement. The data were collected using a single-crystal X-ray diffractometer (Bruker AXS, Smart APEX2) at Gakushuin University. The diffractometer used a charge-coupled device detector in the 2θ range, up to 57.18°, with Mo Kα radiation from a rotating anode at a voltage of 50 kV and current of 240 mA. The WinGX program (Farrugia 2012) was employed for calculations of space group assignment and structure refinement. The systematic absences (h odd)

168	indicating that the space group was $Pnma$ or $Pn2_1a$. The $N(Z)$ test for a center of symmetry
169	(Hargreaves and Gogoi 1966) showed the centrosymmetric space group of <i>Pnma</i> . Absorption
170	correction was empirically made using the SADABS program (Sheldrick 1996), resulting in a
171	discrepancy factor among equivalent reflections (R_{int}) of 2.65%.
172	The initial structure for the refinement was found using the direct method of the
173	SHELXL-97 program (Sheldrick 1997). Refinement of the structure was performed against $ F ^2$
174	using the full-matrix least-squares method with the scattering factors of neutral atoms
175	(International Tables for Crystallography 1992). At the initial stage of the refinement, the
176	isotropic displacement factors of all atoms were refined with the atomic positions. At the final
177	stage, the anisotropic displacement factors were refined with all independent parameters
178	simultaneously.
179	A light-green single crystal with MgAl ₂ O ₄ composition, approximately $30 \times 30 \times 10 \ \mu m^3$
180	was used for single-crystal data collection. Single-crystal XRD was conducted using a 3-circle
181	Bruker diffractometer equipped with a SMART APEX CCD detector and Incoatec I μ S 3.0
182	microfocus X-ray source (Ag-Kα radiation) at Bayerisches Geoinstitut, University of Bayreuth.
183	Processing of XRD data (unit cell determination and integration of reflection intensities) was
184	performed using CrysAlisPro software (Rigaku Oxford Diffraction 2019). Systematic absences

185	characteristic of C-centering $(h + k \text{ odd for all reflections})$ were observed. Empirical absorption
186	correction was applied using spherical harmonics and implemented in the SCALE3 ABSPACK
187	scaling algorithm, which is included in the CrysAlisPro software.
188	The processed XRD data showed a R_{int} value of 3.92%. The crystal structure was
189	determined using the dual-space method in the SHELXT software. After the structure was
190	determined, most atoms were found, and the remaining atoms were located from a series of
191	difference Fourier map cycles. The crystal structure was refined in anisotropic approximation for
192	all atoms against F^2 on all data using the full-matrix least squares method in the SHELXL
193	software.
194	We also identified singe-crystal grains with a unit cell ($a = 8.6565(13)$ Å, $b = 2.7891(9)$
195	Å, $c = 9.9509(19)$ Å, $V = 240.25(10)$ Å ³) different from those belonging to the colorless and light
196	green crystals, which were picked up from the bottom part of the heater. Analysis of systematic
197	absences in terms of lattice-centering suggests the Pnma space group. Unfortunately, the data
198	quality was not sufficient for accurate refinement of the crystal structure. Nevertheless, because
199	the space group and values of the unit cell parameters agree with previously reported values for
200	CF-type MgAl ₂ O ₄ (Kojitani et al. 2007), we conclude that our sample contains some CF-type

201 MgAl₂O₄.

203	2.4.2. Crystal synthesized at 45 GPa and 1727 $^{\circ}$ C. A light-green single crystal with MgAl ₂ O ₄
204	composition and 40×40×20 μm^3 in size was used for single-crystal XRD data collection. The
205	same procedure of the refinement for the light green crystal synthesized at 27 GPa and 2500 $^{\circ}$ C
206	was adopted. The XRD data showed a R_{int} value of 2.82%. We assumed MgAl ₂ O ₄ composition,
207	although the composition was not stoichiometric and a trace amount of FeO was detected, as
208	previously mentioned. The difference between the scattering factors of Mg and Al was very
209	small, and the mosaicity of the crystal was high. The observed high-mosaicity caused the
210	diffraction peak profiles to broaden at high 2θ , limiting the resolution of the structure refinement.
211	3. Results
211 212	3. Results Table 2 summarizes the crystallographic data of the LD-CF related and CT-type
211 212 213	3. Results Table 2 summarizes the crystallographic data of the LD-CF related and CT-type MgAl ₂ O ₄ phases. Figures 1 and 2 show the structures of the LD-CF related and CT phases,
211212213214	3. Results Table 2 summarizes the crystallographic data of the LD-CF related and CT-type MgAl ₂ O ₄ phases. Figures 1 and 2 show the structures of the LD-CF related and CT phases, respectively. Table 3 lists the average interatomic distances and coordination numbers of cations
 211 212 213 214 215 	3. Results Table 2 summarizes the crystallographic data of the LD-CF related and CT-type MgAl ₂ O ₄ phases. Figures 1 and 2 show the structures of the LD-CF related and CT phases, respectively. Table 3 lists the average interatomic distances and coordination numbers of cations in these phases.
 211 212 213 214 215 216 	3. Results Table 2 summarizes the crystallographic data of the LD-CF related and CT-type MgAl ₂ O ₄ phases. Figures 1 and 2 show the structures of the LD-CF related and CT phases, respectively. Table 3 lists the average interatomic distances and coordination numbers of cations in these phases. 3.1. Crystal structure of new low-density CaFe ₂ O ₄ -related MgAl ₂ O ₄
 211 212 213 214 215 216 217 	 3. Results Table 2 summarizes the crystallographic data of the LD-CF related and CT-type MgAl₂O₄ phases. Figures 1 and 2 show the structures of the LD-CF related and CT phases, respectively. Table 3 lists the average interatomic distances and coordination numbers of cations in these phases. 3.1. Crystal structure of new low-density CaFe₂O₄-related MgAl₂O₄ The XRD measurement shows that the colorless crystal has lattice parameters of <i>a</i> =

219	Pnma. The determined structure, shown in Figure 1, has one trigonal bipyramid site for
220	magnesium cation (MgO ₅) and two crystallographically independent polyhedral sites for
221	aluminum cations (Al1O ₆ and 4+1 Al2O ₅). The equivalent aluminum-oxygen polyhedra of
222	AllO ₁₀ and Al2O ₈ form double chains running parallel to the b axis via edge-sharing (Figure 1).
223	The four double chains make an aluminum-oxygen polyhedral framework by corner-sharing. The
224	magnesium cation is accommodated in the five-oxygen coordinated site in a tunnel-shaped space
225	formed in the framework. The average Al-O distances of the Al1O ₆ and Al2O ₅ polyhedra are
226	1.952 Å and 1.860 Å, respectively, which are close to the sum of the effective ionic radii of
227	aluminum and oxygen, 1.935 Å and 1.88 Å, calculated from ${}^{VI}Al^{3+}$ (0.535 Å), ${}^{V}Al^{3+}$ (0.48 Å),
228	and $^{VI}O^{2-}$ (1.40 Å). The average Mg-O distance in MgO ₅ , 2.031 Å, is nearly the same as the sum
229	of the effective ion radii of $^{V}Mg^{2+}$ (0.66 Å) + $^{VI}O^{2-}$, 2.06 Å. The effective coordination numbers
230	(n_c) (Nespolo et al. 2001) of Mg and Al1, calculated using cation-five and -six neighboring
231	oxygen bonds, are 4.72 and 5.98, respectively, indicating that those coordination environments
232	are suitable for the cations. The n_c value of Al2 (4.23) is near four. The atomic distance of Al2-
233	O4 (2.161 Å) is 0.3–0.4 Å longer than the other bonds, and the position of Al2 in the oxygen-
234	trigonal bipyramid site is relatively off-centered, implying that 4 coordination is plausible for
235	Al2 (the oxygen-tetrahedral site). The n_c value of Al2 in the oxygen tetrahedral site is 3.98,
236	which is not significantly different from that in the oxygen-trigonal bipyramid site. This phase is

closely related to the CF-type structure, which is based on similar atomic arrangement and identical symmetry but with an extremely low density. In this paper, we therefore call this a "low-density CF-related" phase, although the CT-type phase also has similar features. We emphasize that, to the best of our knowledge, only a few compounds that have Mg or Al in the 5 coordination (trigonal bipyramid) have been found, including Al₂SiO₅ andalusite with AlO₆ and AlO₅ polyhedra (Taylor 1929) and Mg₃(PO₄)₂ with MgO₆ and MgO₅ polyhedra (Nord and Kierkegaard 1968).

244 **3.2.** CaTi₂O₄-type structure

According to the XRD results, the light green crystal synthesized at 27 GPa and 2500 °C 245 has the orthorhombic space group *Cmcm*, with lattice parameters of a = 2.7903(4) Å, b =246 9.2132(10) Å, c = 9.3968(12) Å and V = 241.57(5) Å³. The MgAl₂O₄ phase with the space group 247 of *Cmcm* adopts the structural type of CT (Figure 2). Mg^{2+} cations surrounded by 6 oxygen 248 atoms form a distorted trigonal prism with Mg-O distances of 2.018(3) and 2.207(2) Å. Two 249 additional oxygen atoms in the distance of 2.5607(7) Å complete 8-fold bipolar prismatic 250 coordination for Mg. The prisms connect through the common triangular faces to form rods 251 parallel to the *a* axis. Al^{3+} cations have octahedral coordination with 6 oxygen atoms, and Al-O 252 distances vary from 1.8468(17) to 1.9858(7) Å. The octahedra connect through shared edges to 253

form chains parallel to the a axis. The MgO₈ polyhedra and AlO₆ octahedra are connected via common edges and corners.

256	We also obtained XRD data from the crystal synthesized at 45 GPa and 1727 °C, showing
257	the CT-type structure with lattice parameters of $a = 2.7982(6)$ Å, $b = 9.2532(15)$ Å, $c =$
258	9.4461(16) Å, and $V = 244.58(8)$ Å ³ . The volume is ~3 Å ³ larger than that of the crystal
259	synthesized at 27 GPa and 2500 °C. This difference may be due to higher Mg content
260	(Mg/Al=0.55) for the 45-GPa crystal than that for the 27-GPa crystal (Mg/Al=0.5), which would
261	require Mg atoms to partially occupy the smaller octahedral Al-site. The average bond length of
262	AlO_6 octahedra (1.936 Å) is larger than that in the 27-GPa crystal (1.928 Å), supporting
263	incorporation of Mg into the octahedral site. Based on chemical composition analysis, this
264	crystal may contain oxygen vacancy or hydrogen in the structure due to its apparent charge
265	imbalance (cation: +7.96; oxygen: -8). However, we cannot draw a definite conclusion on the
266	presence of oxygen vacancy and water in the structure due to the small grain size causing a 3.5%
267	weight deficit in the EPMA analysis (Table 1).

268

4. Discussion

- **4.1. High-pressure crystal chemistry of MgAl₂O₄ polymorphs**
- 270 The new LD-CF related structure is similar to CF- and CT-type structures, but it has not
- $\label{eq:271} been described previously. Figure 3 compares the structures of MgAl_2O_4 polymorphs. CF- and$

272	CT-type structures consist of double chains of edge-shared AlO ₆ octahedra running parallel to an
273	orthorhombic cell axis. Both structures are classified by differences in the AlO ₆ -octahedral
274	frameworks (Decker et al. 1957; Rogge et al. 1998; Yamanaka et al. 2009; Ishii et al. 2014,
275	2015, 2018). In the CF-type structure, an Mg cation occupies a tunnel-shaped space formed by
276	corner-sharing of the four double chains, making 8-oxygen coordination for Mg in an oxygen-
277	trigonal prism site with two longer Mg-oxygen bonds. The CT-type structure also makes a
278	tunnel-shape space by corner- and edge-sharing of the four double chains, making a mirror plane
279	parallel to the tunnel direction (Figure 2). In addition, the CT-type structure has two much longer
280	Mg-oxygen bonds than those of the CF-type structure, making 6 coordination feasible for Mg.
281	In the LD-CE related structure, the coordination numbers of Λ (λ +1 coordination) and
201	In the ED-Cr related structure, the coordination numbers of A12 (4+1 coordination) and
282	Mg (5 coordination) are lower than those in CF- and CT-type structures (6 coordination for Al
282 283	Mg (5 coordination) are lower than those in CF- and CT-type structures (6 coordination for Al and 6+2 or 8 coordination for Mg, respectively). The coordination number for Al is even smaller
282 283 284	Mg (5 coordination) are lower than those in CF- and CT-type structures (6 coordination for Al and 6+2 or 8 coordination for Mg, respectively). The coordination number for Al is even smaller than the 6 coordination of the ambient pressure phase of MgAl ₂ O ₄ Sp (Meducin et al. 2004).
282 283 284 285	Mg (5 coordination) are lower than those in CF- and CT-type structures (6 coordination) and and 6+2 or 8 coordination for Mg, respectively). The coordination number for Al is even smaller than the 6 coordination of the ambient pressure phase of MgAl ₂ O ₄ Sp (Meducin et al. 2004). Table 4 shows molar volumes and densities of the phases with MgAl ₂ O ₄ composition. The LD-
282 283 284 285 286	Mg (5 coordination) are lower than those in CF- and CT-type structures (6 coordination) and and 6+2 or 8 coordination for Mg, respectively). The coordination number for Al is even smaller than the 6 coordination of the ambient pressure phase of MgAl ₂ O ₄ Sp (Meducin et al. 2004). Table 4 shows molar volumes and densities of the phases with MgAl ₂ O ₄ composition. The LD- CF related phase has the smallest density among these phases, even though this phase was
282 283 284 285 286 287	Mg (5 coordination) are lower than those in CF- and CT-type structures (6 coordination for Al and 6+2 or 8 coordination for Mg, respectively). The coordination number for Al is even smaller than the 6 coordination of the ambient pressure phase of MgAl ₂ O ₄ Sp (Meducin et al. 2004). Table 4 shows molar volumes and densities of the phases with MgAl ₂ O ₄ composition. The LD- CF related phase has the smallest density among these phases, even though this phase was recovered from a higher-pressure side than the stability field of Mg ₂ Al ₂ O ₅ + Al ₂ O ₃ (20–25 GPa
282 283 284 285 286 287 288	Mg (5 coordination) are lower than those in CF- and CT-type structures (6 coordination for Al and 6+2 or 8 coordination for Mg, respectively). The coordination number for Al is even smaller than the 6 coordination of the ambient pressure phase of MgAl ₂ O ₄ Sp (Meducin et al. 2004). Table 4 shows molar volumes and densities of the phases with MgAl ₂ O ₄ composition. The LD-CF related phase has the smallest density among these phases, even though this phase was recovered from a higher-pressure side than the stability field of Mg ₂ Al ₂ O ₅ + Al ₂ O ₃ (20–25 GPa and 2000–2500°C), in which Al ions are accommodated in oxygen-octahedral sites. These facts

290 high pressure and high temperature during decompression processes. This kind of back-

291	transformation has been reported in several compounds, such as the perovskite-LiNbO ₃ (LN)-
292	type transitions in FeTiO ₃ , MgSiO ₃ -Al ₂ O ₃ , and MgSiO ₃ -FeAlO ₃ systems and CF-modified CF
293	transition in FeCr ₂ O ₄ (Leinenweber et al. 1991; Akaogi et al. 2017; Ishii et al. 2014, 2017b; Liu
294	et al. 2017b, 2019, 2020).

295	Our recent study reported a high-pressure phase of MgFe ₂ O ₄ with a new crystal
296	structure, which was also interpreted as a back-transformed phase. The crystal structure of the
297	LD-CF related MgAl ₂ O ₄ differs from that of this MgFe ₂ O ₄ phase, which has a "Z-shape"
298	framework consisting of edge-sharing (Mg,Fe)O ₆ octahedra with one (Mg,Fe)O ₄ tetrahedral and
299	two (Mg,Fe)O ₆ octahedral sites in the framework (Ishii et al. 2020). We emphasize that to the
300	best of our knowledge, the LD-CF related MgAl ₂ O ₄ is the first case indicating the back-
301	transformed phase has a lower density than the ambient pressure phase. It is suggested that high-
302	pressure crystal chemistry in AB_2O_4 is much more complicated than previously considered. The
303	back-transformation from a high-pressure phase could be a distinct method to design novel
304	compounds and useful for understanding high-pressure crystal chemistry.
305	Ishii et al. (2018) classified quenchable CF- and CT-type phases in AB_2O_4 compositions
306	using radii of A and B cations coordinated to eight and six oxygens, respectively, showing the

307	CT-type phase at the B/A ionic radius ratio around 0.7. In this classification, MgAl ₂ O ₄ is
308	categorized as the CF-type (B/A ionic radius ratio = 0.6). They suggested that quenchable CT-
309	type MgAl ₂ O ₄ may be due to an Mg-Al disorder between the A- and B-sites or a different B/A
310	ionic radius ratio at high pressures. The similar X-ray scattering factors between Mg and Al do
311	not allow characterizing the Mg-Al disordering based on the single-crystal XRD data. However,
312	our structural and compositional analyses of CT-type MgAl ₂ O ₄ synthesized at 45 GPa and 1727
313	°C show the longer Al-O average bond length in the AlO ₆ octahedron and the higher Mg content
314	than those of the sample synthesized at 27 GPa and 2500 °C. These characteristics imply
315	possible Mg-Al disordering in the CT-type structure, leading to an increase of the B/A ionic
316	radius ratio. Compressibilities of A- and B-sites in the CT-type phase will also provide more
317	information to understand stabilization of CT-type structure and to improve the categorization.
318	We emphasize that $MgAl_2O_4$ is only a single compound whose high-pressure phases with both
319	the CF- and CT-types are quenchable.
320	4.2. Phase stabilities of MgAl ₂ O ₄ high-pressure polymorphs
321	Enomoto et al. (2009) reported phase relations in MgAl ₂ O ₄ up to 27 GPa and 2500 $^\circ$ C
322	and found an unknown phase with an MgAl ₂ O ₄ composition in the run products recovered from
323	25.5-27 GPa and 2100-2500 °C. The pressure and temperature conditions under which we
324	synthesized the LD-CF related phase (27 GPa and 2500 °C) fall within the region where the

325	unknown phase was synthesized by Enomoto et al. (2009). Furthermore, several strong
326	diffraction peaks of the unknown phase in the powder XRD pattern observed by Enomoto et al.
327	(2009) agree with the diffraction peaks of the present LD-CF related phase. For example, d-
328	values of 4.8691 Å, 3.3442 Å, 2.6518 Å, and 2.5207 Å with relatively high intensities, as
329	reported in Enomoto et al. (2009), correspond to diffraction peaks with indexes of 002, 202, 203,
330	and 210, respectively, in the present LD-CF related phase. This agreement indicates that the
331	unknown phase reported by Enomoto et al. (2009) is LD-CF related MgAl ₂ O ₄ . The fact that we
332	synthesized the CF-type and CT-type phases together with the LD-CF related phase indicates
333	that LD-CF related MgAl ₂ O ₄ might be back-transformed from either of these high-pressure
334	phases with an MgAl ₂ O ₄ composition. Previous studies reported that ϵ -MgAl ₂ O ₄ , which is stable
335	between 25 and 50 GPa (Liu 1978; Ono et al. 2006), is a candidate phase under high pressure
336	and high temperature, but its detailed structure remains unclear. A further study with in situ X-
337	ray observation under high pressure and high temperature is needed to reveal a high-pressure
338	phase to produce the LD-CF related MgAl ₂ O ₄ during recovery.
339	As shown in Table 4, our study indicates that the CT-type phase has a density of 3.864–
340	3.912 g/cm^3 at ambient conditions, which is lower than the $3.933-3.937 \text{ g/cm}^3$ of the CF-type
341	phase given by Kojitani et al. (2007) and this study. The CT-type MgAl ₂ O ₄ by Ono et al. (2006)
342	also has a smaller density of 3.927(3) g/cm ³ than that of the CF-type phase. The in situ X-ray

343	diffraction experiments at 45-117 GPa and 1200-2500°C, however, indicated that the CT-type
344	phase is a higher-pressure phase than the CF-type phase (Ono et al. 2006). On the contrary, the
345	coordination number of Mg atoms in the CF-type phase is higher than that of the CT-type phase,
346	which suggests that the CF-type phase may be a higher-density phase, at least at ambient
347	conditions. One explanation for this contradiction is a compressibility difference between the
348	CF-type and CT-type phases. The bulk moduli of CF- and CT-type MgAl ₂ O ₄ , reported as 210–
349	241 GPa and 210–219 GPa, respectively (Yutani et al. 1997; Funamori et al. 1998; Irifune et al.
350	2002; Ono et al. 2006), are currently indistinguishable within the errors. Nevertheless, we
351	consider that the <i>c</i> -axis may shrink more efficiently in the CT-type structure than other
352	directions, because AlO ₆ octahedra are linked by corner-sharing in the <i>c</i> -direction (AlO ₆ -O2-
353	AlO ₆) whereas other links are made by edge-sharing, making the structure more flexible in the <i>c</i> -
354	axis (Siersch et al. 2017; Ishii et al. 2017). This possible preferred shrinkage by compression
355	would make a higher coordination number for A-site cation and a density crossover between the
356	two phases. Another possible explanation is the difference in thermal expansivity of CF- and CT-
357	type MgAl ₂ O ₄ , which has not yet been constrained experimentally. Compression experiments of
358	CF- and CT-type MgAl ₂ O ₄ at high temperatures will clarify any contradictions in the density
359	difference between CF-type and CT-type phases.

5. Implications

361	5.1. Shocked meteorites and impact craters
362	Shocked meteorites and impact craters bring high-pressure phases such as CF- and CT-
363	type FeCr ₂ O ₄ and LN-type FeTiO ₃ (Dubrovinsky et al. 2009; El Goresy et al. 2010; Ishii et al.
364	2014; Akaogi et al. 2017) that provide important clues about pressure-temperature conditions in
365	shock events. MgAl ₂ O ₄ spinel is found in stony meteorites as a minor mineral, and therefore, it is
366	expected that LD-CF related MgAl ₂ O ₄ will be found in shocked meteorites and impact craters. It
367	thus may serve as a possible indicator for shock conditions of 26–27 GPa and 2100–2500 °C.
368	5.2. Mineralogy in the deep mantle
369	The results, together with the present observation that the CT-type phase was located near
370	the heater at 27 GPa and 2500 °C, indicate that the CT-type phase is a high-temperature phase of
371	the CF-type. The present 45-GPa synthesis of the CT phase, along with previous studies
372	(Funamori et al. 1998; Ono et al. 2006), suggest that the CT phase is stable at pressures higher
373	than 40 GPa. In the system FeCr ₂ O ₄ , the CF-CT phase transition boundary has a steep negative
374	Clapeyron slope of about –100 MPa/K (Ishii et al. 2014). This steep slope in FeCr ₂ O ₄ system
375	originates from a small volume change between the CF and CT phases, which can cause the
376	large dP/dT (= $\Delta S/\Delta V$) value. It is therefore likely that the CF-CT phase transition boundary in

the MgAl₂O₄ system also has a steep dP/dT slope due to the small volume difference between the CF and CT phases (Table 4).

379	Ono et al. (2005) synthesized the CT phase in a basaltic crust composition at 143 GPa,
380	which is higher than the core-mantle boundary pressure, suggesting that the CT phase is stable
381	around the bottom of the core-mantle boundary. If the steep negative boundary is common to
382	CF-CT transitions, the CT phase may be stable at high temperatures, such as those found in
383	upwelling plumes with basaltic and continental-crust compositions in the lower mantle
384	(Ricolleau et al. 2010; Ishii et al. 2012, 2019). Thus, it is valuable for better understanding of the
385	mantle structure and dynamics to investigate the stability of CT phases with more realistic
386	compositions in the lower mantle across a wide temperature range.
387	Acknowledgements
387 388	Acknowledgements We thank K. Mochida and A. Aimi for their help with the single-crystal structure
387 388 389	Acknowledgements We thank K. Mochida and A. Aimi for their help with the single-crystal structure analysis. We also thank Alan B. Woodland, an anonymous referee, and a technical editor for
387 388 389 390	Acknowledgements We thank K. Mochida and A. Aimi for their help with the single-crystal structure analysis. We also thank Alan B. Woodland, an anonymous referee, and a technical editor for valuable comments and suggestions and the Associate Editor R. Sinmyo for editorial handling.
387 388 389 390 391	Acknowledgements We thank K. Mochida and A. Aimi for their help with the single-crystal structure analysis. We also thank Alan B. Woodland, an anonymous referee, and a technical editor for valuable comments and suggestions and the Associate Editor R. Sinmyo for editorial handling. M. Akaogi was supported by Grants-in-Aid (nos. 22340163, 25287145, and 17H02986) from the
387 388 389 390 391 392	Acknowledgements We thank K. Mochida and A. Aimi for their help with the single-crystal structure analysis. We also thank Alan B. Woodland, an anonymous referee, and a technical editor for valuable comments and suggestions and the Associate Editor R. Sinmyo for editorial handling. M. Akaogi was supported by Grants-in-Aid (nos. 22340163, 25287145, and 17H02986) from the Japan Society for the Promotion of Science and from the Strategic Research Foundation at

- 394 Technology of Japan. T. Ishii was supported by the Research Fellowship for Young Scientists
- from the Japan Society for the Promotion of Science, the Alexander von Humboldt Postdoctoral
- Fellowship, and the German Research Foundation (no. IS350/1-1). This project was also
- supported by the funding from the European Research Council (ERC) under the European
- Union's Horizon 2020 research and innovation programme (UltraLVP, Proposal No. 787 527).

399

400 **References cited**

- 401 Akaogi, M., Hamada, Y., Suzuki, T., Kobayashi, M., and Okada, M. (1999). High pressure
- 402 transitions in the system $MgAl_2O_4$ -Ca Al_2O_4 : a new hexagonal aluminous phase with
- 403 implication for the lower mantle. Physics of the Earth and Planetary Interiors, 115(1), 67-77.
- 404 Akaogi, M., Abe, K., Yusa, H., Ishii, T., Tajima, T., Kojitani, H., Mori, D., and Inaguma, Y.
- 405 (2017). High-pressure high-temperature phase relations in FeTiO₃ up to 35 GPa and 1600 C.
- 406 Physics and Chemistry of Minerals, 44(1), 63-73.
- 407 Chen, M., Shu, J., Mao, H. K., Xie, X., & Hemley, R. J. (2003). Natural occurrence and
- 408 synthesis of two new postspinel polymorphs of chromite. Proceedings of the National
- 409 Academy of Sciences, 100, 14651-14654.
- 410 Decker, B.F., and Kasper, J.S. (1957) The structure of calcium ferrite. Acta Crystallographica,
 411 10, 332-337.
- 412 Dubrovinsky, L. S., El Goresy, A., Gillet, P., Wu, X., & Simionivici, A. (2009). A novel natural
- 413 shock-induced high-pressure polymorph of FeTiO₃ with the Li-niobate structure from the Ries
- 414 Crater, Germany. Meteoritics & Planetary Science , *72*, 5094.

- 415 El Goresy, A., Dubrovinsky, L., Gillet, P., Graup, G., & Chen, M. (2010). Akaogiite: An ultra-
- 416 dense polymorph of TiO_2 with the baddeleyite-type structure, in shocked garnet gneiss from
- 417 the Ries Crater, Germany. American Mineralogist, 95, 892-895.
- 418 Enomoto, A., Kojitani, H., Akaogi, M., and Yusa, H. (2009) High-pressure transitions in
- 419 $MgAl_2O_4$ and a new high-pressure phase of $Mg_2Al_2O_5$. Journal of Solid State Chemistry, 182,
- 420 389-395, doi:10.1016/j.jssc.2008.11.015.
- 421 Farrugia, L.J. (2012) WinGX and ORTEP for Windows: an update. Journal of Applied
- 422 Crystallography, 45, 849-854.
- 423 Funamori, N., Jeanloz, R., Nguyen, J. H., Kavner, A., Caldwell, W. A., Fujino, K., Miyajima, N.
- 424 Shinmei, T., and Tomioka, N. (1998). High pressure transformations in MgAl₂O₄. Journal of
- 425 Geophysical Research: Solid Earth, 103(B9), 20813-20818.
- 426 Hargreaves, A. T., and Gogoi, B. N. (1966). A modified N (z) test for crystal symmetry. Acta
- 427 Crystallographica, 21(1), 26-28.
- 428 Irifune, T., Fujino, K., and Ohtani, E. (1991). A new high-pressure form of MgAl₂O₄. Nature,
- 429 349(6308), 409.

430	Irifune, T., and Ringwood, A. E. (1993). Phase transformations in subducted oceanic crust and
431	buoyancy relationships at depths of 600-800 km in the mantle. Earth and Planetary Science
432	Letters, 117(1-2), 101-110.
433	Irifune, T., Ringwood, A. E., and Hibberson, W. O. (1994). Subduction of continental crust and
434	terrigenous and pelagic sediments: an experimental study. Earth and Planetary Science Letters,
435	126(4), 351-368.
436	Irifune, T., Naka, H., Sanehira, T., Inoue, T., and Funakoshi, K. (2002). In situ X-ray
437	observations of phase transitions in MgAl ₂ O ₄ spinel to 40 GPa using multianvil apparatus with
438	sintered diamond anvils. Physics and Chemistry of Minerals, 29(10), 645-654.
439	Ishii, T., Kojitani, H., and Akaogi, M. (2011). Post-spinel transitions in pyrolite and Mg ₂ SiO ₄
440	and akimotoite-perovskite transition in MgSiO3: precise comparison by high-pressure high-
441	temperature experiments with multi-sample cell technique. Earth and Planetary Science
442	Letters, 309(3-4), 185-197.
443	Ishii, T., Kojitani, H., and Akaogi, M. (2012). High-pressure phase transitions and subduction
444	behavior of continental crust at pressure-temperature conditions up to the upper part of the
445	lower mantle. Earth and Planetary Science Letters, 357, 31-41.

446	Ishii, T., Kojitani, H	., Tsukamoto,	S., Fujino	, K., Mori, D	., Inaguma,	Y., Tsujino.	N., Yoshino,
-				2 2 2 2 2	.,		,

- 447 T., Yamazaki, D., Higo, Y., Funakoshi, K., and Akaogi, M. (2014) High-pressure phase
- 448 transitions in $FeCr_2O_4$ and structure analysis of new post-spinel $FeCr_2O_4$ and $Fe_2Cr_2O_5$ phases
- 449 with meteoritical and petrological implications. American Mineralogist, 99, 1788-1797. DOI:
- 450 10.2138/am.2014.4736.
- 451 Ishii, T., Kojitani, H., Fujino, K., Yusa, H., Mori, D., Inaguma, Y., Matsushita, Y., Yamaura, K.,
- 452 and Akaogi, M. (2015) High-pressure high-temperature transitions in MgCr₂O₄ and crystal
- 453 structures of new $Mg_2Cr_2O_5$ and post-spinel $MgCr_2O_4$ phases with implications for ultra-high
- 454 pressure chromitites in ophiolites, American Mineralogist, 100, 59-65. DOI:
- 455 10.2138/am.2014.4736.
- 456 Ishii, T., Shi, L., Huang, R., Tsujino, N., Druzhbin, D., Myhill, R., Li, Y., Lin, W., Yamamoto,
- 457 T., Miyajima, N., Kawazoe, T., Nishiyama, N., Higo, Y., Tange, Y., and Katsura, T. (2016).
- 458 Generation of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide
- anvils. Review of Scientific Instruments, 87(2), 024501.
- 460 Ishii, T., Yamazaki, D., Tsujino, N., Xu, F., Liu, Z., Kawazoe, T., Yamamoto, T., Druzhbin, D.,
- 461 Wang, L., Higo, Y., Tange, Y., Yoshino, T., and Katsura, T. (2017). Pressure generation to 65

462	GPa in a Kawai-type multi-anvil apparatus with tungsten carbide anvils. High Pressure
463	Research, 37(4), 507-515.

- 464 Ishii, T., Tsujino, N., Arii, H., Fujino, K., Miyajima, N., Kojitani, H., Kunimoto, T., and Akaogi,
- 465 M. (2017). A shallow origin of so-called ultrahigh-pressure chromitites, based on single-
- 466 crystal X-ray structure analysis of the high-pressure $Mg_2Cr_2O_5$ phase, with modified
- 467 ludwigite-type structure. American Mineralogist: Journal of Earth and Planetary Materials,
- 468 102(10), 2113-2118.
- 469 Ishii, T., Sinmyo, R., Komabayashi, T., Ballaran, T. B., Kawazoe, T., Miyajima, N., Hirose, K.,
- and Katsura, T. (2017). Synthesis and crystal structure of LiNbO₃-type Mg₃Al₂Si₃O₁₂: A
- 471 possible indicator of shock conditions of meteorites. American Mineralogist: Journal of Earth
- 472 and Planetary Materials, 102(9), 1947-1952.
- 473 Ishii, T., Sakai, T., Kojitani, H., Mori, D., Inaguma, Y., Matsushita, Y., Yamaura, K., and
- 474 Akaogi, M. (2018). High-Pressure Phase Relations and Crystal Structures of Postspinel Phases
- in MgV₂O₄, FeV₂O₄, and MnCr₂O₄: Crystal Chemistry of AB₂O₄ Postspinel Compounds.
- 476 Inorganic chemistry, 57, 6648-6657.
- 477 Ishii, T., Kojitani, H., and Akaogi, M. (2019). Phase relations of harzburgite and MORB up to
- the uppermost lower mantle conditions: Precise comparison with pyrolite by multi-sample cell

- 479 high pressure experiments with implication to dynamics of subducted slabs. Journal of
 480 Geophysical Research: Solid Earth, 124(4), 3491-3507.
- 481 Ishii, T., Liu, Z., and Katsura, T. (2019). A Breakthrough in Pressure Generation by a Kawai-
- 482 Type Multi-Anvil Apparatus with Tungsten Carbide Anvils. Engineering, 5(3), 434-440.
- 483 Ishii, T., Miyajima, N., Sinmyo, R., Kojitani, H., Mori, D., Inaguma, Y., and Akaogi, M. (2020).
- 484 Discovery of New Structured Post-Spinel MgFe₂O₄: Crystal Structure and High-Pressure
- 485 Phase Relations. Geophysical Research Letters, 47(6), e2020GL087490.
- 486 Kojitani, H., Hisatomi, R., and Akaogi, M. (2007). High-pressure phase relations and crystal
- 487 chemistry of calcium ferrite-type solid solutions in the system $MgAl_2O_4-Mg_2SiO_4$. American
- 488 Mineralogist, 92(7), 1112-1118.
- 489 Kojitani, H., Enomoto, A., Tsukamoto, S., Akaogi, M., Miura, H., and Yusa, H. (2010). High-
- 490 pressure high-temperature phase relations in MgAl₂O₄. In Journal of Physics: Conference
- 491 Series (Vol. 215, No. 1, p. 012098). IOP Publishing.
- 492 Kojitani, H., Ishii, T., and Akaogi, M. (2012). Thermodynamic investigation on phase
- 493 equilibrium boundary between calcium ferrite-type MgAl₂O₄ and MgO+ α -Al₂O₃. Physics of
- the Earth and Planetary Interiors, 212, 100-105.

- Leinenweber, K., Utsumi, W., Tsuchida, Y., Yagi, T., and Kurita, K. (1991). Unquenchable
- high-pressure perovskite polymorphs of MnSnO₃ and FeTiO₃. Physics and Chemistry of
- 497 Minerals, 18(4), 244-250.
- Liu, L. G. (1978). A new high-pressure phase of spinel. Earth and Planetary Science Letters,
- 499 41(4), 398-404.
- Liu Z., Ishii T., and Katsura T. (2017). Rapid decrease of MgAlO_{2.5} component in bridgmanite
- 501 with pressure. Geochemical Perspective Letters, 5, 12-18.
- Liu, Z., Nishi, M., Ishii, T., Fei, H., Miyajima, N., Ballaran, T. B., Ohfuji, H., Sakai, T., Wang,
- L., Shcheka, S., Arimoto, T., Tange, Y., Higo, Y., Irifune, T., and Katsura, T. (2017). Phase
- relations in the system MgSiO₃-Al₂O₃ up to 2300 K at lower mantle pressures. Journal of
- 505 Geophysical Research: Solid Earth, 122(10), 7775-7788.
- Liu, Z., Dubrovinsky, L., McCammon, C., Ovsyannikov, S. V., Koemets, I., Chen, L., Cui, Q.,
- 507 Su, N., Cheng, J., Cui, T., Liu, B., and Katsura, T. (2019). A new $(Mg_{0.5}Fe_{0.5}^{3+})(Si_{0.5}Al_{0.5}^{3+})O_3$
- LiNbO₃-type phase synthesized at lower mantle conditions. American Mineralogist, 104(8),
- 509 1213-1216.

510	Liu, Z., McCammon,	С	Wang, I	B.,	Dubrovinsky	. L.	Ishii,	Т.,	Bondar.	D.,	Nakajima	. A.	Tange.
						,	,,				,	,	,

- 511 Y., Higo, Y., Cui, T., Liu, B., and Katsura, T. (2020) Stability and solubility of the FeAlO₃
- 512 component in bridgmanite at uppermost lower mantle conditions. Journal of Geophysical
- 513 Research: Solid Earth, 125(2). <u>https://doi.org/10.1029/2019JB018447</u>
- 514 Meducin, F., Redfern, S. A., Le Godec, Y., Stone, H. J., Tucker, M. G., Dove, M. T., and
- 515 Marshall, W. G. (2004). Study of cation order-disorder in MgAl₂O₄ spinel by in situ neutron
- diffraction up to 1600 K and 3.2 GPa. American Mineralogist, 89(7), 981-986.
- 517 Nespolo, M., Ferraris, G., and Hoppe, R. (2001) Charge distribution analysis of ceramic
- 518 materials. Journal of Ceramic Processing Research, 2, 38-44.
- 519 Nord, A. G., and Kierkegaard, P. E. D. E. R. (1968). The crystal structure of Mg₃(PO₄)₂. Acta
- 520 Chemica Scandinavica, 22, 1466-1474.
- 521 Ono, S., Ohishi, Y., Isshiki, M., and Watanuki, T. (2005). In situ X-ray observations of phase
- assemblages in peridotite and basalt compositions at lower mantle conditions: Implications for
- density of subducted oceanic plate. Journal of Geophysical Research: Solid Earth, 110(B2).
- 524 Ono, S., Kikegawa, T., and Ohishi, Y. (2006). The stability and compressibility of MgAl₂O₄
- high-pressure polymorphs. Physics and chemistry of minerals, 33(3), 200-206.

- 526 Osugi, J., Shimizu, K., Inoue, K., and Yasunami, K. (2006) A compact cubic anvil high pressure
- 527 apparatus. The Review of Physical Chemistry Japan, 34(1):1-6.
- 528 Ricolleau, A., Perrillat, J. P., Fiquet, G., Daniel, I., Matas, J., Addad, A., Menguy, N., Cardon,
- 529 H., Mezouar, M., and Guignot, N. (2010). Phase relations and equation of state of a natural
- 530 MORB: Implications for the density profile of subducted oceanic crust in the Earth's lower
- 531 mantle. *Journal of Geophysical Research: Solid Earth*, *115*(B8).
- 532 Rigaku Oxford Diffraction (2019) CrysAlisPro Software system, version 1.171.40.57a, Oxford,
 533 UK.
- S34 Rogge, M.P., Caldwell, J.H., Ingram, D.R., Green, C.E., Geselbracht, M.J., and Siegrist, T.
- 535 (1998) A new synthetic route to pseudo-brookite-type $CaTi_2O_4$. Journal of Solid State
- 536 Chemistry, 141, 338–342.
- 537 Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic
- distances in halides and chalcogenides. Acta Crystallographica, A32, 751-767.
- 539 Sheldrick, G.M. (1996) SADABS. Program for empirical absorption correction of area detector
- 540 data. Institut für Anorganische Chemie, University of Göttingen, Germany.
- 541 Sheldrick, G.M. (1997) SHELX-97 (computer program), University of Göttingen, Germany.

- 542 Siersch, N.C., Ballaran, T.B., Uenver-Thiele, L., and Woodland, A.B. (2017). Compressibility
- and high-pressure structural behavior of $Mg_2Fe_2O_5$. American Mineralogist, 102, 845-850.
- 544 Taylor, W. H. (1929). XIII. The Structure of Andalusite, Al₂SiO₅. Zeitschrift für
- 545 Kristallographie-Crystalline Materials, 71(1-6), 205-218.
- 546 Toebbens, D.M., Stuesser, N., Knorr, K., Mayer, H.M., and Lampert, G. (2001) Calculated from
- 547 ICSD using POWD-12++, Mater. Sci. Forum, 378, 288.
- 548 Tsirelson, V. G., Avilov, A. S., Abramov, Y. A., Belokoneva, E. L., Kitaneh, R., and Feil, D.
- 549 (1998). X ray and Electron Diffraction Study of MgO. Acta Crystallographica Section B,

550 54(1), 8-17.

- Wilson, A.J.C., Eds. (1992) International Tables for Crystallography, vol. C, Dodrecht: Kluwer
 Academic Publishers.
- 553 Yamanaka, T., Uchida, A., and Nakamoto, Y. (2009) Structural transition of post-spinel phases
- $CaMn_2O_4$, $CaFe_2O_4$ and $CaTi_2O_4$ under high-pressures up to 80 GPa. American Mineralogist,
- **555 93**, 1874-1881.
- 556 Yutani, M., Yagi, T., Yusa, H., and Irifune, T. (1997). Compressibility of calcium ferrite-type
- 557 MgAl₂O₄. Physics and Chemistry of Minerals, 24(5), 340-344.

558 Figure captions

560	Figure 1. The refined structure of low-density CaFe ₂ O ₄ -related MgAl ₂ O ₄ , revealed by single-crystal X-
561	ray diffraction analysis. (a) Crystal structure viewed along the b axis. A solid rectangular box shows the
562	unit cell. (b) Detailed coordination environments of Mg and Si sites. Red spheres are oxygen atoms.
563	
564	Figure 2. The refined structure of CaTi ₂ O ₄ -type MgAl ₂ O ₄ synthesized at 27 GPa and 2500 °C, revealed
565	by single-crystal X-ray diffraction analysis. (a) Crystal structure viewed along the <i>a</i> axis. A solid
566	rectangular box shows the unit cell. (b) Detailed coordination environments of Mg and Si sites. Red
567	spheres are oxygen atoms.
568	
569	Figure 3. Structural comparison among MgAl ₂ O ₄ compounds at ambient conditions. Density of
570	MgAl ₂ O ₄ phase increases from left to right. The numbers below the structures are coordination numbers
571	for Mg and Al. Dashed lines are the longest oxygen-cation bonds in the polyhedra, which contribute less
572	to the coordination of the cations. Blue octahedra and yellow trigonal bipyramids accommodate Al
573	cations. Orange spheres are Mg cations. In the Sp (spinel) structure, Mg cations are accommodated in

- tetrahedral sites. Red spheres are oxygen atoms. Solid lines are unit cells. CF: calcium ferrite, CT:
- 575 calcium titanate, LD-CF: low-density calcium ferrite-related.

Table 1. Chemical compositions of new low-density $CaFe_2O_4$ -related and $CaTi_2O_4$ -type $MgAl_2O_4$.

Phase	MgO	Al ₂ O ₃	FeO	SiO ₂	Total	Mg	Al	Fe	Si
LD-CF-related	26.97(20)	71.75(60)	-	-	98.72(74)	0.998(5)	2.001(3)	-	-
CT-type (27 GPa and 2500 °C)	26.90(31)	71.92(88)	-	-	98.82(117)	0.995(5)	2.002(2)	-	-
CT-type (45 GPa and 1727 $^{\circ}\mathrm{C}$)	29.17(25)	66.81(122)	0.27(10)	0.30(7)	96.55(104)	1.069(19)	1.939(15)	0.005(2)	0.007(2)

Number in parentheses represents standard deviation for the last digit (s). Abbreviations: LD-CF, low density CaFe₂O₄; CT, CaTi₂O₄. Synthesized conditions for CT phases are shown in parentheses.

Crystal structure	Low-density CaFe ₂ O ₄ -related	^a CaTi ₂ O ₄ -type	^b CaTi ₂ O ₄ -type
Crystal color	Colorless	Light green	Light green
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic
Lattice parameter	a = 9.207(2) Å	a = 2.7903(4) Å	a = 2.7982(6) Å
	b = 3.0118(6) Å	<i>b</i> = 9.2132(10) Å	b = 9.2532(15) Å
	c = 9.739(2) Å	c = 9.3968(12) Å	c = 9.4461(16) Å
	$V = 270.06(10) \text{ Å}^3$	$V = 241.57(5) \text{ Å}^3$	$V = 244.58(8) \text{ Å}^3$
Ζ	4	4	4
Space group	<i>Pnma</i> (no. 62)	<i>Cmcm</i> (no. 63)	<i>Cmcm</i> (no. 63)

Table 2. Crystallographic data of new low-density CaFe₂O₄-related and CaTi₂O₄-type MgAl₂O₄.

 a Synthesized at 27 GPa and 2500 °C

580 b Synthesized at 45 GPa and 1727 $^{\circ}$ C

Table 3. Average interatomic distances and coordination numbers of cations in new low-density
CaFe₂O₄-related and CaTi₂O₄-type MgAl₂O₄.

New low density CaFe ₂ O ₄ -related										
^{aV} Mg–O	2.031 Å	^{aVI} Al1–O	1.952 Å	^{aV} Al2–O	1.860 Å					
n _c	4.72	n _c	5.98	^{aV} n _c	4.23					
				$^{\mathrm{aIV}}n_{c}$	3.98					
CaTi ₂ O ₄ -type synt °C	thesized at 2'	7 GPa and 2500								
^{aVI} Mg–O	2.144 Å	^{aVI} Al–O	1.928 Å							
^{aVIII} Mg–O	2.248 Å	n _c	5.84							
$^{aVI}n_{c}$	5.49									
$a^{VIII}n_c$	5.89									
CaTi ₂ O ₄ -type synt °C	thesized at 4	5 GPa and 1727								
^{aVI} Mg–O	2.152 Å	^{aVI} Al–O	1.936 Å							
^{aVIII} Mg–O	2.259 Å	n _c	5.84							
^{aVI} n _c	5.74									
$a^{\text{VIII}}n_c$	5.98									

583 Abbreviations: n_c : effective coordination number.

^aIV, V, VI, and VIII indicate the values calculated using the four, five, six, and eight nearest neighbor
oxygen-cation bonds, respectively.

Phase	$V_{\rm m}$ (cm ³ /mol)	ρ (g/cm ³)	Reference
New low-density CaFe ₂ O ₄ -related	40.66(1)	3.499(1)	This study
Sp	39.760(3)	3.578(1)	[1]
MgO Pc + Al_2O_3 Cor	36.853(5)	3.860(1)	[2], [3]
1/2(mLd-type Mg ₂ Al ₂ O ₅ + Al ₂ O ₃ Cor)	36.809(3)	3.865(1)	[4]
CF-type	36.136(3)	3.937(1)	[5]
	36.17(2)	3.933(1)	This study
CT-type	36.368(8)	3.912(1)	^a This study
	36.82(1)	3.864(1)	^b This study
	36.23(2)	3.927(3)	[6]

587 Abbreviations: Sp: spinel; Pc: periclase; Cor: corundum; mLd: modified ludwigite; CF: calcium ferrite;

588 CT: calcium titanate.

589 [1] Meducin et al. (2004); [2] Toebbens et al. (2001); [3] Tsirelson et al. (1998); [4] Enomoto et al.

590 (2009); [5] Kojitani et al. (2007); and [6] Ono et al. (2006)

^aSynthesized at 27 GPa and 2500 °C

^bSynthesized at 45 GPa and 1727 °C

593

Figure 1

Figure 2

Figure 3

Density