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ABSTRACT 16 

Element partition coefficients play key roles in understanding various geological 17 

processes and are typically measured by performing high-temperature–pressure (HTP) 18 

experiments. In HTP experiments, samples are usually enclosed in capsules made of 19 

noble metals. Previous studies have shown that Fe, Ni, and Cu readily alloy with noble 20 

metals, resulting in significant loss of these elements from the experimental samples. The 21 

loss of elements could severely undermine phase equilibrium, and compromise the 22 

validity and accuracy of the obtained partition coefficients. However, it remains unclear if 23 

other elements (in addition to Fe, Ni, and Cu) will also be lost from samples during HTP 24 

experiments, and how to minimize such losses. We performed a series of experiments at 1 25 

GPa and 1400 °C to investigate which element will be lost from samples and explore the 26 

influence of capsule materials and oxygen fugacity (fO2) on the loss behavior of elements. 27 

The starting material is a synthesized basaltic glass consisting of 8 major elements and 37 28 

trace elements. The sample capsules included platinum (Pt), graphite-lined Pt, and 29 

rhenium-lined Pt, and the experimental oxygen fugacity (fO2) was buffered from <FMQ–30 

2 to ~FMQ+5. Results show that: (1) 15 elements (V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, 31 

Cd, In, Sn, W, and Mo) were lost from the sample due to direct contacting and alloying 32 

with Pt under graphite-buffered conditions; (2) graphite- and Re-lined lining can 33 

physically isolate the starting material from Pt and prevent the loss of V, Cr, Mn, Fe, Zn, 34 

Ga, Ge, Cd, In, Sn, W, and Mo, but only slightly reduce the loss of Ni and Cu; and (3) 35 

element loss can be significantly reduced under oxidizing conditions, and all elements 36 
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except Cu were retained in the samples under Ru–RuO2 buffered conditions. These 37 

findings provide several viable capsule assemblies that are capable of preventing or 38 

reducing element loss, which may prove useful in determining accurate partition 39 

coefficients in HTP experiments. 40 

Keywords: element loss, high-temperature–pressure experiments, capsule materials, 41 

experimental fO2. 42 

 43 

INTRODUCTION 44 

The partitioning behavior of elements is critical to our understanding of various 45 

geological processes, including partial melting of rocks in the mantle and crust (Foley et 46 

al., 2002; Matzen et al., 2013, 2017; Rapp et al., 2003; Sobolev et al., 2005, 2007; Xiong 47 

et al., 2005, 2006, 2011), fractional crystallization of magmas (Davidson et al., 2007; Lee 48 

and Tang, 2020; Li et al., 2017), ore formation in magmatic–hydrothermal systems (Liu 49 

et al., 2015; Zajacz et al., 2011, 2012, 2017), and redox state of magmas and their sources 50 

(Canil, 1997; Lee et al., 2005; Wang et al., 2019). Element partition coefficients between 51 

mineral and melt (D values) are typically obtained using two approaches. The first is the 52 

phenocryst−matrix method, in which partition coefficients are determined by analyzing 53 

the elemental concentrations of phenocrysts and coexisting matrix in natural volcanic 54 

rocks (Philpotts and Schnetzler, 1970; Portnyagin et al., 2017; Schnetzler and Philpotts, 55 

1970). However, the accuracy of the phenocryst−matrix method is influenced by various 56 

factors, such as disequilibrium between the phenocrysts and matrix, as well as 57 
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uncertainties in temperature, pressure, and fO2 conditions. The second approach is HTP 58 

experiments, in which coexisting minerals and melt are synthesized at HTP conditions. In 59 

a HTP experiment, the temperature, pressure, and fO2 are well controlled, and chemical 60 

equilibrium can be approached by extending the duration of the experiments. Thus, HTP 61 

experiments have been widely used to determine mineral/melt D values. In HTP 62 

experiments, samples are usually enclosed in capsules made of noble metals. However, a 63 

notorious problem in such experiments is that certain elements, including Fe, Ni, and Cu, 64 

are lost from the experimental samples by alloying with the noble metal capsules (Adam 65 

and Green, 2006; Filiberto et al., 2009; Grove, 1981; Merrill and Wyllie, 1973; Ratajeski 66 

and Sisson, 1999). Although Au and Au−Pd capsules suffer less element loss, these 67 

materials are only applicable at relatively low temperatures (Kawamoto and Hirose, 1994; 68 

Ratajeski and Sisson, 1999). Element loss in HTP experiments can severely undermine 69 

phase equilibrium and compromise the validity and accuracy of measured D values 70 

(Adam and Green, 2006; Fellows and Canil, 2012; Liu et al., 2014, 2015; Zajacz et al., 71 

2011, 2012). Though the “pre-saturation” technique works well in minimizing iron loss in 72 

Pt (Grove, 1981) and copper loss in Au (Zajacz et al., 2011), it remains unclear if other 73 

elements (in addition to Fe, Ni, and Cu) will also be lost from experimental samples, and 74 

how to prevent or minimize such loss. Here, we investigate the loss behavior of 45 75 

elements in Pt capsule at 1400 °C and 1 GPa, and explore the effects of capsule materials 76 

and experimental fO2 on it. Based on the results, we propose new capsule assemblies that 77 

minimize element loss from samples during HTP experiments. 78 
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 79 

EXPERIMENTAL AND ANALYTICAL METHODS 80 

High-temperature–pressure experiments 81 

A synthesized high-Mg basalt (HMB) was used as the starting material. The HMB 82 

glass is composed of 8 major elements (SiO2, TiO2, Al2O3, FeO, MgO, CaO, Na2O, and 83 

K2O) and 37 trace elements, including large-ion lithophile elements (Li, B, Rb, Sr, Ba, 84 

and Cs), rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Ho, Yb, Lu, and Y), 85 

high-field-strength elements (Zr, Hf, Nb, Ta, P, Sn, W, and Mo), transition elements (Sc, V, 86 

Cr, Mn, Co, Ni, Cu, and Zn), and metalloid elements (Ga, Ge, Cd, and In). The major and 87 

trace element composition of the HMB glass is homogeneous (Supplementary Table 1). 88 

Details of the synthesizing procedures are described in Wang et al. (2019). The trace 89 

element contents range between 15 and 1700 ppm, with most contents being ~70 ppm 90 

(Supplementary Table 1). 91 

All of the experiments were conducted at 1 GPa and 1400 °C using a Rockland 92 

piston–cylinder apparatus at Guangzhou Institute of Geochemistry, Chinese Academy of 93 

Sciences. We used a half-inch assembly that comprises a talc sleeve, pyrex glass, graphite 94 

furnace, MgO inserts, and sample capsule. The experimental temperature was controlled 95 

using a Eurotherm controller and monitored with a Pt−Pt90Rh10 thermocouple (S-type). A 96 

friction correction of −13% was applied to the apparatus (Liu et al., 2015). The pressure 97 

uncertainty in the experiments was about 0.1 GPa, and the temperature gradient along the 98 

sample capsule was <15 °C. For each experiment, the HMB powder was sealed into 99 
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platinum (Pt) capsules (3.0 mm outer diameter; 2.7 mm inner diameter; 6 mm length) 100 

together with 0.8 to 3.7 wt.% H2O. Within the capsules, different sample assemblies and 101 

fO2 buffers (Fig. 1) were used to change the capsule materials and buffer the experimental 102 

fO2. The experiments were terminated by turning off the power to the heater. The 103 

recovered run products were sectioned, mounted in epoxy resin, and polished. Reflected 104 

light microscopy and back-scattered electron images show that all of the samples 105 

quenched to clear glass (Fig. 1), indicating that the samples were melts during the 106 

experiments. 107 

 108 

LA-ICP-MS analysis 109 

Trace element concentrations in the starting HMB glass and quenched glasses were 110 

analyzed using an ELEMENT XR (Thermo Fisher Scientific) ICP-MS coupled with a 111 

193 nm Resolution M-50 (Resonetics) laser ablation system at Guangzhou Institute of 112 

Geochemistry. Laser ablation was performed with an energy density of 4 J/cm2, a 113 

repetition rate of 5 Hz, and a spot size of 33 μm. For each analysis, the gas blank and 114 

sample signal were collected for 20 and 30 s, respectively. Signals of the following 115 

isotopes were detected: 7Li, 11B, 23Na, 25Mg, 27Al, 29Si, 31P, 39K, 43Ca, 45Sc, 47Ti, 51V, 53Cr, 116 

55Mn, 57Fe, 59Co, 60Ni, 63Cu, 66Zn, 70Ge, 71Ga, 85Rb, 88Sr, 89Y, 90Zr, 93Nb, 98Mo, 111Cd, 115In, 117 

118Sn, 133Cs, 137Ba, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 151Eu, 157Gd, 165Ho, 174Yb, 175Lu, 118 

178Hf, 181Ta, 182W, and 185Re. Reference materials GSD-1G, BHVO-2G, BCR-2G, NIST 119 

610, and NIST 612 were used as external standards, and the SiO2 content (46.06 wt.%) of 120 
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the HMB glass was used as the internal standard. It is reasonable to use SiO2 content as 121 

the internal standard because silica is inert under the experimental conditions used here, 122 

and also because we focus on element loss relative to the starting material. We also 123 

analyzed TB-1G (Elburg et al., 2005) as an unknown sample. The analytical precision (2σ) 124 

measured for TB-1G is better than ±10% for all of the elements. Details of the analytical 125 

conditions and data processing procedures are described in Zhang et al. (2019). 126 

Analytical results are presented in Supplementary Table 1. 127 

 128 

EXPERIMENTAL RESULTS AND DISCUSSION 129 

Time-series experiments 130 

Three experiments (using the capsule assembly shown in Fig. 1a) with different 131 

durations were conducted to investigate: (1) which elements will lose from the samples 132 

by alloying with the Pt capsule under reducing conditions; (2) how long it takes for the 133 

elements to reach equilibrium between metallic Pt and melt. These experiments were 134 

buffered by graphite at fO2 < FMQ−2 (Medard, 2008). As observed under a binocular 135 

stereo-microscope, the color of the quenched glasses varies systematically with 136 

experimental duration. The glass changed from dark green after 2 h (E1), to light green 137 

after 10 h (E2), and then to nearly transparent after 22 h (E3), suggesting a change in melt 138 

composition caused by continuous iron loss. The compositions of quenched glasses 139 

(normalized to the starting material) are shown in Fig. 2a. We found that 15 elements, 140 

including V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Cd, In, Sn, W, and Mo, have lower 141 
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concentrations in the quenched glasses than in the HMB glass, indicating that they were 142 

lost from the samples. The concentrations of these 15 elements as a function of 143 

experimental duration are plotted in Fig. 2b. We found that element concentrations 144 

decreased markedly between 0 and 10 h, and then remained nearly constant from 10 to 22 145 

h, demonstrating that these 15 elements approached diffusional equilibrium within 10 h. 146 

All experiments described in the following sections were conducted for 22 h to ensure 147 

diffusional equilibrium. 148 

 149 

The effect of capsule materials 150 

Element loss in the experiments was mainly governed by experimental temperatures, 151 

capsule materials, and experimental fO2 values (O’Neill and Nell, 1997; Ratajeski and 152 

Sisson, 1999). Accordingly, it is possible to prevent element loss by changing the capsule 153 

materials or by elevating the experimental fO2. To change the capsule materials, we lined 154 

the Pt capsules with graphite and rhenium (Re) foil. In the graphite-lined experiment (E4), 155 

the HMB powder was packed into a graphite capsule, which was then placed into the Pt 156 

capsule and welded shut (Fig. 1b). We noticed that a robust lining of the Pt capsule is 157 

crucial to avoid cracks on the graphite capsule. In the Re-lined experiment (E5), a Re 158 

tube and disks were used to insulate the HMB powder from the Pt capsule. We also 159 

inserted graphite disks at the bottom and top of the HMB powder to buffer the 160 

experimental fO2 (Fig. 1c). Including experiment E3, three samples (all buffered by 161 

graphite) encapsulated in a Pt capsule, graphite-lined Pt capsule, and Re-lined Pt capsule, 162 
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enabled us to investigate the influence of capsule materials on element loss under 163 

reducing conditions. 164 

To quantitatively explore the effects of these three capsule materials, we calculated 165 

the relative loss of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Cd, In, Sn, W, and Mo in 166 

experiments E3, E4, and E5 (Supplementary Table 2). The relative loss of an element 167 

denotes the percentage of element loss relative to the starting material and is expressed as 168 

follows: 169 

Relative Loss = 
CSTM – CRP

CSTM
×100 (%), 

where CSTM and CRP are the contents of a certain element in the starting material and run 170 

products (i.e., quenched glass in this study), respectively. The relative loss can vary from 171 

0% (no element loss) to 100% (complete loss). Here, we divided the relative loss into 172 

four grades: no loss (< 10%), slight loss (10%−30%), moderate loss (30%−70%), and 173 

severe loss (> 70%). 174 

In the case of the Pt capsule (E3) shown in Fig. 3a, Fe, Co, Ni, Cu, Zn, Ga, Ge, Cd, 175 

In, Sn, W, and Mo are lost severely (relative loss ~ 100%), whereas V, Cr, and Mn are lost 176 

moderately (relative loss > 50%). The different relative loss among elements should be 177 

governed by the binary metal phase diagram that defines the miscibility between two 178 

metals (Hultgren et al., 1973). In the cases of graphite-lined (E4) and Re-lined (E5) Pt 179 

capsules, all elements except Co, Ni, and Cu show slight or no loss, suggesting that the 180 

graphite and Re lining can effectively prevent element loss (Fig. 3a). The reduced relative 181 

loss for most elements in E4 indicates that they were lost to the Pt capsule in E1−E3. The 182 

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. 
 The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. 

DOI: https://doi.org/10.2138/am-2020-7580.  http://www.minsocam.org/

Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld



10 
 

severe loss of Ni, Cu, and perhaps Co in E4 may be caused by diffusion through the 183 

graphite wall to alloy with the Pt capsule, or by reaction with graphite to form carbide. 184 

We also note that the concentration of W in E4 is three times higher than in the HMB 185 

glass (relative loss = −235), and infer that W contamination may have been introduced by 186 

the graphite plug on the top of the capsule (Fig. 1b). This plug was machined from a 187 

piece of graphite heater which was turned out to be W-bearing. Other parts of the graphite 188 

lining and graphite disks in other experiments were made of specpure graphite. 189 

Additionally, the Re-lined capsule performs slightly better than the graphite-lined capsule 190 

in reducing Co loss. In summary, by mechanically isolating the samples from the Pt 191 

capsule, graphite and Re can prevent the loss of V, Cr, Mn, Fe, Zn, Ga, Ge, Cd, In, Sn, W, 192 

and Mo, but do not substantially reduce the loss of Ni and Cu. 193 

 194 

The effect of experimental fO2 195 

The fO2 in two experiments was buffered by loading layers of Re–ReO2 or Ru–RuO2 196 

mixtures at the bottom and top of the starting materials (Fig. 1d and e), following 197 

methods outlined in Armstrong et al. (2019), Mallmann and O’Neill (2007), and Zhang et 198 

al. (2017). The redox buffers were made by mixing equal weight proportions of metal and 199 

oxides. The ratios of HMB powder to Re–ReO2 buffer (E6) and Ru–RuO2 buffer (E7) 200 

were 1:1 and 4:1, respectively. After the experiments, the redox buffers contain both 201 

metal and oxides, verifying the activity of the buffering reactions. At the experimental 202 

conditions investigated here, the calculated fO2 values are ~FMQ+2 for the Re–ReO2 203 

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. 
 The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. 

DOI: https://doi.org/10.2138/am-2020-7580.  http://www.minsocam.org/

Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld



11 
 

buffer and ~FMQ+5 for the Ru–RuO2 buffer (O’Neill and Nell, 1997; Pownceby and 204 

O’Neill, 1994). Including experiment E3, we have three samples using Pt capsules that 205 

can be used to investigate the effect of fO2 on the loss behavior of elements (i.e., 206 

<FMQ−2, FMQ+2, and FMQ+5). 207 

As shown in Fig. 3b, compared with the experiment under reducing conditions (E3; 208 

fO2 < FMQ−2), the loss of most elements can be prevented by elevating the experimental 209 

fO2. Only Cu, Ni, Co, In, and Sn were lost at fO2 of ~FMQ+2 (E6; Re–ReO2 buffer), and 210 

only Cu exhibited moderate loss at fO2 of ~FMQ+5 (E7; Ru–RuO2 buffer). We also 211 

observed an extremely high Re concentration (21792 ± 1974 ppm) in the quenched glass 212 

in E6, indicating that the dissolution of ReO2 occurred. In conclusion, element loss can be 213 

prevented by elevating the experimental fO2. The loss of V, Cr, Mn, Fe, Zn, Ga, Ge, Cd, 214 

W, and Mo can be prevented under Re–ReO2 buffered conditions and all 15 elements 215 

except Cu are retained in samples under Ru–RuO2 buffered conditions. 216 

  

IMPLICATIONS 217 

Experiments performed at 1.0 GPa and 1400 °C show that: (1) 15 elements, 218 

including V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Cd, In, Sn, W, and Mo, are readily lost 219 

from the experimental samples by alloying with Pt capsules under reducing conditions; (2) 220 

graphite- and Re-lined capsules can prevent or substantially reduce the loss of V, Cr, Mn, 221 

Fe, Zn, Ga, Ge, Cd, In, Sn, W, and Mo, but do not prevent the loss of Ni and Cu; (3) 222 

element loss can be reduced under oxidizing conditions, and all of the elements 223 
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investigated here except Cu are retained in the samples under Ru–RuO2 buffered 224 

conditions. These findings have several important implications. First, accurate 225 

mineral/melt partition coefficients for most elements (except for Ni and Cu) could be 226 

determined by using either graphite-lined or Re-lined capsules, or by elevating the 227 

experimental fO2. Second, partition coefficients for Ni can be obtained under Ru–RuO2 228 

buffered conditions, while partition coefficients for Cu can only be accurately determined 229 

by using Cu-bearing alloy as the sample capsule, as demonstrated by Zajacz et al. (2011) 230 

and Liu et al. (2014, 2015). Finally, it’s promising to experimentally determine melt/fluid 231 

partition coefficients for ore-forming elements by mass-balance calculations under Ru–232 

RuO2 buffered conditions. 233 
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 351 

Figure Captions 352 

Figure 1. Schematic diagrams showing the sample assemblies inside the Pt capsules (the upper row), 353 

and corresponding back-scattered electron (BSE) images of the experimental run products (the lower 354 

row). The experimental run number is marked in the top left of the BSE images. Note that in E6, the 355 

glass breaks into pieces during cutting and therefore it is not present in-situ. 356 

 357 

Figure 2. Results of time-series experiments performed at 1.0 GPa and 1400 °C under reducing 358 

conditions (graphite-buffered). (a) HMB (starting material)-normalized element concentrations in the 359 

experimental run products. The sample/HMB concentration ratios for 15 elements (V, Cr, Mn, Fe, Co, 360 

Ni, Cu, Zn, Ga, Ge, Cd, In, Sn, W, and Mo) are <1.0, indicating loss of those elements during the 361 

experiments. No loss was observed for other elements, including Si, Al, Mg, Ca, Na, K, P, Sc, Ti, Li, B, 362 

Rb, Sr, Ba, Cs, La, Ce, Pr, Nd, Sm, Eu, Gd, Ho, Yb, Lu, Y, Zr, Hf, Nb, and Ta. (b) Changes in the 363 

concentrations of the 15 elements with experimental duration, which demonstrated that 22 h is 364 

sufficient for diffusional equilibrium at the utilized experimental conditions. The 0 h sample represents 365 

the starting material. 366 

 367 

Figure 3. The effects of capsule material and experimental fO2 on the mobility of elements. (a) The 368 

effect of capsule material on the relative loss of elements under reducing condition (graphite-buffered). 369 

In the case of the Pt capsule (E3), the relative loss of the 15 elements is higher than 50 wt.%, and Fe, 370 
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Co, Ni, Cu, Zn, Cd, In, Sn, and Mo were almost lost completely. In the cases of graphite-lined (E4) 371 

and Re-lined (E5) Pt capsules, only Cu, Ni, and Co were severely lost. Note that there was W 372 

contamination in E4 due to the graphite plug containing a high concentration of W, resulting in the 373 

negative relative loss of W in this experiment. The shaded brown area denotes the region of no 374 

element loss in this study (<10%). (b) The effect of experimental fO2 on the relative loss of elements 375 

in Pt capsule experiments. Most of the 15 elements are lost under reducing conditions (E3; 376 

graphite-buffered). This can be prevented by elevating the experimental fO2: only Cu, Ni, Co, In, and 377 

Sn were lost at fO2 of ~FMQ+2 (E6: Re–ReO2 buffer), and only Cu was lost at fO2 of ~FMQ+5 (E7: 378 

Ru–RuO2 buffer). 379 
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