### 1 REVISION 1

2 Word count: 6367

## 3 Hydroxylpyromorphite, modern description and

## 4 characterization of a mineral important to lead-remediation

| 5<br>6<br>7 | Travis A. Olds <sup>1*</sup> , Anthony R. Kampf <sup>2</sup> , John F. Rakovan <sup>3</sup> , Peter C. Burns <sup>4,5</sup> , Owen P. Mills <sup>6</sup> , and Cullen Laughlin-Yurs <sup>7</sup> |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| /<br>8<br>9 | <sup>1</sup> Section of Minerals and Earth Sciences, Carnegie Museum of Natural<br>History, 4400 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA                                              |
| 10          | <sup>2</sup> Mineral Sciences Department, Natural History Museum of Los Angeles                                                                                                                  |
| 11          | County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA                                                                                                                                     |
| 12          | University Oxford OH 45056 USA                                                                                                                                                                   |
| 14          | <sup>4</sup> Department of Civil and Environmental Engineering and Earth Sciences,                                                                                                               |
| 15          | University of Notre Dame, Notre Dame, IN 46556, USA                                                                                                                                              |
| 16          | <sup>5</sup> Department of Chemistry and Biochemistry, University of Notre Dame,                                                                                                                 |
| 17          | Notre Dame, IN 46556, USA                                                                                                                                                                        |
| 18          | <sup>o</sup> Applied Chemical and Morphological Analysis Laboratory, Michigan                                                                                                                    |
| 19<br>20    | $^{7}$ 513 Iron Street Norway MI 49870 USA                                                                                                                                                       |
| 20          | 515 Holl Succe, Norway, 101 49670, 0574                                                                                                                                                          |
| 22          | *E-mail: oldst@carnegiemnh.org                                                                                                                                                                   |
| 23          | Abstract                                                                                                                                                                                         |
| 24          | Hydroxylpyromorphite, Pb <sub>5</sub> (PO <sub>4</sub> ) <sub>3</sub> (OH), has been documented in the literature                                                                                |
| 25          | as a synthetic and naturally occurring phase for some time now but has not                                                                                                                       |
| 26          | previously been formally described as a mineral. It is fully described here for                                                                                                                  |
| 27          | the first time using crystals collected underground in the Copps mine, Gogebic                                                                                                                   |
| 28          | County, Michigan. Hydroxylpyromorphite occurs as aggregates of randomly                                                                                                                          |
| 29          | oriented hexagonal prisms, primarily between about $20 - 35 \ \mu m$ in length and                                                                                                               |
| 30          | $6-10 \ \mu m$ in diameter. The mineral is colorless and translucent with vitreous                                                                                                               |
| 31          | luster and white streak. The Mohs hardness is $\sim 3\frac{1}{2}-4$ ; the tenacity is brittle,                                                                                                   |
| 32          | the fracture is irregular, and indistinct cleavage was observed on {001}.                                                                                                                        |

33 Electron microprobe analyses provided the empirical formula

| 34 | $Pb_{4.97}(PO_4)_3(OH_{0.69}F_{0.33}Cl_{0.06})_{\sum 1.08}$ . The calculated density using the measured                                                      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 35 | composition is 7.32 g·cm <sup>-3</sup> . Powder X-ray diffraction data for the type                                                                          |
| 36 | material is compared to data previously reported for hydroxylpyromorphite                                                                                    |
| 37 | from the talc mine at Rabenwald, Austria, and from Whytes Cleuch,                                                                                            |
| 38 | Wanlockhead, Scotland. Hydroxylpyrmorphite is hexagonal, $P6_3/m$ , at 100K,                                                                                 |
| 39 | a = 9.7872(14), c = 7.3070(10) Å, $V = 606.16(19)$ Å <sup>3</sup> , and $Z = 2$ . The structure                                                              |
| 40 | $(R_1 = 0.0181 \text{ for } 494 F > 4\sigma(F) \text{ reflections})$ reveals that hydroxylpyromorphite                                                       |
| 41 | adopts a column anion arrangement distinct from other members of the apatite                                                                                 |
| 42 | supergroup due to the presence of fluorine and steric constraints imposed by                                                                                 |
| 43 | stereoactive lone-pair electrons of $Pb^{2+}$ cations. The F <sup>-</sup> anion sites are                                                                    |
| 44 | displaced slightly from hydroxyl oxygen anions, which allows for stronger                                                                                    |
| 45 | hydrogen-bonding interactions that may in turn stabilize the observed column-                                                                                |
| 46 | anion arrangement and overall structure. Our modern characterization of                                                                                      |
| 47 | hydroxylpyromorphite provides deeper understanding to a mineral useful for                                                                                   |
| 48 | remediation of lead-contaminated water.                                                                                                                      |
| 49 |                                                                                                                                                              |
| 50 | Keywords: Hydroxylpyromorphite; apatite; crystal structure; Copps mine;                                                                                      |
| 51 | infrared spectroscopy; Michigan; anion column                                                                                                                |
| 52 |                                                                                                                                                              |
| 53 | Introduction                                                                                                                                                 |
| 54 | The apatite supergroup comprises a series of structurally related                                                                                            |
| 55 | minerals with the general formula ${}^{\rm IX}M1_2{}^{\rm VII}M2_3({}^{\rm IV}TO_4)_3X$ based upon a                                                         |
| 56 | heteropolyhedral framework of metallic ( $M = Ca^{2+}, Pb^{2+}, Cd^{2+}, Ba^{2+}, Sr^{2+},$                                                                  |
| 57 | $Mn^{2+}$ , $Na^+$ , $Ce^{3+}$ , $La^{3+}$ , $Y^{3+}$ , $Bi^{3+}$ ) and tetrahedral cations (T = P <sup>5+</sup> , V <sup>5+</sup> , As <sup>5+</sup> ,      |
| 58 | Si <sup>4+</sup> , S <sup>6+</sup> , B <sup>3+</sup> ) with columns containing the X anions: F <sup>-</sup> , (OH) <sup>-</sup> , or Cl <sup>-</sup> (Pasero |

| 59 | et al., 2010). More than fifty years of crystallographic studies of               |
|----|-----------------------------------------------------------------------------------|
| 60 | mineralogical, biological and synthetic apatite phases have revealed that         |
| 61 | extensive anion solid solution occurs among the group members and that            |
| 62 | certain species exhibit specific anion-column ordering schemes dependent on       |
| 63 | size, site occupancy, and the chemical makeup of the anion column (Hughes         |
| 64 | and Rakovan, 2015; White and ZhiLi, 2003). Our understanding of anion-            |
| 65 | column ordering in the calcium phosphate apatites is now rather well-             |
| 66 | established based on several studies of natural and synthetic samples (Hughes     |
| 67 | et al., 2014, 2016, 2018; Kelly et al., 2017), however, details of anion ordering |
| 68 | in the pyromorphite group are incomplete due to missing data for the fluor and    |
| 69 | hydroxyl members.                                                                 |
| 70 | In existing literature, numerous references have been made to                     |
| 71 | "hydroxypyromorphite, hydroxopyromorphite, lead apatite, or lead                  |
| 72 | hydroxypatite" compounds as both synthetic and natural material, although         |
| 73 | until now the crystal structure of hydroxylpyromorphite found in Nature was       |
| 74 | not determined, nor formally considered a mineral (Brückner et al., 1995;         |
| 75 | Cockbain, 1968; Lower et al., 1998; Mavropoulos et al., 2002; Zhu et al.,         |
| 76 | 2016). Here for the first time, we provide a full structural analysis of the      |
| 77 | mineral hydroxylpyromorphite.                                                     |
| 78 | The mineral and its name have been approved by the Commission on                  |
| 79 | New Minerals, Nomenclature and Classification of the International                |
| 80 | Mineralogical Association (IMA2017-075). The prefix "hydroxyl" is used in         |
| 81 | accordance with the nomenclature scheme for the apatite supergroup (Hatert et     |
| 82 | al., 2013; Pasero et al., 2010). The description is based on one holotype         |
| 83 | specimen deposited in the collections of the Natural History Museum of Los        |

84 Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA,

85 catalogue number 66627.

### 86 Occurrence

| 87  | Hydroxylpyromorphite crystals were collected by Shawn M. Carlson                   |
|-----|------------------------------------------------------------------------------------|
| 88  | and one of the authors (CL) in 2015 at the Copps mine, Gogebic County,             |
| 89  | Michigan. This "mine" is actually a late 19 <sup>th</sup> century test exploration |
| 90  | consisting of approximately eleven small adits, pits, trenches, and shafts         |
| 91  | spanning a distance of about 225 meters, and located in sections 14, 15, and       |
| 92  | 22, T47N, R43W (Carlson et al., 2017). The exploration tested discontinuous        |
| 93  | and sub-economic precious and base-metal mineralization, mainly Pb, Cu, and        |
| 94  | Ag contained within the Early Proterozoic Copps Formation (Baraga Group of         |
| 95  | the Marquette Range Supergroup), a formation comprised primarily of                |
| 96  | metagraywacke and conglomeratic, ferruginous quartzite (Klasner et al.,            |
| 97  | 1998). Hydroxylpyromorphite has so far been identified from a single               |
| 98  | specimen of vein quartz and its only intimate association is with quartz as vug    |
| 99  | linings, but more generally is associated with twenty-one minerals, one            |
| 100 | mineraloid, and seven unknowns that have been documented at the prospect.          |
| 101 | The identified minerals include: anglesite, beaverite-(Cu), calcite, cerussite,    |
| 102 | chalcopyrite, chamosite, corkite, covellite, dolomite, galena, goethite, gypsum,   |
| 103 | hematite, jarosite, "K-feldspar", malachite, plumbojarosite, pyrite, quartz,       |
| 104 | "sericite", and sphalerite (Carlson et al., 2017). The morphology and              |
| 105 | association of hydroxylpyromorphite suggest that it is a geogenic secondary        |
| 106 | Pb phase and is not post-mining in origin.                                         |
| 107 | In what may be the first report of natural hydroxylpyromorphite,                   |
| 108 | Temple (1956) identified a lead phosphate mineral from an unspecified vein at      |

109 Whytes Cleuch, Wanlockhead, Dumfries & Galloway, Scotland, UK, which 110 he described as "lead hydroxyapatite," but provided no chemical data. In 111 Temple's words, "The mineral appears to represent a further substitution in 112 the pyromorphite group, the hydroxyl group substituting for chloride." It 113 forms powdery white coatings associated with *polysphaerite* 114 [phosphohedyphane,  $Ca_2Pb_3(PO_4)_3Cl$ ], as pseudomorphs after galena. We 115 have sought and tested similar material from Whytes Cleuch; however, in the 116 single specimen studied we have only identified phosphohedyphane and 117 anglesite. Single crystals of hydroxylpyromorphite, if present, were too 118 intimately admixed with phosphohedyphane and far too small for conventional 119 single-crystal X-ray diffraction (SCXRD) analysis. This was likewise the case 120 for material from a third reported occurrence of thin white coatings of finely 121 crystalline hydroxylpyromorphite from the talc mine at Rabenwald, Anger, 122 Weiz, Styria, Austria (Kolitsch and Lóránth 2016). According to the website 123 Mindat.org (accessed July 2020), several other reported hydroxylpyromorphite 124 occurrences exist, but we have not been able to confirm their validity. Two 125 samples tested from the Motel 22 occurrence, Brady Township, Huntingdon 126 Co., Pennsylvania, USA, were found to contain only anglesite and cerussite. 127 An additional occurrence of anthropogenic "hydroxylpyromorphite" is 128 reported by Kirchner along with other secondary Pb, Cu, and As minerals on 129 medieval slag heaps south of Radhausberg, Austria (Kirchner et al., 2007). 130 Our difficulty locating suitable material for single-crystal structure 131 determination may attest to why the mineral has remained undescribed until 132 now; however, we are able to provide a comparison of X-ray powder 133 diffraction data for Copps mine crystals to the original "lead hydroxyapatite"

| 134 | data given by Temple (1954), and hydroxylpyromorphite from Kolitsch and                                             |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 135 | Lóránth (2016). While we acknowledge that the Copps mine is not the first                                           |
| 136 | reported occurrence for hydroxylpyromorphite, it is the first to provide                                            |
| 137 | suitable material for a full description of the phase.                                                              |
| 138 | Physical and optical properties                                                                                     |
| 139 | On the holotype specimen, hydroxylpyromorphite crystals are arranged                                                |
| 140 | in aggregates of randomly oriented colorless hexagonal prisms, primarily                                            |
| 141 | between about 20 – 35 $\mu$ m in length and 6 – 10 $\mu$ m in diameter (Fig.                                        |
| 142 | 1), although several highly-elongated crystals reaching 250 $\mu$ m in length were                                  |
| 143 | also found. Crystals exhibit the $\{100\}$ prism and are terminated by the $\{101\}$                                |
| 144 | pyramid (Fig. 2). They are translucent with a vitreous luster, have a white                                         |
| 145 | streak and are non-fluorescent under both long- and short-wave ultraviolet                                          |
| 146 | illumination. The crystals are brittle with indistinct $\{001\}$ cleavage and                                       |
| 147 | irregular fracture. The Mohs hardness is about 3.5-4 based on scratch tests.                                        |
| 148 | The density could not be measured due to the limited availability of material                                       |
| 149 | and because it exceeds that of available heavy liquids. The calculated density                                      |
| 150 | is 7.32 g $\cdot$ cm <sup>-3</sup> based on the empirical formula and 7.33 g $\cdot$ cm <sup>-3</sup> for the ideal |
| 151 | formula.                                                                                                            |
| 152 | Optically, hydroxylpyromorphite is uniaxial (-), with $\omega$ - $\epsilon$                                         |
| 153 | birefringence = $0.03$ . The small crystal size and high indices of refraction                                      |
| 154 | made the measurement of indices of refraction impractical. The predicted                                            |
| 155 | average index of refraction based upon the Gladstone-Dale relationship is                                           |
| 156 | 2.04. The indices of refraction of pyromorphite are slightly higher by                                              |
| 157 | comparison, $\omega = 2.058$ , $\varepsilon = 2.048$ (Anthony et al., 2000).                                        |
| 158 | Infrared Spectroscopy                                                                                               |

| 159 | Attenuated total reflectance (ATR) Fourier-transform infrared (FTIR)                                   |
|-----|--------------------------------------------------------------------------------------------------------|
| 160 | spectra were obtained using a liquid N2-cooled SENSIR Technologies                                     |
| 161 | IlluminatIR mounted to an Olympus BX51 microscope. A ContactIR ATR                                     |
| 162 | objective (diamond and ZnSe lens) was pressed into crystals of                                         |
| 163 | hydroxylpyromorphite and spectra were measured from 4000 to 650 cm <sup>-1</sup> . The                 |
| 164 | infrared spectrum is shown in Figure 3. Broad hydroxyl stretching vibrations                           |
| 165 | occur between ~3600 and 3000 cm <sup><math>-1</math></sup> . Approximate O-H…O hydrogen bond-          |
| 166 | lengths calculated from the observed stretching frequencies lie within the                             |
| 167 | range ~3.2 to 2.7 Å using the correlation function given by Libowitzky (1999).                         |
| 168 | Hydrogen-bonding interactions in the crystal structure are weak ( $\geq$ 3 Å), and                     |
| 169 | thus stronger H-bonding interactions observed in the IR spectrum may be                                |
| 170 | attributable to adsorbed $H_2O$ (Ishikawa et al., 1989). A broad and weak band                         |
| 171 | centered near ~1950 cm <sup>-1</sup> is likely a combination band ( $v_3 PO4 + v_1 PO_4$ ). The        |
| 172 | $v_3$ anti-symmetric stretching mode of PO <sub>4</sub> units occurs as moderately strong              |
| 173 | bands at 1053 and 1000 cm <sup>-1</sup> . The $v_1$ PO <sub>4</sub> symmetric stretching mode is found |
| 174 | as a very strong band at 917 cm <sup>-1</sup> , and the weak $v_4$ bending mode of PO <sub>4</sub>     |
| 175 | occurs at 764 cm <sup>-1</sup> .                                                                       |
| 176 |                                                                                                        |
| 1// |                                                                                                        |
| 178 | Chemical analyses (12) were performed using a JEOL JXA-773                                             |
| 179 | electron microprobe operating at an accelerating voltage of 15 kV, with a                              |
| 180 | beam current of 10 nA and 10 $\mu m$ spot diameter. Crystals were oriented and                         |
| 181 | analyzed using surfaces perpendicular to the $c$ axis (see below).                                     |
| 182 | Hydroxylpyromorphite contains major Pb, P and O, with minor F and trace Cl.                            |

183 No other elements were detected. Matrix effects were accounted for using the

| 184 | ZAF correction routine (Armstrong, 1988). Due to the limited amount of                                                                                |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 185 | material available, the H <sub>2</sub> O content was not measured and is instead calculated                                                           |
| 186 | by stoichiometry with respect to the structure. Analytical data are given in                                                                          |
| 187 | Table 1. The empirical formula, calculated on the basis of 3 P atoms per                                                                              |
| 188 | formula unit ( <i>apfu</i> ) is $Pb_{4.97}(PO_4)_3(OH_{0.69}F_{0.33}Cl_{0.06})_{\Sigma 1.08}$ . The ideal formula is                                  |
| 189 | Pb <sub>5</sub> (PO <sub>4</sub> ) <sub>3</sub> (OH), which requires PbO 83.41, P <sub>2</sub> O <sub>5</sub> 15.91, H <sub>2</sub> O 0.67, total 100 |
| 190 | wt%.                                                                                                                                                  |
|     |                                                                                                                                                       |

191 Electron-beam induced halogen migration is commonly observed in 192 fluorapatites and chlorapatites (Stock et al., 2015), where an inaccurate 193 measured halogen concentration is caused by accumulation of those elements 194 near the analysis surface. Migration is most pronounced when the electron 195 beam impinges on (001) sections, parallel to the anion columns in the apatite 196 structure, whereas minimal migration occurs in {100} sections, that is, when 197 the beam is normal to the c axis (Stormer et al., 1993). After prolonged 198 exposure to the electron beam, a decrease of measured signals attributed to F 199 and Cl corresponds to loss due to volatility. We conducted a series of 200 microprobe experiments using hydroxylpyromorphite crystals with their c axis 201 oriented parallel to the beam to monitor anion migration. Raw counts for F in 202 hydroxylpyromorphite were collected using sequential 5 second count times 203 up to 2 minutes at 15 kV, 25 nA, and 1 µm beam diameter. No statistically 204 significant change in the F signal over the period of two minutes was 205 observed, suggesting that significant electron-beam induced F migration does 206 not occur, at least on this time scale (Fig. S1). The very small size of the 207 polished crystal sections (~5 µm) and low total F and Cl content may also lead 208 to poor resolution of halogen migration here.

| 209 | An additional single spot analysis was noted to display anomalously                                          |
|-----|--------------------------------------------------------------------------------------------------------------|
| 210 | high F content, 1.02 wt%, corresponding to the empirical formula                                             |
| 211 | $Pb_{5.23}(PO_4)_3(F_{0.76}OH_{0.21}Cl_{0.08})_{\Sigma^{1.04}}$ . This single analysis may correspond to the |
| 212 | yet undescribed F-analogue of pyromorphite, "fluorpyromorphite," but was                                     |
| 213 | considered to be of low quality due to the high proportion of Pb:P. Subsequent                               |
| 214 | analyses have not revealed demonstrably F-dominant crystals, nor have we                                     |
| 215 | observed any clear zonation of F content within the resolution of the                                        |
| 216 | microprobe that might suggest the F-dominant analogue exists at the Copps                                    |
| 217 | mine.                                                                                                        |
| 218 |                                                                                                              |

### 219 **Powder X-ray diffraction**

220 X-ray powder diffraction data were obtained using a Rigaku R-Axis 221 Rapid II curved imaging plate microdiffractometer with monochromatized 222 MoK $\alpha$  radiation. A Gandolfi-like motion on the  $\phi$  and  $\omega$  axes was used to 223 randomize diffraction from the sample. Observed *d*-values and intensities 224 were derived by profile fitting using JADE 2010 software (Materials Data, 225 Inc.). Data (in Å for Mo $K\alpha$ ) are given in Table S1. Unit-cell parameters 226 refined from the powder data using JADE 2010 with whole pattern fitting in 227 space group  $P6_3/m$  are: a = 9.7858(14) Å, c = 7.3072(11) Å, V = 606.0(2) Å<sup>3</sup>. 228 The powder X-ray diffraction data for Copps mine 229 hydroxylpyromorphite presented here agrees favorably with the lines observed 230 by Temple (1954) for "lead hydroxyapatite" from Whytes Cleuch and 231 synthetic material listed by Hey (1950), as well as with data measured for 232 hydroxylpyromorphite from the talc mine at Rabenwald, Austria (Uwe 233 Kolitsch pers. comm.; Table 2).

### 234 Single-crystal X-ray diffraction

| 235 | A small elongated hexagonal prism was chosen for the single-crystal                |
|-----|------------------------------------------------------------------------------------|
| 236 | X-ray diffraction experiment. Data were collected at 100 K using                   |
| 237 | monochromatized MoK $\alpha$ X-rays from a microfocus source and an Apex II        |
| 238 | CCD-based detector mounted to a Bruker Apex II Quazar three-circle                 |
| 239 | diffractometer. Reflections were integrated and corrected for Lorentz,             |
| 240 | polarization, and background effects using the Bruker program SAINT. A             |
| 241 | multi-scan semi-empirical absorption correction was applied using equivalent       |
| 242 | reflections in SADABS-2012 (Krause et al., 2015). An initial structure model       |
| 243 | was obtained by the charge-flipping method using SHELXT (Sheldrick,                |
| 244 | 2015a) in space group $P6_3/m$ , and refinements were made by full-matrix least-   |
| 245 | squares on $F^2$ using SHELXL-2016 (Sheldrick, 2015b). All atoms except            |
| 246 | those in the anion column were refined with anisotropic displacement               |
| 247 | parameters, and the $U_{eq}$ of atom H1 set to 1.2 times that of its donor O atom, |
| 248 | O4. The data collection and refinement information are presented in Table S2,      |
| 249 | atomic coordinates and displacement parameters in Table S3, selected bond          |
| 250 | distances in Table S4, and a bond-valence analysis in Table S5.                    |
| 251 |                                                                                    |

252 Features of the Crystal Structure

The crystal structure is a heteropolyhedral framework consisting of PbO<sub>9</sub> and PbO<sub>6</sub>(OH)<sub>2</sub> polyhedra and phosphate (PO<sub>4</sub>) tetrahedra arranged into the well-known apatite-type structure (Fig. 4). Hexamers of Pb2-centered polyhedra share a central atom O4 located on (0,0,0), the oxygen atom of the hydroxyl anion, forming columnar units that extend along [001]. A second structural unit built from Pb1-centered polyhedra consists of simple chains

that extend along [001] and connect three sets of hexamers such that six chains
adorn each column of hexamers. Phosphate tetrahedra decorate the chains and
columns that connect the Pb polyhedra as well as the hexamer columns to
chains.

| 263 | The P atom position in hydroxylpyromorphite is coordinated by four                        |
|-----|-------------------------------------------------------------------------------------------|
| 264 | oxygen atoms in a tetrahedral arrangement and the average P-O bond distance               |
| 265 | is 1.544 Å with little variance (Table S4). The coordination environment of               |
| 266 | atom Pb1 takes the shape of a tricapped trigonal prism by bonding to nine                 |
| 267 | phosphate O atoms with an average bond distance of 2.703 Å. Three of the                  |
| 268 | nine bonds to Pb1 are short with O2 at 2.512 Å, with three additional long                |
| 269 | bonds to O1 at 2.724 Å, and three to O3 at 2.873 Å. The large bond length                 |
| 270 | variance and cis coordination of the short Pb1-O bonds indicates a                        |
| 271 | stereochemically active $6s^2$ lone pair of electrons, which due to symmetry              |
| 272 | constraints, necessitates their placement along the three-fold rotation axis              |
| 273 | between pairs of Pb1 atoms and directed towards the pyramidal void space                  |
| 274 | formed by O1 or O2 atoms (Dai et al., 1991). The lone pair may reside                     |
| 275 | predominantly in the larger void formed by O1 atoms, with a void volume                   |
| 276 | measuring $\sim 30$ Å <sup>3</sup> , rather than that formed by O2 atoms, with a slightly |
| 277 | smaller, ~23 Å <sup>3</sup> void. Furthermore, at 3.694(1) Å, the Pb1–Pb1 distance        |
| 278 | through the O1 triangle is $\sim 0.08$ Å longer than the Pb1–Pb1 distance through         |
| 279 | the O2 triangle, supporting dominant occupancy of the lone-pair within the O1             |
| 280 | void.                                                                                     |
| 281 | Atom Pb2 forms six bonds with O atoms of phosphate groups and two                         |
| 282 | hydroxyl oxygen atoms (O4) in the column, giving an eight-coordinated                     |

irregular polyhedron with a <Pb2–O> bond distance of 2.707 Å. These bonds

| 284 | also exhibit variable length with lopsided long and short bonds provoked by                                     |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 285 | $6s^2$ lone-pair electrons, and includes a short 2.398 Å bond to O1 and four                                    |
| 286 | relatively short bonds to O3, with two at 2.595 Å and two at 2.637 Å. The                                       |
| 287 | long bond to O2 at 2.930 Å and two long bonds with O4 at 2.932 Å                                                |
| 288 | accommodate space for the lone-pair electrons. Based on symmetry                                                |
| 289 | constraints, the Pb2 lone-pair electrons are directed inward and adjacent to the                                |
| 290 | column anions along the $z = \frac{1}{4}$ mirror plane. Their placement imposes several                         |
| 291 | restrictions on the anion column arrangement in hydroxylpyromorphite.                                           |
| 292 | The anisotropic displacement parameters of atom Pb1 are essentially                                             |
| 293 | isotropic in shape, however, atom Pb2 exhibits a three-fold greater elongation                                  |
| 294 | along the c axis/ $U^{33}$ vector (0.035 Å <sup>2</sup> ) relative to Pb1 (0.012 Å <sup>2</sup> ). The apparent |
| 295 | positional disorder is not significant enough to consider splitting of the Pb1                                  |
| 296 | position, though could suggest a long-range averaged displacement due to                                        |
| 297 | inhomogeneous column anion arrangements. We cannot, however, discount                                           |
| 298 | that the effect may be due to an inadequate absorption correction.                                              |
|     |                                                                                                                 |

299

### 300 Anion Column Ordering

301 The chemical analyses indicate that hydroxylpyromorphite from the 302 Copps mine contains appreciable fluoride (0.33 apfu) and this raises a 303 question regarding its position amongst OH groups in the anion column. The 304 hydroxyl oxygen atom O4 exhibited signs of site splitting and a weak Fourier difference density peak ( $\sim 1 \text{ e/A}^3$ ) was located approximately  $\sim 0.7 \text{ Å}$  from O4. 305 306 Site scattering refinement trials attempted with full H atom occupancy at this 307 peak led to anomalously high displacement parameters and excessive 308 occupancy (>1) of H, as expected for the occupation of a heavier atom, and we 309 proceeded with refinement of this peak as a partially occupied F atom. 310 Attempts to refine the disorder as a mixed occupancy site containing both F 311 and H were unsuccessful, so the calculated site-scattering from the chemical 312 analyses for F and H, 3.66 epfu, was initially used to guide the disorder 313 refinement with a split-site model containing separate F and H atom sites. In 314 the final iterations, their occupancies and positions were allowed to refine 315 freely. 316 Overlap of the column anions and steric limitations imposed by Pb2 317 lone-pair electrons necessitates specific anion-occupancy considerations based 318 on symmetry constraints, resulting in several possible local configurations of 319 anions (Fig. 5). Related through hexagonal symmetry, the F<sup>-</sup> anions in 320 hydroxylpyromorphite may substitute locally at column anion sites allowing 321 for reversal of the hydrogen-bonding sequence (Fig. 5B). In this case, F 322 occupancy (which requires local O4 vacancy) results in stronger hydrogen-323 bonding interactions within the column with a F–O distance of 3.02 Å. 324 Hydrogen-bonding interactions in end-member hydroxylpyromorphite are 325 otherwise non-existent, with O4–O4 donor-acceptor distances measuring >3.6326 Å. Thus, unique F sites displaced slightly from O sites in 327 hydroxylpyromorphite may provide for a more stable anion column 328 arrangement through stronger hydrogen-bonding interactions, potentially 329 yielding a more stable structure with respect to end-member fluor- or 330 hydroxylpyromorphite. 331 Anion column ordering in fluor-, chlor-, and hydroxylapatites has been 332 investigated in depth by others (Hughes et al., 1989, 2014, 2016, 2018; Kelly 333 et al., 2017) and these studies have provided detailed ordering schemes based

| 334 | on steric limitations of the column and anion constituents. In apatite                                            |
|-----|-------------------------------------------------------------------------------------------------------------------|
| 335 | containing roughly equivalent amounts of F and OH, distinct F and OH sites                                        |
| 336 | are found and their ionic radii [F 1.30 Å and O 1.31 Å (Shannon and Prewitt,                                      |
| 337 | 1969)] permit each site to be occupied simultaneously, with occupancy and                                         |
| 338 | ordering considerations. As a result, complete solid solution between binary F-                                   |
| 339 | OH apatite exists with end-member defining F and OH sites while maintaining                                       |
| 340 | $P6_3/m$ symmetry (Hughes et al., 1989). However, the presence of minor Cl in                                     |
| 341 | fluor- and hydroxylapatite can lead to splitting of the Ca2 site to accommodate                                   |
| 342 | the large Cl anions (Sudarsanan and Young, 1978). No such Pb2-site splitting                                      |
| 343 | is observed in hydroxylpyromorphite, where the Pb–F bond distance measures                                        |
| 344 | 2.58(4) Å, considerably shorter but more ideal than those found in synthetic                                      |
| 345 | lead-fluorapatite and Sr-substituted lead-fluorapatite, where Pb/Sr-F bond                                        |
| 346 | distances range from ~2.75 to 2.95 Å (Badraoui et al., 2006; Fleet et al.,                                        |
| 347 | 2010). The Pb–F bond distance in fluorphosphohedyphane is 2.87 Å (Kampf                                           |
| 348 | and Housley, 2011). Bond-valence analysis of hydroxylpyromorphite indicates                                       |
| 349 | that the refined configuration provides ideal sums for all constituents except F                                  |
| 350 | at 0.75 vu, not accounting for partial occupancy or hydrogen bonding [~0.17                                       |
| 351 | vu] (Table S5). This is more favourable than sums incident to F in                                                |
| 352 | fluorphosphohedyphane, 0.594 vu, and synthetic Pb <sub>5</sub> (PO <sub>4</sub> ) <sub>3</sub> F, 0.593 vu (Kampf |
| 353 | and Housley, 2011).                                                                                               |
| 354 | Hughes et al. (2014, 2016, 2018) and Kelly et al. (2017) found the use                                            |
| 355 | of isotropic displacement parameters necessary to describe the anion column                                       |
| 356 | positions in tertiary and binary hydroxyl-, fluor-, and chlorapatites. This is an                                 |
| 357 | effect of the significant anion disorder and Ca site splitting observed in fluor-                                 |
| 358 | and hydroxylapatite crystals containing Cl, which due to steric constraints,                                      |

| 359 | require introduction of split Cl sites and mixed occupancy O-Cl sites (Fig. 6).     |
|-----|-------------------------------------------------------------------------------------|
| 360 | We observe similar O-Cl site mixing in hydroxylpyromorphite due to the              |
| 361 | steric limitations of lone-pair electrons and the formation of an otherwise         |
| 362 | unfavourably short Pb–Cl bond at ~2.58 Å. Thus, at least two column-anion           |
| 363 | sites are found in hydroxylpyromorphite; including an O/Cl site at $z = 0$ and a    |
| 364 | F site at $z = 0.087$ . Such positioning is comparable to the Cl sites found in     |
| 365 | chlorapatite, mimetite, pyromorphite, alforsite, pieczkaite, and turneaureite,      |
| 366 | that sit on analogous $2b$ Wyckoff positions (0,0,0).                               |
| 367 |                                                                                     |
| 368 | Relation to synthetic phases                                                        |
| 369 | Synthetic hydroxylpyromorphite was prepared by Barinova et al.                      |
| 370 | (1998) using hydrothermal methods (260 °C, 100 atm) and its measured                |
| 371 | single-crystal unit-cell parameters are nearly identical to crystals from the       |
| 372 | Copps mine (Table 3). Notable structural differences include slightly larger        |
| 373 | separation between Pb2-Pb2 pairs and longer Pb2-OH bond distances in                |
| 374 | natural hydroxylpyromorphite; which is likely a response of lone-pair               |
| 375 | electrons to the presence of minor F and trace Cl that is absent in the synthetic   |
| 376 | crystals. Barinova et al. (1998) refined the O of the hydroxyl group at the $2b$    |
| 377 | Wyckoff position ( $z = 0$ ), in agreement with our description. In contrast, the O |
| 378 | of the hydroxyl in the structure refined by Brückner et al. (1995) from powder      |
| 379 | X-ray diffraction data is displaced slightly from the origin, at $z = 0.04$ . Their |
| 380 | model was refined based on starting coordinates from a lead-substituted             |
| 381 | hydroxyapatite with approximately 80% Pb content, determined by Bigi et al.         |
| 382 | (1989). The refinements show clearly that the O atom site of the hydroxyl           |
| 383 | anion is strongly correlated with Pb content and that with increasing Pb            |

| 384 | substitution, the O site moves further from the mirror plane and Pb/Ca                            |
|-----|---------------------------------------------------------------------------------------------------|
| 385 | triangle, shifting closer to $z = 0$ . This suggests that a solid solution series may             |
| 386 | extend between hydroxylpyromorphite and the yet undescribed mineral                               |
| 387 | "hydroxylphosphohedyphane," Ca <sub>2</sub> Pb <sub>3</sub> (PO <sub>4</sub> ) <sub>3</sub> (OH). |
| 388 | In the structure of synthetic fluorpyromorphite, Belokoneva et al.                                |
| 389 | (1982) found that F <sup>-</sup> anions assumed a position at $z = 0.25$ , in plane with the      |
| 390 | triangle of Pb atoms, forming a very short bond with Pb2 of 2.33 Å (1.52 vu).                     |
| 391 | In the neutron powder diffraction study by Kim et al. (1997), F atoms sit at $z =$                |
| 392 | 0.5/0. It was later shown by Badraoui et al. (2006) using X-ray Rietveld                          |
| 393 | refinement and by Fleet et al. (2010) using single-crystal X-ray diffraction that                 |
| 394 | the F site adopts a split atom position at $z = 0.449$ and 0.461, with 50/50                      |
| 395 | occupancy. This is in agreement with our findings for hydroxylpyromorphite,                       |
| 396 | where F anions are displaced slightly from O atoms of hydroxyl anions.                            |
| 397 | White and ZhiLi (2003) examined the influence of stereoactive lone-                               |
| 398 | pair electrons on symmetry and metaprism twist angles in apatites and related                     |
| 399 | structures. Likewise, Baikie et al. (2014) compile both new and old structure                     |
| 400 | data for several natural lead-containing apatites as a function of temperature,                   |
| 401 | revealing that the twist angle of opposing triangular faces of the framework                      |
| 402 | Pb1O <sub>6</sub> metaprism projected on (001) is sensitive to the anion and tetrahedral          |
| 403 | cation content. These studies show that metaprism twist angle is inversely                        |
| 404 | related to the cross section of the anionic column and the average effective                      |
| 405 | ionic radius, and that the twist angle contracts significantly at lower                           |
| 406 | temperatures. Metaprism twist angles of selected synthetic hydroxl- and                           |
| 407 | fluorpyromorphites are compared in Table 3. The Pb1 metaprism twist in                            |
| 408 | hydroxylpyromorphite is the smallest angle of those calculated using the                          |

| 409 | method of White and ZhiLi (2003), likely due to the low temperature used for                          |
|-----|-------------------------------------------------------------------------------------------------------|
| 410 | data collection. However, considering the large range of twist angles observed                        |
| 411 | for synthetic hydroxyl- and fluorpyromorphites, it may be interesting to test                         |
| 412 | the influence of variable OH <sup>-</sup> , F <sup>-</sup> , Pb, and Ca content on anion ordering and |
| 413 | metaprism twist angle.                                                                                |
| 414 | Because of their essentially identical X-ray scattering factors, it is                                |
| 415 | possible that the refined O and F column anion sites in hydroxylpyromorphite                          |
| 416 | can contain either anion; however, full occupancy of the $z = 0$ position by O                        |
| 417 | defines the end-member species. Our inability to distinguish O and F by site                          |
| 418 | scattering does not affect our analysis of the anion ordering except for the                          |
| 419 | location of the hydroxyl H atom, which for F at $z = 0$ and O at $z = 0.087$ would                    |
| 420 | either occur near $z = -0.23$ or $-0.05$ . The corresponding donor-acceptor                           |
| 421 | distances for this configuration become very long, $> 3.6$ Å for H at $z = 0.23$ , or                 |
| 422 | very short, ~2.4 Å ( $z = 0.05$ ), and may account for the relatively strong                          |
| 423 | hydrogen-bonding interactions (~2.7 Å) observed in the infrared spectrum.                             |
| 424 | Although no electron density was observed for $z > 0.14$ , diffraction                                |
| 425 | contributions of H atoms to the disorder may not be significant or are obscured                       |
| 426 | in the presence of heavier scattering atoms. Additional synthetic studies are                         |
| 427 | needed to better understand the effects of Cl, F, and OH content on anion-                            |
| 428 | column ordering and hydrogen-bonding in tertiary pyromorphites; however,                              |
| 429 | our findings for fluoride-rich hydroxylpyromorphite suggest that solid solution                       |
| 430 | between the yet undescribed mineral "fluorpyromorphite" and                                           |
| 431 | hydroxylpyromorphite is possible.                                                                     |
| 432 |                                                                                                       |

Implications 433

| 434 | Consumption of lead-contaminated water can lead to serious health                                 |
|-----|---------------------------------------------------------------------------------------------------|
| 435 | problems, especially in children, and there is currently no tolerable level of                    |
| 436 | lead exposure identified by the U.S. Centers for Disease Control and                              |
| 437 | Prevention (CDC, 2013). In like manner, the Environmental Protection                              |
| 438 | Agency uses a "maximum contaminant level goal" of zero for Pb (USEPA,                             |
| 439 | 2019). Rather than an acceptable minimum contaminant level as used for other                      |
| 440 | contaminants, there are treatment regulations in place when "action-level"                        |
| 441 | (0.015  mg/L) lead concentrations are reached. When concentrations above the                      |
| 442 | action level are found, the so-called Lead and Copper Rule is applied,                            |
| 443 | whereby municipal water plants introduce corrosion control by adjusting pH,                       |
| 444 | lowering dissolved carbonate content, and adjusting the $\text{Cl}^2/\text{SO}_4^{2-}$ ratio with |
| 445 | the coagulants ferric chloride or ferric sulfate (USEPA, 2019; Nguyen et al.,                     |
| 446 | 2011). These treatments reduce the corrosion rate of pipes and leaded solder                      |
| 447 | joints, lowering Pb levels at the tap; however, treatment of the source water                     |
| 448 | itself is at times necessary in aquifers with high levels of Pb or other                          |
| 449 | contaminants. One of the most commonly applied methods for direct removal                         |
| 450 | of Pb is the addition of phosphoric acid. When added to Pb-contaminated                           |
| 451 | water, phosphoric acid will initially cause precipitation of                                      |
| 452 | hydroxylpyromorphite due to its significantly lower solubility than                               |
| 453 | hydroxylapatite, $K_{sp} = \sim 10^{-81}$ vs $\sim 10^{-58}$ (Zhu et al., 2016); and indeed,      |
| 454 | hydroxylpyromorphite was identified as a corrosion product of lead pipes in                       |
| 455 | laboratory experiments (Grimes et al., 1995) and within the city of Glasgow,                      |
| 456 | Scotland, UK, municipal water supply (Peters et al., 1999).                                       |
| 457 | In practice, higher concentrations of Ca, Cl, and F in drinking water                             |
| 458 | may lead to precipitation of mixed-anion and dominantly Ca- and Cl-bearing                        |

| 459 | apatite phases that incorporate trace Pb depending on the local chemistry.   |
|-----|------------------------------------------------------------------------------|
| 460 | However, Pb was efficiently immobilized in contaminated soils mixed with     |
| 461 | finely ground fluorapatite-bearing rocks in experiments by Ma et al. (1995), |
| 462 | who observed that the primary mechanism of Pb immobilization was             |
| 463 | precipitation of a "fluoropyromorphite"-like mineral. Likewise, experiments  |
| 464 | by Valsami-Jones et al. (1998) and Mavropoulos et al. (2002) reveal that     |
| 465 | release of Pb from less soluble apatite phases can occur by slow diffusion,  |
| 466 | with re-uptake into newly precipitated hydroxylpyromorphite layers occurring |
| 467 | on their surfaces.                                                           |
| 468 | Our investigations of hydroxlpyromorphite suggest solid solution is          |
| 469 | possible between it and other apatite-supergroup members, specifically the   |
| 470 | undescribed minerals "fluorpyromorphite" and "hydroxylphosphohedyphane,"     |
| 471 | but further work is needed to understand how excess chloride may affect the  |
| 472 | anion-column arrangement and hydrogen bonding for binary (F-Cl, OH-Cl, F-    |
| 473 | OH) or tertiary (F-Cl-OH) substitutions. The full description of             |
| 474 | hydroxylpyromorphite presented here may inspire future synthetic studies to  |
| 475 | provide a deeper understanding of the relationship between anion-column      |
| 476 | ordering and resultant properties, such as solubility, reactivity, and Pb    |
| 477 | mobility in complex systems. This information could help optimize            |
| 478 | remediation and corrosion control for a wider variety of Pb-contaminated     |
| 479 | aquifers and soils.                                                          |
| 480 |                                                                              |
|     |                                                                              |

## 481 Acknowledgements

We thank reviewers Uwe Kolitsch and John M. Hughes for valuablecomments that improved the quality of this manuscript. Support for this work

- 484 was provided by the Chemical Sciences, Geosciences and Biosciences
- 485 Division, Office of Basic Energy Sciences, Office of Science, U.S.
- 486 Department of Energy, Grant No. DE-FG02-07ER15880. We thank the ND
- 487 Energy Materials Characterization Facility for use of the single-crystal X-ray
- 488 diffractometer. A portion of this study was funded by the John Jago Trelawney
- 489 Endowment to the Mineral Sciences Department of the Natural History
- 490 Museum of Los Angeles County.

### 491 **References**

| 492        |                                                                                                                                 |
|------------|---------------------------------------------------------------------------------------------------------------------------------|
| 493<br>494 | Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C. (2000)<br>Handbook of Mineralogy Mineral Data Publishing Tucson AZ |
| 495        | USA                                                                                                                             |
| 496        | Armstrong, J.T. (1988) Quantitative analysis of silicates and oxide minerals:                                                   |
| 497        | Comparison of Monte-Carlo, ZAF and Phi-Rho-Z procedures In D.E.                                                                 |
| 498        | Newbury, Ed. Microbeam Analysis San Francisco Press, Inc., San                                                                  |
| 499        | Francisco. CA.                                                                                                                  |
| 500        | Badraoui, B., Aissa, A., Bigi, A., Debbabi, M., and Gazzano, M. (2006)                                                          |
| 501<br>502 | Structural investigations of lead–strontium fluoroapatites. Journal of                                                          |
| 502        | Baikie T. Schrever, M. Wei F. Herrin, I.S. Ferraris, C. Brink F.                                                                |
| 503        | Topolska I Piltz R O Price I and White T I (2014) The                                                                           |
| 505        | influence of stereochemically active lone-pair electrons on crystal                                                             |
| 505        | symmetry and twist angles in lead anatite. 2H type structures                                                                   |
| 507        | Mineralogical Magazine, 78, 325–345                                                                                             |
| 508        | Barinova A V Bonin M Pushcharovskii D V Rastsvetaeva R K                                                                        |
| 500        | Schenk K and Dimitrova OV (1998) Crystal structure of synthetic                                                                 |
| 510        | hydroxylpyromorphite Ph <sub>2</sub> (PO <sub>4</sub> ) <sub>2</sub> (OH) Crystallography Reports 43                            |
| 511        | 189–197                                                                                                                         |
| 512        | Belokoneva E L. Troneva E A. Dem'vanets L N. Duderov N G. and                                                                   |
| 513        | Belov NV (1982) Crystal structure of synthetic fluoropyromorphite                                                               |
| 514        | $Pb_5(PO_4)_{3}F$ Kristallografiya 27 793–794 (In Russian)                                                                      |
| 515        | Bigi, A., Ripamonti, A., Brückner, S., Gazzano, M., Roveri, N., and Thomas.                                                     |
| 516        | S.A. (1989) Structure refinements of lead-substituted calcium                                                                   |
| 517        | hydroxyapatite by X-ray powder fitting. Acta Crystallographica, B45.                                                            |
| 518        | 247–251.                                                                                                                        |
| 519        | Brückner, S., Lusvardi, G., Menabue, L., and Saladini, M. (1995) Crystal                                                        |
| 520        | structure of lead hydroxyapatite from powder X-ray diffraction data.                                                            |
| 521        | Inorganica Chimica Acta, 236, 209–212.                                                                                          |
| 522        | Carlson, S.M., Laughlin-Yurs, C., Olds, T.A., Fountain, D.R., and Mills,                                                        |
| 523        | O.P. (2017) Secondary Lead Minerals from the Copps Mine, Gogebic                                                                |
| 524        | County, Michigan. Rocks & Minerals, 92, 166–171.                                                                                |
| 525        | Centers for Disease Control and Prevention (CDC). (2013, April 5) Blood                                                         |
| 526        | lead levels in children aged 1-5 Years - United States, 1999-2010.                                                              |
| 527        | MMWR, Morbidity and Mortality Weekly Reports, 62, 245–248.                                                                      |
| 528        | Cockbain, A.G. (1968) Lead apatite solid-solution series. Mineralogical                                                         |
| 529        | Magazine and Journal of the Mineralogical Society, 36, 1171–1173.                                                               |
| 530        | Dai, Y., and Hughes, J. (1989) Crystal-Structure Refinements of Vanadinite                                                      |
| 531        | and Pyromorphite. Canadian Mineralogist, 27, 189–192.                                                                           |
| 532        | Dai, Y., Hughes, J.M., and Moore, P.B. (1991) The crystal structures of                                                         |
| 533        | mimetite and clinomimetite, Pb5(AsO4)3Cl. Canadian Mineralogist,                                                                |
| 534        | 29, 369–376.                                                                                                                    |
| 535        | Fleet, M.E., Liu, X., and Shieh, S.R. (2010) Structural change in lead                                                          |
| 536        | fluorapatite at high pressure. Physics and Chemistry of Minerals, 37,                                                           |
| 537        | 1–9.                                                                                                                            |
| 538        | Grimes, S.M., Johnston, S.R., and Batchelder, D.N. (1995) Lead carbonate-                                                       |
| 539        | phosphate system: solid-dilute solution exchange reactions in                                                                   |
| 540        | aqueous systems. Analyst, 120, 2741–2746.                                                                                       |
|            |                                                                                                                                 |

| 541<br>542 | Hatert, F., Mills, S.J., Pasero, M., and Williams, P.A. (2013) CNMNC guidelines for the use of suffixes and prefixes in mineral |
|------------|---------------------------------------------------------------------------------------------------------------------------------|
| 543        | nomenclature and for the preservation of historical names European                                                              |
| 544        | Journal of Mineralogy, 25, 113–115.                                                                                             |
| 545        | Hey, M.H. (1950) An index of mineral species & varieties arranged                                                               |
| 546        | chemically with an alphabetical index of accepted mineral names                                                                 |
| 547        | and synonyms 608 p. Printed by order of the Trustees of the British                                                             |
| 548        | Museum London                                                                                                                   |
| 549        | Hughes J.M. Cameron M and Crowlev K D (1989) Structural variations                                                              |
| 550        | in natural F OH and Cl apatites American Mineralogist 74 870–                                                                   |
| 551        | 876                                                                                                                             |
| 552        | Hughes I M Harlov D Kelly S R Rakovan I and Wilke M (2016)                                                                      |
| 553        | Solid solution in the anatite OH-Cl binary system: Compositional                                                                |
| 555<br>554 | dependence of solid-solution mechanisms in calcium phosphate                                                                    |
| 555        | apatites along the CLOH binary American Mineralogist 101 1783                                                                   |
| 555<br>556 | 1701                                                                                                                            |
| 550<br>557 | Hughes IM Harloy D and Rakovan IE (2018) Structural variations                                                                  |
| 558        | along the anatite F-OH join American Mineralogist 103 1981_                                                                     |
| 559        | 1987                                                                                                                            |
| 560        | Hughes IM Nekvasil H Ustunisik G Lindslev DH Coraor A E                                                                         |
| 561        | Vaughn I Phillips BL McCubbin F M and Woerner W R                                                                               |
| 562        | (2014) Solid solution in the fluoranatite-chloranatite binary system:                                                           |
| 563        | High-precision crystal structure refinements of synthetic F-Cl anatite                                                          |
| 565<br>564 | American Mineralogist 99 369–376                                                                                                |
| 565        | Hughes IM and Rakovan IF (2015) Structurally Robust Chemically                                                                  |
| 566        | Diverse: Anatite and Anatite Supergroup Minerals Elements 11                                                                    |
| 567        | 165–170                                                                                                                         |
| 568        | Ishikawa T Wakamura M and Kondo S (1989) Surface characterization                                                               |
| 569        | of calcium hydroxylanatite by Fourier transform infrared                                                                        |
| 570        | spectroscopy Langmuir 5 140–144                                                                                                 |
| 571        | Kampf A R and Housley R M (2011) Fluorphosphohedyphane                                                                          |
| 572        | $C_{a}$ (PO4)3F the first anatite supergroup mineral with essential                                                             |
| 573        | Ph and F American Mineralogist 96 423–429                                                                                       |
| 574        | Kelly S.R. Rakovan I. and Hughes I.M. (2017) Column anion                                                                       |
| 575        | arrangements in chemically zoned ternary chloranatite and                                                                       |
| 576        | fluoranatite from Kurokura Janan American Mineralogist 102 720                                                                  |
| 577        | 727                                                                                                                             |
| 578        | Kim IV Hunter BA Fenton R R and Kennedy B I (1997) Neutron                                                                      |
| 579        | nowder diffraction study of lead hydroxyanatite Australian Journal                                                              |
| 580        | of Chemistry 50, 1061–1065                                                                                                      |
| 581        | Kirchner F.C. Mrazek R and Wimmer H (2007) Neue Mineralfunde von                                                                |
| 582        | Berghauhalden Radhausherg Süd (Weißental) Kreuzkogel                                                                            |
| 582<br>583 | Mineralogisches Archiv Salzburg 12, 251–254 (In German)                                                                         |
| 587        | Klasner IS LaBerge GL and Cannon W.F. (1998) Geologic man of the                                                                |
| 585        | eastern Gogehic iron range, Gogehic County, Michigan, IMAP 2606                                                                 |
| 586        | (Online) Available: https://pubs.or.usgs.gov/publication/i2606                                                                  |
| 587        | (onning). Available. https://pubs.ci.usgs.gov/publication/12000                                                                 |
| J01<br>588 | (autosstu July 10, 2020).<br>Kolitech II. and Láránth C. (2016) Dosalaizit und das Undravul Analasan                            |
| 500<br>580 | von Pyromorphit vom Talkharghau Pahanwald hai Angar Dar                                                                         |
| 500        | Stairische Minerelog, 21, 52                                                                                                    |
| 590        | Stenisene mineralog, 51, 52.                                                                                                    |

| 591<br>592 | Krause, L., Herbst-Irmer, R., Sheldrick, G.M., and Stalke, D. (2015)<br>Comparison of silver and molybdenum microfocus X-ray sources for |  |  |  |  |  |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 593        | single-crystal structure determination. Journal of Applied                                                                               |  |  |  |  |  |  |  |
| 594        | Crystallography, 48, 3–10.                                                                                                               |  |  |  |  |  |  |  |
| 595        | Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-                                                                   |  |  |  |  |  |  |  |
| 596        | $H \cdots O$ hydrogen bond lengths in minerals. Monatshefte Für Chemie.                                                                  |  |  |  |  |  |  |  |
| 597        | 130, 1047–1059.                                                                                                                          |  |  |  |  |  |  |  |
| 598        | Lower, S.K., Maurice, P.A., and Traina, S.J. (1998) Simultaneous                                                                         |  |  |  |  |  |  |  |
| 599        | dissolution of hydroxylapatite and precipitation of                                                                                      |  |  |  |  |  |  |  |
| 600        | hydroxypyromorphite: direct evidence of homogeneous nucleation.                                                                          |  |  |  |  |  |  |  |
| 601        | Geochimica et Cosmochimica Acta, 62, 1773–1780.                                                                                          |  |  |  |  |  |  |  |
| 602        | Ma, Q.Y., Logan, T.J., and Traina, S.J. (1995) Lead Immobilization from                                                                  |  |  |  |  |  |  |  |
| 603        | Aqueous Solutions and Contaminated Soils Using Phosphate Rocks.                                                                          |  |  |  |  |  |  |  |
| 604        | Environmental Science & Technology, 29, 1118–1126.                                                                                       |  |  |  |  |  |  |  |
| 605        | Mavropoulos, E., Rossi, A.M., Costa, A.M., Perez, C.A.C., Moreira, J.C.,                                                                 |  |  |  |  |  |  |  |
| 606        | and Saldanha, M. (2002) Studies on the Mechanisms of Lead                                                                                |  |  |  |  |  |  |  |
| 607        | Immobilization by Hydroxyapatite. Environmental Science &                                                                                |  |  |  |  |  |  |  |
| 608        | Technology, 36, 1625–1629.                                                                                                               |  |  |  |  |  |  |  |
| 609        | Nguyen, C.K., Stone, K.R., and Edwards, M.A. (2011) Chloride-to-sulfate                                                                  |  |  |  |  |  |  |  |
| 610        | mass ratio: Practical studies in galvanic corrosion of lead solder.                                                                      |  |  |  |  |  |  |  |
| 611        | Journal - American Water Works Association, 103, 81–92.                                                                                  |  |  |  |  |  |  |  |
| 612        | Pasero, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J., and White,                                                              |  |  |  |  |  |  |  |
| 613        | T.J. (2010) Nomenclature of the apatite supergroup minerals.                                                                             |  |  |  |  |  |  |  |
| 614        | European Journal of Mineralogy, 22, 163–179.                                                                                             |  |  |  |  |  |  |  |
| 615        | Peters, N.J., Davidson, C.M., Britton, A., and Robertson, S.J. (1999) The                                                                |  |  |  |  |  |  |  |
| 616        | nature of corrosion products in lead pipes used to supply drinking                                                                       |  |  |  |  |  |  |  |
| 617        | water to the City of Glasgow, Scotland, UK. Fresenius' Journal of                                                                        |  |  |  |  |  |  |  |
| 618        | Analytical Chemistry, 363, 562–565.                                                                                                      |  |  |  |  |  |  |  |
| 619        | Shannon, R.D., and Prewitt, C.T. (1969) Effective ionic radii in oxides and                                                              |  |  |  |  |  |  |  |
| 620        | fluorides. Acta Crystallographica, B25, 925–946.                                                                                         |  |  |  |  |  |  |  |
| 621        | Sheldrick, G.M. (2015a) SHELXT - Integrated space-group and crystal-                                                                     |  |  |  |  |  |  |  |
| 622        | structure determination. Acta Crystallographica, A71, 3–8.                                                                               |  |  |  |  |  |  |  |
| 623        | Sheldrick, G.M. (2015b) Crystal structure refinement with SHELXL. Acta                                                                   |  |  |  |  |  |  |  |
| 624        | Crystallographica, C71, 3–8.                                                                                                             |  |  |  |  |  |  |  |
| 625        | Stock, M.J., Humphreys, M.C.S., Smith, V.C., Johnson, R.D., Pyle, D.M.,                                                                  |  |  |  |  |  |  |  |
| 626        | and EIMF (2015) New constraints on electron-beam induced halogen                                                                         |  |  |  |  |  |  |  |
| 627        | migration in apatite. American Mineralogist, 100, 281–293.                                                                               |  |  |  |  |  |  |  |
| 628        | Stormer, J.C., Pierson, M.L., and Tacker, R.C. (1993) Variation of F and Cl                                                              |  |  |  |  |  |  |  |
| 629        | X-ray intensity due to anisotropic diffusion in apatite during electron                                                                  |  |  |  |  |  |  |  |
| 630        | microprobe analysis. American Mineralogist, 78, 641–648.                                                                                 |  |  |  |  |  |  |  |
| 631        | Sudarsanan, K., and Young, R.A. (1978) Structural interactions of F, Cl and                                                              |  |  |  |  |  |  |  |
| 632        | OH in apatites. Acta Crystallographica Section B, 34, 1401-1407.                                                                         |  |  |  |  |  |  |  |
| 633        | Temple, A.K. (1956) V.—The Leadhills-Wanlockhead Lead and Zinc                                                                           |  |  |  |  |  |  |  |
| 634        | Deposits. Transactions of the Royal Society of Edinburgh, 63, 85–                                                                        |  |  |  |  |  |  |  |
| 635        |                                                                                                                                          |  |  |  |  |  |  |  |
| 636        | US Environmental Protection Agency (USEPA) (2019) Optimized Corrosion                                                                    |  |  |  |  |  |  |  |
| 637        | Control Treatment Evaluation Technical Recommendations for                                                                               |  |  |  |  |  |  |  |
| 638        | Primacy Agencies and Public Water Systems (Online). Available:                                                                           |  |  |  |  |  |  |  |
| 639        | https://www.epa.gov/sites/production/files/2019-                                                                                         |  |  |  |  |  |  |  |

| 640<br>641 | 07/documents/occtmarch2016updated.pdf (accessed July 18, 2020)               |
|------------|------------------------------------------------------------------------------|
| 642        | Valsami-Jones F. Ragnarsdottir K.V. Putnis A. Boshach D. Kemp A.I.           |
| 643        | and Cressey G (1998) The dissolution of anatite in the presence of           |
| 644        | aqueous metal cations at pH 2–7 Chemical Geology 151 215–233                 |
| 645        | White T L and ZhiLi D (2003) Structural derivation and crystal chemistry     |
| 646        | of anatites Acta Crystallographica B59 1–16                                  |
| 647        | Zhu, Y., Huang, B., Zhu, Z., Liu, H., Huang, Y., Zhao, X., and Liang, M.     |
| 648        | (2016) Characterization, dissolution and solubility of the                   |
| 649        | hydroxypyromorphite-hydroxyapatite solid solution                            |
| 650        | $[(Pb_xCa_{1-x})_5(PO_4)_3OH]$ at 25 °C and pH 2–9. Geochemical              |
| 651        | Transactions, $17$ , $1-18$ .                                                |
| 652        |                                                                              |
| 653        |                                                                              |
| 654        |                                                                              |
| 655        | FIGURE CAPTIONS                                                              |
| 656        |                                                                              |
| 657        | Figure 1. Aggregates of prismatic hydroxylpyromorphite crystals on quartz.   |
| 658        | Horizontal field of view is 0.45 mm.                                         |
| 659        |                                                                              |
| 660        | Figure 2. SEM image of hydroxylpyromorphite crystals.                        |
| 661        |                                                                              |
| 662        | Figure 3. The infrared spectrum of hydroxylpyromorphite from 4000 to 650     |
| 663        | cm <sup>-1</sup> .                                                           |
| 664        |                                                                              |
| 665        | Figure 4. The structure of hydroxylpyromorphite as viewed down the $c$ axis. |
| 666        | Lead (shades of gray), phosphorus (green), oxygen of hydroxyl molecules      |
| 667        | (red).                                                                       |
| 668        |                                                                              |
| 669        | Figure 5. Hypothetical local configurations of the anion column for (A) end- |
| 6/0        | member hydroxylpyromorphite and (B) hydroxylpyromorphite containing          |
| 672        | nuoride.                                                                     |
| 672        | Figure 6 A comparison of column onion arrangements in pyromorphite and       |
| 674        | other anatite group minerals. Hydroxylpyromorphite (this work)               |
| 675        | nyromorphite (Dai and Hughes, 1980). Ph.(PO.), E (Elect et al., 2010)        |
| 676        | hydroxylanatite (Hughes et al. 1080), chloranatite (Kelly et al. 2017). Lead |
| 677        | (dark gray) fluorine (green) oxygen (red) calcium (light blue) chlorine      |
| 678        | (magenta) hydrogen (light gray)                                              |
| 679        | (indefind), flydrogen (fight gruy).                                          |
| 680        | Figure S1 Change in FK $\alpha$ X-ray counts over time in the electron       |
| 681        | microprobe of hydroxylpyromorphite type material. suggesting no              |
| 682        | significant electron beam induced migration of F                             |
| 683        |                                                                              |
| 684        |                                                                              |
| 685        |                                                                              |
| 686        |                                                                              |
| 687        |                                                                              |
| 688        |                                                                              |
| 689        |                                                                              |

Table 1. Chemical composition (in wt%) for hydroxylpyromorphite.

|             |       |             | 5 515       |              |
|-------------|-------|-------------|-------------|--------------|
| Constituent | Mean  | Range       | Stand. Dev. | Standard     |
| PbO         | 82.20 | 80.21-83.63 | 1.19        | galena       |
| $P_2O_5$    | 15.77 | 14.54-16.33 | 0.67        | fluorapatite |
| Cl          | 0.15  | 0.10-0.28   | 0.05        | tugtupite    |
| F           | 0.46  | 0.23-0.69   | 0.21        | LiF          |
| $H_2O*$     | 0.46  |             |             |              |
| O=Cl        | -0.03 |             |             |              |
| O=F         | -0.19 |             |             |              |
| Total       | 98.82 |             |             |              |

\* based on the structure 

Table 2. Comparison of powder diffraction data, I and d (Å), for

hydroxylpyromorphite of different origins. fs = fairly strong, vs = very strong, vw = very weak, b = broad, bb = very broad 

| 0,  | ,           |       |       | ,    |        |       |         |
|-----|-------------|-------|-------|------|--------|-------|---------|
| Wh  | ytes Cleuch | Raben | wald* | Syn  | thetic | Copp  | os mine |
| (Te | mple 1956)  |       |       | (Hey | 1950)  | (This | s work) |
| fs  | 4.06        | fs    | 4.05  | 24   | 4.03   | 18    | 4.08    |
| vw  | 3.56        | W     | 3.56  | 16   | 3.61   | 6     | 3.67    |
| vw  | 3.18        | wb    | 3.23  | 16   | 3.18   | 21    | 3.21    |
| VS  | 2.92        | VS    | 2.90  | 100  | 2.91   | 100   | 2.93    |
| vw  | 2.82        | vwb   | 2.37  | 8    | 2.82   | 13    | 2.82    |
| W   | 2.02        | VW    | 2.02  | 16   | 2.02   | 21    | 2.04    |
| vw  | 1.96        | VW    | 1.97  | 8    | 1.96   | 9     | 1.98    |
| W   | 1.91        | VW    | 1.93  | 16   | 1.91   | 23    | 1.94    |
| vw  | 1.88        | W     | 1.88  | 8    | 1.86   | 15    | 1.85    |
| vw  | 1.82        | wb    | 1.83  | 16   | 1.82   | 24    | 1.83    |
| vw  | 1.56        | vwbb  | 1.59  | 8    | 1.57   | 17    | 1.59    |
| vw  | 1.51        | vwbb  | 1.50  | 16   | 1.51   | 10    | 1.49    |

\*Uwe Kolitsch personal communication, May 2018. Data obtained using a KappaCCD

distance 38 mm.

Table 3. Comparison of crystallographic data for hydroxylpyromorphite to various synthetic pyromorphites.

|                      | hydroxylpyromorphite | Pb <sub>5</sub> (PO <sub>4</sub> ) <sub>3</sub> OH | Pb <sub>5</sub> (PO <sub>4</sub> ) <sub>3</sub> OH | Pb <sub>5</sub> (PO <sub>4</sub> ) <sub>3</sub> F | Pb <sub>5</sub> (PO <sub>4</sub> ) <sub>3</sub> F |
|----------------------|----------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
|                      | (This work)          | (Barinova et al., 1998)                            | (Brückner et al., 1995)                            | (Fleet et al., 2010)                              | (Belokoneva et al., 1982)                         |
| a (Å)                | 9.7872(14)           | 9.774(1)                                           | 9.866(3)                                           | 9.7638(6)                                         | 9.760(8)                                          |
| <i>c</i> (Å)         | 7.3070(10)           | 7.291(1)                                           | 7.426(2)                                           | 7.2866(4)                                         | 7.300(8)                                          |
| $V(\text{\AA}^3)$    | 606.2                | 603.2                                              | 625.9                                              | 601.6                                             | 602.2                                             |
| Calculated density   | 7.340                | 7.356                                              | 7.177                                              | 7.397                                             | 7.389                                             |
| <pb1-o></pb1-o>      | 2.703                | 2.701                                              | 2.767                                              | 2.696                                             | 2.714                                             |
| <pb2–o f=""></pb2–o> | 2.708                | 2.702                                              | 2.703                                              | 2.704                                             | 2.683                                             |
| <pb2—pb2></pb2—pb2>  | 4.314                | 3.961                                              | 4.227                                              | 3.953                                             | 4.327                                             |
| Pb2–OH/F             | 2.932/2.58           | 2.925                                              | 2.896                                              | 2.752                                             | 2.954                                             |
| <p1-o></p1-o>        | 1.544                | 1.539                                              | 1.509                                              | 1.533                                             | 1.566                                             |
| Pb1 metaprism        | 21.6                 | 22.1                                               | 26.7                                               | 22.7                                              | 23.6                                              |
| twist angle (°)      |                      |                                                    |                                                    |                                                   |                                                   |

single-crystal diffractometer, Gandolfi-like digital powder pattern, MoKa, crystal-detector











v<sub>3</sub>PO<sub>4</sub>









