The potential for aqueous fluid-rock and silicate melt-rock interactions to re-equilibrate hydrogen in peridotite nominally anhydrous minerals

Kendra J. Lynn* and Jessica M. Warren

University of Delaware
Department of Earth Sciences
255 Academy St, 103 Penny Hall
Newark, DE 19716 USA

*corresponding author
E-mail: kjlynn@udel.edu

Running title: Timescales of H re-equilibration in peridotite NAMs
Keywords: nominally anhydrous minerals, peridotite, diffusion, hydrogen
Abstract

Hydrogen is a rapidly diffusing monovalent cation in nominally anhydrous minerals (NAMs, such as olivine, orthopyroxene, and clinopyroxene), which is potentially re-equilibrated during silicate melt-rock and aqueous fluid-rock interactions in massif and abyssal peridotites. We apply a 3D numerical diffusion modeling technique to provide first-order timescales of complete hydrogen re-equilibration in olivine, clinopyroxene, and orthopyroxene over the temperature range 600-1200°C. Model crystals are 1-3 mm along the c-axis and utilize H⁺ diffusion coefficients appropriate for Fe-bearing systems. Two sets of models were run with different boundary compositions: 1) “low-H models” are constrained by mineral-melt equilibrium partitioning with a basaltic melt that has 0.75 wt% H₂O and 2) “high-H models,” which utilize the upper end of the estimated range of mantle water solubility for each phase. Both sets of models yield re-equilibration timescales that are identical and are fast for all phases at a given temperature. These timescales have strong log-linear trends as a function of temperature (R² from 0.97 to 0.99) that can be used to calculate expected re-equilibration time at a given temperature and grain size. At the high end of the model temperatures (1000-1200°C), H⁺ completely re-equilibrates in olivine, orthopyroxene, and clinopyroxene within minutes to hours, consistent with previous studies. These short timescales indicate that xenolith NAM mantle water contents are likely to be overprinted prior to eruption. The models also resolve the decoupled water-trace element relationship in Southwest Indian Ridge peridotites, in which peridotite REE abundances are reproduced by partial melting models whereas the relatively high NAM H₂O contents require later re-equilibration with melt.

At temperatures of 600-800°C, which correspond to conditions of hydrothermal alteration of pyroxene to amphibole and talc, H⁺ re-equilibration typically occurs over a range of
timescales spanning days to years. These durations are well within existing estimates for the
duration of fluid flow in oceanic hydrothermal systems, suggesting that peridotite NAM water
contents are susceptible to diffusive overprinting during higher temperature hydrothermal
alteration. Thus, diffusion during aqueous fluid-rock interactions may also explain NAM H₂O
contents that are too high to reflect residues of melting. These relatively short timescales at low
temperatures suggest that the origin of water contents measured in peridotite NAMs requires
additional constraints on sample petrogenesis, including petrographic and trace element analyses.

Our 3D model results also hint that H⁺ may diffuse appreciably during peridotite
serpentinization, but diffusion coefficients at low temperature are unconstrained and additional
experimental investigations are needed.

Introduction

The water contents of olivine, orthopyroxene, and clinopyroxene in peridotites have been used to
constrain the water content of the upper mantle, a value that is important for many mantle
properties, including melting depth and viscosity (e.g., Mackwell et al. 1985; Hirth and Kohlstedt
1996; Ingrin and Skogby 2000; Peslier 2010). The hydrogen incorporated in these nominally
anhydrous minerals (NAMs) is sometimes referred to as “water” or “hydroxyl” because of its
chemical bond with oxygen within the olivine structure, but here we refer to this species as
hydrogen or H⁺. Hydrogen is a rapidly diffusing monovalent cation (Figure 1) and its re-
equilibration in response to silicate melt-rock interactions quickly modifies NAM water contents
(e.g., Mackwell and Kohlstedt 1990; Kohlstedt and Mackwell 1998; Ingrin and Skogby 2000;
Stalder and Skogby 2003; Ingrin and Blanchard 2006).
Thermally driven diffusion in igneous minerals is now widely used to quantify the timescales of geologic processes operating in diverse tectonic settings (e.g., Costa and Dungan 2005; Shea et al. 2015a; Ruth et al. 2018). Hydrogen diffusion chronometry has classically been applied at high temperatures (e.g., 1000-1200°C), where it records short-lived processes such as magma ascent (Demouchy et al. 2006; Peslier and Luhr 2006; Denis et al. 2015; Lloyd et al. 2016) and melt inclusion re-equilibration during degassing/decompression of melts (e.g., Le Voyer et al. 2014). Yet it has the strong potential to be applied to lower temperature geologic processes such as hydrothermal fluid-rock interactions, which can occur at temperatures up to 1000°C (e.g., Fumagalli et al. 2009). In addition, the timescales of H⁺ re-equilibration in NAMs at temperatures <1000°C need to be re-evaluated in light of recent advances in diffusion modeling techniques and experimentally determined diffusion rates.

In this study, we evaluate first order timescales of complete hydrogen re-equilibration over a temperature range of 600-1200°C. Models at 1200°C allow us to compare our results with previous studies and to consider re-equilibration timescales for NAMs in peridotite xenoliths. We use models at 800-1200°C to evaluate silicate melt-rock interactions and models at 600-800°C to evaluate the circulation of high temperature (high-T) hydrothermal fluids in peridotites. Our objective is to constrain the likely kinetic window of H⁺ (i.e., time required for complete re-equilibration) to evaluate the potential for H chronometry to be used in natural samples for assessing the timescales over which aqueous fluids and silicate melts interact with the mantle.

Modeling Methodology

Diffusion chronometry in igneous minerals is typically used to evaluate timescales of high-temperature (>800°C) processes in magmatic systems. Below 800°C, appreciable diffusion no
longer occurs for most elements in silicate minerals (e.g., Fe-Mg in olivine; Dohmen and Chakraborty 2007a, 2007b). However, projected H\(^+\) diffusion coefficients (D\(_H\)) in NAMs at 600°C (10\(^{-13}\) to 10\(^{-15}\) m\(^2\)/s; Figures 1 and 2) may be faster than Fe-Mg diffusion in olivine at 1200°C (cf. D\(_{Fe-Mg}\) = 10\(^{-16}\) m\(^2\)/s, for Fo\(_{90}\) olivine using a simplified Arrhenius form of D\(_{FeMg}\)).

This latter chronometer is routinely used to investigate timescales of weeks to years in magmatic systems (e.g., Costa and Dungan 2005; Kahl et al. 2011; Lynn et al. 2017a, 2017b; Viccaro et al. 2019), suggesting that H\(^+\) diffusion could be re-equilibrating NAM water contents over similar timescales. Thus, even at relatively low temperatures of 600°C, hot hydrothermal fluids and/or partial melts could significantly modify peridotite NAM water contents over geologically reasonable timescales.

To constrain the possible timescales of H\(^+\) re-equilibration during silicate melt-rock and aqueous fluid-rock interactions, we used 3D numerical models of H\(^+\) diffusion in single crystals of olivine, orthopyroxene, and clinopyroxene. Below we outline our (i) 3D modeling rationale, (ii) choice of diffusion coefficients for each mineral phase, (iii) numerical model setup, and (iv) method to account for uncertainties.

Three-dimensional modeling rationale

Hydrogen diffusion in NAMs has typically been investigated by modeling one-dimensional traverses across a two-dimensional crystal section (e.g., Demouchy and Mackwell 2006; Demouchy et al. 2006; Gose et al. 2011; Tian et al. 2017). However, crystals are three-dimensional objects with complex geometries and diffusive re-equilibration often occurs at different rates along the principle crystallographic axes of silicate minerals (i.e., diffusion anisotropy; Zhang 2010). Three-dimensional volume diffusion of H\(^+\) in sphere and cube...
geometries was explored by Thoraval and Demouchy (2014), who showed that a 3D approach is needed to accurately account for highly anisotropic diffusing species (i.e., >2x difference in diffusion coefficients along different axes). Shea et al. (2015b) subsequently showed that sphere and cube geometries are insufficient to capture sample variability, so we utilize 3D euhedral morphologies that better represent natural samples, account for anisotropy, and address complexities that arise from off-center and oblique sectioning (see Supplementary Material for more details).

Natural peridotites have a range of grain sizes and crystal shapes (Boullier and Nicholas 1975; Mercier and Nicolas 1975; Tabor et al. 2010; Achenbach et al. 2011) complicating the choice of crystal shape in the models. One option to describe peridotite crystal morphologies is a tetrakaidecahedron (Hiraga et al. 2007), which allows minimal surface area and maximizes the packing of equal-sized, similarly shaped objects. However, natural peridotites can exhibit variations in grain size and shape that are not represented well by tetrakaidecahedrons (Tabor et al. 2010). Here, pyroxene and olivine models are built with cube-shaped voxels (a pixel in 3D) into euhedral crystal morphologies with relatively equant aspect ratios for simplicity (Figure 3). The olivine model geometry is adapted from Shea et al. (2015b) and Lynn et al. (2017b). Pyroxene models are modified after Krimer and Costa (2017) and Jollands and Müntener (2019).

Choice of Diffusion Coefficients

The major, minor, and trace element chemistry of NAMs can have a significant effect on hydrogen incorporation and on subsequent diffusion. Diffusion experiments that have utilized pure mineral endmembers, synthetic, and/or doped starting materials have identified several diffusion mechanisms that are significantly affected by crystal chemistry (e.g., Mosenfelder et al.
However, several studies using natural olivine and pyroxene crystals (that are not compositional end-members) yield distinctly different results with important implications for diffusion in natural systems (Woods et al. 2010; Ferriss et al. 2016, 2018; Thoraval et al. 2018; Jollands et al. 2019; Barth et al. 2019). This suggests that the compositional complexities of natural minerals significantly influence the mechanisms by which hydrogen moves through a crystal.

Vacancies associated with Si have the slowest diffusion coefficients (Padrón-Navarta et al. 2014) and can also play an important role in H⁺ incorporation and diffusion at high pressure and temperature conditions (e.g., Mosenfelder et al. 2006; Demouchy et al. 2016; Padrón-Navarta and Hermann 2017), low silica activity (Lemaire et al. 2004; Costa and Chakraborty 2008), and high water activity (Tollan et al. 2017). However, the slow $D_{H^+ Si}$ that Padrón-Navarta et al. (2014) measured in a synthetic Fe-free forsterite probably reflects the slow diffusion of Si (Costa and Chakraborty 2008). Similar experiments conducted on natural olivine samples show instead that inter-site redistribution of H⁺ from the Si site allows fast removal of H⁺ via the proton-polaron or proton-vacancy mechanisms (Jollands et al. 2019). The [Si] diffusion mechanism likely does not affect the first-order diffusion rates that we obtain with our models here, even though it may be important during crystal growth or at high pressures in subduction zones (e.g., Kempf and Hermann 2018; Jollands et al. 2019). Thus, the following selection of D_{H^+} values is based primarily on the presence of Fe (Mackwell and Kohlstedt 1990; Demouchy and Mackwell 2006; Woods et al. 2000; Stalder and Skogby 2003; Ferriss et al. 2016; Ferriss et al. 2018).

Hydrogen diffusion in olivine has typically been modeled using one of two distinct diffusion behaviors. The faster diffusion of H⁺ is attributed to a flux of hydrogen (i.e., protons)
charge balanced by a flux of electrons from Fe$^{2+}$ to Fe$^{3+}$. The flux of electron holes associated with Fe$^{3+}$, often referred to as polarons, give rise to the name “proton-polaron” or “redox” mechanism when describing this type of diffusion (Mackwell and Kohlstedt 1990). The second behavior is characterized by slower diffusion associated with metal vacancies in the crystal lattice and is referred to as the “proton-vacancy” mechanism (e.g., Demouchy and Mackwell 2006). Most applications of hydrogen diffusion chronometry have used either the fast proton-polaron or the slower proton-vacancy mechanism to explain H$^+$ mobility (e.g., Demouchy et al. 2006; Peslier and Luhr 2006).

Here we focus on the hydration of NAMs, in contrast to many previous applications of H$^+$ diffusion chronometry, which have mainly focused on dehydration (e.g., degassing in magmatic systems). The extensive experimental datasets for olivine (e.g., Mackwell and Kohlstedt 1990; Kohlstedt and Mackwell 1998; Demouchy and Mackwell 2006; Jollands et al. 2016; Ferriss et al. 2018) suggest that the absolute rates of each diffusion mechanism do not vary but rather that different mechanisms might dominate during the course of re-equilibration. Although H$^+$ diffusion appears initially to be dominated by the fast proton-polaron mechanism before it transitions to the slower vacancy mechanism (Thoraval and Demouchy 2014; Ferriss et al. 2018), this switch in behavior is mostly relevant when extracting short (e.g., minutes) timescales of eruptive processes. For the longer time-scale processes of melt-rock and fluid-rock interaction in mantle rocks, the proton-polaron and vacancy mechanisms are considered independent processes during hydration and these likely bracket the possible timescales of H re-equilibration, as suggested by Thoraval and Demouchy (2014). In addition, recent dehydration experiments using natural olivine suggest that H$^+$ diffusion may be modeled with a rate
intermediate between the fast proton-polaron mechanism and the slower vacancy mechanism

Ferriss et al. 2018).

We thus ran three sets of models for olivine, utilizing (i) the total H⁺ diffusion rate from dehydration experiments (Ferriss et al. 2018; Figure 1), (ii) the proton-polaron mechanism (Mackwell and Kohlstedt 1990), (iii) and the proton-vacancy mechanism (Demouchy and Mackwell 2006). Diffusion coefficients are summarized in Supplementary Table S1. Diffusion is fastest along the \(a \)-axis for the total H⁺ diffusion rate and the proton-polaron mechanism, but fastest along the \(c \)-axis for the proton-vacancy mechanism. We also assume that the mobility of H⁺ in the natural NAMs that are the focus of this study are not subject to inter-site reaction limited diffusion constraints as proposed by Jollands et al. (2019), meaning that H⁺ is not restricted to the slowest diffusing [Si] mechanism.

For pyroxene, our models (Table S1) utilize H⁺ diffusion coefficients for Fe-bearing clinopyroxene (cpx) and orthopyroxene (opx) as mantle pyroxenes are Fe-bearing. These coefficients have been shown to be faster than in low-Fe or Fe-free compositions (e.g., Woods et al. 2000; Stalder and Skogby 2003; Ferriss et al. 2016; Yang et al. 2019). Clinopyroxene models were run with the anisotropic Fe-bearing diffusion rates from Jaipur diopside (Woods et al. 2000; Ferriss et al. 2016). Jaipur has a composition different from peridotite diopside, but is the best available diffusion data for Fe-bearing cpx. Orthopyroxene models utilize Fe-bearing diffusion rates from Kilbourne Hole opx experiments, which provide an Arrhenius relationship for \([001]\) (Stalder and Skogby 2003; Bell et al. 1995). Stalder and Skogby (2003) showed that diffusion along \([010]\) is about one order of magnitude slower than \([001]\) and that \([100]\) is intermediate between these two at 700°C. The Arrhenius relationship cannot be calculated for the \([100]\) and \([010]\) axes due to limited experiments at different temperatures. Thus, our 3D models and error
envelopes use the Arrhenius relationship for [001] only (e.g., as if opx were isotropic), so our
model results are likely minimum timescales of complete opx re-equilibration.

These Fe-bearing pyroxene diffusion coefficients likely represent the proton-polaron
mechanism, which may be a factor of 3x faster than the vacancy mechanism, based on
constraints available for olivine mechanisms (Ingrin and Blanchard, 2006). To evaluate the
potential role of a slower diffusion mechanism in pyroxene, we ran additional models using the
vacancy diffusion rate of Sundvall et al. (2009) for diopside and Stalder and Behrens (2006) for
enstatite. These models provide examples of possible slower vacancy-controlled diffusion
timescales, which might dominate H⁺ mobility over the longer timescales of silicate melt-rock
and aqueous fluid-rock interactions.

Model Setup

Our models are based on previous 3D diffusion approaches (see Shea et al. 2015; Lynn et al.
2017; Jollands and Müntener 2019). Details of the numerical implementation of the models and
their equations are given in the Supplementary Material. Initial conditions (i.e., starting NAM
water contents) were selected based on the low end of the estimated water concentration range
for bulk upper mantle (e.g., Hirschmann 2006). The lower value of 50 ppm H₂O in the bulk
mantle (Hirschmann 2006), combined with estimates for upper mantle mineral modes (Workman
and Hart 2005), was used to set initial conditions to 7 ppm H₂O in olivine, 50 ppm H₂O in opx,
and 200 ppm H₂O in cpx. All phases were initially homogeneous prior to the onset of diffusion.
Several sets of boundary conditions were used to simulate the high end of the range for bulk
upper mantle (Table 1) and conditions appropriate for hydrothermal fluid-rock interactions (see
Supplementary Material for details).
Models were run with D_H values calculated at 600°C, 700°C, 800°C, 1000°C, and 1200°C using the experimentally determined Arrhenius relationships (compiled in the Supplementary Data File, Table S1). Our extrapolation of the Arrhenius relationships for hydrogen diffusivities extend 100-200°C beyond the experimentally constrained range (Figures 1 and 2 in the main text) and we also model uncertainties associated with extrapolation of the experimental datasets (discussed in detail below). Pyroxene vacancy models (Stalder and Behrens, 2006 for opx; Sundvall et al. 2009 for cpx) were run at 600°C, 800°C, and 1000°C where the slower mechanism might dominate diffusion behavior.

After diffusion simulations were completed, the 3D numerical crystals were sectioned through their cores perpendicular to the c-axis (an a-b section; Figure 3). The area of this section is ~0.9 mm2 for the 1 mm models and 2.4 mm2 for the 3 mm models, well within the range of mean grain areas for the textures typically observed in peridotites (e.g., Tabor et al. 2010; Achenbach et al. 2011). The concentration of the central pixel in the 2D section (Figure 3) is sampled at regular model time intervals to track changes in core water content (after Thoraval and Demouchy 2014). Model results are reported as % re-equilibration, allowing all NAM phases to be compared despite different absolute water contents (after Costa et al. 2003; Lynn et al. 2017b). The % re-equilibration represents the change in concentration between the initial H^+ content and the “measured” (e.g., diffused) H^+ after a given diffusion duration:

$$\% \text{ re-equilibration} = \frac{H_{\text{initial}} - H_{\text{measured}}}{H_{\text{initial}} - H_{\text{equilibrium}}} \times 100 \quad (1)$$

where H_{initial} is the initial water content before diffusion, H_{measured} is the core composition sampled at various time intervals throughout the diffusion model, and $H_{\text{equilibrium}}$ is the boundary condition assigned to the model (Table 1).
Accounting for Uncertainties

A key component of evaluating model applications to natural samples is a thorough consideration of associated uncertainties. Our approach seeks to broadly constrain the timescales of complete H re-equilibration in peridotite NAMs rather than provide unique solutions to individual mineral profiles. Therefore, we treat timescale uncertainties by evaluating the 95% confidence interval on experimental diffusion data (e.g., error envelopes), variations due to differences in mineral grain size, random sectioning of natural samples (Shea et al. 2015b), and fundamental environmental parameters that diffusion models are sensitive to (e.g., temperature, compositional boundary conditions). Models were run using predicted diffusion coefficients calculated from Arrhenius relationships at a given temperature, along with two additional models at each temperature representing the upper and lower bounds of uncertainty in the experimental diffusion coefficients (see Supplementary Table S2). The 1 and 3 mm models encompass most of the range of grain sizes in natural peridotites (Tabor et al. 2010). To account for uncertainties in grain orientations and sectioning of natural peridotite samples, we randomly sliced a 3D opx model 200 times and “measured” the H content at the core of each section (after Lynn et al. 2017b). This provides the distribution of NAM water contents expected in a given peridotite sample subject to 2D sectioning effects. Finally, we tested different boundary conditions reflecting a range of environmental conditions that drive diffusion (Table 1).

Results

A total of 214 models were run to constrain the kinetic window of H⁺ in NAMs. In the first set of 100 models orthopyroxene, clinopyroxene, and three olivine diffusion mechanisms were run for each set of silicate melt boundary conditions (low-H vs. high-H models), both grain sizes (1 and...
3 mm) and five temperature intervals (40 pyroxene and 60 olivine models in total). No differences in 100% re-equilibration timescale were observed between the two sets of boundary conditions, indicating that the complete re-equilibration of NAMs is mainly sensitive to the diffusion coefficient. An additional two models that tested hydrothermal boundary conditions (10^3 and 10^4 ppm) for 1 mm cpx at 800°C have the same 100% re-equilibration timescales as the low-H and high-H silicate melt cpx models (boundary conditions of 353 and 750 ppm, respectively) at the same temperature. This confirms that the 100% re-equilibration timescales are insensitive to changes in boundary conditions, due to the current set of experimentally determined Arrhenius laws being non-concentration dependent.

Modeled re-equilibration timescales for each mineral (filled symbols in Figure 4) have strong log-linear trends of 100% re-equilibration time as a function of temperature with R² values 0.97-0.99. The re-equilibration of H⁺ in all phases is fast at 1200°C, on the order of minutes to several days (Table 2). These results are consistent with previous studies that have focused on magmatic processes (e.g., Mackwell and Kohlstedt 1990; Demouchy and Mackwell 2006; Demouchy et al. 2006). At 1000°C, re-equilibration timescales range from tens of minutes to about a week for 1 mm models and an hour to several weeks for 3 mm models (Figure 4 and Table 2). In general, the cpx and olivine proton-polaron models are fastest (minutes to tens of minutes).

To determine the upper and lower bounds of uncertainty for re-equilibration timescales, 100 additional models were run for both 1 mm and 3 mm grain sizes (Figure 4). Re-equilibration timescales for upper and lower bounds on experimental uncertainties vary between minerals, but typically have the greatest uncertainty at 600°C and 1200°C. Model results do not perfectly mirror the error envelopes calculated in Figures 1 and 2, primarily due to different uncertainties.
on D_H values for the [100], [010], and [001] axes (Table S1) influencing anisotropic volume diffusion within a single model.

Uncertainties (open symbols in Figure 4) are overall lowest at 800°C, with the cpx and olivine proton-polaron model re-equilibrating in a few hours, opx and the olivine “total” models over several days to a week, and the olivine proton-vacancy slowest at several months to a year (Figure 5). Uncertainties are larger on 700°C models, where distinctions between mineral re-equilibration timescales are less clear. The olivine proton-vacancy models have the highest uncertainty, ranging from days to decades (Figure 5). Opx has the largest uncertainty at 1000°C, spanning nearly the combined range of the other two minerals.

Modeled cpx and olivine proton polaron timescales at 600°C range from hours to months and are relatively fast compared to opx re-equilibration, which occurs over months to hundreds of years. The other models overlap significantly within uncertainty at 600°C (Figure 5). The uncertainty associated with the proton-vacancy mechanism results in timescales ranging from about a day to several thousand years, corresponding to the entire range of timescales in the other 600°C models (Figure 5).

A final 12 models (3 cpx and 3 opx each for 1 and 3 mm models) were run to estimate the possible re-equilibration timescales of pyroxenes dominated by the proton-vacancy diffusion mechanism. For temperatures of 600-1000°C, the pyroxene model results from Figure 5 are compared to models that utilized slower diffusion coefficients that might better represent pyroxene vacancy diffusion mechanisms (Figure 6). Clinopyroxene proton-vacancy models using the D_H for synthetic diopside (0.7 wt% FeO; Sundvall et al. 2009; purple diamonds) range from a few months to a year at 1000°C and up to >100 kyr at 600°C (see also Table S3). These timescales are much slower than the clinopyroxene proton-polaron models using diffusion
coefficients from Ferriss et al. (2016; purple squares), which are minutes to hours at 1000°C and several weeks at 600°C (Figure 6). The orthopyroxene proton-polaron (Stalder and Skogby, 2003; red squares) and vacancy (Stalder and Behrens, 2006; red diamonds) models are more congruent, yielding similar timescales that range from several hours at 1000°C to about a year at 600°C (Table S3).

We constrained the variability introduced by non-ideal sections using the 1 mm, 1000°C orthopyroxene model after 13.5 minutes of simulated diffusion (equal to 50% re-equilibration with the boundary condition). A subset of representative slices (Supplementary Figure S2) demonstrates that progressively off-center sections yield core water contents that are increasingly more re-equilibrated compared to the central core value. The average % re-equilibration from the 200 random slices is 65%, compared to the 50% measured at the core voxel of the ideal section through the crystal model. Only 17% of the 200 slices have water contents equal to the ideal core value (50% re-equilibration), and the remaining 83% of slices have % re-equilibration values greater than the central voxel value.

Discussion

Proton-polaron vs. proton-vacancy diffusion mechanisms in pyroxenes

In olivine, two diffusion mechanisms (proton-polaron and proton-vacancy) have been shown to control H+ diffusion (e.g., Mackwell and Kohlstedt 1990; Kohlstedt and Mackwell 1998). It is likely that both mechanisms also operate in pyroxenes (e.g., Ingrin and Blanchard 2006 and references therein). The limiting factor in modeling pyroxene proton-vacancy diffusion is that very few studies have distinguished both mechanisms in cpx or opx, especially for experiments with Fe-bearing starting materials (e.g., Stalder and Skogby 2003, Sundvall et al. 2009; Yang et
In this section we assess the potential differences in likely re-equilibration timescales when using proton-polaron vs. proton-vacancy diffusion data. Most of our pyroxene models utilize proton-polaron diffusivities derived from dehydration experiments because they are the best constrained coefficients for Fe-bearing minerals. The timescales presented in Figure 5 are likely associated with the proton-polaron mechanism. Hence, our results are best applied to H^+ mobility in xenolith NAMs occurring over short timescales and may underestimate the re-equilibration of abyssal and orogenic pyroxenes over longer timescales. For these applications, the slower proton-vacancy mechanism may dominate diffusion behavior, but presently the vacancy mechanisms for cpx and opx are best constrained by experiments based on synthetic Fe-free or low-Fe starting material (e.g., Stalder and Skogby, 2003; Stalder and Behrens, 2006; Sundvall et al. 2009).

Despite the relative lack of proton-vacancy diffusion data for natural pyroxenes, we can estimate the vacancy diffusion rates and re-equilibration timescales by applying a slowness factor to our proton-polaron model results. The diffusion of metal vacancies (D_{VMe}) is $\sim 3x$ slower than the effective diffusivity of H in olivine (e.g., proton-polaron mechanism; Kohlstedt and Mackwell, 1998), which limits H diffusion via the proton-vacancy mechanism. Slower H diffusion limited by D_{VMe} in pyroxenes is also likely (Ingrin and Blanchard, 2006), but largely unconstrained for natural cpx and opx compositions. One approach for estimating proton-vacancy controlled re-equilibration timescales is to multiply our modeled cpx and opx proton-polaron timescales (Figure 5, Table 2) by a factor of three, following the relationship established for olivine (Kohlstedt and Maxwell, 1998). This would approximate the re-equilibration timescales that might be likely for longer duration diffusion events, including metasomatism and hydrothermal alteration.
Another perspective on the slower vacancy-controlled diffusion mechanism in pyroxenes is provided by our models that utilize D_H from the hydration experiments of Sundvall et al. (2009; cpx) and Stalder and Behrens (2006; opx). These results provide examples of slower diffusion coefficients derived from synthetic Fe-free or low-Fe pyroxenes (Figure 6). While the opx proton-polaron (red squares) and proton-vacancy (red diamonds) models seem to reasonably reflect 3x slower re-equilibration timescales for the vacancy mechanism, the clinopyroxene results are not consistent with this approximation. Re-equilibration via the low-Fe (0.7 wt% FeO) cpx diffusion coefficient (purple diamonds, Figure 6; Sundvall et al. 2009) is several orders of magnitude slower than the proton-polaron mechanism (purple squares). This could be related to the significant compositional differences between the experimental starting materials. Sundvall et al. (2009) used synthetic diopside that contained 0.7 wt% FeO, whereas Ferriss et al. (2016) used Jaipur diopside containing 2.5 wt% FeO. More experimental datasets constraining the proton-vacancy mechanism for Fe-bearing pyroxene compositions are needed to resolve these issues.

Effective %re-equilibration

The re-equilibration timescales presented here are conservative estimates of the maximum time required to completely overprint NAM water contents. In the Supplementary Material, we evaluate the analytical errors associated with measuring NAM water contents in peridotites. We then calculate effective %re-equilibration timescales using Eq. 1, with the $H_{\text{equilibrium}}$ value for the boundary condition reflecting 1% and 10% analytical error.

Effective re-equilibration timescales (Supplementary Tables S4 and S5) are shorter than the 100% re-equilibration timescales because the rate at which the composition changes slows...
dramatically after about 60% re-equilibration. This effect is shown for 1 mm opx models at 1000°C in Figure 7. The change in composition in the models is a function of both the diffusion coefficient (D_H) and the magnitude of the concentration gradient or chemical potential gradient. Based on Fick’s 1st law, diffusive fluxes at a given point along a zoned profile are smaller when concentration gradients are shallower (Crank 1975). As diffusion causes the models to re-equilibrate, the compositional contrast between the crystal core and rim is reduced, leading to a decrease in the magnitude of the diffusive flux as the concentration shallows. Hence, a much smaller change in concentration occurs per unit of time and re-equilibration of smaller compositional contrasts is slower compared to larger contrasts (e.g., Zhang 2010).

With increasing time elapsed, the progressively shallower gradient yields much lower fluxes, and thus slower rates of re-equilibration, despite constant D_H. After ~90% re-equilibration the rate of change slows substantially (Figure 7) and the additional time required to reach 100% re-equilibration more than doubles the total modeled diffusion time. Thus, even 1-2% analytical uncertainty significantly reduces the timescales of our models. This effect is shown in Supplementary Figure S3 and listed in Table 1 for each mineral.

Effective %re-equilibration values were used to extract effective timescales from the models using the low-H and high-H silicate melt boundary conditions (Supplementary Material). Overall, an analytical uncertainty of 1% results in effective re-equilibration timescales that are typically ~30% shorter than the 100% re-equilibration timescales (Supplementary Table S5). Analytical uncertainty of 10% results in effective re-equilibration timescales that are ~60-70% shorter than the modeled 100% re-equilibration results (Table S5).

The effects of good vs. poor analytical precision are shown in Figure 8 by extracting cpx profiles at regular time intervals within the high-H model at 3 mm grain size and 1200°C. As
diffusive re-equilibration affects the cpx core composition, the gradient between core and rim water contents becomes shallower. With increasing time elapsed, the magnitude of zoning in a 1D traverse across a natural pyroxene grain diminishes and becomes more difficult to resolve analytically. This analytical limit means that the last three clinopyroxene profiles in Figure 8 would not be resolvable when analytical precision is poor, for our boundary conditions. At 86% of the model re-equilibration (e.g., effective %re-equilibration at 10% analytical error), the effective timescale is ~3 minutes compared to the 100% timescale of 6 minutes (Table S5). This indicates that in natural samples, analyses of clinopyroxene would appear to be non-zoned after ~3 minutes of diffusion at 1200°C, at which point they would be re-equilibrated past their H+ kinetic window.

These effective re-equilibration timescales reinforce our interpretation that the modeled timescales presented here are conservative maximum estimates for constraining the kinetic window of H in NAMs. Effective re-equilibration timescales calculated from 1-2% error on the SIMS count statistics are overall ~30% shorter than the 100% re-equilibration timescales. If poorer analytical conditions result in 10% uncertainty, the modeled timescales are typically 60-70% shorter than the 100% re-equilibration timescales. Even with high precision analyses (i.e., 1-2% error), resolving 1D zoning will be challenging in NAMs that have neared complete re-equilibration with surrounding silicate melts or aqueous fluids.

Overprinted NAM water contents

The compositions of peridotites often indicate a complex history that includes partial melting and melt-rock interaction, with subsequent hydrothermal alteration (aqueous fluid-rock interaction). Given the short timescales over which NAMs can re-equilibrate at 600-1200°C (Figure 5), melt-
and fluid-rock interactions can modify water contents of residual peridotites after partial melting has ceased. Here we explore the potential of hydrogen diffusion for constraining the timescales of melt-rock and fluid-rock interaction processes.

Xenoliths. The only mantle peridotites likely to preserve grain-scale zonation are xenoliths due to fast magma ascent rates (e.g., >0.06-0.20 m/s have been estimated for xenoliths based on FeMg zoning in olivine [Klugel et al. 1997] and fluid dynamic models [Spera 1984]). However, diffusion timescales associated with xenoliths are unlikely to reflect mantle processes. Instead, hydrogen gradients in xenoliths typically reflect volatile loss due to decompression during ascent (e.g., Demouchy et al. 2006; Peslier et al. 2008; Tian et al. 2017; Denis et al. 2018).

Our model results at 1200°C provide additional insights on how quickly mantle water contents are overprinted after they are entrained in a carrier magma, as well as the timescales over which core water contents are subsequently lost during degassing. As shown in Figure 5, complete re-equilibration of 1-3 mm grains at 1200°C could occur in minutes to 10’s of minutes (cpx proton-polaron, olivine proton-polaron) or a few hours up to a few days (opx proton-polaron, olivine total, olivine vacancy) at 1200°C. Effective re-equilibration timescales can be twice as fast, indicating that xenolith NAMs are highly susceptible to diffusive overprinting while entrained in the carrier magma. Off-center sectioning (Supplementary Figure S2) would increase the likelihood that measured H contents in xenolith NAMs are quickly overprinted. Our models were run simulating a silicate melt completely surrounding a grain (Figure 3) and thus are most relevant for mantle xenocrysts or NAMs on the exterior of an ascending xenoliths. Grains in the interior of a xenolith would be more resilient to overprinting than indicated by
these results and should ideally be treated using a multi-mineral aggregate 3D model that can
also treat grain boundary diffusion (e.g., Fisher 1951; Demouchy 2010).

Xenoliths entrained in parental melts typically spend much longer than hours to days in
the host magma prior to the degassing histories recorded by the hydrogen profiles. Diffusion of
Ni in Fo$_{90}$ olivine from Irazu Volcano (Costa Rica) suggests that “fast” ascent of arc mantle
melts from the Moho (~35 km depth) occurs over months to years (Ruprecht and Plank 2013).
Zoning of FeMg in xenolith olivine from La Palama (Canary Islands) indicates entrainment of 8-
110 years in the carrier magma prior to ascent to the surface (Klugel et al. 1997). Diffusion
modeling of Fe-Mg, Ni, Mn, and Ca zoning in xenolith olivine from Upper Placeta San Pedro
lavas (Chilean Andes) also indicate residence timescales of several months to ~25 years (Costa et
al. 2005). Given these long transport timescales from mantle depths to eruption at the surface, it
is unlikely for even interior NAMs to preserve mantle water signatures. The xenoliths most
likely to retain mantle water contents are those carried by kimberlites. Interdiffusion of Fe-Mg in
megacryst ilmenite from kimberlite xenoliths indicates residence timescales on the order of a few
hours prior to eruption (Prissel et al. 2020). Experimental studies of dissolution reactions in
garnet lherzolite also suggest that kimberlite xenoliths may spend <1 hour in 1200°C magma
prior to eruption (Canil and Ferdortchouck 1999).

Massif and abyssal peridotites. The short timescales from our numerical diffusion models
highlight the susceptibility of NAM water contents to being overprinted by late-stage processes.
The water contents of NAMs in peridotites exposed on the ocean floor and as massifs on land are
often interpreted to record mantle water left behind after partial melting (e.g., Gose et al. 2009;
However, these samples undergo very long durations of cooling prior to exposure on the Earth’s surface. For example, Warren et al. (2009) estimated that peridotites from the ultraslow spreading Southwest Indian Ridge can take up to ~13 Myr to cool from 1200°C to 0°C. During this long uplift history, NAMs are susceptible to melt-rock or aqueous fluid-rock interactions that can diffusively modify their water contents (e.g., Kumamoto et al. 2019). The fast re-equilibration times in our models compared to these long cooling histories suggest that peridotite NAMs are unlikely to preserve core-rim zoning from diffusive re-equilibration (e.g., inside the kinetic window of H⁺). Instead, water contents may be overprinted by diffusive re-equilibration that progressed past the kinetic window of hydrogen. Below, we explore the potential of silicate melt-rock and aqueous fluid-rock interaction to modify the hydrogen content of abyssal and massif peridotites.

Melt-rock interactions

The timescales of melt-rock interaction in the mantle are poorly constrained. Ophiolitic, orogenic, and abyssal peridotites can exhibit melt-rock interaction in the form of channels and veins at centimeter to meter length scales (e.g., Kelemen and Dick 1995; Python and Ceuleneer 2003). In other cases, samples lack obvious veins, but their textures and compositions suggest diffusive melt flow through the rock (e.g., Seyler et al. 2001; Python and Ceuleneer 2003; Warren and Shimizu 2010; Kumamoto et al. 2019; Ashley et al. 2020). Temperatures associated with infiltrating melts in the upper mantle range from 600-1100°C (Python and Ceuleneer 2003). Our model results show that, over this temperature range, NAM water contents can diffusively re-equilibrate in individual crystals within minutes to several years as a result of melt-rock interactions (Figure 5). Effective re-equilibration timescales could be as fast as several months. If
melt channels or films are ephemeral, even partial re-equilibration is likely to occur and
subsequent diffusion into the crystal core will ultimately overprint original mantle water
contents.

These short model timescales can resolve discrepancies between measured water contents
and mineral trace elements in some peridotites at mid-ocean ridges. Peridotite rare earth element
(REE) patterns at the Southwest Indian Ridge are reproduced well by partial melting models, but
NAM H$_2$O contents are too high to reflect residues of melting (Warren and Hauri 2014). Rapid
diffusion of hydrogen, even at the intermediate temperatures used in our models, would decouple
NAM water contents from the other trace elements, which are much slower diffusing species.

Over the 600-1200°C temperature range investigated here, diffusivities for rare earth elements
(Dy, Yb, Nd, Ce, Lu) in cpx are 10^{-20} to 10^{-32} (Van Orman et al. 2001), which are 7-19 orders of
magnitude slower than hydrogen ($D_{H}^{cpx} = 10^{-9}$ to 10^{-13}; Woods et al. 2000). Nominally
anhydrous minerals in residual peridotites that have dehydrated during melting would re-
equilibrating H$^+$ with basaltic melts (e.g., mid-ocean ridge basalt contains 0.1-1.5 wt% H$_2$O; Dixon
et al. 2002). Our models suggest that H re-equilibration of these Southwest Indian Ridge samples
could have occurred in as little as a few minutes to a few days (Figure 5). Re-enrichment of the
REEs would take several orders of magnitude longer durations due to their much slower
diffusion coefficients. At the same time and temperature conditions, no re-enrichment of the
REEs would be expected while complete H re-equilibration could easily occur. Thus, interaction
of a melt with the mantle could quickly hydrate residual NAMs at temperatures where other trace
elements are immobile.

Our numerical models also help to explain variations in orthopyroxene water contents
that are decoupled from other trace element variations in the Josephine Peridotite. Transects by
Kumamoto et al. (2019) across shear zones in the Josephine Peridotite identified variations in LREE contents over spatial scales of several meters, inferred to be a result of melt-rock interaction. The water content in orthopyroxene is also variable across the transects, but decoupled from other trace element variations. This suggests that H fully re-equilibrated with a melt or hydrothermal fluid up to the maximum storage capacity of orthopyroxene (based on trivalent element chemistry). Orthopyroxene water contents up to 350 ppm were measured near the center of one of the shear zones, where an interstitial melt is inferred to have driven diffusive re-equilibration at 900-1000°C (Kumamoto et al. 2019). Based on our numerical models, these orthopyroxene water contents could fully re-equilibrate with a silicate melt or high-temperature hydrothermal fluid within 1-8 hours (Figure 5). If error envelopes for the diffusion coefficients are considered, this time expands to minutes to a few weeks, still within a relatively short time-scale.

The net result of melt-rock interactions between a depleted residual peridotite and a partial melt will be an increase in overall NAM water content, even if NAMs only partially re-equilibrate during melt flow. Because H$^+$ diffusion in each NAM has a different rate at a given temperature, the cessation of melt flow at a given time might be reflected by different degrees of re-equilibration between cpx, olivine, and opx. This is particularly relevant for our lower model temperatures, where the 100% re-equilibration timescales require melt flow for a few weeks to over a year for the different mineral phases (Figure 5). Dis-equilibrium water contents between NAM phases could thus reflect differences in activation energy between Arrhenius relationships at a given temperature (Xu et al. 2019) and H$^+$ diffusion may be useful for deciphering the timescales of this process.
Aqueous fluid-rock Interactions

Peridotite hydrothermal alteration due to aqueous fluid-rock interactions have previously been interpreted to have little diffusive effect on NAM water contents (e.g., Gose et al. 2011; Warren and Hauri 2014). Simplified 1D calculations at 600°C suggest that 10’s to 100’s of years are required for diffusion distances to reach beyond 1 mm (Gose et al. 2011). In light of our improved model constraints on H⁺ re-equilibration timescales, we revisit the possibility that hydrothermal alteration processes may affect anhydrous mineral water contents.

Serpentine can be stable up to ~700°C (Ulmer and Trommsdorff 1995), though stability is limited to ~500°C in multiphase assemblages (Guillot et al. 2015). This range of temperature overlaps with our models and is close to the lowest temperatures at which H⁺ diffusion coefficients have been measured (Figures 1 and 2). In addition, fluid driven peridotite alteration can extend to even higher temperatures, where assemblages such as tremolite ± talc ± serpentine ± chlorite form at the expense of pyroxene (Bach et al. 2004; Früh-Green et al. 2004; Bach and Klein 2009; Fumagalli et al. 2009; Klein et al. 2015; Prigent et al. 2020). For example, tremolite, usually found in rims around pyroxene grains, is stable up to ~850 °C at 0.3–1.0 GPa (e.g., Chernosky et al. 1998). Although this reaction environment has low silica activity, which would favor H incorporation in the olivine [Si] defect (Kempf and Hermann 2018), the relatively high temperatures (>600°C) promote inter-site reactions that remove H⁺ from the [Si] site and subsequent diffusion is likely dominated by a much faster pathway (e.g., proton-polaron or proton-vacancy; Jollands et al. 2019). Even if silica activity influences diffusion in olivine this effect has not been identified in pyroxenes. Most NAM water measurements in abyssal peridotites are made on pyroxenes as olivine is typically extensively altered and also more challenging to measure due to its lower water contents.
During high-temperature alteration, the H^+ content of olivine is predicted by our models to re-equilibrate in hours to months at 800°C, with effective timescales ranging from hours to days (Tables 2 and 3). At 600°C, complete re-equilibration would occur over days to years, with the caveat that high uncertainties on the olivine proton-vacancy timescales yield years to hundreds of years (Figure 5). Pyroxenes, although simultaneously reacting with the hydrothermal fluids to form amphibole, would also re-equilibrate via the proton-polaron mechanism over timescales of hours to days at 800°C and weeks to months at 600°C (Figure 5). If the proton-vacancy mechanism dominates at these intermediate temperatures, timescales may be 3x longer than the proton-polaron models suggest (Ingrin and Blanchard, 2006). These durations at 600°C are much shorter than estimates made from 1D calculations, which require 21 years for diffusion to even reach the core of a 3 mm orthopyroxene crystal (using $x=(D*t)^{1/2}$, following Gose et al. 2011 and using $D_{\text{H}}^{\text{opx}}$ for the proton-polaron mechanism from Stalder and Skogby 2003). This illustrates the importance of considering the flux of elements in three dimensions rather than using simplified estimates of 1D diffusion distance to assess re-equilibration potential.

Peridotites that have been the focus of NAM studies preserve relics of primary minerals, indicating that those samples have not undergone intense hydrothermal alteration. In abyssal peridotites from the Southwest Indian Ridge, Warren and Hauri (2014) measured 650-800 ppm H$_2$O in cpx and 300-400 ppm H$_2$O in opx in samples where pyroxene had been partially altered to tremolite, which is stable up to 850°C (Chernosky et al. 1998). These water contents are higher by ~400 ppm for cpx and ~150 ppm for opx than water contents of pyroxenes in less altered samples collected from the same area. These observations suggest that aqueous fluid-rock interactions can increase pyroxene water contents during the reaction to form tremolite. Our
models predict that these relatively H$_2$O-rich pyroxenes could have been hydrated by an aqueous fluid flowing over timescales of only hours to days.

Our model, though it relies on the assumption that fluid flow is continuous (e.g., a static boundary condition), shows that H$^+$ diffusion is significant during high-T hydrothermal alteration. Fluid flow in ultramafic rocks is probably variable in time and space and thus fluid-driven diffusion is unlikely to be a constant process (e.g., Roumejon and Cannat 2014; Roumejon et al. 2015). However, the modeled timescales of days to weeks are short compared to the lifetimes of hydrothermal systems, which have been estimated at 101-106 yr (Finkel et al. 1980; Kadko 1996; Cathles et al. 1997; Früh-Green et al. 2003; Gose et al. 2011). Even though the timescales of hydrogen re-equilibration in NAMs are short relative to the lifespans of hydrothermal systems, the duration of fluid flow driving diffusion cannot be so long that the minerals fully react out to serpentine, tremolite, and other hydrous phases. Comparing the modeled re-equilibration timescales to the rates of high-T alteration or serpentinization is difficult because most of the experimental work has been conducted at temperatures of 300ºC or less (Martin and Fyfe 1970; Wegner and Ernst 1983; Malvoisin et al. 2012; Godard et al. 2013; Malvoisin and Brunet 2014; Klein et al. 2015). However, our models do suggest that even if NAM water contents are not completely overprinted during fluid flow, diffusion could generate H$^+$ zoning profiles within the residual primary minerals, especially at the lower-T end of the range investigated by our models.

Implications

The 3D diffusion modeling approach that we have presented provides constraints on the potential for NAM water contents to re-equilibrate with silicate melts and/or aqueous fluids over the
temperature range 600-1200°C. Distinguishing between melt- and fluid-driven diffusion is a major challenge for studies of hydrogen in massif and abyssal peridotites because of the potential for both processes to have occurred. Our models show that NAM hydrogen contents can re-equilibrate within minutes to weeks at 1000-1200°C and hours to several years at 600-800°C (Figure 5), though pyroxene timescales could be longer if the proton-vacancy mechanism dominates pyroxene diffusion (Figure 6). Effective % re-equilibration timescales could decrease those ranges by half, indicating that silicate melt-rock and aqueous fluid-rock interactions can significantly modify NAM water contents over geological timescales.

These models also show that decoupling of NAM water contents from their REE abundances (e.g., Warren and Hauri 2014; Peslier et al. 2017; Ashley et al. 2020) can be caused by both melt-rock and/or fluid-rock interactions at temperatures > 600°C. As such, characterizing hydrothermal alteration phase assemblages and identifying evidence for melt addition are important for interpreting residual NAM water contents. Alone, the hydrogen content of NAMs is not indicative of either melt or aqueous fluid driven re-equilibration. Unraveling the origin of the water contents measured in peridotite NAMs requires additional constraints on the history of the sample, including petrographic analysis and measurement of other trace elements.

If NAM water contents are partially re-equilibrated during hydrothermal alteration, H⁺ chronometry can also potentially be used to extract the timescale of the fluid flow process. This will require careful analytical work and that the temperature of alteration can be constrained, so that diffusion profiles can be modeled. At present, several unknown parameters limit this application. Constraints on the solubility of water in NAMs at low temperature are needed to determine the maximum amount of H⁺ that can diffuse into silicate minerals surrounded by an
extremely high boundary condition and chemical potential (e.g., an excess of liquid water in the system). As fluid percolation also drives chemical exchange during fluid-rock interactions, future applications in natural samples will need to allow for moving boundary conditions (e.g., crystal growth or dissolution) within multi-mineral aggregates.

Diffusion during low-T serpentinization?

The new insights from our modeling open up the possibility that NAMs may re-equilibrate over a much larger temperature range than previously appreciated. Serpentinization occurs over temperatures from <50°C to >500°C (Guillot et al. 2015). The presence of fluids during this process may cause considerable hydration of NAMs depending on the rate of diffusion compared to the rate of the serpentinization reaction. At temperatures below ~400°C, and possibly down to < 50°C, pyroxenes are stable during hydrothermal alteration, while olivine alters to form serpentine + brucite (Alt et al. 2007; Bach et al. 2004; Bach and Klein 2009; Klein et al. 2015).

Contrary to previous interpretations (e.g., Gose et al. 2011; Warren and Hauri 2014), our models suggest that aqueous fluid-rock interactions at temperatures of 500°C or less may modify at least clinopyroxene water contents, which might be partially overprinted by diffusion in weeks to months at 600°C (Figure 5). Although hydration of pyroxene during low-T serpentinization of olivine may be possible, further experimental constraints for D_H at temperatures < 700°C are needed. In addition, inter-site reactions may also affect the diffusion coefficients at such low temperatures (e.g., Jollands et al. 2019). Current high temperature (e.g., > 700°C) diffusion rates for NAMs are characteristic of diffusion in transition metal-bearing materials at intermediate temperatures (TaMED mechanism; Chakraborty 2008). Re-equilibration driven by the lower
temperatures of serpentinization may instead be dominated by pure extrinsic diffusion, which likely has a different activation energy and thus a different slope on the Arrhenius diagram.

Acknowledgements

We thank Thomas Shea for initial model guidance, Henry Towbin for fruitful discussions on xenolith water contents, Adam Wallace for access to the University of Delaware High Performance Community Cluster, Anita Schwartz for model optimization on the cluster, and Sylvie Demouchy for comments on a previous version of this paper. We thank Anne Peslier for excellent editorial handling and three anonymous reviewers for thorough comments that substantially improved this manuscript. This study was supported by U.S. National Science Foundation grants EAR-1255620 and EAR-1625032 to J.M. Warren.
References Cited

https://doi.org/10.1038/nature01215

https://doi.org/10.1007/s00269-007-0158-6

https://doi.org/10.1007/s00269-007-0185-3

https://doi.org/10.1007/s00410-016-1262-8

https://doi.org/10.1029/GL007i009p00685

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Kahl, M., Chakraborty, S., Costa, F., and Pompilio, M. (2011) Dynamic plumbing system beneath volcanoes revealed by kinetic modeling, and the connection to monitoring data: An...

https://doi.org/10.1016/j.epsl.2011.05.008

https://doi.org/10.1029/94JB02063

https://doi.org/10.1130/G40120.1

https://doi.org/10.2138/am-2015-5112

https://doi.org/10.1016/j.gca.2016.09.037

Thoraval, C., and Demouchy, S. (2014) Numerical models of ionic diffusion in one and three
dimensions: applications to dehydration of mantle olivine. Physics and Chemistry of
Minerals, 41, 709-723. https://doi.org/10.1007/s00269-014-0685-x

concentration profiles in natural mantle orthopyroxenes: A geochronometer for long
annealing of xenoliths within magma. Geology, 45, 87-90. https://doi.org/10.1130/G38620.1

H incorporation in San Carlos olivine. Contributions to Mineralogy and Petrology, 173, 89.

and modification of the mantle wedge and lithosphere beneath the West Bismarck Island
Arc: Melting, metasomatism, and thermal history of peridotite xenoliths from Ritter Island.
Journal of Petrology, 58, 1475-1510. doi: 10.1093/petrology/egx062

Ulmer, P., and Trommsdorff, V. (1995) Serpentine stability to mantle depths and subduction-

influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in
silicates. Contributions to Mineralogy and Petrology, 141, 687-703.
https://doi.org/10.1007/s004100100269

Violent paroxysmal activity drives self-feeding magma replenishment at Mt. Etna. Scientific
Reports, 9, 6717. https://doi.org/10.1038/s41598-019-43211-9

Table 1: Summary of model conditions and resolution.

Mineral Phase	\(K_d_{\text{H}_2\text{O}}\) (ppm)	\(C_0\) (ppm)	\(\text{1 or 2\% error (±ppm)}^4\)	\(\text{10\% error (±ppm)}^5\)	\(\text{1 or 2\% effective re-eq.}^6\)	\(\text{10\% effective re-eq.}^7\)	\(C_1\) (ppm)	\(\text{1 or 2\% error (± ppm)}\)	\(\text{10\% error (± ppm)}\)	\(\text{1 or 2\% effective re-eq.}\)	\(\text{10\% effective re-eq.}\)	
Ol	0.002	7	15	96	81	32	0.6	3.2	98	87		
Opx	0.018	50	135	98	84	300	3	30	99	88		
Cpx	0.047	200	353	97	77	750	7.5	75	99	86		
Cpx*	-	200	1000	-	-	10000	-	-	-	-		

Note(s): Cpx* indicates additional models run at 800°C to test hydrothermal boundary conditions. 1 Internally consistent mineral-melt partition coefficients from Warren and Hauri (2014) used to calculate boundary conditions for models in equilibrium with partial melt. 2 Initial core compositions prior to diffusion, taken from the low end of the range of calculated upper mantle values in Hirschmann (2006) and Warren and Hauri (2014). 3 Low-H boundary condition, constrained by partition coefficients and mid-ocean ridge basalt with 0.75 wt% H\(_2\)O. 4 Typical error on high precision analyses – 1% for opx and cpx and 2% for olivine (see Supplementary Material for derivation). 5 Representative error for “poor” analytical measurements (see Supplementary Material). 6 Effective percent re-equilibration for 1% (pyx) or 2% (ol) error on low-H model boundary conditions, at which diffusion profiles are not resolvable within analytical error. 7 Effective percent re-equilibration for 10% error on low-H model boundary conditions. 8 High-H boundary condition, constrained by the high end of the range of upper mantle values (Hirschmann 2006; Warren and Hauri 2014).
<table>
<thead>
<tr>
<th>Mineral</th>
<th>T(°C)</th>
<th>100% re-eq time (1 mm)</th>
<th>100% re-eq time (3 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>upper</td>
<td>model</td>
</tr>
<tr>
<td>Cpx PP</td>
<td>600</td>
<td>1 day</td>
<td>14 days</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>12 hrs</td>
<td>1 days</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>2 hrs</td>
<td>4.5 hrs</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>2 mins</td>
<td>12 mins</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>4 sec</td>
<td>1.5 mins</td>
</tr>
<tr>
<td>Opx PP</td>
<td>600</td>
<td>60 days</td>
<td>1.4 yrs</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>8 days</td>
<td>25 days</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>14 hrs</td>
<td>2 days</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>2 mins</td>
<td>72 mins</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>0.7 sec</td>
<td>5 mins</td>
</tr>
<tr>
<td>Ol PP</td>
<td>600</td>
<td>5 hrs</td>
<td>4 days</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>6 hrs</td>
<td>20 hrs</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>2 hrs</td>
<td>4 hrs</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>14 mins</td>
<td>26 mins</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>2 mins</td>
<td>4 mins</td>
</tr>
<tr>
<td>Ol PV</td>
<td>600</td>
<td>25 hrs</td>
<td>160 yrs</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>9.6 hrs</td>
<td>4.9 yrs</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>1 day</td>
<td>128 days</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>16 hrs</td>
<td>4 days</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>48 mins</td>
<td>4 hrs</td>
</tr>
<tr>
<td>Ol tot</td>
<td>600</td>
<td>4 hrs</td>
<td>76 days</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>11 hrs</td>
<td>12 days</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>12 hrs</td>
<td>2 days</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>1 hr</td>
<td>6 hrs</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>5 mins</td>
<td>1.5 hrs</td>
</tr>
</tbody>
</table>

Table 2: Modeled 100% re-equilibration timescales for 1 and 3 mm minerals with upper and lower bounds of uncertainty from Figure 4.
Figure 1: Arrhenius diagram showing H⁺ diffusion rates in olivine for the proton polaron mechanism (solid grey lines - Mackwell and Kohlstedt 1990), proton vacancy mechanism (dashed grey lines - Demouchy and Mackwell 2006), and total H⁺ diffusion (green lines - Ferriss et al. 2018). Olivine D_{FeMg} (yellow region) is shown for comparison (Dohmen and Chakraborty 2007a, 2007b). Anisotropic diffusivities are labeled for each principal crystallographic axes. Experimental constraints between 800-1000°C (shown at the top of the figure) were used to extrapolate using the log-linear Arrhenius relationships. Uncertainties associated with this extrapolation are represented by 95% confidence interval error envelopes (shaded fields) calculated from experimental data for the (b) proton vacancy mechanism, (c) proton polaron mechanism, and (d) “total” H diffusion.
Figure 2: (a) Arrhenius diagram showing H\(^+\) diffusion rates in clinopyroxene (Jaipur diopside for the proton-polaron mechanism, Woods et al. 2000; Ferriss et al. 2016 and synthetic diopside for the proton vacancy mechanism, Sundvall et al. 2009) and orthopyroxene (Kilbourne Hole enstatite for the proton-polaron mechanism, Stalder and Skogby 2003 and synthetic enstatite for the proton-vacancy mechanism, Stalder and Behrens 2006) overlaid on the olivine mechanisms (Mackwell and Kohlstedt 1990; Demouchy and Mackwell 2006; Ferriss et al. 2018). Olivine DF\(_{\text{FeMg}}\) is shown for comparison (Dohmen and Chakraborty 2007a, 2007b). Isotropic data (or experimental datasets where only one crystallographic axis has an Arrhenius relationship constrained) have one line, while anisotropic diffusivities have multiple lines for different crystallographic axes. Experimental constraints between 700-1000°C (shown at the top of the figure) were used to extrapolate using the log-linear Arrhenius relationships. (b) Clinopyroxene proton-polaron and (c) orthopyroxene proton-polaron Arrhenius relationships are shown with 95% confidence interval error envelopes (shaded fields) calculated from experimental data.
Figure 3: (a) Single-crystal 3D models used to examine diffusive re-equilibration of H in olivine and pyroxenes. (b) 2D sections perpendicular to the c-axis through the core of the crystal (white line in a). The H concentration of the black core pixel labeled “core” (a voxel in 3D) is sampled at regular intervals throughout the diffusion models to track % re-equilibration. The white dashed line is the location of the 1D clinopyroxene traverse, sampled parallel to the b-axis.
Figure 4: The relationship between temperature and 100% re-equilibration timescale, including the effect of diffusion coefficient uncertainties for model timescales. Results reflect both low-H and high-H models, as the 100% re-equilibration timescales are insensitive to the choice of boundary condition. The 100% re-equilibration timescales have strong log-linear trends as a function of temperature (R^2 from 0.97 to 0.99) that can be used to calculate expected re-equilibration time at a given temperature and grain size. The errors in the models (white symbols) are determined by using the uncertainty range for the diffusion coefficients (Figures 1-2). Uncertainties are greatest for the olivine proton vacancy (PV) models, for which experimental data covers a limited temperature range (900-1000°C).
Figure 5: Modeled diffusion durations (log time, minutes) for 100% re-equilibration of 1 mm and 3 mm grains from 600-1000°C. Results reflect both low-H and high-H models, as the 100% re-equilibration timescales are insensitive to the choice of boundary condition. Clinopyroxene (purple squares) and orthopyroxene (red squares) proton-polaron models utilize Fe-bearing diffusivities (Woods et al. 2000; Ferriss et al. 2016; Stalder and Skogby 2003). Three olivine models are shown: the fast proton polaron mechanism (ol PP, dark grey circles; Mackwell and Kohlstedt 1990), the slower proton vacancy mechanism (ol PV, light grey circles; Demouchy and Mackwell 2006), and the intermediate total H+ diffusion expression (ol tot, green circles; Ferriss et al. 2018). Upper and lower bounds of error envelopes calculated for experimental data are represented by the lines and reflect the potential uncertainty in the modeled re-equilibration timescale.
Figure 6: Model results for proton-polaron diffusion mechanisms (squares) compared to possible proton-vacancy diffusion mechanisms (diamonds) for 1 and 3 mm pyroxene models. Proton-polaron models (square symbols) are as shown in Figure 5. Models representing the proton-vacancy mechanism utilize Sundvall et al. (2009; purple diamonds) for cpx and Stalder and Behrens (2006; red symbols) for opx. Legend abbreviations are: F16 – Ferriss et al. 2016; S09 – Sundvall et al. 2009; S03 – Stalder and Skogby 2003; S06 – Stalder and Behrens 2006.
Figure 7: Orthopyroxene re-equilibration with diffusion time for the low-H (left) and high-H (right) boundary conditions using the proton-polaron diffusion coefficient. Black downward pointing triangles (1% analytical error) and upward-pointing triangles (10% analytical error) indicate the effective %re-equilibration point for each model, where any zonation beyond that value would be difficult to resolve outside of analytical error. For the low-H boundary, 1% analytical error intersects the modeled re-equilibration line after 50 minutes of diffusion, which is a 30% shorter duration compared to the 100% re-equilibration time of 72 minutes (Table 2). The 10% error intersects the re-equilibration line after ~25 minutes, representing a duration that is about 65% shorter compared to the 100% time. For the high-H boundary, 1% error intersects the modeled re-equilibration line after ~52 minutes, and 10% error intersects at ~28 minutes (Supplementary Table S4).
Figure 8: 1D transects with diffusion time from the cpx proton-polaron high-H boundary condition model for a 3 mm diameter grain at 1200°C. These 1D traverses were extracted parallel to the b-axis in the ideal 2D section shown in Figure 3. After only 1.25 minutes of diffusion, the core composition shows a factor of two increase in water content and is 40% re-equilibrated with the boundary condition. After ~3 minutes, the core concentration has reached 99% re-equilibration which is the effective % re-equilibration (indicated by the dashed line at 99) where distinguishing zoning profiles between the core and rim of the crystal becomes difficult due to error on typical NAM water measurements (see discussion in Supplementary Material). If analytical precision is even poorer (e.g., 10% error), analyses are only resolvable until 86% re-equilibration (dashed line at 86). For this high-H boundary condition, the 1% uncertainty is 7.5 ppm and the 10% uncertainty is 75 ppm (Table 1).
Supplementary Material for:

The potential for aqueous fluid-rock and silicate melt-rock interactions to re-equilibrate hydrogen in peridotite nominally anhydrous minerals

Kendra J. Lynn (kjlynn@udel.edu) and Jessica M. Warren

Numerical Model Setup

Our models utilize recent advances in numerical diffusion approaches that address diffusion anisotropy by allowing for high resolution investigation of diffusing species in three dimensions (c.f., Shea et al. 2015a, 2015b; Lynn et al. 2017; Krimer and Costa 2017; Jollands and Müntener 2019; Mutch et al. 2019). Previous studies have used the slowest and/or fastest crystal directions to provide maximum or minimum timescale estimates when modeling in one dimension (1D; e.g., Pan and Batiza 2002; Longpré et al. 2014; Thoraval and Demouchy 2014). However, three-dimensional modeling of compositional zoning in olivine by Shea et al. (2015b) showed that this approach results in timescales that are up to 25x longer than the true diffusion time. They advocated for a 3D volume diffusion approach that fully treats diffusion anisotropy.

The numerical models have dimensions of 221 x 221 x 221 voxels, representing olivine or pyroxene surrounded by silicate melt or aqueous fluid (Figure 3 in the main text). Different voxel sizes allowed us to test two mineral grain sizes. Voxels with a resolution of 4 x 4 x 4 µm yielded crystals that are ~1 mm along the c-axis and voxels of 20 x 20 x 20 µm yielded crystals that are ~3 mm along the c-axis.

Diffusion within the crystal volume was simulated in Matlab using finite differences and the non-concentration dependent three-dimensional form of Fick’s second law (Crank 1975). This form assumes that diffusion coefficients are not sensitive to the concentration of H⁺ or other elements. For isotropic calculations (e.g., as simplified for opx, for which only the [001] Arrhenius relationship is constrained), it has the form:

\[
\frac{\partial C}{\partial t} = D \left[\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2} + \frac{\partial^2 C}{\partial z^2} \right]
\]

(1)
where C is the hydrogen concentration expressed in ppm H$_2$O, t (s) is time, D (m2/s) is the diffusion coefficient for H, and x, y, and z are spatial dimensions along Cartesian coordinates. The full numerical expressions for implementation of the models can be found in the Supplementary material of Shea et al. (2015b).

For simplicity, all numerical models are for orthorhombic crystals, where the diffusivity tensor with axes a, b, and c takes the form

$$D = \begin{bmatrix}
D_a & 0 & 0 \\
0 & D_b & 0 \\
0 & 0 & D_c
\end{bmatrix} \quad (2)$$

where $D_a=D_x$, $D_b=D_y$, and $D_c=D_z$ (Zhang, 2010). Modeling anisotropic diffusion (cpx and olivine) requires the following non-concentration dependent 3D form of Fick’s second law:

$$\frac{\partial C}{\partial t} = D_a \frac{\partial^2 C}{\partial x^2} + D_b \frac{\partial^2 C}{\partial y^2} + D_c \frac{\partial^2 C}{\partial z^2} \quad (3)$$

where D_a, D_b, and D_c are the different diffusivities along the a-, b-, and c-axes, respectively.

Comparison of cpx and opx sections in Figure S1 demonstrates the effects of anisotropic vs. isotropic diffusion.

Figure S1: Examples of pyroxene models with anisotropic (Fe-bearing cpx; Woods et al. 2010; Ferriss et al. 2016) and isotropic (Fe-bearing opx with only an Arrhenius relationship for [001]; Stalder and Skogby 2003) diffusion behavior. Zonation of H$_2$O is scaled with color. The dashed white line represents the diffusion front, where the area inside the white line is the homogeneous core composition.
Models were initially run for two sets of boundary conditions, both of which correspond to NAM water contents in equilibrium with silicate melts outside the crystal. The “low-H” models have boundary conditions that were calculated using mineral-melt partition coefficients from Warren and Hauri (2014) and are in equilibrium with a basaltic partial melt that has 0.75 wt% H₂O. Boundary values are 15 ppm for olivine, 135 ppm for opx, and 353 ppm for cpx (Table 1). The “high-H” models were run with the boundary condition set to the high end of the estimated water content range for each mineral in the upper mantle. Boundary values are 32 ppm for olivine, 300 ppm for opx, and 750 ppm for cpx (Hirschmann 2006; Warren and Hauri 2014). These maximum water contents correspond to a melt H₂O content of ~1.6 wt%, slightly above the range for mid-ocean ridge basalt (0.5 – 1.2 wt% H₂O; Ligi et al. 2005; Le Voyer et al. 2015; Li et al. 2017). These models allow us to evaluate the timescales over which silicate melt-rock interactions can give rise to water contents in NAMs that look similar to inferred mantle abundances.

An additional subset of cpx models was run at 800°C with higher boundary conditions to assess the sensitivity of the models to the choice of boundary condition. The experimentally determined H₂O solubility/storage capacity of NAMs varies widely with pressure, temperature, and mineral chemistry (e.g., Kohlstedt et al. 1996; Woods et al. 2000; Rauch and Keppler 2002; Stalder and Skogby 2002; Bromiley et al. 2004; Mierdel and Keppler 2004; Zhao et al. 2004; Hirschmann et al. 2005; Keppler and Bolfan-Casanova 2006; Withers and Hirschman 2008; Bali et al. 2008; Withers et al. 2011; Ferot and Bolfan-Casanova 2012; Ardia et al. 2012; Tenner et al. 2012; Demouchy and Bolfan-Casanova 2016). Most of these experiments don’t include NAMs with natural mantle compositions or were conducted at pressures or temperatures too high for lithospheric conditions, thus limiting the application of solubility constraints to our determination of aqueous fluid boundary conditions here. We therefore implemented hypothetical boundary values of 10³ and 10⁴ ppm H₂O to provide an upper bound on hydrothermal fluid boundary conditions for the additional cpx models.

We track the longest possible duration that a 1-3 mm diameter grain can preserve its initial (e.g., mantle inherited) water content by sampling the central voxel of the 3D models. Most natural samples have crystal sections that are highly off-center and oblique (Figure S2), so tracking the H⁺ content at the central voxel yields the most conservative estimates of re-equilibration timescales. This conservative estimate is useful for understanding the resiliency of
a diffusing species to overprinting by later processes. However, non-ideal sections (i.e. off-center and oblique) of natural minerals would reflect greater degrees of re-equilibration more quickly than predicted by the core voxel (Shea et al. 2015b; Lynn et al. 2017).

Figure S2: Numerical “thin section” of orthopyroxene slices (white outlines) taken at random orientations and distances away from the crystal core. The red background represents the boundary condition (e.g., surrounding fluid or melt). The opx crystal used for this example was taken from the high-H boundary condition model for a 1 mm diameter grain at 1000°C after 13.5 minutes of diffusive re-equilibration. The core composition was 173 ppm H$_2$O for the central pixel (~50% re-equilibrated). The color bar represents the compositional gradient induced by diffusion shown as % re-equilibration. The % re-equilibration sampled at the central pixel (white square) is labeled next to each slice. The 50% example is a near-ideal slice through the crystal’s core, whereas the 100% example is highly off-center.

Effective %Re-equilibration

Numerical models have essentially unrestricted compositional resolution, the analytical precision of measurements in natural samples must be considered when interpreting our re-equilibration timescales as bounds on the kinetic window of hydrogen. The two main techniques for measuring H$^+$ in NAMs are secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectroscopy (FTIR). SIMS analytical techniques and calibrations have advanced significantly in recent decades, particularly with improved methods for minimizing background water (e.g., only a few ppm) and for propagating errors (e.g., Hauri et al. 2002; Aubaud et al.)
Measurements using FTIR offer the benefit of site-specific distributions of H⁺ storage and diffusion pathways, but analytical resolution depends on the choice of polarized vs. unpolarized measurements, oriented vs. unoriented grains, and sample thickness (e.g., Bell et al. 2003; Aubaud et al. 2009; Stalder et al. 2012; Mosenfelder and Rossman 2013a, 2013b; Withers et al. 2012). For abyssal, opholitic, and orogenic peridotites, NAM water contents are more commonly measured by SIMS (e.g., Gose et al. 2009; Peslier 2010; Schmädicke et al. 2011; Warren and Hauri 2014; Kumamoto et al. 2019). Thus, we utilize the analytical uncertainty from Warren and Hauri (2014) for SIMS measurements of olivine, opx, and cpx to adjust our modeled 100% re-equilibration timescales.

Individual 1D profiles of H zoning measured by SIMS may be modeled using the measured count per second ratio of 17OH/30Si or 1H/16O. The additional uncertainties associated with converting count ratios to absolute concentrations can be avoided as H⁺ diffusion coefficients are non-concentration dependent. The point-to-point precision of the analytical routine can be estimated from the count statistic error associated with each SIMS analysis, which is calculated from the Poisson distribution of the five-cycle count ratio average. The average count statistic error of olivine analyses in Warren and Hauri (2014) is 2 ± 1% (n=73 analyses), whereas pyroxenes are 1 ± 1% (n=250). While these count uncertainties may be small in absolute terms, they have a significant effect on our modeled timescales. Thus, we calculated an effective %re-equilibration to evaluate the resolvable re-equilibration timescales in natural samples. This parameter is calculated following Eq. 4, with the $H_{\text{equilibrium}}$ value for the boundary condition adjusted to reflect analytical uncertainties. A second effective %re-equilibration is calculated using 10% analytical error, chosen to represent reduced SIMS precision due to issues such as machine instability or variable backgrounds.

For olivine, the 2% uncertainty equates to a reduction in the resolvable boundary concentration by 0.3 and 0.6 ppm for low-H and high-H boundary conditions. This yields effective boundaries of 14.7 and 31.4 ppm, respectively, representing 96.3% and 97.6% re-equilibration (Figure S3). 10% uncertainties for the low-H and high-H boundary conditions correspond to a reduction of 1.5 and 3 ppm in resolvable boundary concentrations. This yields an effective re-equilibrated composition of 13.5 ppm H₂O or only 81% of the total % re-equilibration in our models with the low boundary condition (Figure S3). The real model
diffusion time for the 1 mm olivine “total” D_H (Ferriss et al. 2018) at 1000ºC is ~6 hours, but the effective re-equilibration time at 10% uncertainty is only ~2 hours (Table S1).

For cpx, 1% SIMS uncertainty equates to a reduction in the resolvable boundary concentration by 3.5 and 7.5 ppm for the low-H and high-H boundary conditions, respectively. The effective boundary conditions become 349 and 742 ppm, corresponding to 97% and 99% re-equilibration (Table 1 in the main text). The 10% uncertainty in count statistics translates to 35 and 75 ppm for low-H and high-H boundary conditions, with the effective boundary conditions at 315 and 675 ppm. This corresponds to 77% and 86% of the total re-equilibration determined by our low-H and high-H models, respectively (Table 1 in the main text).

For opx, an analytical error of 1% equates to a reduction in the resolvable boundary concentration by 1.4 ppm for the low-H models and 3 ppm for high-H boundary conditions. This results in effective boundaries of 133.6 and 297 ppm for low-H and high-H models, respectively, corresponding to 98.4 to 98.8% effective re-equilibration values (Table 1 in the main text, see also Table S5). At 1000 ºC for a 1 mm opx model (Figure 7 in the main text), ~98% re-equilibration corresponds to a model timescale of only 50 minutes compared to the 100% re-equilibration timescale of 72 minutes. When uncertainty in the opx water content is increased to 10%, the model uncertainty is 14 ppm for low-H and 30 ppm for high-H boundary conditions. This corresponds to 84% effective re-equilibration for the low boundary models and 88% for the high boundary models (Figure 7 in the main text). The modeled 1 mm opx timescale at 1000ºC is 72 minutes, but the effective timescales are ~25.5 minutes and ~28 minutes for the low-H and high-H silicate melt boundary conditions, respectively (see Supplementary Data File and Table S5).

Resolving diffusion profiles by SIMS or FTIR also requires good spatial resolution. In the case of SIMS, this may require that a reduced spot size is used, which will reduce the number of counts measured and thus increase analytical error. For FTIR, the spatial resolution depends both on detector setup and sample thickness (e.g., Gose et al. 2011). Hence, when spatial resolution is limited, the effective kinetic window for H re-equilibration in NAMs will similarly be reduced.
Table S5: Effective re-equilibration timescales for 1 and 3 mm minerals calculated using the low-H boundary conditions. The SIMS error timescales are calculated using 1% (cpx, opx) or 2% (ol) errors based on count statistics from measurements made by Warren and Hauri (2014). 100% re-eq timescales are the “model” columns from Table 2 in the main text for comparison. Effective timescales calculated using the high-H boundary conditions can be found in the Supplementary Data File in Table S4.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>T(°C)</th>
<th>100% re-eq</th>
<th>1% (pyx) or 2% (ol) error</th>
<th>10% error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 mm</td>
<td>3 mm</td>
<td>1 mm</td>
</tr>
<tr>
<td>Cpx PP</td>
<td>600</td>
<td>14 days</td>
<td>55 days</td>
<td>7.5 days</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>1 days</td>
<td>8 days</td>
<td>17 hrs</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>4.5 hrs</td>
<td>19 hrs</td>
<td>2.4 hrs</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>12 mins</td>
<td>1 hr</td>
<td>7.2 mins</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>1.5 mins</td>
<td>7 mins</td>
<td>0.8 mins</td>
</tr>
<tr>
<td>Opx PP</td>
<td>600</td>
<td>1.4 yrs</td>
<td>6.5 yrs</td>
<td>361 days</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>25 days</td>
<td>175 days</td>
<td>18 days</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>2 days</td>
<td>14 days</td>
<td>1.5 days</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>72 mins</td>
<td>7.5 hrs</td>
<td>52 mins</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>5 mins</td>
<td>30 mins</td>
<td>3 mins</td>
</tr>
<tr>
<td>OI PV</td>
<td>600</td>
<td>4 days</td>
<td>24 days</td>
<td>3 days</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>20 hrs</td>
<td>5 days</td>
<td>11 hrs</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>4 hrs</td>
<td>23 hrs</td>
<td>2.4 hrs</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>26 mins</td>
<td>2 hrs</td>
<td>14 mins</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>4 mins</td>
<td>27 mins</td>
<td>2.6 mins</td>
</tr>
<tr>
<td>OI tot</td>
<td>600</td>
<td>160 yrs</td>
<td>1300 yrs</td>
<td>135 yrs</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>4.9 yrs</td>
<td>39 yrs</td>
<td>9.5 yrs</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>128 days</td>
<td>5 yrs</td>
<td>160 days</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>4 days</td>
<td>20 days</td>
<td>2.3 days</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>4 hrs</td>
<td>22 hrs</td>
<td>2.4 hrs</td>
</tr>
<tr>
<td>OI PV</td>
<td>600</td>
<td>76 days</td>
<td>1 yr</td>
<td>44 days</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>12 days</td>
<td>74 days</td>
<td>6.9 days</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>2 days</td>
<td>14 days</td>
<td>1.6 days</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>6 hrs</td>
<td>1.5 days</td>
<td>3.7 hrs</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>1.5 hrs</td>
<td>7 hrs</td>
<td>43 mins</td>
</tr>
</tbody>
</table>
Figure S3: Detailed results of 600-1000°C models for 1-3 mm grain sizes. Each line represents the re-equilibration of the ideal core composition through time for an individual diffusion model. Clinopyroxene polaron results are shown as a solid purple line whereas vacancy results are a darker purple dashed line. Orthopyroxene polaron results are the red solid line and vacancy results are the maroon dashed line. Olivine results are as follows: total (tot) in green, olivine proton-polaron (PP) as short dashed grey lines, and olivine proton-vacancy (PV) as long dashed grey lines. Modeled timescales are plotted in log time (minutes) with conversions to common time units at the top of the figure. Black upward pointing triangles (10% analytical error) and downward pointing triangles (1% or 2% analytical error) indicate the effective %re-equilibration point for each phase, where any zonation beyond that value would be difficult to resolve outside of analytical error.
References

