1 Revision 3

2	Solubility of Na_2SO_4 in silica-saturated solutions: Implications for REE
3	mineralization
4	
5	HUAN CHEN, HAO CUI, RICHEN ZHONG [*] , YULING XIE [*] , CHANG YU, ZIMENG
6	LI, YIFAN LING
7	School of Civil and Resource Engineering, University of Science and Technology Beijing,
8	Beijing 100083, China
9	*Corresponding authors. R. Zhong, Tel.: +8613671320438; E-mail: <u>zhongrichen@126.com</u> ;
10	Y. Xie, Tel.: +8613601236643; E-mail: <u>yulingxie63@hotmail.com</u> .
11	

ABSTRACT

Sulfate is traditionally considered to have retrograde solubility in aqueous solutions. 13 However, our recent hydrothermal diamond anvil cell (HDAC) experiments have shown that 14 the solubility of Na₂SO₄ changes from retrograde to prograde in the presence of silica, 15 leading to the formation of sulfate-rich solutions at high temperatures, in line with 16 17 observations on natural geofluids. In this study, we use synthetic inclusions of fused silica capillary capsules containing saturated Na₂SO₄ solutions and Na₂SO₄ crystals to 18 quantitatively investigate the solubility of Na₂SO₄ at different temperatures in the 19 Na₂SO₄-SiO₂-H₂O system. Sulfate concentrations were measured using Raman spectroscopy 20 and calibrated using Cs₂SO₄ solutions with known concentrations. The solubility of 21 crystalline Na₂SO₄ dropped slightly when heated from 50 to 225 °C and dramatically from 22 225 to 313 °C. At 313 °C, the Na₂SO₄ crystals began to melt, forming immiscible sulfate melt 23 coexisting with the aqueous solution, with or without solid Na₂SO₄. With the formation of 24 sulfate melt, the solubility of Na₂SO₄ was reversed to prograde (i.e., solubility increased 25 considerably with increasing temperatures). The solubility of Na₂SO₄ in the measured 26 solution was significantly higher than that predicted in the absence of SiO₂ over the entire 27 temperature range (except for temperatures around 313 °C). This indicates that the presence 28 of SiO₂ greatly changes the dissolution behavior of Na₂SO₄, which may be caused by the 29 formation of a sulfate-silicate intermediates such as Si(OH)₄SO₄²⁻. Considering that most 30 crustal fluids are silica-saturated, the solubility curve of Na₂SO₄ obtained in this study can 31 better reflect the characteristics of geofluids when compared to that of Na₂SO₄-H₂O binary 32 system. At temperatures of 313–425 °C, the solubility of Na₂SO₄ increases with temperature 33

following the function $C_{\text{sulfate}} = -3173.7/T + 5.9301$, where C_{sulfate} and T represents the 34 solubility of Na₂SO₄ in mol/kg H₂O and temperature in Kelvin, respectively. As an 35 application, this temperature-solubility relationship can be used to evaluate the sulfate 36 contents in fluid inclusions that contain sulfate daughter minerals, based on the temperature 37 of sulfate disappearance obtained from microthermometric analysis. The sulfate 38 concentrations of the ore-forming fluids of the giant Maoniuping carbonatite-related rare 39 earth element (REE) deposit (SW China) were calculated to be 4.67–4.81 m (mol/kg H₂O). 40 These sulfate concentrations were then used as internal standards to calibrate the previously 41 42 reported semi-quantitative results of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis of REE-forming stage fluid inclusions at this deposit. 43 The calculated Ce concentrations in the REE-mineralizing fluid range from 0.39 to 0.46 wt%. 44 45 The high fluid REE contents suggest that the sulfate-rich fluids are ideal solvent for REE transport. A mass balance calculation was carried out to evaluate the minimal volume of 46 carbonatite melt that was required for the formation the giant Maoniuping REE deposit. And 47 48 the result indicates that the carbonatite dykes in the mining area are enough to provide the required fluids and metals, so a deep-seated magma chamber is not necessary for ore 49 formation. 50

51

52 Keywords: Na₂SO₄ solubility, silica saturation, rare earth element, mineralizing fluid, FSCC
 53

INTRODUCTION

Sulfate is the second most abundant solute in seawater and widely exists in the crustal 55 mantle fluids and extraterrestrial aqueous environments, such as the surface of Mars and 56 Europa (Chipera and Vaniman 2007; Mccord et al. 1998). Sulfate is abundant in some 57 hydrothermal systems related to ore formation, such as volcanogenic massive sulfide (VMS) 58 deposits (Yang et al. 2018) and copper porphyry deposits (Sun et al. 2013). Furthermore, 59 syn-ore fluid inclusions containing sulfate daughter minerals have been reported in 60 carbonatite-related rare earth element (REE) deposits, such as the world-class Bayan Obo in 61 62 northern China (Xie et al. 2019) and the Maoniuping and Lizhuang in southwestern China (Xie et al. 2015). However, the presence of sulfate-rich geofluids contradict the knowledge 63 that sulfate salts have retrograde solubility, which would lead to low concentrations of 64 65 dissolved sulfate in high-temperature solutions (Seward et al. 2014).

Our recent study shows that the presence of dissolved silica is a key to changing the temperature dependence of sulfate solubility. In the presence of quartz and water (SiO₂-saturated fluid), Na₂SO₄ crystal will melt at \sim 300 °C, forming immiscible sulfate melt in coexistence with the aqueous phase. Once the melt forms, the solubility of Na₂SO₄ changes from retrograde to prograde, leading to the formation of sulfate-rich fluids at high temperatures (Cui et al. 2020). However, the solubility of Na₂SO₄ in the Na₂SO₄-SiO₂-H₂O system has not yet been quantified.

Sulfate-rich fluids are in close association with REE mineralization, and sulfate minerals
are commonly observed in carbonatite-related REE deposits (Fan et al. 2016; Xie et al. 2015;
Xu et al. 2015; Yu et al. 2014). In the current paradigm of REE mineralization, sulfate ion is

considered to be one of the potential ligands for REE migration (Migdisov et al. 2016). 76 Moreover, previous LA-ICP-MS analyses on individual fluid inclusions at the Maoniuping 77 and Lizhuang deposits showed strong REE signals in the sulfate-rich ore-fluids (Xie et al. 78 2015), manifesting the great ability of REE transport in sulfate-rich fluids. However, the REE 79 contents in these inclusions were not quantified, due to the lack of available internal 80 standards to calibrate the ICP-MS signals. The conventional approach to calibrate the trace 81 element contents of inclusions is to use the concentration of dissolved NaCl as the internal 82 standards, which can be obtained via the microthermometric analysis (Heinrich et al. 2003). 83 84 However, this microthermometric method is not feasible for sulfate-predominated fluid systems, because the equation of states to calculate the concentrations of dissolved sulfate is 85 lacking. Instead, the Ce/K ratio of the mineralization stage fluid inclusions hosted in fluorite 86 87 was reported by Xie et al. (2015). If the temperature dependence of sulfate solubility is known, the sulfate contents in inclusions can be obtained via microthermometric methods, 88 according to temperature of the disappearance of sulfate daughter minerals. The calculated 89 90 sulfate concentrations can then be applied to calibrate the ICP-MS signals to obtain the REE concentrations in the fluids. 91

Experiments on mineral solubility are mostly conducted using hydrothermal autoclaves or piston-cylinder apparatus (Laudise et al. 1987; Tropper and Manning 2007), and the amounts of dissolved minerals can be analyzed using two major approaches. The first is to analyze the compositions of the separated (or quenched) solutions (e.g., Laudise et al. 1987) or weight losses of the reactants (e.g., Tropper and Manning 2007) after the devices are cooled down. If the solution is not quenchable, a design is required to separate solid reactants

from the solutions at high temperatures, to prevent re-precipitation during cooling (e.g., 98 double capsule method) (Manning and Boettcher 1994). The second approach takes 99 100 advantages of in situ spectroscopic analyses (mostly X-ray of synchrotron beam) to directly analyze concentrations of dissolved elements in the aqueous phase at high temperatures (e.g., 101 Migdisov et al. 2009). However, neither of these methods can be applied to determine the 102 solubility of Na_2SO_4 in silica-saturated solutions, due to the unusual high-temperature phase 103 behaviors of the system. As revealed by our previous study (Cui et al. 2020), Na₂SO₄ crystals 104 will melt at ~300 °C and thus the liquid sulfate cannot be physically separated from the 105 106 aqueous solution. In addition, dissolved Na₂SO₄ will precipitate rapidly during cooling and the solution is thus unquenchable. Furthermore, due to the low X-ray energy of sulfur, its 107 signal would be so weak that quantitative measurement of the sulfate concentration is not 108 109 feasible using synchrotron technic. Raman spectra provide an ideal solution for the quantitative measurement sulfate ions (Schmidt and Seward 2017; Qiu et al. 2020), and fused 110 silica capillary capsules (FSCCs) (Chou et al. 2008) are suitable for high-temperature in situ 111 112 Raman observations, and can provide the silica-saturated condition.

In this study, fused silica capillary tubing was used to create synthetic fluid inclusions containing Na_2SO_4 -supersaturated fluid system. The solubility of Na_2SO_4 was determined by in situ Raman spectroscopy at varying temperatures in the Na_2SO_4 -SiO₂-H₂O system. Using the temperature-concentration relationship, we calculated the sulfate concentrations in the syn-ore fluorite-hosted fluid inclusions at the Maoniuping deposit and then use the concentrations to evaluate the REE contents in the fluid.

119

MATERIALS AND METHODS

121 Experimental designs for measuring the Na₂SO₄ solubility in a silica-saturated system

Sample preparation. FSCCs containing standard Cs_2SO_4 solutions and the Na₂SO₄-oversaturated system (solid Na₂SO₄ + saturated solution) were prepared using round cross-section fused silica capillary tubing with 100 µm of inner diameter and 365 µm of outer diameter (Polymicro Technologies, USA) (Wang et al. 2013). The polyimide coating of the tubing was burned off and the tubing was cleaned with ethyl alcohol (analytical grade reagent) before sample loading. The procedures of sealing the capillary tubes were described in detail by Chou et al. (2008) and Wang et al. (2013).

Cesium sulfate solutions were prepared from distilled deionized water and Cs₂SO₄ 129 crystals (analytical grade reagent, 99.9% in purity; Shanghai Aladdin Bio-Chem Technology 130 131 Co., Ltd.), and loaded into fused silica capillary tubing as standard samples. The concentrations of standard samples were set as 0.10, 0.49, 0.87, 1.91, and 2.90 m (molality, 132 mol/kg H₂O), respectively. For the Na₂SO₄-bearing experimental samples, Na₂SO₄-saturated 133 134 solutions and excess analytical grade Na₂SO₄ crystals (>99.0% in purity) were loaded into the fused silica capillary tubing successively. First, Na₂SO₄-saturated solution was loaded into 135 the tubing as described in Wang et al. (2013). Then several Na₂SO₄ crystals were picked 136 using a needle and loaded into the tubes. At last, the sealed capsules were centrifuged to 137 ensure that all the solids are in one end of the capsule (Fig. 1a). This allowed the solution to 138 remain saturated with respect to Na₂SO₄ as temperatures increases from 50 to 425 °C so that 139 140 the measured sulfate concentrations can represent the solubility of Na₂SO₄.

141 The degree of filling (i.e., the volumetric ratio between the liquid phase and the entire

sample chamber) of standard samples were ~0.6. Two experimental samples were prepared
with degrees of filling of 0.82 and 0.52. The former was heated from 50 to 425 °C, while the
latter to only 313 °C to avoid explosion due to the high internal pressure. The prepared
FSCCs were <1.5 cm in lengths so that could be placed to the sample chamber of the Linkam
THMSG 600 heating–cooling stage. The sealed FSCCs were washed in an ultrasonic cleaner
before Raman spectroscopic analyses.

Acquisition and processing of Raman spectra. Fused silica capillary capsules were 148 placed on a Linkam THMSG 600 heating-cooling stage for temperature control with accuracy 149 of ±0.1 °C, and the heating rate was set at 10 °C/min. To investigate the times that are 150 151 required to achieve chemical equilibrium, three FSCCs containing solid Na₂SO₄ and saturated solution were maintained at 140 °C, 330 °C, and 400 °C, respectively. For each sample, 152 Raman spectra of the solution were recorded repeatedly until the equilibrium of the system 153 was acquired. Specifically, the times that are need for getting constant peak area ratios 154 between the stretching vibration band of dissolved sulfate $[v_1(SO_4^{2^-})]$ and the OH stretching 155 vibration band of water $[(v_sH_2O)]$ ($A_{sulfate}/A_{water}$) of the solutions were estimated (Fig. 2). It is 156 157 revealed Na₂SO₄ saturation can be reached within 400 seconds, considering the uncertainties of the measurements (Fig. 2). Therefore, all the samples were held for 10 minutes at each 158 temperature point before spectral acquisition. For standard samples, Raman spectra were 159 collected at temperature interval of 50 °C for the temperature range of 50-450 °C. For 160 experimental samples, the intervals were 50 °C and 25 °C for 50-200 °C and 200-450 °C, 161 respectively. The Raman spectra for experimental samples were shown in Fig. 1b and those 162 of standard samples in Appendix. 163

A Jobin Yvon/Horiba confocal LabRAM HR Evolution micro-Raman system at Peking 164 University was used for Raman spectroscopic analyses. The ICS corrected Raman spectra 165 were acquired with a 532-nm laser excitation (double frequency Nd: YAG), a 20× 166 long-working distance objective with a 0.25 numerical aperture, and a 600-groove/mm 167 grating. The laser power was 100 mW at the source. The confocal hole was set at 180 µm and 168 the corresponding spectral pixel resolution was $\sim \pm 2 \text{ cm}^{-1}$. The Raman spectral ranges of 800– 169 1200 and 2500–4000 cm⁻¹ were collected for the $v_1(SO_4^{2-})$ and $v_s(H_2O)$ bands, respectively, 170 with an acquisition time of 20 s for each spectrum. The focus positions of the laser for all the 171 172 samples, including experimental and standard, were set at the same depth by adjusting the focus distance till the boundaries of the cells are mostly clear (i.e., focus in the middle of the 173 capillary). This can guarantee that the obtained Raman intensity are comparable among 174 175 different samples (Schmidt 2017).

All Raman spectra measured in this study were processed using the PeakFit v. 4.11 176 software package (SYSAT Software Inc., USA) (Yuan et al. 2016). A linear baseline was 177 subtracted after the spectral region of interest was selected. Then the spectra of $v_1(SO_4^{2^-})$ and 178 $v_{s}(H_{2}O)$ bands were fitted using a Gaussian + Lorentzian function and the peak areas of each 179 band were obtained from the fitting results. For the $v_s(H_2O)$ band, the spectra were fitted with 180 three sub-bands at ~3194 cm⁻¹, 3247 cm⁻¹, and 3444 cm⁻¹, respectively. The $v_1(SO_4^{2-})$ 181 spectra were fitted as one component (Gaussian + Lorentzian function). The error of each 182 fitted component was given by PeakFit. The total error of the peak area ratio, $A_{sulfate}/A_{water}$, 183 was calculated based on the errors of each fitted component and the rules of error propagation 184 (Taylor 1996). 185

Calibration of sulfate concentrations in experimental samples. The integrated $v_s(H_2O)$ 186 intensity was used as the internal standards to normalize the peak area of $v_1(SO_4^{2-})$ band. In 187 theory, the H₂O-normalized Raman peak area of SO_4^{2-} (i.e., $A_{sulfate}/A_{water}$) should exhibit a 188 linear relationship with the sulfate concentration (Oiu et al. 2020). If the Raman parameters 189 (e.g., laser wavelength, grating notch groove density, cumulative time, laser power, confocal 190 191 hole size, objective working distance, etc.) remain constant, the relationship between sulfate concentration and H₂O-normalized Raman intensity at a given temperature can be retrieved 192 by measuring the intensities of the $v_1(SO_4^{2-})$ and $v_s(H_2O)$ of standard samples with known 193 sulfate concentrations. Then the sulfate concentrations in experimental samples can be 194 obtained by plotting their A_{sulfate}/A_{water} ratios on the calibration curve (cf., Pokrovski and 195 Dubessy 2015; Schmidt and Seward 2017). 196

197 Cesium sulfate solutions were chosen as the standard due to the high solubility of Cs₂SO₄ at room temperature, and thus standard samples with high sulfate concentrations can 198 be prepared. Furthermore, Cs^+ is not prone to associate with SO_4^{2-} at elevated temperatures 199 (i.e., negligible $CsSO_4^-$ and $Cs_2SO_4(aq)$; inferred from the dissociation constant of KSO_4^- in 200 Table 4 of Helgeson 1969), so the concentrations of free SO_4^{2-} are well defined (nearly equal 201 to that of total sulfur). After each run of the heating-cooling circle, the Raman spectra of the 202 standard and experimental samples were collected again at room temperature and compared 203 with those collected at the beginning of the experiment. It is shown that the intensities of the 204 $v_1(SO_4^{2^-})$ and $v_s(H_2O)$ bands remained constant before and after heating, confirming the 205 functional stability of the Raman spectrometer throughout the experiments and the reliability 206 of the calibration results. 207

Pressure determination in FSCCs. Pressures inside the experimental samples were 208 calculated using the ISOC program of the FLUIDS v.1 software package (Bakker 2003). 209 210 Because the EoS (equation of state) of the Na₂SO₄-H₂O system is lacking, that of the NaCl-H₂O system (Zhang and Frantz 1987) was used as an approximation for pressure 211 212 evaluation. The model NaCl-H₂O solutions were set to have the same molarities and homogenization temperature as those of the Na₂SO₄-H₂O solutions in the experimental 213 samples. Errors in pressure estimation may be introduced by (i) using the EoS of NaCl-H₂O 214 instead of Na₂SO₄-H₂O, and (ii) the thermal expansion of the cell at high temperatures (Chou 215 216 et al. 2008). The latter might lead to the overestimation of the pressure at high temperatures, because the EoS-based pressure calculation requires the system to be isochoric (after vapor 217 disappearance). We estimated that the calculated pressures are accurate within a factor 1-2. 218

219 **Determination of experimental errors**

The errors of the fitted peak areas for one component of $v_1(SO_4^{2^-})$ band and three components of $v_s(H_2O)$ band were all directly obtained from PeakFit. According to the rules of error propagation (Taylor 1996), the total error of the peak area of $v_s(H_2O)$ band can be calculated by Eq. 1:

224

$$E_{\rm W \ total} = E_{\rm W1} + E_{\rm W2} + E_{\rm W3} \tag{1}$$

where E_{w1} , E_{w2} , and E_{w3} denote the errors of the three components of $v_s(H_2O)$ band, respectively, while $E_{w \text{ total}}$ is the total error of the peak area of $v_s(H_2O)$. As for the area ratios between $v_1(SO_4^{2^-})$ and $v_s(H_2O)$ bands, the propagated errors of the area ratios can be calculated by Eq. 2:

229
$$E_{\text{Ratio}} = (E_{\text{S}}/A_{\text{sulfate}} + E_{\text{W total}}/A_{\text{water}}) \times A_{\text{normalized}}$$
(2)

where $A_{\text{normalized}}$ is the peak area ratio between $v_1(\text{SO}_4^{2^-})$ and $v_s(\text{H}_2\text{O})$ bands; E_s is the error of the peak area of $v_1(\text{SO}_4^{2^-})$; A_{sulfate} and A_{water} are the areas of $v_1(\text{SO}_4^{2^-})$ and $v_s(\text{H}_2\text{O})$, respectively; and E_{Ratio} is the propagated error of the area ratios.

233 Validation of the measured solubility using hydrothermal diamond anvil cell

A hydrothermal diamond anvil cell (HDAC) (Bassett et al. 1996) was used to 234 independently measure the solubility of Na₂SO₄ in the presence of quartz or amorphous silica, 235 as a validation of the solubility-temperature relationship obtained using FSCCs. Doubly 236 polished and gold-lined Re gaskets with a 400-µm diameter hole at the center were used to 237 avoid the reaction between rhenium and sulfate ion at high temperatures (Pokrovski and 238 Dubrovinsky 2011). In experimental run 1 (labeled as #HDAC 1), Na₂SO₄ solution (2.82 m; 239 undersaturated at room temperature) was loaded in the sample chamber of the HDAC with a 240 piece of silica glass. In experimental run 2 (labeled as #HDAC 2), Na₂SO₄ solution (2.50 m) 241 was loaded with a gem-grade quartz piece from the Donghai deposit in China. The use of 242 quartz instead of silica glass was to investigate the influence of crystalized/amorphous silica 243 in changing the Na₂SO₄ solubility. When loading the Na₂SO₄ solutions into the sample 244 chambers, the relative humidity in the room was controlled to be >60% to minimize the water 245 loss due to evaporation, which may lead to an elevation in the Na₂SO₄ concentration (e.g., 246 Schmidt 2009). 247

248

249

RESULTS

250 Construction of the relationship between $A_{sulfate}/A_{water}$ and $C_{sulfate}$

The spectra of the Cs₂SO₄ standard samples were processed to retrieve the relationships 251 between the $A_{\text{sulfate}}/A_{\text{water}}$ ratios and the concentrations of sulfate (C_{sulfate}). These relationships 252 vary with temperature, and thus were obtained at temperatures from 50 to 450 °C (Fig. 3). 253 The relationships were retrieved as two steps. Firstly, by heating the five standard samples 254 with different concentrations (0.10, 0.49, 0.87, 1.91, and 2.90 m for standard #1-5, 255 respectively), the relationships between the measured $A_{sulfate}/A_{water}$ ratio and experimental 256 temperature were obtained, yielding the temperature dependence of $A_{sulfate}/A_{water}$ for solutions 257 with given concentrations (Fig. 3; Table 1). Secondly, for each temperature of interest, the 258 $A_{\text{sulfate}}/A_{\text{water}}$ - C_{sulfate} relationships were determined by linear regression with five data points. 259 Data points with low signal noise ratios were excluded (e.g. 200 and 250 °C for standard 260 samples and 200 and 275 °C for experimental samples), and the missing points were obtained 261 262 from the $A_{\text{sulfate}}/A_{\text{water}}$ -T (temperature) relationship retrieved from the standard samples. In this way, the $A_{\text{sulfate}}/A_{\text{water}}$ - C_{sulfate} relationships were regressed for all temperature conditions with 263 Pearson's correlation coefficients of $R^2 > 0.97$ (Fig. 4). 264

265 Measurement of the solubility of sulfate in the Na₂SO₄-SiO₂-H₂O system

Solubility of Na₂SO₄ in the SiO₂-saturated system. Based on the aforementioned $A_{sulfate}/A_{water}-C_{sulfate}$ relationships, the sulfate concentrations in the Na₂SO₄-saturated solutions within two FSCCs were calculated using the obtained $A_{sulfate}/A_{water}$ ratio (Fig. 5; Table 2). Because SO₄²⁻ was the only aqueous sulfur species that could be detected by the Raman spectra and the solution was saturated in Na₂SO₄, the determined SO₄²⁻ concentration can represent the solubility of Na₂SO₄. This result is consistent with Cui et al. (2020), where the pairing between Na⁺ and SO₄²⁻ cannot be detected in the aqueous phase at high temperatures.

The estimated concentrations with increasing temperature were plotted in Fig. 5. For comparison, the solubility of Na_2SO_4 in pure water (silica-absent) was also calculated based on available thermodynamic properties using the HCh software package (Shvarov and Bastrakov 1999).

In both samples, Na₂SO₄ exhibited retrograde solubility at temperatures from 50 to 150 °C and 225 to 313 °C, and nearly constant solubility at 150–225 °C (Figs. 5 and 6a). The good reproducibility of the $C_{sulfate}$ -T relationships obtained from the two samples indicates that the measurements were reliable. The Na₂SO₄ solubility in SiO₂-saturated solutions between 50 and 313 °C can be described by a cubic polynomial function with $R^2 = 0.970$ (Eq. 3; Fig. 6a):

283
$$C_{\text{sulfate}} = -5.4873 \times 10^{-7} \times T^3 + 7.1399 \times 10^{-4} \times T^2 - 3.0661 \times 10^{-1} \times T + 46.251$$
(3)

where *T* is temperature in Kelvin.

As the temperature further increases, the solubility of Na₂SO₄ turned to be prograde (>313 °C; Fig. 5) due to the formation of sulfate melt (see below). The solubility of Na₂SO₄ reaches 3.88 *m* at 425 °C in the SiO₂-saturated system (Fig. 5; Table 2). For comparison, those in SiO₂-absent system remains retrograde through the whole temperature range and would decrease to ~0.6 *m* at 425 °C (Fig. 5). Even at temperatures below the melting temperature of Na₂SO₄ (~313 °C), the solubility of Na₂SO₄ in the SiO₂-saturated system is higher than that in the SiO₂-absent system (Fig. 5).

In the case of Na_2SO_4 dissolution at temperatures >313 °C, when the solubility is controlled by the dissolution of sulfate melt, the relationship between Na_2SO_4 solubility and temperature was fitted as Eq. (4) with $R^2 = 0.993$ (Fig. 6b),

295
$$ln C_{sulfate} = -3173.7/T + 5.9301$$
 (4)

where *T* is temperature in Kelvin and $586.15 \le T \le 698.15$.

Phase transitions of Na₂SO₄-SiO₂-H₂O system. During the initial stage of heating, 297 Na₂SO₄ crystals began to precipitate around the pre-existing solid Na₂SO₄ in FSCCs with 298 increasing temperature. In particular, precipitation of large amounts of solid was observed at 299 temperatures >250 °C. This result is consistent with the measured solubility curve (Fig. 5), in 300 which the solubility of Na₂SO₄ gradually decreased from 3.16 (50 °C) to 2.67 m (250 °C) and 301 then sharply decreased to 1.25 m (313 °C). During heating, Na₂SO₄ crystals underwent two 302 solid-state phase transitions, from type V to III at 200–250 °C and from III to I at 250–300 °C, 303 which are consistent with previously reported experimental results (Cui et al. 2020). Cui et al. 304 (2020) demonstrated that the incipient melting of Na₂SO₄ is coupled with the phase transition 305 from type III to I, and this can be manifested by the solubility curve obtained in this study, 306 which shows a change from retrograde to prograde solubility at ~313 °C due to the formation 307 of sulfate melt (Fig. 5). 308

309 Validation experiments using HDAC

As temperature increased, the vapor in the HDAC gradually shrank and finally homogenized into a liquid phase at 336 °C and 300 °C for the two runs of HDAC experiments, respectively (Fig. 7). Upon heating, Na₂SO₄ crystals first precipitated from the solution and then melted at higher temperatures. Finally, the sulfate melts re-dissolved into the aqueous solution at 380 °C (sample #HDAC_1) and 351 °C (sample #HDAC_2). At these temperatures, the Na₂SO₄ solubility would be estimated as 2.91 and 2.33 *m* based on Eq. 4 for

316	samples #HDAC_1 and 2, respectively. Comparing with the concentrations of the loaded
317	solutions (2.82 and 2.50 m for sample #HDAC_1 and 2), the differences are 3.37% and
318	-7.36%, respectively (Table 3).
319	The pressures at which solid Na ₂ SO ₄ disappeared were estimated to be 56 MPa at
320	380 °C for sample #HDAC_1 and 66 MPa at 351 °C for sample #HDAC_2, which are much
321	lower than those in sample #FSCC_1 (238 MPa at 351 °C and 298 MPa at 380 °C). The
322	HDAC experiments indicated that the solubility-temperature relationship (Fig. 6b and Eq. 4)
323	can describe the solubility of Na_2SO_4 in SiO_2 -saturated solutions with errors of $\leq 8\%$ within
324	the pressure range from 50 to at least 200 MPa (Table 4), regardless the form of solid SiO_2

the Na_2SO_4 solubility in natural SiO_2 -saturated crustal geofluids.

327

325

328

DISCUSSION

(quartz crystal or amorphous silica). Therefore, this relationship can be applied to investigate

329 Influence of SiO₂ on the solubility of Na₂SO₄

Cui et al. (2020) reported that the presence of silica can significantly change the dissolution behaviors of sulfate through the formation of sulfate melt. This accounts for the rapid increase in the solubility of Na₂SO₄ at temperatures of >313 °C (Fig. 5). In this study, we further observed that at lower temperatures, the presence of silica also elevates the solubility of Na₂SO₄ (by ~35% at ~250 °C; Fig. 5) without the formation of sulfate melt (Fig. 5).

336

The changes in sulfate solubility may be a result of the formation of sulfate-silicic

337	complexes, such as Si(OH) ₄ SO ₄ ²⁻ , in the presence of dissolved silica (Marshall and Chen
338	1982). Previous studies have shown that the formation of such complexes will increase the
339	solubility of SiO ₂ in sulfate-bearing solutions (Kotel'nikova and Kotel'nikov 2010; Wang et al.
340	2016). Here, we show that the elevation in solubility is mutual: the presence of silica could
341	also enhance the dissolution of Na_2SO_4 and possibly other sulfate salts. Considering that
342	quartz is ubiquitous in crustal rocks, the mobility of sulfate should be higher than previously
343	estimated in crustal geofluids. Aside from the elevated solubility in the presence of silica,
344	another factor that may lead to the formation of sulfate-rich fluids at high temperatures is the
345	liquid-liquid immiscibility of sulfate solutions, which leads to the formation of a dense
346	sulfate-rich liquid phase coexistent with the sulfate-poor solution (Wang et al. 2017; Wan et al.
347	2017).

348 Application to determine the fluid composition of ore-forming fluids of the 349 carbonatite-related REE deposit

For fluid inclusions containing halite and other daughter minerals, salinities are 350 measured based on the temperatures at which the daughter minerals completely dissolve into 351 the aqueous phase (Potter and Clynne 1978). Salinity calculated using this approach is 352 conventionally expressed as equivalent NaCl concentration because the presence of other 353 electrolytes is inevitable but difficult to be known quantitatively. Similarly, the sulfate 354 concentrations in inclusions that contain sulfate daughter minerals can be estimated using Eq. 355 4 and expressed as equivalent Na₂SO₄ contents, $C_{Na_2SO_4}$, eqv (in m). This approach was applied 356 to estimate the composition of the fluorite-hosted fluid inclusions from the Maoniuping 357 deposit, the syn-ore mineral assemblage of which is characterized by the coexistence of 358

quartz and REE minerals (mainly bastnaesite) (Xie et al. 2015). Previous studies indicated that the syn-ore fluid inclusions contain large volumes of sulfate daughter minerals and they will first melt and finally disappear at 450–455 °C upon heating (Xie et al. 2015). Based on Eq. 4, these microthermometric results yielded sulfate concentrations ($C_{Na_2SO_4, eqv}$) ranging from 4.67 to 4.81 *m*.

Previous semi-quantitative LA-ICP-MS analyses of individual fluid inclusions (Xie et al. 2015) showed that the ore-fluids are mainly composed of dissolved Na-K-Sr-Ba-sulfates, with Na⁺ and K⁺ predominating over Sr²⁺ and Ba²⁺ (molar (K + Na)/(Sr + Ba) = 20), and Na⁺ over K⁺ (molar Na/K = 1.6). The ore-fluids were approximated as the Na-K-sulfate system in this calculations. The presence of K will lead to a deviation in the sulfate solubility from those calculated from simple Na₂SO₄ solution, but this deviation is not clear at present. We use the following equation to represent the influence of the presence of K:

$$C_{\text{Na}_2\text{SO}_4, \text{ eqv}} = C_{\text{Na}_2\text{SO}_4, \text{ real}} + A \times C_{\text{K}_2\text{SO}_4, \text{ real}}$$
(5)

The form of Eq. 5 follows that of the well-studied NaCl-KCl-H₂O system (Allan et al. 372 2005), and $C_{Na_2SO_4, real}$ and $C_{K_2SO_4, real}$ are the real concentrations of Na_2SO_4 and K_2SO_4 in the 373 fluids, respectively, and A is a factor describing the influence of the presence of K₂SO₄. For 374 the NaCl-KCl-H₂O system, A is usually set as 0.5, indicating that KCl is more soluble than 375 NaCl at the same temperature. However, the exact A value for the Na₂SO₄-K₂SO₄-SiO₂-H₂O 376 system is unknown. Three hypothetical end-member values were used to calculate $C_{Na_2SO_4, real}$ 377 from $C_{Na_2SO_4, eqv}$: (i) A = 0.4 representing that K_2SO_4 is more soluble than Na_2SO_4 ; (ii) A = 1 378 for equally soluble K_2SO_4 and Na_2SO_4 , and (iii) A = 1.2 representing that Na_2SO_4 is more 379 soluble. Tthe real sulfate concentration in the K₂SO₄-Na₂SO₄-H₂O system should be within 380

381	the three end member hypothesis. Given that the Na/K molar ratio is 1.6, these end member
382	hypothesis yielded $C_{\text{Na}_2\text{SO}_4, \text{ real}}$ ranging from 3.25 to 4.20 <i>m</i> . Based on microscopic
383	observations, Xie et al. (2015) estimated that the inclusions contain 70-75 vol% of daughter
384	minerals (mostly hydrated Na-K-Ca-sulfates). If the daughter minerals are all assumed to be
385	mirabilite (Na ₂ SO ₄ ·10H ₂ O), this volume would yield a sulfate contents of 3.9 to 4.16 m , close
386	to our estimation. Taking the $1000 \times $ Ce/Na ratio (40.7) obtained from previous LA-ICP-MS
387	results (Xie et al. 2015), the Ce concentrations in the ore-forming fluids were calculated to be
388	0.39–0.46 wt%.

Volume of carbonatite magma required for the formation of giant REE deposit 389

Geological and geochemical observations on the world-class Bayan Obo and the 390 carbonatite-related REE deposits in southwestern China showed that sulfate-rich fluids were 391 responsible for REE mineralization (Xie et al. 2009; 2015; 2019). Experimental studies also 392 indicate that SO_4^{2-} forms strong bonds with REE³⁺ and is thus ideal ligand for hydrothermal 393 REE transport (Migdisov et al. 2016; Cui et al. 2020). In this study, it is shown that 0.36–0.42 394 wt% of dissolved Ce can be transported by the natural sulfate-rich fluids. Given that Ce 395 typically contributes half of the total REE resource (ΣREE) of carbonatite-related deposits 396 (e.g., Fan et al. 2016), the ore-forming fluid at Maoniuping may have an ΣREE content as 397 high as ~ 1 wt%, orders of magnitude higher than typical base metal-forming fluids (typically 398 10 to 1000 ppm of dissolved Cu, Pb, or Zn) (Yardley 2005). The high concentration of REEs 399 in the ore-forming fluid implies that large volumes of hydrothermal fluid and carbonate melt 400 may not be necessary for the formation of a giant REE deposit. In the case of the giant 401 Maoniuping REE deposit with a reserve of 3.66×10^4 tons of Ce (He et al. 2018), 9.83×10^6 402

tons of ore-forming fluids were required to transport the metals, as calculated based on the 403 concentration of Ce in the fluid. Keppler (2003) showed that the water content in carbonatite 404 magma relates well to the pressure of the magma. Given the pressure of the magma intruding 405 at the Maoniuping (100–300 MPa) (Xie et al. 2009), the water content in the carbonatite melt 406 is estimated to be ~15 wt%. Taking the estimated density of the carbonatite rock of 2.78 407 g/cm³ (cf., the densities of calcite and dolomite) into account, $1.93 \times 10^7 - 2.26 \times 10^7$ m³ of 408 carbonatite is required to provide the metals and fluids for the Maoniuping deposit. It should 409 be noted that this volume is the lower limit required for the formation of the REE deposit. 410 411 First, not all the REEs were partitioned into the aqueous phase during the melt-fluid separation. Second, not all REEs precipitated as ore minerals (e.g., bastnasite), with some 412 existing as solid solutions in refractory minerals (e.g., apatite). Finally, not all REE minerals 413 414 can be effectively concentrated to form economically significant REE orebodies, because many of them were dispersed and precipitated as sub-economic host rocks with REE 415 anomalies. 416

Even though, the estimation of the magma volume required for ore formation provides 417 418 important constraints on the process of REE mineralization. Based on the geological map of the mining area and orebody cross-sections (Xie et al. 2009), at least 1.44×10^8 m³ of 419 carbonatite dykes were confirmed in the mine site of the Maoniuping deposit. This volume is 420 nearly six times larger than the minimal magma volume required for REE mineralization. 421 This indicates that the known carbonatite dykes are sufficient to account for the formation of 422 the giant REE deposit and s deep-seated magma chamber is not necessary, consistent with the 423 conclusion by Xie et al. (2015). 424

426

IMPLICATIONS

This study together with our previous research (Cui et al. 2020) show that the 427 dissolution and melting process of sodium sulfate can be significantly influenced by the 428 presence of trace amount of silica, which is traditionally regarded as an inert component in 429 fluid system. Taken the ubiquitous presence of silica in the earth's crust, this finding implies 430 431 that our current understandings on the high-temperature hydrothermal behaviors of sulfates, and possibly other types of minerals, may need to be reevaluated, as dissolved silica can be 432 active in reacting with other ligands. Furthermore, this study implies that the influences of 433 dissolved silica cannot be neglected and should be envisaged for hydrothermal experiments 434 using technics such as FSCC and synthetic fluid inclusion in guartz (e.g., Kotel'nikova and 435 Kotel'nikov 2010). 436

437

438

ACKNOWLEDGEMENTS

We would like to thank Ying Cui and the School of Earth and Space Sciences of Peking 439 440 University for assistance in conducting Raman spectrum analysis. We would also like to thank two anonymous reviewers for their suggestions in improving the manuscript. This work 441 was supported by the National Natural Science Foundation of China (grant nos. 41472072, 442 41872078, and 41502069), the State Key Research Plan (grant no. 2017YFC0601302), the 443 Australian Research Council (grant no. DP190100216), the Young Elite Scientists 444 Sponsorship Program by CAST (grant no. YESS), and the Fundamental Research Funds for 445 the Central Universities (grant no. FRF-TP-18-017A3). 446

447	
-----	--

448	REFERENCES CITED
449	Allan, M.M., Yardley, B.W.D., Forbes, L.J., Shmulovich, K.I., Banks, D.A., and Shepherd,
450	T.J. (2005) Validation of LA-ICP-MS fluid inclusion analysis with synthetic fluid
451	inclusions. American Mineralogist, 90, 1767–1775.
452	Bakker, R.J. (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusion
453	data and for modelling bulk fluid properties. Chemical Geology, 194, 3-23.
454	Bassett, W.A., Wu, T.C., Chou, I-M., Haselton, H.T. Jr., Frantz, J., Mysen, B.O., Huang, W.L.,
455	Sharma, S.K., and Schiferl, D. (1996) The hydrothermal diamond anvil cell (HDAC) and
456	its applications: special publication. Geochemical Society, 5, 261–272.
457	Chipera, S.J., and Vaniman, D.T. (2007) Experimental stability of magnesium sulfate
458	hydrates that may be present on Mars. Geochimica et Cosmochimica Acta, 71, 241-250.
459	Chou, I-M., Song, Y., and Burruss, R.C. (2008) A new method for synthesizing fluid
460	inclusions in fused silica capillaries containing organic and inorganic material.
461	Geochimica et Cosmochimica Acta, 72, 5217–5231.
462	Cui, H., Zhong, R.C., Xie, Y.L., Yuan, X.Y., Liu, W.H., Brugger, J., and Yu, C. (2020)
463	Forming sulfate- and REE-rich fluids in the presence of quartz. Geology, 48, 145–148.
464	Fan, H.R., Yang, K.F., Hu, F.F., Liu, S., and Wang, K.Y. (2016) The giant Bayan Obo
465	REE-Nb-Fe deposit, China: Controversy and ore genesis. Geoscience Frontiers, 7,
466	335–344.
467	He, Y., Deng, T., Hao, X.F., Wen, H., and Xu, T. (2018) Indication of bastnasite heavy

468	minerals of Mianxi REE Belt. Journal of the Chinese Rare Earth Society, 64, 299-345 (in
469	Chinese).
470	Heinrich, C.A., Pettke, T., Halter, W.E., Aigner-Torres, M., Audétat, A., Günther, D.,

- 471 Hattendorf, B., Bleiner, D., Guillong, M., and Horn, I. (2003) Quantitative multi-element
- analysis of minerals, fluid and melt inclusions by laser-ablation
 inductively-coupled-plasma mass-spectrometry. Geochimica et Cosmochimica Acta, 67,
 3473–3496.
- Helgeson, H.C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures
 and pressures. American Journal of Science, 267, 729–804.
- 477 Keppler, H. (2003) Water solubility in carbonatite melts. American Mineralogist, 88,
 478 1822–1824.
- Kotel'nikova, Z.A., and Kotel'nikov, A.R. (2010) Immiscibility in sulfate-bearing fluid
 systems at high temperatures and pressures. Geochemistry International, 48, 381–389.
- 481 Laudise, R.A., Schneemeyer, L.F., and Barns, R.L. (1987) Crystal growth of high temperature

482 superconductors—Problems, successes, opportunities. Journal of Crystal Growth, 85,
483 569–575.

- Manning, C.E., and Boettcher, S.L. (1994) Rapid-quench hydrothermal experiments at mantle
 pressures and temperatures. American Mineralogist, 79, 1153–1158.
- Marshall, W.L., and Chen, C.T.A. (1982) Amorphous silica solubilities V. Predictions of
 solubility behavior in aqueous mixed electrolyte solutions to 300 °C. Geochimica et
 Cosmochimica Acta, 46, 289–291.

489	McCord, T.B., Hansen, G.B., Fanale, F.P., Carlson, R.W., Matson, D.L., Johnson, T.V.,
490	Smythe, W.D., Crowley, J.K., Martin, P.D., Ocampo, A., and others. (1998) Salts on
491	Europa's surface detected by Galileo's near infrared mapping spectrometer. Science, 280,
492	1242–1245.
493	Migdisov, A., Williams-Jones, A.E., Brugger, J., and Caporuscio, F.A. (2016) Hydrothermal
494	transport, deposition, and fractionation of the REE: Experimental data and
495	thermodynamic calculations. Chemical Geology, 439, 13-42.
496	Pokrovski, G.S., and Dubessy, J. (2015) Stability and abundance of the trisulfur radical ion
497	S_3^- in hydrothermal fluids. Earth and Planetary Science Letters, 411, 298–309.
498	Pokrovski, G.S., and Dubrovinsky, L.S. (2011) The S_3^- ion is stable in geological fluids at
499	elevated temperatures and pressures. Science, 331, 1052-1054.
500	Potter, R.W. II, and Clynne, M.A. (1978) Solubility of highly soluble salts in aqueous media.
501	Part 1, NaCl, KCl, CaCl ₂ , Na ₂ SO ₄ , and K ₂ SO ₄ solubilities to 100 °C. Journal of Research
502	of The US Geological Survey, 6, 701–705.
503	Qiu, Y., Yang, Y.X., Wang, X.L., Wan, Y., Hu, W.X., Lu, J.J., Tao, G.L., Li, Z., and Meng,
504	F.W. (2020) In situ Raman spectroscopic quantification of aqueous sulfate: Experimental
505	calibration and application to natural fluid inclusions. Chemical Geology, 533.
506	https://doi.org/10.1016/j.chemgeo.2019.119447.
507	Schmidt, C. (2009) Raman spectroscopic study of a $H_2O + Na_2SO_4$ solution at 21–600 °C and
508	0.1 MPa to 1.1 GPa: Relative differential v_1 -SO ₄ ²⁻ Raman scattering cross sections and
509	evidence of the liquid-liquid transition. Geochimica et Cosmochimica Acta, 73, 425–437.

510	Schmidt, C., and Seward, T.M. (2017) Raman spectroscopic quantification of sulfur species
511	in aqueous fluids: Ratios of relative molar scattering factors of Raman bands of H ₂ S, HS ⁻ ,
512	SO ₂ , HSO ₄ ⁻ , SO ₄ ²⁻ , S ₂ O ₃ ²⁻ , S ₃ ⁻ and H ₂ O at ambient conditions and information on
513	changes with pressure and temperature. Chemical Geology, 467, 64-75.
514	Seward, T.M., Williams-Jones, A.E., and Migdisov, A.A. (2014) The chemistry of metal
515	transport and deposition by ore-forming hydrothermal fluids. In K.K. Turekian, and H.D.
516	Holland, Eds., Treatise on Geochemistry, p. 29–57. Elsevier, Amsterdam, Netherlands.
517	Shvarov, Y.V., and Bastrakov, E.N. (1999) HCh: a software package for geochemical
518	equilibrium modelling. User's guide (Australian Geological Survey Organization,
519	Canberra, 1999), Record 199/25.
520	Sun, W.D., Liang, H.Y., Ling, M.X., Zhan, M.Z., Ding, X., Zhang, H., Yang, X.Y., Li, Y.L.,
521	Ireland, T.R., Wei, Q.R., and others. (2013) The link between reduced porphyry copper
522	deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103, 263-275.
523	Taylor, J.R. (1996) An Introduction to Error Analysis. University Science Books, Sausalito.
524	Tropper, P., and Manning, C.E. (2007) The solubility of fluorite in H ₂ O and H ₂ O-NaCl at
525	high pressure and temperature. Chemical Geology, 242, 299-306.
526	Wan, Y., Wang, X.L., Hu, W.X., Chou, I-M., Wang, X.Y., Chen, Y., and Xu, Z.M. (2017) In
527	situ optical and Raman spectroscopic observations of the effects of pressure and fluid
528	composition on liquid-liquid phase separation in aqueous cadmium sulfate solutions
529	(≤400 °C, 50MPa) with geological and geochemical implications. Geochimica et
530	Cosmochimica Acta, 211, 133–152.

531	Wang, X.L., Chou, I-M., Hu, W.X., and Burruss, R.C. (2013) In situ observations of
532	liquid-liquid phase separation in aqueous MgSO ₄ solutions: Geological and geochemical
533	implications. Geochimica et Cosmochimica Acta, 103, 1-10.
534	Wang, X.L., Wan, Y., Hu, W.X., Chou, I-M., Cao, J., Wang, X.Y., Wang, M., and Li, Z. (2016)
535	In situ observations of liquid-liquid phase separation in aqueous ZnSO ₄ solutions at
536	temperatures up to 400 °C: Implications for Zn^{2+} -SO ₄ ²⁻ association and evolution of
537	submarine hydrothermal fluids. Geochimica et Cosmochimica Acta, 181, 126-143.
538	Wang, X.L., Wang, X.Y., Chou, I-M., Hu, W.X., Wan, Y., and Li, Z. (2017) Properties of
539	lithium under hydrothermal conditions revealed by in situ Raman spectroscopic
540	characterization of Li ₂ O-SO ₃ -H ₂ O (D ₂ O) systems at temperatures up to 420 °C. Chemical
541	Geology, 451, 104–115.
542	Xie, Y.L., Hou, Z.Q., Yin, S.P., Dominy, S.C., Xu, J.H., Tian, S.H., and Xu, W.Y. (2009)
543	Continuous carbonatitic melt-fluid evolution of a REE mineralization system: Evidence
544	from inclusions in the Maoniuping REE deposit, Western Sichuan, China. Ore Geology
545	Reviews, 36, 90–105.
546	Xie, Y.L., Li, Y.X., Hou, Z.Q., Cooke, D.R., Danyushevsky, L., Dominy, S.C., and Yin, S.P.
547	(2015) A model for carbonatite hosted REE mineralization-the Mianning-Dechang
548	REE belt, Western Sichuan Province, China. Ore Geology Reviews, 70, 595-612.
549	Xie, Y.L., Qu, Y.W., Yang, Z.F., Liang, P., Zhong, R.C., Wang, Q.W., Xia, J.M., and Li, B.C.
550	(2019) Giant Bayan Obo Fe-Nb-REE deposit: Progresses, controversaries and new
551	understandings. Mineral Deposits, 38, 983–1003 (in Chinese).

552	Xu, C., Kynicky, J., Chakhmouradian, A.R., Li, X.H., and Song, W.L. (2015) A case example
553	of the importance of multi-analytical approach in deciphering carbonatite petrogenesis in
554	South Qinling orogen: Miaoya rare-metal deposit, central China. Lithos, 227, 107–121.
555	Yang, C.D., Chai, F.M., Yang, F.Q., Santosh, M., Xu, Q.F., and Wang, W. (2018) Genesis of
556	the Huangtupo Cu-Zn deposit, Eastern Tianshan, NW China: Constraints from geology,
557	Rb-Sr and Re-Os geochronology, fluid inclusions, and H-O-S-Pb isotopes. Ore Geology
558	Reviews, 101, 725–739.
559	Yardley, B.W.D. (2005) Metal concentrations in crustal fluids and their relationship to ore
560	formation. Economic Geology, 100, 613-632.
561	Yu, X.F., Tang, H.S., and Li, D.P. (2014) Study on the mineralization of Chishan rare earth
562	element deposit related to alkaline rock, Shandong Province. Acta Geologica Sinica
563	(English Edition), 88, 480–481.
564	Yuan, X.Y., Mayanovic, R.A., and Zheng, H.F. (2016) Determination of pressure from
565	measured Raman frequency shifts of anhydrite and its application in fluid inclusions and
566	HDAC experiments. Geochimica et Cosmochimica Acta, 194, 253-265.
567	Zhang, Y.G., and Frantz, J.D. (1987) Determination of the homogenization temperatures and
568	densities of supercritical fluids in the system NaCl-KCl-CaCl ₂ -H ₂ O using synthetic fluid
569	inclusions. Chemical Geology, 64, 335–350.

27

Figure Caption

Fig. 1. (a) Schematic diagram of the experimental method in FSCC experiments. (b) The 571 microscopic photo of the experimental sample at 100 and 350 °C along with Raman spectra 572 of the saturated solution at varying temperatures. Abbreviations: Aq = aqueous solution, S =573 solid Na_2SO_4 , V = vapor phase, M = sulfate melt. 574 Fig. 2. The investigation of equilibrium time of experimental samples. The $A_{\text{sulfate}}/A_{\text{water}}$ in the 575 experimental samples varied with experimental duration. The data suggested that equilibrium 576 was attained after ~400 s at 140 °C and 330 °C and after ~300 s at 400 °C. Whiskers 577 578 represented 95% confidence intervals. Fig. 3. Changes in peak area ratios $A_{sulfate}/A_{water}$ of standard samples with increasing 579 temperature (T). The standard samples (standard #1-5) have different concentrations (0.10, 580 581 0.49, 0.87, 1.91, and 2.90 m) of Cs₂SO₄. The relationships between the measured $A_{sulfate}/A_{water}$ and temperatures were regressed. 582 Fig. 4. The relationships between the concentrations of Cs_2SO_4 ($C_{sulfate}$) and peak area ratios 583 $A_{\text{sulfate}}/A_{\text{water}}$ at each temperature. These relationships were used to calibrate the concentrations 584 of sulfate in the experimental samples. 585 Fig. 5. The solubility of Na₂SO₄ in silica-saturated solutions at temperatures of 50–425 °C. In 586 addition, the solubility curve of Na₂SO₄ in SiO₂-free solutions is also shown for comparison 587 (calculated using the HCh program, Shvarov and Bastrakov 1999). Whiskers represented 95% 588 confidence intervals. 589

- **Fig. 6.** The temperature dependence of the Na₂SO₄ solubility in SiO₂-saturated solutions. (**a**)
- 591 The Na₂SO₄ solubility within the temperature range of 50–313 $^{\circ}$ C. (b) The Na₂SO₄ solubility

- ⁵⁹² under high temperatures (>313 °C).
- 593 Fig. 7. Phase behaviors of Na₂SO₄-SiO₂-H₂O system in an HDAC experiment (sample
- ⁵⁹⁴ #HDAC_2) at 180 °C, 300 °C, and 351 °C. Abbreviations: Aq = aqueous solution, S = solid
- 595 Na₂SO₄, V = vapor phase, Qtz = quartz, V = vapor phase.

597		Tables
598	TABLE 1. The rela	ationships between $A_{sulfate}/A_{water}$ and temperature (T) at different Cs ₂ SO ₄
599	concentrations. A_{sulfat}	t_{te}/A_{water} is the peak area ratio between $v_1(SO_4^{2^-})$ and $v_s(H_2O)$ bands and T
600	is the temperature in	°C.
Sample	Concentration	Equation and P^2
no.	(<i>m</i>)	
standard #1	0.10	$A_{\text{sulfate}}/A_{\text{water}} = 2 \times 10^{-5} T + 2.7 \times 10^{-3}, R^2 = 0.548$
standard #2	0.49	$A_{\text{sulfate}}/A_{\text{water}} = 4.42 \times 10^{-5} T + 1.72 \times 10^{-2}, R^2 = 0.938$
standard #3	0.87	$A_{\text{sulfate}}/A_{\text{water}} = 2.62 \times 10^{-7} T^2 - 2.92 \times 10^{-5} T + 3.72 \times 10^{-2}, R^2 = 0.981$
standard #4	1.91	$A_{\text{sulfate}}/A_{\text{water}} = 6.76 \times 10^{-9} T^3 - 3.77 \times 10^{-6} T^2 + 7.01 \times 10^{-4} T + 5.26 \times 10^{-2}, R^2 = 0.987$
standard #5	2.90	$A_{\text{sulfate}}/A_{\text{water}} = 8.50 \times 10^{-9} T^3 - 5.02 \times 10^{-6} T^2 + 1.01 \times 10^{-3} T + 7.81 \times 10^{-2}, R^2 = 0.978$
601		
602		
603		
604		
605		
606		
607		
608		
609		
610		
611		

612 TABLE 2. The measured sulfate solubility in SiO₂-saturated Na₂SO₄ solutions (Sample

<i>T</i> (°C)	$A_{ m sulfate}/A_{ m water}$	Error for $A_{\text{sulfate}}/A_{\text{water}}$	$C_{\text{sulfate}}(m)$	Error for $C_{\text{sulfate}}(\pm m)$	Sample
50	0.13	0.02	3.10	0.35	#FSCC 1
100	0.13	0.01	2.92	0.26	#FSCC_1
150	0.13	0.02	2.78	0.48	#FSCC_1
225	0.15	0.01	2.91	0.42	#FSCC_1
275	0.13	0.01	2.60	0.11	#FSCC_1
300	0.11	0.01	1.65	0.18	#FSCC_1
325	0.11	0.02	1.82	0.36	#FSCC_1
350	0.14	0.00	2.34	0.05	#FSCC_1
375	0.20	0.00	2.89	0.07	#FSCC_1
400	0.26	0.01	3.41	0.07	#FSCC_1
425	0.35	0.01	3.88	0.09	#FSCC_1
50	0.14	0.02	3.22	0.37	#FSCC_2
100	0.13	0.01	2.84	0.20	#FSCC_2
150	0.13	0.01	2.70	0.20	#FSCC_2
250	0.15	0.00	2.71	0.09	#FSCC_2
275	0.14	0.01	2.42	0.18	#FSCC_2
300	0.10	0.01	1.84	0.16	#FSCC_2
313	0.07	0.01	1.25	0.11	#FSCC 2

⁶¹³ #FSCC_1–2) at temperatures from 50 to 425 °C.

614

615

ABLE 3. The solubility of Na₂SO₄ in SiO₂-saturated solutions, results of HDAC experiments.

Samula	Silica species	Actual	Calculated	$T_{\rm h, \ tot}{}^a$	P^{b}
Sample		concentration (<i>m</i>)	concentration (<i>m</i>)	(°C)	(MPa)
#HDAC_1	glassy silica	2.82	2.91	380	56
#HDAC_2	quartz crystal	2.50	2.33	351	66

 a T_{h, tot} = totally homogenization temperature.

618 b P = pressure at T_{h, tot}.

Sample	Degree of filling	$T_{\rm h, vapor}$ (°C) ^{<i>a</i>}	P_{425} (MPa) ^b
#FSCC_1	0.82	320	139
#FSCC_2	0.52	371	73

620 TABLE 4. Pressure estimation for FSCCs with different degrees of filling.

 a T_{h, vapor} = aqueous-vapor homogenization temperature within the FSCC.

622 ${}^{b}P_{425}$ = the calculated inner pressure of FSCC at 425 °C.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

