1 Revision 1

2	
3	Seaborgite, $LiNa_6K_2(UO_2)(SO_4)_5(SO_3OH)(H_2O)$, the first uranyl mineral containing
4	lithium
5	
6	Anthony R. Kampf ^{1§} , Travis A. Olds ² , Jakub Plášil ³ , Joe Marty ⁴ , Samuel N. Perry ⁵ ,
7	LORETTA CORCORAN ⁵ AND PETER C. BURNS ^{5,6}
8	
9	¹ Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los
10	Angeles, CA 90007, USA
11	² Section of Minerals and Earth Sciences, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh,
12	Pennsylvania 15213, USA
13	³ Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic
14	⁴ 5199 East Silver Oak Road, Salt Lake City, UT 84108, USA
15	⁵ Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame,
16	IN 46556, USA
17	⁶ Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
18	
19	ABSTRACT
20	Seaborgite (IMA2019-087), LiNa ₆ K ₂ (UO ₂)(SO ₄) ₅ (SO ₃ OH)(H ₂ O), is a new mineral species from
21	the Blue Lizard mine, Red Canyon, San Juan County, Utah, U.S.A. It is a secondary phase found
22	on gypsum in association with copiapite, ferrinatrite, ivsite, metavoltine, and römerite. Seaborgite
23	occurs in sprays of light-yellow, long flattened prisms or blades, up to about 0.2 mm in length.

[§] Email: akampf@nhm.org

24	Crystals are elongated on [100], flattened on $\{010\}$, and exhibit the forms $\{100\}$, $\{010\}$, $\{001\}$,
25	and {10-1}. The mineral is transparent with vitreous luster and very pale-yellow streak. It
26	exhibits bright lime-green fluorescence under a 405 nm laser. The Mohs hardness is $\sim 2\frac{1}{2}$. The
27	mineral has brittle tenacity, curved or conchoidal fracture, and one good cleavage on {100}. The
28	measured density is 2.97(2) g·cm ⁻³ . The mineral is immediately soluble in RT H ₂ O. The mineral
29	is optically biaxial (-), $\alpha = 1.505(2)$, $\beta = 1.522(2)$, $\gamma = 1.536(2)$ (white light); $2V_{\text{meas}} = 85(1)^{\circ}$;
30	moderate $r < v$ dispersion; orientation $X \wedge \mathbf{a} \approx 10^{\circ}$; pleochroic X colourless, Y and Z light green-
31	yellow; $X < Y \approx Z$. Seaborgite EPMA and LA-ICP-MS analyses undermeasured Li, K, and Na.
32	The empirical formula using Li, Na, and K based on the structure refinement is
33	$Li_{1.00}Na_{5.81}K_{2.19}(UO_2)(SO_4)_5(SO_3OH)(H_2O)$. Seaborgite is triclinic, <i>P</i> -1, <i>a</i> = 5.4511(4), <i>b</i> =
34	14.4870(12), $c = 15.8735(15)$ Å, $\alpha = 76.295(5)$, $\beta = 81.439(6)$, $\gamma = 85.511(6)^{\circ}$, $V = 1203.07(18)$
35	Å ³ , and $Z = 2$. The structure ($R_1 = 0.0377$ for 1935 $I > 2\sigma I$) contains [(UO ₂) ₂ (SO ₄) ₈] ^{4–} uranyl-
36	sulfate clusters that are linked into a band by bridging LiO ₄ tetrahedra. The bands are linked
37	through peripheral SO ₄ tetrahedra forming a thick heteropolyhedral layer. Channels within the
38	layers contain a K site, while an additional K site, six Na sites, and an SO ₃ OH group occupy the
39	space between the heteropolyhedral layers.
40	

Keywords: seaborgite; new mineral species; lithium; uranyl sulfate; crystal structure; Blue Lizard
mine, Red Canyon, Utah.

- 43
- 44

INTRODUCTION

45 The Blue Lizard mine in Red Canyon, Utah is a remarkable source of new minerals,
46 especially sodium-uranyl sulfates. The astounding diversity and relatively high structural

47 complexity of uranyl-sulfate minerals was recently emphasized by Gurzhiy and Plášil (2019). A 48 large number of stable combinatorial linkages of uranyl and sulfate tetrahedra are possible, with 49 the topological arrangements appearing to be strongly affected by at least three parameters: pH 50 (Plášil et al. 2014), cation content, and water content. In general, sodium-uranyl-sulfate minerals 51 follow the same structural unit topology trends as do other uranyl minerals (Lussier et al. 2016), 52 where uranyl polyhedra preferentially polymerize into extended structures *via* linkages through 53 their equatorial vertices, most often forming infinite chain or infinite sheet topologies. However, 54 finite cluster topologies are relatively abundant among the sodium-uranyl-sulfate minerals, for 55 reasons that are not completely clear. Understanding the hierarchical arrangements of these 56 structures and how conditions of formation influence the crystallized topologies is important to 57 understanding the crystal-chemical nature of U-S systems, and for uranyl mineralogy as a whole. The new Blue-Lizard-mine uranyl sulfate seaborgite, described herein, contains essential 58 59 sodium; however, it also includes essential potassium and, most significantly, lithium. While 60 sodium and, especially potassium, form relatively weak bonds within such structures, the role of 61 lithium is rather different. Lithium-oxygen bonds, particularly in LiO₄ tetrahedral coordination, 62 are somewhat stronger and, in the seaborgite structure, serve to further link (or polymerize) the 63 uranyl sulfate clusters.

Seaborgite is named in honor of American chemist Glenn T. Seaborg (1912–1999) who
was involved in the synthesis, discovery, and investigation of 10 transuranium elements
(including seaborgium), earning him a share of the 1951 Nobel Prize in Chemistry. Seaborg's
scientific accomplishments are numerous and changed the course of world history. Perhaps most
notably, Seaborg and coworkers discovered plutonium in 1940 and he isolated the first weighable
sample of plutonium in 1942. The Manhattan Project produced the first plutonium-fueled nuclear

70	bomb that was detonated in New Mexico at the Trinity test site on July 16, 1945. Seaborg served
71	as Chairman of the United States Atomic Energy Commission from 1961 to 1971 during which
72	time he worked to advance nuclear energy. Seaborg was a strong proponent for arms control and
73	the peaceful use of nuclear energy.
74	The new mineral and name were approved by the Commission on New Minerals,
75	Nomenclature and Classification of the International Mineralogical Association (IMA 2019-087).
76	One holotype specimen of seaborgite is deposited in the collections of the Natural History
77	Museum of Los Angeles County, Los Angeles, California, USA, catalogue number 74163.
78	
79	OCCURRENCE
80	Seaborgite was found underground in the Blue Lizard mine (37°33'26"N 110°17'44"W),
81	Red Canyon, White Canyon District, San Juan County, Utah, USA. The mine is about 72 km
82	west of the town of Blanding, Utah, and about 22 km southeast of Good Hope Bay on Lake
83	Powell. Detailed historical and geologic information on the Blue Lizard mine is described
84	elsewhere (cf. Kampf et al. 2015), and is primarily derived from a report by Chenoweth (1993).
85	Abundant secondary uranium mineralization in Red Canyon is associated with post-
86	mining oxidation of asphaltum-rich sandstone beds laced with uraninite and sulfides in the damp
87	underground environment. Seaborgite was found in an area rich in K-bearing sulfates (e.g.
88	metavoltine, voltaite, zincovoltaite), along with several other potentially new sodium and
89	potassium uranyl sulfate minerals. Potassium enrichment has so far not been observed in
90	secondary uranyl mineralization elsewhere in the Blue Lizard mine nor in any of the nearby U
91	deposits in Red Canyon that we have investigated and this is the first uranyl mineral found that
92	contains essential Li. It seems likely that K and Li are sourced from Li- and K-bearing clays in

93 the sediments.

94	Seaborgite is a very rare mineral in the secondary mineral assemblages of the Blue Lizard
95	mine. It occurs on a thick crust of gypsum overlaying matrix comprised mostly of subhedral to
96	euhedral, equant quartz crystals that are recrystallized counterparts of the original grains of the
97	sandstone. Other secondary phases found in close association with seaborgite are copiapite,
98	ferrinatrite, ivsite, metavoltine, römerite, and other potentially new uranyl sulfate minerals.
99	
100	PHYSICAL AND OPTICAL PROPERTIES
101	Crystals of seaborgite are long flattened prisms or blades, up to about 0.2 mm in length,
102	typically in radiating sprays (Fig. 1). Crystals are elongated on [100], flattened on {010}, and
103	exhibit the forms {100}, {010}, {001}, and {10-1} (Fig. 2). Twinning was observed optically
104	under crossed polars, and is either by reflection on {001} or by rotation around [001].
105	The mineral is light yellow and transparent with vitreous luster and very pale-yellow
106	streak. Seaborgite exhibits bright lime-green fluorescence under a 405 nm laser. It has a Mohs
107	hardness of about 21/2 based on scratch tests. The mineral has brittle tenacity, curved or
108	conchoidal fracture, and one good cleavage on $\{100\}$. The density measured by flotation in a
109	mixture of methylene iodide and toluene is 2.97(2) g·cm ⁻³ . The calculated density is 3.015 g·cm ⁻³
110	for the empirical formula (using Li, Na, and K based on the structure refinement) and single-
111	crystal cell; 3.004 g \cdot cm ⁻³ for the ideal formula. The mineral is immediately soluble in H ₂ O at
112	room temperature.
113	Seaborgite is optically biaxial (–) with $\alpha = 1.505(2)$, $\beta = 1.522(2)$, $\gamma = 1.536(2)$ measured
114	in white light. The 2V measured using extinction data analyzed with EXCALIBRW (Gunter et al.
115	2004) is 85(1)°; the calculated 2V is 83.6°. The dispersion is moderate, $r < v$. The partially

116	determined optical orientation is $X \wedge \mathbf{a} \approx 10^{\circ}$. Crystals are pleochroic with X colourless, Y and Z
117	light green-yellow; $X < Y \approx Z$. The Gladstone–Dale compatibility, $1 - (K_P/K_C)$, (Mandarino 2007)
118	is -0.009 (superior) based on the empirical formula (using Li, Na, and K based on the structure
119	refinement) using $k(UO_3) = 0.118$, as provided by Mandarino (1976).
120	
121	RAMAN SPECTROSCOPY
122	Raman spectroscopy was conducted on a Horiba XploRA PLUS using a 532 nm diode
123	laser, 50 μ m slit, 2400 gr/mm diffraction grating, and a 100× (0.9 NA) objective. The spectrum,
124	recorded from 4000 to 100 cm^{-1} , is shown in Figure 3.
125	Two weak bands with centers at 3570 and 3475 $\rm cm^{-1}$ are assigned to $\nu(\rm OH)$ stretching
126	vibrations. Using the empirically derived equation of Libowitzky (1999) the calculated OO
127	distances of the corresponding hydrogen bonds are between \sim 3.0 Å and \sim 2.8 Å, in reasonable
128	agreement with the hydrogen bond lengths determined from the structure refinement. Several
129	very broad low intensity bands centered at ~ 2600 and ~ 1800 cm ⁻¹ are probably overtones or
130	combination bands. No apparent band related to the $v_2(\delta)$ bending vibrations of H ₂ O, is present at
131	approximately 1600 cm ⁻¹ , which is not surprising considering the low sensitivity of Raman for
132	the non-symmetrical vibrations.
133	There has been no reliable computational/theoretical research focused on differentiating
134	SO ₄ and SO ₃ OH in Raman spectra; therefore, our assignments of the vibrations connected with
135	the sulfate tetrahedra in seaborgite are tentative. The $v_3(SO_4/SO_3OH)$ antisymmetric stretching
136	vibrations occur as weak bands at 1203, 1194, 1173, 1139, and 1091 cm ⁻¹ . Several weak to
137	strong bands at 1045, 1026, 1015, 1002, and 979 cm ^{-1} are assignable to the v ₁ symmetric
138	stretching vibrations of SO ₄ and SO ₃ OH groups. The presence of six symmetrically unique SO ₄

139	tetrahedra in the seaborgite structure lead to the multiple split bands in this region. The weak
140	band at 917 cm ⁻¹ is related to the $v_3(UO_2)^{2+}$ antisymmetric stretching vibration, while the band at
141	885 cm ⁻¹ is assigned to the v(S–OH) mode (cf. Plášil et al. 2013). The $v_1(UO_2)^{2+}$ symmetric
142	stretching vibration is present as a very strong band at 850 cm ⁻¹ . Bartlett and Cooney (1989)
143	provided an empirical relationship to derive the approximate $U-O_{Ur}$ bond lengths from the band
144	position assigned to the UO_2^{2+} stretching vibrations, which gives 1.76 Å (v ₁) and 1.77 Å (v ₃), in
145	excellent agreement with the average U1–O _{Ur} bond length from the X-ray data: 1.757 Å. At least
146	seven overlapping weak bands between 657 and 586 cm^{-1} are attributable to the
147	$v_4(\delta)(SO_4/SO_3OH)$ bending vibrations, with centers at 657, 647, 641, 634, 621, 605, and 586 cm ⁻
148	¹ . Those at 479, 463, 444, and 425 cm ⁻¹ belong to the $v_2(\delta)(SO_4/SO_3OH)$ bending vibrations. A
149	band at 250 cm ⁻¹ is attributable to the $v_2(\delta)(UO_2)^{2+}$ bending vibrations and/or possibly to $v(U-$
150	O_{eq}) bending modes. The remaining bands arise due to unassigned phonon modes.
151	
152	CHEMICAL ANALYSIS
153	Chemical analyses for all elements except Li (8 points on 2 crystals) were performed on a
154	JEOL JXA-8230 electron microprobe using Probe for EPMA software. The analytical conditions
155	used were 10 keV accelerating voltage, 10 nA beam current, and a beam diameter of 10 μ m. Raw
156	X-ray intensities were corrected for matrix effects with a $\phi\rho(z)$ algorithm (Pouchou and Pichoir
157	1991). Time-dependent intensity corrections were applied to data for Na and K. No other
158	elements were detected by EDS and wavescans at multiple currents and beam sizes showed no N
159	above background. Crystals of seaborgite experienced considerable damage under the electron
160	beam. The amount of Na, and to a lesser extent K, reported in the EPMA are significantly lower

161	than those based on the structure refinement; this is attributed to the failure of the time-dependent
162	intensity corrections to fully account for the volatility of Na and K.

163 Li, Na, and U were measured using Laser Ablation Inductively Coupled Plasma Mass 164 Spectrometry (LA-ICP-MS). The ion signals for Li, Na, and U from 2 crystal aggregates were 165 measured using an Element 2 sector field high resolution inductively coupled plasma mass 166 spectrometer (Thermo Fisher Scientific) in low mass resolution mode coupled with a UP-213 167 (New Wave Research) Nd: YAG deep UV (213 nm) laser ablation system. Prior to the ablation of samples, the Element 2 was tuned using a multi-element solution containing 1 ng g^{-1} of each Li, 168 169 In, and U to obtain maximum ion sensitivity. The laser ablation analyses involved acquiring 170 background ion signals for 60 seconds with the laser on and shuttered, and this was followed by 171 60 seconds of data acquisition. The laser was operated using a 30 µm spot size, repetition rate of 5 Hz, and 65% power output, which corresponded to a fluence of $\sim 8.4 \text{ J} \cdot \text{cm}^{-2}$. Two areas on two 172 173 crystals were examined using single spot analyses. The background corrected ion signals (counts 174 per second) obtained for Li, Na, and U are reported as an atomic ratio relative to that recorded for 175 U, which was used to calculate a corresponding wt% oxide value, as absolute abundances could 176 not be determined due to a lack of an appropriate matrix-matched external standard. The 177 analytical value obtained for Na, while higher than that obtained by EPMA, is also significantly 178 lower than that based on the structure refinement, as is the value obtained for Li; the 179 "undermeasurements" are probably due to the fact that we cannot adequately account for the 180 ionization efficiency differences.

Because insufficient material is available for a direct determination of H_2O , it has been calculated based upon the structure determination (U+S = 7 *apfu*, O = 27 *apfu*). Analytical data are given in Table 1. The empirical formula using Na measured via EPMA is

184	$Li_{0.79}Na_{5.02}K_{2.02}(UO_2)(SO_4)_5(SO_3OH)(H_2O)$, which has a charge deficiency of 1.17 due to
185	undermeasurements of Li, K, and Na. The empirical formula using Na measured via LA-ICP-MS
186	is $Li_{0.79}Na_{5.19}K_{2.02}(UO_2)(SO_4)_5(SO_3OH)(H_2O)$, which has a charge deficiency of 1.00 due to
187	undermeasurements of Li, K, and Na. The empirical formula using Li, Na, and K based on the
188	structure refinement is $Li_{1.00}Na_{5.81}K_{2.19}(UO_2)(SO_4)_5(SO_3OH)(H_2O)$. The simplified formula is
189	LiNa ₅ (Na,K)K ₂ (UO ₂)(SO ₄) ₅ (SO ₃ OH)(H ₂ O) and the ideal formula is
190	LiNa ₆ K ₂ (UO ₂)(SO ₄) ₅ (SO ₃ OH)(H ₂ O), which requires Li ₂ O 1.37, Na ₂ O 17.08, K ₂ O 8.65, UO ₃
191	26.28, SO ₃ 44.13, H ₂ O 2.48, total 100 wt%.
192	
193	X-RAY CRYSTALLOGRAPHY AND STRUCTURE DETERMINATION
194	Both powder and single-crystal X-ray studies were carried out using a Rigaku R-Axis
195	Rapid II curved imaging plate microdiffractometer with monochromatized MoK α radiation. For
196	the powder study, a Gandolfi-like motion on the ϕ and ω axes was used to randomize the sample,
197	which consisted of several crystals. Observed d values and intensities were derived by profile
198	fitting using JADE 2010 software (Materials Data, Inc. Livermore, CA). Data are given in
199	Supplemental ¹ Table S1. The observed powder diffraction pattern compares very well with the
200	pattern calculated from the crystal structure (Fig. 4)
201	The relatively small crystal size only allowed structure data to be collected to $40^{\circ} 2\theta$;
202	consequently, the data to parameter ratio (5.45) was less than optimal. The Rigaku CrystalClear
203	software package was used for processing the structure data, including the application of an
204	empirical absorption correction using the multi-scan method with ABSCOR (Higashi 2001). The
205	structure was solved by the charge-flipping method using SHELXT (Sheldrick 2015a). SHELXL-
206	2016 (Sheldrick 2015b) was used for the refinement of the structure.

207	A cation site with scattering power, coordination, bond lengths, and bond valence
208	appropriate for Li was located. (The presence of Li was independently confirmed by LA-ICP-
209	MS.) Nine cation sites other than S, H, and U were located. Two fully occupied by K (K1 and
210	K2), five fully occupied by Na (Na1 thru Na5), one split Na site (Na6a and Na6b) and one
211	occupied jointly by Na and K (Na/K), which refined to Na _{0.62} K _{0.38} . All non-hydrogen atoms were
212	successfully refined with anisotropic displacement parameters, but several O sites exhibited
213	strongly oblate and/or prolate ellipsoids. This may indicate some local disorder (or local
214	"flexibility") in the structure, but splitting of the sites did not appear warranted. At least some of
215	the ellipsoid anisotropy may be due to inadequacies in the empirical absorption correction,
216	although a shape-based absorption correction yielded a higher R_{int} and did not lessen the ellipsoid
217	anisotropies.
218	Difference-Fourier syntheses located all H atom positions associated with the H ₂ O
219	groups, which were then refined with soft restraints of 0.82(3) Å on the O-H distances and
220	1.30(3) Å on the H–H distances and with the U_{eq} of the OH H atom set to 1.5 times the OH O
221	atom and that for each H ₂ O H atom set to 1.2 times that of the H ₂ O O atom. The crystallographic
222	data can be found in the original CIF (as supplementary file ¹). Selected bond distances are given
223	in Table 2 and a bond-valence analysis in Table 3.
224	
225	DISCUSSION
226	The U site in the structure of seaborgite is surrounded by seven O atom sites forming a
227	squat pentagonal bipyramid. This is a typical coordination for U^{6+} in which the two short apical
228	bonds of the bipyramid constitute the uranyl group (cf. Burns, 2005). The two apical O atoms of
229	the bipyramids (O_{Ur}) form short bonds with the U, and this unit comprises the UO ₂ ²⁺ uranyl

230	group. Five equatorial O atoms (O_{eq}) complete the U coordination. All O_{eq} atoms also participate
231	in SO ₄ groups. The UO ₇ bipyramid is surrounded by five SO ₄ tetrahedra centered by S1(\times 2), S2,
232	S3, and S4, each of which shares one O_{eq} corner of the UO ₇ bipyramid. One additional SO ₄
233	tetrahedron (centered by S5) and one SO ₃ OH tetrahedron (centred by S6) are not linked to the
234	UO7 bipyramid.
235	The UO_7 bipyramids are linked to one another by pairs of $S1O_4$ tetrahedra to form a
236	$[(UO_2)_2(SO_4)_8]^{4-}$ uranyl-sulfate cluster, which is topologically identical to the cluster in the
237	structure of bluelizardite, Na7(UO2)(SO4)4Cl(H2O)2 (Plášil et al. 2014); the two clusters differ in
238	the relative rotation of 1- and 2-connected tetrahedra only, so they can be transformed one into
239	another without the breaking of chemical bonds (Fig. 4). The Li is in regular tetrahedral
240	coordination, typical for Li. Each of the vertices of the LiO_4 tetrahedron is shared with an SO_4
241	tetrahedron ($2 \times S2O_4$ and $2 \times S5O_4$). Two LiO ₄ tetrahedra and two S2O ₄ tetrahedra form a four-
242	member corner-sharing $(LiO_2)_2(S2O_4)_2$ ring in the {100} plane; the $[(UO_2)_2(SO_4)_8]^{4-}$ uranyl-
243	sulfate clusters and the $(LiO_2)_2(S2O_4)_2$ rings link through the S2O ₄ tetrahedra to form a band
244	lying in the $\{100\}$ plane and extending along [010] (Fig. 5). The S5O ₄ tetrahedra form links in
245	the [100] direction between LiO ₄ tetrahedra in adjacent bands. The UO ₇ pentagonal bipyramids,
246	LiO_4 tetrahedra, and SO_4 tetrahedra (centered by S1 through S5) thereby form a thick
247	heteropolyhedral layer parallel to {001} (Fig. 6). The S6O ₃ OH tetrahedron does not participate in
248	this layer linkage.
249	The two K sites (K1 and K2) are both eight coordinated, as is the mixed Na/K site. The
250	Na1, Na2, Na4, and Na5 sites are six coordinated, the Na3 site is seven coordinated and the split
251	Na6 sites (Na6a and Na6b) are each five coordinated. All bond valence sums (Table 7) for these
252	large monovalent cation sites are reasonable. The K1 site is located at the center of channels that

253	run through the center of the heteropolyhedral layer. The other large cation sites K2, NaK, Na1,
254	Na2, Na3, Na4, and Na5, as well as the S6O ₃ OH tetrahedron and the OW27 H_2O group occupy
255	the space between and around the periphery of the heteropolyhedral layers with bonding between
256	them resulting in a framework (Fig. 7). Among all structures containing U^{6+} , that of seaborgite is
257	unique.
258	Nevertheless, in spite of the structural uniqueness of seaborgite, it is noteworthy that its
259	structural complexity, $I_{G,total} = 510.17$ bits/cell (after Krivovichev 2012, 2013, 2014, 2018), falls
260	within the most frequent range of complexities observed for uranyl sulfates, 500 to 600 bits/cell
261	(Gurzhiy and Plášil 2019).
262	
263	Implications
264	Seaborgite is the first uranyl mineral that contains structurally essential lithium, although
265	many synthetic inorganic compounds contain both lithium and uranium. Only two synthetic
266	uranyl sulfates contain lithium, and these are exotic nanoscale cage cluster compounds (Qiu et al.
267	2017). In seaborgite, the lithium cations are in tetrahedral coordination with the four oxygen
268	atoms contributed by monodentate sulfate tetrahedra. Whereas the fundamental building blocks
269	consisting of uranyl dimers connected to eight sulfate tetrahedra in seaborgite have been observed
270	in other minerals and synthetic compounds, the presence of the lithium-centered tetrahedra
271	stitches these together with additional sulfate tetrahedra to form highly unique uranyl sulfate
272	layers. Within these layers are infinite rods consisting of lithium and sulfate tetrahedra that are
273	made possible by the small size of the lithium cation. The large hydrated radius of lithium that
274	consists of two hydration spheres and its high enthalpy of hydration indicate it is unlikely that
275	extended uranyl sulfate units containing lithium polyhedra exist in the aqueous solution from

276	which seaborgite crystallized. Incorporation of lithium tetrahedra in the structure of seaborgite
277	occurred during crystallization caused by evaporation likely close to dryness, and the uncommon
278	coexistence of sufficient uranyl ions and lithium cations in the same natural aqueous solution
279	combined to produce this unusual mineral and its corresponding structure.
280	
281	ACKNOWLEDGEMENTS
282	Sergey Krivovichev, an anonymous reviewer and the Technical Editor are thanked for
283	constructive comments, which improved the manuscript. Associate Editor G. Diego Gatta is
284	thanked for shepherding the manuscript through the review process. Funding to the University of
285	Notre Dame was provided by the Chemical Sciences, Geosciences and Biosciences Division,
286	Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, Grant No. DE-
287	FG02-07ER15880. Funding to JP was provided by the Czech Science Foundation (20-11949S).
288	This study was also funded by the John Jago Trelawney Endowment to the Mineral Sciences
289	Department of the Natural History Museum of Los Angeles County.
290	
291	References
292	Bartlett, J.R., and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths in
293	dioxouranium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure, 193,
294	295–300.
295	Burns, P.C. (2005) U ⁶⁺ minerals and inorganic compounds: Insights into an expanded structural
296	hierarchy of crystal structures. The Canadian Mineralogist, 43, 1839–1894.

- 297 Chenoweth, W.L. (1993) The Geology and Production History of the Uranium Deposits in the
- 298 White Canyon Mining District, San Juan County, Utah. Utah Geological Survey
- 299 Miscellaneous Publication, 93–3.
- 300 Ferraris, G., and Ivaldi, G. (1988) Bond valence vs bond length in O···O hydrogen bonds. Acta
- 301 Crystallographica, B44, 341–344.
- 302 Gagné, O.C., and Hawthorne, F.C (2015) Comprehensive derivation of bond-valence parameters
- for ion pairs involving oxygen. Acta Crystallographica, B71, 562–578.
- 304 Gunter, M.E., Bandli, B.R., Bloss, F.D., Evans, S.H., Su, S.C., and Weaver, R. (2004) Results
- from a McCrone spindle stage short course, a new version of EXCALIBR, and how to build a
- 306 spindle stage. The Microscope, 52, 23–39.
- Gurzhiy, V.V., and Plášil, J. (2019) Structural complexity of natural uranyl sulfates. Acta
 Crystallographica, B75, 39–48.
- 309 Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.
- 310 Kampf, A.R., Plášil, J., Kasatkin, A.V., Marty, J., and Cejka, J. (2015) Fermiite,
- 311 $Na_4(UO_2)(SO_4)_3-3H_2O$ and oppenheimerite, $Na_2(UO_2)(SO_4)_2\cdot 3H_2O$, two new uranyl sulfate
- 312 minerals from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine,
- 313 79, 1123–1142.
- 314 Krivovichev, S.V. (2012): Topological complexity of crystal structures: quantitative approach.
- 315 Acta Crystallographica, A68, 393–398.
- 316 Krivovichev, S.V. (2013): Structural complexity of minerals: information storage and processing
- in the mineral world. Mineralogical Magazine, 77, 275–326.
- 318 Krivovichev, S.V. (2014): Which inorganic structures are the most complex? Angewandte
- 319 Chemie, International Edition English, 53, 654–661.

- 320 Krivovichev, S.V. (2018): Ladders of information: what contributes to the structural complexity
- 321 of inorganic crystals. Zeitschrift für Kristallographie, 233, 155–161.
- 322 Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H…O hydrogen bond
- lengths in minerals. Monatshefte für Chemie, 130, 1047–1059.
- 324 Lussier A.J., Lopez R.A.K., and Hawthorne, F.C. (2016) A revised and expanded structure
- 325 hierarchy of natural and synthetic hexavalent uranium compounds. Canadian Mineralogist,
- *326 54*, *177–283*.
- 327 Mandarino, J.A. (1976) The Gladstone-Dale relationship Part 1: derivation of new constants.
- 328 Canadian Mineralogist, 14, 498–502.
- 329 Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting
- 330 mineral species for further study. Canadian Mineralogist, 45, 1307–1324.
- 331 Plášil, J., Kampf, A.R., Kasatkin, A.V., Marty, J., Škoda, R., Silva, S., and Čejka, J. (2013)
- 332 Meisserite, $Na_5(UO_2)(SO_4)_3(SO_3OH)(H_2O)$, a new uranyl sulfate mineral from the Blue
- Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 77, 2975–2988.
- 334 Plášil, J., Kampf, A.R., Kasatkin, A.V., and Marty, J. (2014) Bluelizardite,
- $Na_7(UO_2)(SO_4)_4Cl(H_2O)_2$, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan
- County, Utah, USA. Journal of Geosciences, 59, 145–158.
- 337 Pouchou, J.-L., and Pichoir, F. (1991) Quantitative Analysis of Homogeneous or Stratified
- 338 Microvolumes Applying the Model "PAP." Pp. 31–75 in: Electron Probe Quantitation.
- 339 Springer US, Boston, MA.
- 340 Qiu, J., Spano, T.L., Dembowski, M., Kokot, A.M., Szymanowski, J.E.S., and Burns, P.C. (2017)
- 341 Sulfate-centered sodium-icosahedron-templated uranyl peroxide phosphate cages with uranyl
- bridged by μ - η^1 : η^2 peroxide. Inorganic Chemistry, 56, 1874-1880.

- 343 Sheldrick, G.M. (2015a) SHELXT Integrated space-group and crystal-structure determination.
- 344 Acta Crystallographica, A71, 3–8.
- 345 Sheldrick, G.M. (2015b) Crystal structure refinement with SHELXL. Acta Crystallographica,
- 346 C71, 3–8.

347

- 348 Endnote:
- ¹Deposit item AM-20-XXXXX, Supplemental tables and CIF. Deposit items are free to all
- 350 readers and found on the MSA website, via the specific issue's Table of Contents (go to
- 351 http://www.minsocam.org/MSA/AmMin/TOC/2020/Xxx2020_data/ Xxx2020_data.html).

353	FIGURE CAPTIONS
354	
355	Figure 1. Diverging group of seaborgite blades with ferrinatrite. The field of view is 0.68 mm
356	across.
357	
358	Figure 2. Crystal drawing of seaborgite; clinographic projection in non-standard orientation.
359	
360	Figure 3. The Raman spectrum of seaborgite recorded with a 532 nm laser.
361	
362	Figure 4. The observed powder diffraction pattern compared with the pattern simulated from the
363	lines calculated from the crystal structure.
364	
365	Figure 5. The $[(UO_2)_2(SO_4)_8]^{4-}$ uranyl sulfate clusters in seaborgite (approx. down [100]) and
366	bluelizardite (down [010]).
367	
368	Figure 6. The band along [010] in seaborgite composed of UO_7 pentagonal bipyramids, LiO_4
369	tetrahedra, and SO_4 tetrahedra (S1 thru S4); the S5 SO_4 tetrahedron, which links the bands in the
370	[100] direction is also shown. The view is down [100] and the unit cell outline is shown as
371	dashed lines.
372	
373	Figure 7. The thick heteropolyhedral layers parallel to [001] in seaborgite viewed along the chain
374	direction [010]. Note that the S5 SO ₄ tetrahedron links the bands in the [100] direction. The unit
375	cell outline is shown as dashed lines.

- 376
- 377 Figure 8. The crystal structure of seaborgite viewed down [100]. The K1, K2, and Na/K
- 378 coordinations are shown ball-and-stick style. The unit cell outline is shown as dashed lines.

379

Constituent	Mean	Range	Stand. Dev.	Standard	Structure
Li ₂ O	1.09 [§]	1.04-1.11	0.03		1.38*
Na ₂ O	14.83 [§]	14.67-15.00	0.23		
Na ₂ O	14.34	12.28-15.80	1.14	albite	16.60*
K ₂ O	8.75	7.95-10.98	0.97	orthoclase	9.50*
UO ₃	26.50	24.08-27.96	1.37	syn. UO ₂	26.50
SO ₃	44.27	42.13-47.57	2.01	anhydrite	44.27
H ₂ O	2.49*				2.49*
Total	97.93 [†] 97.44 [‡]				100.74

Table 1. Chemical analytical results for seaborgite. 381

* based upon the structure refinement. [§] measured by LA-ICP-MS [†] using Na measured via EPMA [‡] using Na measured via LA-ICP-MS 382

383

384

385

300							
389	Li-O20	1.94(2)	Na5-	-02	2.337(10)	U–O25	1.754(8)
390	Li–O7	1.96(2)	Na5-	-021	2.375(11)	U–O26	1.759(8)
391	Li–O5	1.97(2)	Na5-	-O20	2.461(10)	U-012	2.292(9)
392	Li-017	2.05(2)	Na5-	-O18	2.476(10)	U016	2.360(9)
393	<li-0></li-0>	1.98	Na5-	-015	2.508(10)	U03	2.365(9)
394			Na5-	-013	2.573(10)	U04	2.377(8)
395	$Na/K-O6(\times 2)$	2.491(9)	<na< td=""><td>5–O></td><td>2.455</td><td>U–08</td><td>2.488(8)</td></na<>	5–O>	2.455	U–08	2.488(8)
396	$Na/K-O17(\times 2)$	2.740(10)				$< U1 - O_{U} >$	1.757
397	$Na/K-O5(\times 2)$	2.881(9)	Na6	a–O23	2.284(18)	<u1-0,></u1-0,>	2.376
398	$Na/K-O7(\times 2)$	3 095(10)	Na6	a-015	2 328(16)		
399	<na k-o=""></na>	2 802	Na6	a-013	2341(15)	S1-01	1 447(9)
400			Na6	a - 0.22	2.345(19)	S1-02	1 465(9)
401	$Na1-OW27(\times 2)$	2.345(11)	Na6	a-011	2.55(4)	S1-02 S1-03	1 483(9)
402	Na1 $-011(\times 2)$	2.346(11) 2 394(8)	<na< td=""><td>6a = 0 ></td><td>2 370</td><td>S1-03</td><td>1 495(9)</td></na<>	6a = 0 >	2 370	S1-03	1 495(9)
403	Na1 $-014(\times 2)$	2.571(0) 2.534(8)	114	0 u 0 ²	2.570	<\$1_0>	1.173())
404	<na1-o></na1-o>	2.331(0)	Na6	h_023	2271(17)	·01 0/	1.175
405		2.723	Na6	b = 0.22	2.271(17) 2 307(17)	\$2-05	1 458(10)
405	$N_{2} - \Omega^{1}$	2311(11)	Na6	b_{-015}	2.307(17) 2 342(15)	52 O5 \$2_06	1 / 50(0)
400	$N_{a2} = O1$	2.311(11) 2.333(0)	Na6	b = 013	2.3+2(13) 2 $414(17)$	S2-00	1.457(7) 1.461(0)
407	Na2 = O2 Na2 = O13	2.333(9) 2.377(10)	Na6	b - 013	2.414(17) 2.55(4)	S2-07	1.401(9) 1 502(0)
400	Na2-015	2.377(10) 2.415(10)	Nau Na	6h 0 >	2.33(4)	< <u>52</u> -08	1.302(9) 1.470
409	Na2-013 Na2-025	2.413(10) 2.415(10)	<ina< td=""><td>00-02</td><td>2.377</td><td><52=0></td><td>1.470</td></ina<>	00-02	2.377	<52=0>	1.470
410	Na2-023	2.413(10) 2.768(10)	V 1	01	2650(0)	\$2.00	1 447(0)
411	Na2-010	2.700(10)	KI- V1	0	2.030(9)	S3-09 S2 010	1.447(9) 1.475(9)
412	<1Na2-0>	2.437	KI- V1	05	2.799(8)	S3-010 S2 011	1.4/3(8) 1.476(0)
413	$N_{a}2 \cap 10$	2,270(10)	KI- V1	03	2.799(9)	S3-011 S2 012	1.470(9)
414	Na3-010	2.379(10) 2.412(10)	K1- V1	017	2.809(10)	S3-012 <s2 o=""></s2>	1.499(9)
415	Na3-014	2.412(10) 2.424(11)	K1- 1/2	02	2.818(9)	<83-0>	1.4/4
410	Na3-Ow27	2.434(11)	K1- 1/2	020	2.840(9)	Q4 Q12	1 450(0)
41/	Na3-09	2.502(10)	K1-	08	2.9/1(9)	S4-013	1.450(9)
418	Na3-022	2.56/(10)	KI-	06	2.979(9)	S4-014	1.452(9)
419	Na3-011	2.590(10)	<k1< td=""><td>-0></td><td>2.833</td><td>S4-015</td><td>1.463(8)</td></k1<>	-0>	2.833	S4-015	1.463(8)
420	Na3-023	2.658(11)	17.0	001	0.755(0)	S4-016	1.502(9)
421	<na3-0></na3-0>	2.506	K2-	021	2.755(9)	<s4–o></s4–o>	1.467
422			K2-	010	2.764(9)	~ ~ ~ ~	
423	Na4–09	2.302(10)	K2-	022	2.765(9)	S5-017	1.454(10)
424	Na4–O10	2.313(10)	K2-	09	2.889(9)	S5–O18	1.468(9)
425	Na4–O6	2.450(10)	K2-	020	2.897(10)	S5–O19	1.470(9)
426	Na4–O7	2.521(10)	K2-	023	2.897(10)	S5–O20	1.487(9)
427	Na4–O19	2.760(11)	K2-	019	2.955(9)	<\$5–O>	1.470
428	Na4–O8	2.775(10)	K2-	019	2.960(9)		
429	<na4–o></na4–o>	2.520	<k2< td=""><td>-O></td><td>2.860</td><td>S6-O21</td><td>1.411(9)</td></k2<>	-O>	2.860	S6-O21	1.411(9)
430						S6-O22	1.444(9)
431	Hydrogen bonds					S6-O23	1.458(9)
432	D –H \cdots A	D-H	$H \cdots A$	$D \cdots A$	<dha< td=""><td>S6OH24</td><td>1.557(10)</td></dha<>	S6OH24	1.557(10)
433	OH24–H24…O19	$\theta = 0.82(3)$	1.91(5)	2.711(14)	166(15)	<\$6–O>	1.468
434	OW27–H27a···O14 0.82(3)		2.18(5)	2.963(13)	159(12)		
435	OW27−H27b…O	12 0.82(3)	2.35(8)	2.992(14)	135(11)		
436				·			

	2
387	Table 2. Selected bond distances (Å) and angles (°) for seaborgite.
200	

	Li	V 1	W2	NT /17															ч	
	LI	VI.	K 2	Na/K	Nal	Na2	Na3	Na4	Na5	Na6a	Na6b	U	S1	S2	S3	S4	S5	S6	bonds	sum
01		0.22				0.23							1.60							2.05
02		0.14				0.22			0.22				1.53							2.11
O3		0.15										0.51	1.46							2.12
O4												0.50	1.42							1.92
05	0.24	0.15		0.08 ×2↓										1.55						2.02
O6		0.10		0.22 ×2↓				0.21						1.55						2.08
07	0.25			0.05 ×2↓				0.14						1.54						1.98
08		0.10						0.08				0.39		1.39						1.96
O9			0.12				0.15	0.24							1.60					2.11
O10			0.17				0.20	0.23							1.49					2.09
011					0.19 ×2↓		0.12			$\begin{array}{c} 0.14 \\ \times \sqrt[1]{2} \rightarrow \end{array}$					1.49					1.87
012												0.59			1.40				0.13	2.12
013						0.20			0.12	$\begin{array}{c} 0.22 \\ \times^{1/_{2}} \rightarrow \end{array}$	$\begin{array}{c} 0.18 \\ \times \sqrt[1]{2} \rightarrow \end{array}$					1.59				2.11
014					0.14 ×2↓		0.18									1.58			0.14	2.04
015						0.18			0.14	$\begin{array}{c} 0.22 \\ \times^{1/_{2}} \rightarrow \end{array}$	$\begin{array}{c} 0.22 \\ \times^{1/_{2}} \rightarrow \end{array}$					1.54				2.08
016						0.08						0.51				1.39				1.98
O17	0.21	0.15		0.12 ×2↓													1.57			2.05
O18									0.16		$\begin{array}{c} 0.14 \\ \times \sqrt[1]{2} \rightarrow \end{array}$						1.52			1.75
019			0.10 0.10					0.08									1.51		0.22	2.01
O20	0.25		0.12						0.16								1.45			1.98
O21			0.17						0.20									1.75		2.12
022			0.16				0.13			$\begin{array}{c} 0.22 \\ \times \sqrt[1]{2} \rightarrow \end{array}$	$\begin{array}{c} 0.24 \\ \times \sqrt[1]{_2} \rightarrow \end{array}$							1.61		2.13
O23			0.12				0.10			$0.24 \\ \times^{1/2} \rightarrow$	$0.26 \\ \times^{1/2} \rightarrow$							1.55		2.02
OH24																		1.21	-0.22	0.99
025						0.18						1.85								2.03
O26		0.14										1.83								1.97
OW27					0.21 ×2↓		0.17												-0.13 -0.14	0.11
sum	0.95	1.15	1.06	0.94	1.08	1.09	1.05	0.98	1.00	1.04	1.04	6.18	6.01	6.03	5.98	6.10	6.05	6.12		

437	Table 3. Bond valence analysis for seaborgite. Values are expressed in valence units.*
438	

439

* Bond valence parameters are from Gagne and Hawthorne (2015). Hydrogen-bond strengths are

440

* Bond valence parameters are from Gagne and Hawthorne (2015). Hydrogen-bond strengths ar based on O–O bond lengths from Ferraris and Ivaldi (1988).

Figure 1

