- 1 REVISION 1- re-submitted to American Mineralogist
- 2 Synthesis and characterization of Fe(III)-Fe(II)- Mg- Al smectite solid solutions
- 3 and implications for planetary science
- 4
- 5 Valerie K. Fox^{1*}, Robert J. Kupper², Bethany L. Ehlmann^{1,3}, Jeffrey G. Catalano²,
- 6 Joseph Razzell-Hollis³, William J. Abbey³, Dirk J. Schild¹, Ryan D. Nickerson², Jonas C.
- 7 Peters¹, Sydney M Katz^{2†}, Andrew A. White²
- 8 ¹ California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125
- 9 ²Washington University in St. Louis, 1 Brookings Drive, CB 1169, St. Louis, MO,
- 10 63130
- ³ NASA Jet Propulsion Laboratory, 4800 Oak Grove Dr, Pasadena, CA 91109
- 12 *Present Address: University of Minnesota, John T. Tate Hall, 116 Church Street SE,
- 13 Minneapolis, MN 55455-0149. USA
- 14 † Present Address: Department of Aeronautic and Astronautics, Stanford University,
 15 Stanford, CA 94305, USA
- 16
- 17
- 18 Key Words: Smectites, Clay Mineralogy, Reflectance spectroscopy, XRD, Raman
- 19 spectra, Mars, Planetary Science
- 20
- 21
- 22
- 23
- 24

25 Abstract

26 This study demonstrates the synergies and limits of multiple measurement types 27 for the detection of smectite chemistry and oxidation state on planetary surfaces to 28 infer past geochemical conditions. Smectite clay minerals are common products of 29 water-rock interactions throughout the solar system, and their detection and 30 characterization provides important clues about geochemical conditions and past 31 environments if sufficient information about their composition can be discerned. 32 Here, we synthesize and report on the spectroscopic properties of a suite of smectite 33 samples that span the intermediate compositional range between Fe(II,), Fe(III), Mg, 34 and Al end-member species using bulk chemical analyses, x-ray diffraction, Vis/IR 35 reflectance spectroscopy, UV and green-laser Raman spectroscopy, and Mössbauer 36 spectroscopy. Our data show that smectite composition and the oxidation state of 37 octahedral Fe can be reliably identified in the near infrared on the basis of 38 combination and fundamental metal-OH stretching modes between 2.1-2.9µm, 39 which vary systematically with chemistry. Smectites dominated by Mg or Fe(III) 40 have spectrally distinct fundamental and combinations stretches, whereas Al-rich 41 and Fe(II) rich smectites have similar fundamental minima near 2.76µm, but have distinct combination M-OH features between 2.24 and 2.36µm. We show that with 42 43 expanded spectral libraries that include intermediate composition smectites and 44 both Fe(III) and Fe(II) oxidation states, more refined characterization of smectites 45 from MIR data is now possible, as the position of the 450cm⁻¹ absorption shifts 46 systematically with octahedral Fe content, although detailed analysis is best 47 accomplished in concert with other characterization methods. Our data also

48	provides the first Raman spectral libraries of smectite clays as a function of
49	chemistry, and we demonstrate that Raman spectroscopy at multiple excitation
50	wavelengths, can qualitatively distinguish smectite clays of different structures, and
51	can enhance interpretation by other types of analyses. Our sample set demonstrates
52	how X-ray diffraction can distinguish between dioctahedral and trioctahedral
53	smectites using either the (02,11) or (06,33) peaks, but auxiliary information about
54	chemistry and oxidation state aids in specific identifications. Finally, the
55	temperature-dependent isomer shift and quadrupole splitting in Mössbauer data
56	are insensitive to changes in Fe content but reliability differentiate Fe within the
57	smectite mineral structure.
58	
59	
60	1. Introduction
61	Smectite clay minerals are among the most common products of water-rock
62	interactions detected throughout the solar system and are key indicators of the
63	geochemistry, oxidation state, and extent of aqueous activity in the environment in
64	which they formed (Gates 2005; Bishop et al. 2008a; Ehlmann et al. 2011; Catalano,
65	2013, Michalski et al. 2015; Gainey et al. 2017, Bristow et al. 2018). Tracing the
66	history of aqueous alteration is a crucial aspect of understanding the formation and
67	evolution of planetary bodies and water reservoirs throughout the solar system.
68	Smectites are 2:1 layer phyllosilicates, comprised of an octahedral sheet between
69	two Si(Al)-O tetrahedral sheets with an expandable interlayer, which contains $\mathrm{H}_2\mathrm{O}$
70	and exchangeable cations that balance charge of the overall structure. A generalized

71	formula is $(Ca,Na)_{0.3-0.5}(Fe,Mg,Al)_{2-3}(Si,Al)_4O_{10}(OH)_2 \bullet nH_2O$. Occupancy of the
72	octahedral sheet is used to classify smectite minerals: trioctahedral smectites have
73	all octahedral sites filled and are dominated by +2 cations; dioctahedral smectites
74	have two of three octahedral sites filled and are dominated by +3 cations. There are
75	a number of major endmember species, including dioctahedral nontronites (Fe(III)-
76	rich), montmorillonites and beidellites (Al-rich), and trioctahedral saponites (Mg or
77	Fe(II)-rich).

78

79 On Mars, smectite-bearing outcrops have been detected on the surface by orbital 80 infrared instruments (Poulet et al. 2005; Bibring et al. 2006; Bishop et al. 2008a; 81 Poulet et al. 2008; Ehlmann et al. 2011; Carter et al. 2013, Ehlmann and Edwards 82 2014), and have also been investigated in-situ by both the MER Opportunity rover 83 (Arvidson et al. 2014; Fox et al. 2016) and the Mars Science Laboratory (MSL) 84 Curiosity rover (Vaniman et al. 2013; Grotzinger et al. 2014; Bristow et al. 2015, 85 2018; Rampe et al. 2017). Fe and Mg-bearing smectites are the most common 86 phyllosilicates detected on Mars, and are found in most exposures of ancient crust. 87 suggesting early conditions conducive to silicate weathering or hydrothermal 88 alteration (Poulet et al. 2005; Bishop et al. 2008a; Ehlmann et al. 2011; Carter et al. 89 2013; Catalano 2013; Ehlmann and Edwards 2014; Michalski et al. 2015). Fe- and 90 Mg-bearing phyllosilicates, including smectites, are also found in carbonaceous 91 chondrite meteorites and detected on other altered solar system bodies such as 92 Ceres, C-class asteroids, and comets (Bunch and Chang 1980; Rivkin et al. 2003, 93 2006; De Sanctis et al. 2015; Ammannito et al. 2016). Due to their ubiquity and

94	geochemical sensitivity to their formation environment, Fe- and Mg-bearing
95	smectites are a key target material in planetary exploration in seeking to
96	understand the aqueous history of the solar system. Their composition, along with
97	Fe oxidation state, can be indicative of the aqueous conditions that altered the host
98	material to the clay, if the properties can be discerned.

99

100 A wide range of smectites are observed on Earth with aluminous smectites 101 (montmorillonite, beidellite) found most extensively in continental settings because 102 of alteration of the predominantly felsic continental crust (Figure 1). Nontronites 103 and a wide range of intermediate Fe/Mg smectites are observed in oceanic settings 104 and continental settings with basaltic rocks. Smectites formed in subsurface settings 105 contain substantial ferrous (Fe(II)) iron rather than the typical ferric (Fe(III)) 106 smectites that form in soils, terrestrial sediments, and on the ocean floor where 107 dissolved O_2 is abundant. The crusts of planetary bodies are generally dominated by 108 rocks of mafic and ultramafic compositions, and most non-terrestrial bodies also 109 lack an oxidizing atmosphere. Indeed, some have postulated the early Martian 110 atmosphere was anoxic and there is widespread evidence for Earth's anoxic early 111 atmosphere (Catling and Moore 2003; Catalano 2013; Sholes et al. 2017). 112 Consequently, Fe/Mg smectites of intermediate composition, containing Fe(II), 113 Fe(III), or mixtures of the two, are expected to be common products forming on 114 such bodies (Guven 1988; Burns 1993).

115

116	A few well-characterized smectite samples from terrestrial deposits, particularly
117	from the Clay Mineral Society Special Clays, have found widespread use as spectral
118	standards for identifying mineral phases on planetary bodies (Michalski et al. 2006;
119	Bishop et al. 2008b; Treiman et al. 2014). The Al smectites (montmorillonites,
120	beidellites) and endmember Fe(III) smectites (nontronites) are well-represented; a
121	relatively limited compositional range of Mg smectites is represented by one
122	common saponite standard. However, there is a large compositional range,
123	representing Fe- and Mg-rich di- and trioctahedral smectites that form from
124	terrestrial alteration, for which there are no common standards (Figure 1). In
125	addition, while Fe(III)-bearing smectites (nontronites and also montmorillonites
126	with moderate Fe contents) are well characterized, smectites containing Fe(II) or
127	mixtures of Fe(II) and Fe(III) are poorly described because they are unstable against
128	oxidation in air(Kohyama et al. 1973; Badaut et al. 1985; Guven 1988; Lajarige et al.
129	1998).
130	
131	There has been significant effort to characterize the structural behavior as
132	composition varies along binary axes by synthesizing smectites with controlled
133	compositions and octahedral cation proportions. The Fe(III)-Mg (nontronite-
134	saponite) series is a true solid solution in the absence of Al (Grauby et al. 1994), as is
135	the Fe(III)-Al (nontronite-beidellite) series (Petit et al. 2015). The Al-Mg series
136	(beidellite-saponite) is found to have an immiscibility gap that averages out in bulk
137	measurements due to variability in the molecular structure within a clay particle
138	(Grauby et al. 1993). There have been limited studies of native Fe(II)-bearing

139	smectites, primarily trioctahedral in nature, and the impacts of oxidation on their
140	structures (Chemtob et al. 2015; Chemtob et al. 2017). The substantial body of work
141	on chemically reduced dioctahedral smectites that originally contained Fe(III) are
142	instructive but of uncertain value to the present work, as such transformations
143	result in dihydroxylation, perturbed layer charge, and rearrangement of octahedral
144	cations (Manceau et al., 2000a,b; Hadi et al., 2013) that would not occur in a
145	smectite natively occurring in the ferrous state. Laboratory synthesis studies also
146	constrain physical conditions, such as temperature and pH, that control cation
147	solubility into the smectite structure along binary solutions (Decarreau et al. 2008;
148	Andrieux and Petit 2010).
149	
150	The ability to determine the conditions in which a smectite mineral formed,
151	including the aqueous geochemistry and oxidation state, and by proxy the potential
	menualing the aqueous geochemistry and omaation state, and by proxy the potential
152	for habitability, is limited by the ability to accurately identify and measure smectite
152 153	for habitability, is limited by the ability to accurately identify and measure smectite composition and mineral assemblages. Detailed characterization of the full
152 153 154	for habitability, is limited by the ability to accurately identify and measure smectite composition and mineral assemblages. Detailed characterization of the full compositional range of smectite minerals using techniques analogous to those
152 153 154 155	for habitability, is limited by the ability to accurately identify and measure smectite composition and mineral assemblages. Detailed characterization of the full compositional range of smectite minerals using techniques analogous to those employed in planetary exploration will help improve these capabilities for
152 153 154 155 156	for habitability, is limited by the ability to accurately identify and measure smectite composition and mineral assemblages. Detailed characterization of the full compositional range of smectite minerals using techniques analogous to those employed in planetary exploration will help improve these capabilities for identification and compositional quantification. Here, we synthesize and report on
152 153 154 155 156 157	for habitability, is limited by the ability to accurately identify and measure smectite composition and mineral assemblages. Detailed characterization of the full compositional range of smectite minerals using techniques analogous to those employed in planetary exploration will help improve these capabilities for identification and compositional quantification. Here, we synthesize and report on the spectroscopic properties of a suite of smectite samples that span the
152 153 154 155 156 157 158	for habitability, is limited by the ability to accurately identify and measure smectite composition and mineral assemblages. Detailed characterization of the full compositional range of smectite minerals using techniques analogous to those employed in planetary exploration will help improve these capabilities for identification and compositional quantification. Here, we synthesize and report on the spectroscopic properties of a suite of smectite samples that span the intermediate compositional range between Fe, Mg, and Al end-member species,
152 153 154 155 156 157 158 159	for habitability, is limited by the ability to accurately identify and measure smectite composition and mineral assemblages. Detailed characterization of the full compositional range of smectite minerals using techniques analogous to those employed in planetary exploration will help improve these capabilities for identification and compositional quantification. Here, we synthesize and report on the spectroscopic properties of a suite of smectite samples that span the intermediate compositional range between Fe, Mg, and Al end-member species, including both Fe(III)- and Fe(II)-dominated samples, using bulk chemical analyses,

- 161 spectroscopy, and Mössbauer spectroscopy. All spectra and patterns are available in 162 the Supplementary Material. 163 164 2. Methods 165 166 2.1. Smectite Synthesis 167 168 Synthetic smectites were produced at Washington University using a 169 hydrothermal sol-gel method modified from previous studies (Decarreau and 170 Bonnin 1986; Chemtob et al. 2015). Solutions of magnesium, aluminum, iron(III), 171 and iron(II) chlorides as well as sodium silicate were prepared from ultrapure
- 172 deionized water (>18.2 M Ω cm). These solutions were mixed in stoichiometric

173 proportions corresponding to the target smectite composition. Mg, Al and Fe(II/III)

174 solutions were mixed first as these are acidic in nature, followed by the addition of

175 the alkaline sodium silicate solution. Upon mixing these solutions quickly

176 precipitated a gel, which were then were aged for 24 hours and centrifuged for 30

177 minutes at 16500 RPM in sealed tubes. The supernatant fluid was removed, and the

178 gel was resuspended in ultrapure water and centrifuged again in order to remove

- 179 excess salt. The gel was again resuspended in ultrapure water and the pH was
- 180 adjusted to 9 using hydrochloric acid or sodium hydroxide. All steps in syntheses
- 181 involving Fe(II) were conducted in an anaerobic chamber (Coy Laboratory
- 182 Products) filled with a 97% $N_2/3\%$ H₂ mixture and a catalyst system that
- 183 decomposes O_2 using the excess hydrogen in the chamber.

184

185	After pH adjustment the gel suspensions were placed into PTFE-lined Parr acid
186	digestion vessels and heated in an oven at 200°C for 15 days. To prevent oxidation
187	during heating, the syntheses involving Fe(II) were heated in a vacuum oven
188	backfilled with ultrahigh purity nitrogen gas. After cooling to room temperature, the
189	smectites were immersed in a 0.5 M calcium chloride solution for several hours to
190	Ca-saturate the interlayer via cation exchange, before being washed once more with
191	ultrapure water and dried in a vacuum desiccator. Some of the Fe(III)-bearing
192	samples were incompletely dried, such that during subsequent storage for ${\sim}12$
193	months, some samples formed minor calcite impurities. These growths were
194	identified by comparing X-Ray diffraction (XRD) patterns collected before and after
195	storage. We attribute the calcite impurities to $CO_2(g)$ taken up by the excess water in
196	the samples reacting with interlayer Ca during gradual dehydration during storage.
197	These calcite impurities were removed by suspending the sample for 30 minutes in
198	a pH 5 sodium acetate-acetic acid solution at 80°C (Ulery and Drees 2008).
199	Following this treatment, the smectites were again Ca saturated, washed and dried.
200	
201	2.2. Chemical Analysis
202	
203	Elemental abundances were determined using \sim 50 mg of each synthetic smectite.
204	These were first gently crushed with an agate mortar and pestle and added to a
205	graphite crucible with 350 mg of lithium metaborate flux. The mixture was fused

into a glass bead by heating in a muffle furnace at 1050°C for 15 minutes. The glass

beads were dissolved in 40 ml of 10% nitric acid, followed by a 1:100 dilution in 2%
nitric acid. The diluted samples were analyzed by inductively coupled plasma
optical emission spectroscopy (ICP-OES) using a Perkin Elmer Optima 7300DV
instrument.

211

212 Structural formulae for the smectites were constructed by taking the molar 213 abundances of each of the cations and normalizing their total positive charge against 214 the twenty-two units of negative charge in the half-unit cell formula. All Ca and Na is 215 assigned to the interlayer. All Si is then assigned to the tetrahedral sheet, as is 216 additional Al to bring the tetrahedral sheet to full occupancy at 4 atoms per half-unit 217 cell. For select Fe(III)-rich samples, Al is insufficient to fill the tetrahedral sheet and 218 Fe(III) is then used to provide full occupancy. The remaining Al, Fe and Mg are then 219 assigned to the octahedral sheet. For the samples containing Fe(II), past syntheses 220 have shown that minor Fe(II) oxidation may occur because of the difficulty in 221 preventing any exposure to air during brief transfers between an anaerobic 222 chamber and vacuum oven. The fraction of iron in the ferrous form [Fe(II)/Total Fe] 223 was determined by digestion of a subsample in 10 g/L ammonium bifluoride 224 followed by complexation of Fe(II) by 1,10-phenanthroline(Tarafder and Thakur 225 2013). The Fe(II) concentration was then determined by measuring the absorbance 226 at 510 nm using an ultraviolet-visible spectrophotometer (Thermo Scientific 227 Evolution 60). These assays were only performed for syntheses involving Fe(II), as 228 the Fe(III) syntheses products at no point were exposed to chemical reductants. 229

230 2.3. X-Ray Diffraction

231

232	Powder XRD patterns were collected on a Bruker D8 Advance diffractometer
233	equipped with a LynxEve XE energy-dispersive strip detector. Samples were gently
234	ground in an agate mortar and pestle and placed into a silicon zero background
235	sample holder for measurement. Samples containing Fe(II) were also enclosed in a
236	air-tight dome to prevent oxidation during measurements, although this produced a
237	large scattering feature between approximately 8° and $18^\circ 2\theta$. Data were collected
238	using Cu K $_{\alpha}$ radiation (40 kV, 40 mA) from 3° to 65° 20 with a 0.015° step size and a
239	0.8 second collection time per step. A continuous scanning data collection mode was
240	employed with the total counts at each data point representing the sum of the
241	counts measured as each of the 192 strips of the detector were swept through the
242	corresponding 2θ position, yielding a total counting time per point of 153.6 s.
243	
244	The XRD data were analyzed for both peak positions and lattice parameters, as
245	the asymmetric nature of the turbostratic scattering bands make structural analysis
246	from peak positions alone inaccurate (Moore and Reynolds 1997). The positions of
247	the (001), (02,11) and (06,33) peaks were determined using least squares fitting of
248	a single pseudo-Voigt profile and a linear background. Lattice parameter
249	refinements were conducted using the Profex interface (Doebelin and Kleeberg
250	2015) to BGMN (Bergmann et al. 1998). This employed the approach of Ufer et al.
251	(2004) to simulate the smectite X-ray scattering pattern, with the structure
252	modified to match the compositions determined by sample digestion. The c lattice

253	parameter was obtained through refinement to the (001) feature between 3° and 8°
254	2θ . For the in-sheet lattice parameters, a hexagonal sheet symmetry was assumed,
255	fixing $a = b/\sqrt{3}$. The (02,11) and (06,33) bands were fit separately, from 18° to 21.5°
256	20 and 57° to 64° 20, respectively. <i>b</i> lattice parameters are thus reported for each
257	peak refinement. Corresponding d-spacings associated with diffraction features
258	were then calculated from both the lattice parameters and peak positions for
259	comparison. For the latter, the weighted average wavelength of 1.5418 Å for Cu $K_{\alpha1,2}$
260	radiation was used. This wavelength, along with 1.7903 Å for Co $K_{\alpha1,2}$, was used for
261	peak position conversions between common X-ray tube wavelengths.
262	
263	2.4. Visible to Near Infrared Spectroscopy
264	
264	
264 265	Visible/near infrared reflectance (VNIR) spectra were acquired at wavelengths from
264 265 266	Visible/near infrared reflectance (VNIR) spectra were acquired at wavelengths from 350 to 2500 nanometers and a spectral resolution of 6 nm using an Analytical
264 265 266 267	Visible/near infrared reflectance (VNIR) spectra were acquired at wavelengths from 350 to 2500 nanometers and a spectral resolution of 6 nm using an Analytical Spectral Devices (ASD) Fieldspec3 with a 5° field of view and a custom goniometer
264 265 266 267 268	Visible/near infrared reflectance (VNIR) spectra were acquired at wavelengths from 350 to 2500 nanometers and a spectral resolution of 6 nm using an Analytical Spectral Devices (ASD) Fieldspec3 with a 5° field of view and a custom goniometer device at Caltech. The samples were illuminated using a halogen light source placed
264 265 266 267 268 269	Visible/near infrared reflectance (VNIR) spectra were acquired at wavelengths from 350 to 2500 nanometers and a spectral resolution of 6 nm using an Analytical Spectral Devices (ASD) Fieldspec3 with a 5° field of view and a custom goniometer device at Caltech. The samples were illuminated using a halogen light source placed at a 30° angle, and the fiber optic was positioned normal to the sample surface. The
264 265 266 267 268 269 270	Visible/near infrared reflectance (VNIR) spectra were acquired at wavelengths from 350 to 2500 nanometers and a spectral resolution of 6 nm using an Analytical Spectral Devices (ASD) Fieldspec3 with a 5° field of view and a custom goniometer device at Caltech. The samples were illuminated using a halogen light source placed at a 30° angle, and the fiber optic was positioned normal to the sample surface. The collected samples were calibrated by making measurements relative to a NIST-
264 265 266 267 268 269 270 271	Visible/near infrared reflectance (VNIR) spectra were acquired at wavelengths from 350 to 2500 nanometers and a spectral resolution of 6 nm using an Analytical Spectral Devices (ASD) Fieldspec3 with a 5° field of view and a custom goniometer device at Caltech. The samples were illuminated using a halogen light source placed at a 30° angle, and the fiber optic was positioned normal to the sample surface. The collected samples were calibrated by making measurements relative to a NIST-
264 265 266 267 268 269 270 271 272	Visible/near infrared reflectance (VNIR) spectra were acquired at wavelengths from 350 to 2500 nanometers and a spectral resolution of 6 nm using an Analytical Spectral Devices (ASD) Fieldspec3 with a 5° field of view and a custom goniometer device at Caltech. The samples were illuminated using a halogen light source placed at a 30° angle, and the fiber optic was positioned normal to the sample surface. The collected samples were calibrated by making measurements relative to a NIST- certified spectralon reflectance standard and correcting for its known properties. The bidirectional reflectances in the Supplementary Materials can thus be
264 265 266 267 268 269 270 271 272 272 273	Visible/near infrared reflectance (VNIR) spectra were acquired at wavelengths from 350 to 2500 nanometers and a spectral resolution of 6 nm using an Analytical Spectral Devices (ASD) Fieldspec3 with a 5° field of view and a custom goniometer device at Caltech. The samples were illuminated using a halogen light source placed at a 30° angle, and the fiber optic was positioned normal to the sample surface. The collected samples were calibrated by making measurements relative to a NIST- certified spectralon reflectance standard and correcting for its known properties. The bidirectional reflectances in the Supplementary Materials can thus be
264 265 266 267 268 269 270 271 272 272 273 274	Visible/near infrared reflectance (VNIR) spectra were acquired at wavelengths from 350 to 2500 nanometers and a spectral resolution of 6 nm using an Analytical Spectral Devices (ASD) Fieldspec3 with a 5° field of view and a custom goniometer device at Caltech. The samples were illuminated using a halogen light source placed at a 30° angle, and the fiber optic was positioned normal to the sample surface. The collected samples were calibrated by making measurements relative to a NIST- certified spectralon reflectance standard and correcting for its known properties. The bidirectional reflectances in the Supplementary Materials can thus be considered absolute reflectances. Samples were ground and sieved to particulate sizes less than 120 µm to reduce shadowing effects from larger grains sizes. Fe(II)-

276

277 2.5. Mid-Infrared Spectroscopy

278

279	Mid-infrared diffuse reflectance spectra were acquired on a Thermo Scientific
280	Nicolet iS50 transform infrared spectrometer with a 4 $\rm cm^{-1}$ sampling interval and
281	averaged 512 scans. Fe(III)-bearing samples were placed in a dry air-purged sample
282	chamber to acquire diffuse reflectance measurements over 5000-400 cm $^{-1}$ (2-25
283	μm). The system was purged with dry N_2 during measurements of the Fe(II)-bearing
284	samples. The system was calibrated using a rough Al target, which was assumed to
285	have a reflectance of unity. (Any investigations requiring absolute reflectance and
286	utilizing the Supplementary Material should scale MIR to Vis/NIR data values).
287	
288	Each sample was also measured using the SensIR Durascope attenuated total
289	reflectance accessory on a Nicolet Magna 860 Fourier transform infrared
290	spectrometer. Powdered samples were pressed against a diamond crystal and
291	spectra were acquired over 4000 - 400 cm $^{-1}$, (2.5-25 $\mu m)$ using a KBr beam splitter
292	and an uncooled triglycine sulfate detector with a KBr window. Background
293	calibration spectra were acquired using the diamond crystal alone. All samples were
294	measured in air, as oxidation during the short integration times (<3 minutes) is
295	considered negligible and the sample size required is small.
296	
297	2.6. Raman Spectroscopy

298

299	Raman patterns were collected on loosely packed powdered samples on a
300	Renishaw M1000 micro Raman spectrometer using a 532-nm solid state 100 mW
301	laser with a 2400 nm diffraction grating on loosely-packed powdered sample and a
302	spot size of 100 $\mu m.$ The laser power was attenuated to 10% to avoid ablating the
303	samples, and scans were averaged to improve counting statistics. Spectra were
304	collected between 100 and 4000 cm $^{-1}$ with a 1 cm $^{-1}$ sampling interval. Wavelength
305	accuracy was calibrated using a silicon chip to within 0.5 cm ⁻¹ . Spectra were
306	background corrected using a cubic spline interpolation. All samples were measured
307	in air. Exposure of the Fe(II) samples was minimized prior to measurement, and
308	oxidation during the <8 minute exposure times is considered minimal. The 532 nm
309	excitation wavelength is equivalent to the Raman spectrometry system planned for
310	the SuperCam instrument designed for the Mars 2020 rover mission (Wiens et al.
311	2017).

312

313 Deep-ultraviolet (DUV) Raman spectra were obtained using MOBIUS (Mineralogy 314 and Organic Based Investigations Using Ultraviolet Spectroscopy), the laboratory 315 prototype for the SHERLOC instrument (Scanning Habitable Environments with 316 Raman and Luminescence for Organics and Chemicals) designed for the Mars 2020 317 rover mission (Beegle et al. 2017). Measurements were done using a 248.58 nm 318 pulsed laser (Photon Systems, Inc) with a focused spot diameter of \sim 40 µm, an 1800 319 lines/mm diffraction grating and a Horiba Symphony e2v 42-10 CCD liquid nitrogen 320 cooled (-140 °C) detector. Each spectrum was acquired over 30 seconds at a pulse 321 rate of 40 Hz, totaling 1200 pulses. Spectra were collected between over 1024

322	points between ~570 cm $^{-1}$ and ~4200 cm $^{-1}$ with a spectral accuracy of 3.8 cm $^{-1}$, and
323	wavelengths were calibrated using validating the position of the primary and
324	secondary laser lines at 248.58 and 252.93 nm respectively. For each sample of
325	loosely packed powder, 25 spectra were obtained in a $5x5$ array with a spacing of
326	100 μm . Cosmic rays were identified as outliers in the distribution of intensity
327	values in each Raman shift channel and replaced by the value of adjacent points
328	(Uckert et al. 2019). Further processing was done by in-house Python scripts
329	utilizing publicly available packages Numpy, SciPy, and LMFIT (van de Walt et al.,
330	2011; Jones et al., 2001; Newville et al., 2014). Processing included subtraction of a
331	linear baseline by least-squares regression, a recalibration of Raman shift values
332	based on the position of the atmospheric N_2 peak relative to its literature position of
333	2331 cm $^{\text{-1}}$, and subsequent removal of atmospheric N_2 and O_2 peaks by subtraction
334	of a standard atmospheric Raman spectrum acquired on the same spectrometer.
335	The processed spectra were normalized with respect to the $N_{\rm 2}$ peak amplitude and
336	peak positions, FWHM, and intensities were determined by fitting with gaussian
337	functions.
338	
339	2.7. Mössbauer Spectroscopy

340

Mössbauer spectra were recorded on a spectrometer from SEE Co. operating in the constant acceleration mode in a transmission geometry. Samples were ground in an agate mortar and, depending on the Fe content, 20-60 mg were added to 500 mg boron nitride and mixed in a glass vial to create a homogenous sample (Table S4).

345	The resulting mixture was added to a Delrin cup, capped and measured. Spectra
346	were recorded with the temperature maintained using an SVT-400 Dewar from
347	Janis. The quoted isomer shifts are relative to the centroid of the spectrum of a
348	metallic foil of $\alpha\mbox{-}Fe$ at room temperature. Data analysis was performed using the
349	program WMOSS (www.wmoss.org) and quadrupole doublets were fit to Voigt
350	lineshapes.
351	
352	3. Results and Discussion
353	
354	3.1. Elemental Abundance of synthesized smectites
355	
356	Ten Fe(III)-bearing smectites and six Fe(II)-bearing smectites were synthesized
357	with compositions intermediate to widely used standards (Figure 2). In calculations
358	of structural formulae (Table1), Fe(III) was required to fill the tetrahedral sheet in
359	the two most Fe(III)-rich compositions (samples A and B). Mg content was reduced
360	relative to Fe and Al in each of the final compositions compared to the initial
361	solution, matching observations of other smectite syntheses and suggesting higher
362	Mg solubility than Fe or Al in this system (Chemtob et al. 2015). Octahedral
363	occupancies per half-cell derived from the structural formula (Table 1) indicates
364	that the Fe(III) smectites are generally dioctahedral in nature with the exception of
365	samples G, H, and J, which have formulas suggestive of di-trioctahedral clays. Fe(II)
366	smectite compositions suggest trioctahedral compositions similar to those studied
367	by Chemtob et al. (2015), except for two Al-rich compositions (N and O). Samples K,

368	L, M and P are consistent with trioctahedral Fe(II)-Mg smectites, sample N is
369	dioctahedral and sample O is a di-trioctahedral smectite. Seven to 15% of the iron in
370	the Fe(II) smectites oxidized during synthesis (Table 1), which is attributed to
371	leakage of small quantities of O_2 into the vacuum oven during synthesis or from
372	leakage into the anaerobic chamber during pre- or post-synthesis treatments.
373	
374	3.2. X-Ray Diffraction
375	The XRD patterns (Figure 3) of the synthesized clays confirm that all are
376	smectites, with broad asymmetrical features that are indicative of turbostratic
377	stacking. No other crystalline phases are present except for in sample L, which has
378	<0.4 wt.% quartz (determined by Rietveld refinement) which is attributed to
379	contamination during sample preparation for XRD or present in the sample holder.
380	The (001) diffraction peaks near 6° 2 $ heta$ (Table 2) correspond to basal layer spacings
381	between 13 and 17 Å (Table 3), consistent with 1 to 3 layers of water in the
382	interlayer. Table 2 also shows the equivalent peak position for each feature if
383	measured by Co K_{α} radiation, as done onboard the Mars Science Laboratory CheMin
384	XRD instrument. The relatively weak and broad (001) reflections are often observed
385	in XRD patterns of synthetic smectites (Grauby et al. 1993, 1994; Chemtob et al.
386	2015) and indicate small coherent domain sizes, i.e., a small number of stacked
387	layers per crystallite. The peak between 25 to 30° 2θ is primarily the (003)
388	reflection, which like the (001) feature is broad because of the small coherent
389	domain size (Figure 3a). This feature also includes scattering from some water
390	associated with the samples (Morgan and Warren 1938). The remaining features are

391 (hk) peaks associated with X-ray scattering from within the smectite sheet (Brindley392 and Brown 1980; Moore and Reynolds 1997).

393

394 The (060) d-spacing, typically calculated from the peak position of the (06,33)395 band near 60° 2θ (Table 3, Figure 3c), is most commonly used to determine unit cell 396 dimensions. This is also typically considered diagnostic of dioctahedral versus 397 trioctahedral structures, although, as our results show, there is overlap in the range 398 of values for these features once the diversity of compositions is considered. The 399 Fe(III) smectites in this study (samples A-I) have (060) d-spacings between 1.520 400 and 1.528 Å based on peak positions. The Fe(II) smectites show a much broader 401 range, from 1.516 to 1.557 Å, consistent with prior work (Chemtob et al. 2015). 402 Three of the Fe(II) smectites (K, N, and O) have splittings in the (06,33) peaks that 403 suggest the presence of separate domains of distinct clay compositions intermixed 404 among the layers, which has been observed to occur in previous syntheses of Fe(II) 405 smectites (Chemtob et al. 2015), as well as other smectite compositions (Grauby et 406 al, 1993). The shoulder feature for sample K may indicate an anomalously long d-407 spacing (~ 1.58 Å) but the exact origin of this feature is uncertain as the dome used 408 to seal the sample also produce an increase in background scattering near this 409 feature. The splittings in the (06,33) peak for samples N and O are clearer in nature 410 and suggest mixtures of trioctahedral and dioctahedral domains. This parallels a 411 miscibility gap previously reported for the Mg saponite-beidellite series (Grauby et 412 al. 1993), suggesting that Fe(II) saponites also display such a gap as Al content 413 increases. Peak positions of the (02,11) peak similarly show small variation among

414	the Fe(III) smectites and much larger variations among the Fe(II) smectites (Table
415	2, Figure 3b). The derived lattice spacing, as calculated from peak refinement,
416	reflects octahedral coordination state (Figure 3d). Dioctahedral sample basal
417	spacings exhibit little dependence on Fe(III) octahedral content (Figure 3e), but tri
418	and di-trioctahedrally coordinated samples demonstrate a more linear trend
419	towards increasing d-spacing with increasing octahedral Fe (both Fe(II) and Fe(III)).
420	
421	Lattice parameters were refined for both Fe(III) and Fe(II) smectites using a
422	single smectite structure to model both the (02,11) and (06,33) peaks, and thus
423	obtained one <i>b</i> value from each, even when peak splitting was observed (Table 3).
424	Calculation of the (060) d-spacings from lattice parameters obtains values ${\sim}0.004$ Å
425	larger than values determined from peak positions (Table 4). This discrepancy is
426	real and results from smectite sheets scattering as 2-dimensional crystals, with peak
427	positions occurring at slightly higher angles in 2θ than the actual (06,33) position
428	(Brindley and Brown 1980; Moore and Reynolds 1997). Lattice parameter
429	refinements of the (02,11) show similar trends in <i>b</i> values as the peak positions.
430	However, the discrepancy between the d-spacing as derived from the peak position
431	and the lattice parameter is an order of magnitude larger in this case, with peak
432	positions underestimating actual d-spacings by 0.04 to 0.07 Å. While this is a long
433	established aspects of the X-ray scattering properties of turbostratic smectites, this
434	is again emphasized here because the (02,11) peak is the primary structural
435	features observable in X-ray diffraction patterns collected by the MSL rover, as the
436	(06,33) peak is outside of the angular range of the instrument.

437

438 3.3. Visible to Near Infrared Spectroscopy

439

440	Spectral features in the Visible to Near Infrared (VNIR) wavelength region are
441	caused by electronic absorptions related to charge transfer and crystal field
442	splitting, as well as the overtones and combinations of the fundamental vibrational
443	modes of the chemical bonds within a mineral structure, such that the wavelength
444	position of absorption features provides characteristic information about the
445	mineral composition (Gates et al. 2017). The reflectance also depends on the
446	particle size and viewing geometry of the samples under investigation. The VNIR
447	reflectances of the synthetic smectite samples exhibit absorptions caused by
448	electronic transitions in Fe(II) and Fe(III), and cation-OH bending and stretching
449	modes between 0.5 and 2.5 μ m (Figure 4).
450	
451	In the visible and short-wavelength near infrared (0.4-1 μm), Fe crystal field
452	absorptions dominate the spectral shape. Within the Fe(III) samples, overlapping
453	ferric features dominate the spectrum between 0.4 and 1 μm , but vary as a function
454	of Fe content. Fe(III)-bearing samples A-J all have a spectral maximum near 0.76
455	μ m. The positive spectral slope from 0.4-0.76 μ m observed in all Fe(III)-bearing
456	samples is caused by charge transfer bands that are centered in the UV and the
457	broad 0.60 μ m and 0.96 μ m absorptions, attributed to electron transitions in the
458	Fe(III) ions in the octahedral structure (Hunt 1977). A narrower feature centered at
459	$0.48 \mu m$ is also an Fe(III) charge transfer absorption (Rossman 1976; Hunt 1977).

460	The 0.96 μm absorption is present in all samples save sample J, which only has 9%
461	octahedral Fe(III). The 0.48 μm absorption is most pronounced in samples with
462	relatively less Fe(III) content, which is consistent with an enhanced charge transfer
463	absorption due to substitution of a 3+ ion into a 2+ crystal site (Burns 1970; Hunt
464	1977). The Fe(II)-bearing samples have a distinctly different spectral shape in the
465	visible and near infrared due to Fe(II) electronic absorptions. Samples K-P have a
466	spectral maximum at 0.5 μm , and very broad absorption features centered around
467	0.72, 0.88-0.92 and 1.11-1.13 μm , attributed to Fe(II) crystal field absorptions (Hunt
468	1977; Bishop et al. 2008c).

469

470 All samples have broad, asymmetrical absorptions centered at 1.91 µm, caused by 471 the combination of bending and stretching modes of H₂O molecules within the 472 mineral structure. The interlayer of smectite clays can accommodate significant 473 molecular substitution, such that ambient humidity affects H₂O absorption into the 474 mineral structure. The depth and structure of the 1.91µm absorption feature is a 475 function of the samples' hydration; a shoulder around 1.97 µm that occurs in some 476 samples indicates the presence of relatively more absorbed water in the interlayer 477 (Bishop et al. 1994). The combination of the symmetric and asymmetric stretch 478 together with the H_2O bending mode occurs at 1.15 µm, and is detectable in the 479 Fe(III)-bearing samples. Sample J, which has the least strong Fe electron features, 480 also shows the second overtone of the H_2O stretching mode at 0.97 μ m, which is 481 obscured by the stronger Fe absorptions in the other samples. The 0.97 and 1.15µm 482 absorptions are not apparent in the Fe(II)-bearing samples, likely due to the

483	stronger overlapping Fe(II) electronic features. All samples also exhibit a strong
484	absorption centered near 1.41 μm due to the first overtone of the structural OH and
485	$H_2 0$, and a shoulder at 1.46 μm is attributed to a more $H_2 0$ saturated interlayer
486	(Bishop et al. 1994). Structure within this absorption is due to overtones of the
487	Metal-OH (M-OH) stretching and bending modes observed at longer wavelengths.
488	Samples H and J and P, with the most octahedral Mg, have a band at 1.395 μm
489	compared to all other more Fe rich samples which have absorptions centered
490	towards 1.43 μ m, consistent with prior work (Madejová et al. 2000).
491	
492	The NIR region between 2.1 and 2.5 μm is particularly diagnostic of smectite clay
493	composition as absorptions caused by the combination of the bending and
494	stretching modes of the octahedral cations and hydroxyl molecules occur in this
495	range. The intensities and center positions of these absorptions shift as a function of
496	the relative abundance of Fe(III), Fe(II), Al, and Mg in the octahedral layer (Figure
497	5). Samples with high octahedral Al contents show absorption features in the 2.20-
498	$2.25 \mu m$ range (Figure 5a). In the Fe(III) bearing samples C, D, H and I, shallow and
499	broad absorptions around $2.23 \mu m$ are combination absorptions attributable to Al-
500	Fe(III)-OH and Al-Mg-OH bending and stretching modes. The Al-related absorptions
501	are more well defined in the Fe(II) bearing samples; a narrow absorption feature
502	shifts from 2.25 μ m in the most Fe(II) rich samples to 2.23 μ m in the Fe(II) poor (Mg-
503	rich) samples. Samples O and N, which are the most Al rich samples in the suite, also
504	have well defined Al-Al-OH absorptions at $2.20 \mu m.$ All of the Fe(III)-bearing samples
505	have distinct absorptions centered at 2.28 μ m caused by combination of the Fe(III) ₂ -

506	OH bending and stretching vibrational modes that occur in the mid-infrared (Figure
507	5b) (Madejová et al. 2000; Gates 2005). Samples H and J also have an absorption
508	center at 2.31 μm attributed to the Mg-OH-Mg combination absorption (Grauby et al.
509	1994). Sample K has a dominant absorption at $2.35\mu m$ attributed to Fe(II) ₂ -OH
510	combination modes, and the position of this feature shifts to $2.33 \mu m$ in samples L
511	and M as Fe(II) in the octahedral sheets decreases. Samples N and O lack a defined
512	absorption feature in this wavelength range and have only a shallow shoulder near
513	$2.33 \mu m.$ Sample P has an asymmetric absorption at 2.32, consistent with the low Fe
514	and high Mg octahedral sheet content in this sample.
515	
516	The Fe(III)-bearing samples have an absorption band that does not shift
517	significantly as a function of composition at ${\sim}2.39\mu\text{m}.$ It is most strongly defined in
518	samples J, H, A and B, but is detectable in all of the spectra. This feature is attributed
519	to the combination of cation-OH stretches in the octahedral sheets and the
520	tetrahedral Si-O stretch(Gates 2005). Mg-dominated samples H and J have a
521	narrower, more pronounced absorption compared to the wider features in the more
522	Fe(III) dominated samples. The more aluminous samples, C, D, G, I, N and O,
523	together with all of the Fe(II)-bearing samples, have broad bands with centers
524	shifted towards 2.45 μ m. In the Fe(II)-bearing samples, this shift is approximately
525	linear as a function of Mg content, although the Fe(III) samples do not show well
526	defined compositional dependence (Fig 5c).
527	
528	3.4. Mid-Infrared Spectroscopy

529

530 3.4.1. Attenuated Total Reflectance

531

532	The Attenuated Total Reflectance spectra of the suite of ferruginous smectites are
533	shown in Figure 6, and assignments are made based on previous works. Peaks in the
534	ATR spectra are primarily a function of the absorption coefficient of the material
535	and peaks in the 400-4000 $\rm cm^{-1}$ range are caused by the fundamental molecular
536	vibrational modes. Higher degrees of crystallographic symmetry sharpen peaks,
537	whereas less-ordered structures and overlapping vibrational modes produce broad
538	peaks. Generally, octahedral OH stretching modes occur between 3800-3000 ${ m cm}^{-1}$
539	(2.63-3.33 μ m) (Figure 6a), and the octahedral OH bending modes, together with the
540	tetrahedral stretching and bending modes, occur between 1200-400 cm $^{-1}$ (8.33-
541	25μm) (Figure 6b).
542	
543	All samples have well defined features between 3800-3000 cm $^{-1}$ (2.63-3.33 μ m)
544	that are caused by $\mathrm{H}_{2}\mathrm{O}$ related vibrational modes and cation-OH stretching modes. A
545	shoulder feature that occurs 3220 cm $^{\text{-1}}$ (3.1 $\mu\text{m})$ is the first overtone of the H_2O
546	bending mode that occurs in all samples at 1635cm $^{\rm -1}$ (6.12 μm) (Clark et al. 1990;
547	Bishop et al. 1994; Madejová et al. 2002). A broad peak centered around 3390 cm $^{-1}$
548	(2.94 μm) is attributed outer-sphere H_2O bonding within the interlayer; its strength
549	has been correlated with the hydration levels of the smootite (Dichon et al. 1004)
517	has been correlated with the hydration levels of the sinectite (Dishop et al. 1994;
550	Madejová et al. 1994), and its relative strength among samples measured here also

552	samples are more hydrated than others. Peak and shoulder features between 3700-
553	3550 cm ⁻¹ (2.70-2.81 μ m) are attributed to cation-OH stretching modes. Samples A-F
554	have a peak feature, most clearly observed in samples A and B, at 3550cm ⁻¹
555	(2.81 μ m) that is associated with Fe(III) ₂ -OH stretching (Gates 2005). Samples I and J
556	have a well-defined shoulder feature at 3680cm $^{\rm 1}$ (2.71 μm) that is ascribed to the
557	Mg ₂ -OH stretching vibration (Grauby et al. 1994). A shoulder at 3630 cm ⁻¹ (2.75 μ m)
558	is prominent in almost all of the samples, and is the dominant feature in the Fe(II)-
559	bearing samples (Figure 6a). This is most consistent with features that have been
560	attributed to Al_2 -OH or Al-M-OH bending modes in other smectite samples (Grauby
561	et al. 1993; Madejová et al. 1994; Gates 2005) and is likely the cause in these
562	samples. The $Fe(II)_2$ -OH absorption would be expected at lower wavenumbers
563	(higher wavelengths) than the $Fe(III)_2$ -OH absorptions (Gates 2005), but no such
564	feature is observed in the ATR spectra of the Fe(II)-bearing samples, likely due to
565	stronger overlapping H_2O features.
566	
567	The tetrahedral Si-O stretching and bending modes occur between 400 and 1200
568	cm ⁻¹ (Figure 6b). In all of the ferruginous smectite samples, the Si-O stretching mode
569	in the tetrahedral sheet occurs around 985 cm ⁻¹ , and the Si-O-Si bending mode
570	occurs between $415-440$ cm ⁻¹ in the Fe(III) bearing samples and $430-460$ cm ⁻¹ in the
571	Fe(II) bearing samples. The stretching mode does not demonstrate a significant
572	dependence on composition, but the bending mode moves to longer wavenumbers
573	as Fe content increases in all samples. A band near 485 cm ⁻¹ attributed to the
574	Fe(III) _{oct} -O-Si _{tet} bending mode is apparent in samples with at least 30% Fe(III); the

575	shoulder shifts to 510 cm $^{-1}$ in samples C, D, G and I with an increase in Al in the
576	octahedral sheet, implying the presence of an Al-O-Si bending mode(Madejová and
577	Pálková 2017). The feature around 515cm^{-1} in the more aluminous Fe(II)-bearing
578	samples M, N and P is also ascribed to the same Al-O-Si bending mode.
579	
580	The fundamental octahedral cation-OH bending modes also occur in the same
581	region as the Si-O fundamental absorptions. An asymmetric band at 680 cm ⁻¹ ,
582	present in all of the Fe(III)-bearing samples, is attributed to interactions between
583	the bending of the Fe-O out of plane bend and Si-O vibrations, and in more tri-
584	octahedral samples H and J overlaps the Mg_2 -OH bend at 656 cm ⁻¹ (Grauby et al.
585	1994; Frost and Kloprogge 2000b; Gates 2005). The Fe(II)-bearing samples have
586	less well defined features in this region than the Fe(III)-bearing samples, but have a
587	very broad plateau between $658-570$ cm ⁻¹ caused by overlapping Mg ₂ -OH, Fe(II)-
588	Fe(III)-OH and Fe(II) $_2$ -OH bending modes that are not well distinguished. The
589	Fe(III)-bearing samples also exhibit a pair of bands at 815-817 and 870 cm ⁻¹ that are
590	attributed to the $Fe(III)_2$ -OH and the $Fe(III)$ -Al-OH bends (Grauby et al. 1994; Gates
591	2005; Andrieux and Petit 2010). The 817 cm $^{-1}$ band is only apparent in samples A-E
592	and disappears with decreasing Fe. The Fe-Al-OH bend is also detectable in the
593	Fe(II) bearing samples, although it has reduced spectral contrast.
594	
595	3.4.2. Diffuse Infrared Reflectance
596	

597	Similar to reflectance spectra in the visible and near infrared, mid-infrared
598	reflectance spectra depend on both the real and imaginary component of the
599	complex index of refraction. However, while the real component is relatively
600	constant from the visible out to about 5-6 μm such that spectra in the visible to near
601	infrared are practically a function of only the variation in the imaginary component,
602	both the real and imaginary components vary significantly through the infrared
603	region, causing both reflectance minima and maxima that are telling of the
604	mineralogy. Spectral features between ${\sim}4000$ and 100 cm $^{-1}$ (2.5-25 μm) are caused
605	by the fundamental bending and stretching modes of hydroxyl bonds in the
606	octahedral sheets and silicate structures in the tetrahedral sheets, as well as
607	molecular water within the structure (Figure 7).
608	
609	As in the ATR spectra, the presence of interlayer and adsorbed $\mathrm{H}_2\mathrm{O}$ causes the
610	deep, broad absorptions centered at 2.94 μ m (3400cm ⁻¹) and 3.12 μ m (3200cm ⁻¹)
611	(Clark et al. 1990; Bishop et al. 1994). The depth of this feature is dependent on the
612	abundance of water molecules within the interlayer. Superimposed on the
613	fundamental H_2O stretches are the narrower stretching modes of the cations bound
614	to the hydroxyl molecules within the octahedral sheets (Figure 7a). In the Fe(III)
615	samples, absorption minima shift from ~2.79 to 2.75 μm with decreasing Fe(III)
616	content (Figure 7b). All samples except for H and J have the deepest metal-OH
617	stretching minimum between 2.80-2.82 μ m (3560-3540cm ⁻¹), consistent with Fe(III)

being the controlling cation in the octahedral sheets. The Fe(III)₂-OH stretch occurs

at 2.80 μ m (3560 cm⁻¹) (Madejová et al. 1994) and is most prominent in samples A

620	and B. Samples C, D, E and F have band minima shifted approximately linearly
621	towards 2.75 μ m (3635 cm ⁻¹) due to the presence of aluminum and the Al ₂ -OH
622	stretching mode. Samples H and J, having the least Fe(III) within the octahedral
623	sheets, show distinct, narrow minima at $2.721 \mu m$ (3674 cm ⁻¹), which are attributed
624	to the Mg-OH-Mg stretching modes. As with the Fe(III)-bearing samples, the minima
625	of the Fe(II)-bearing samples also shift linearly to longer wavelengths and shorter
626	wavenumbers with increasing Fe(II) from 2.72-2.76 μ m (3680-3624cm ⁻¹) (Figure
627	7b).

628

629 The mid-infrared region between 100 and 1200 cm⁻¹ contains information about 630 both the octahedral and tetrahedral sheets, as both the fundamental bending modes 631 of the octahedral cation-OH bonds and the bending and stretching modes of the Si-O 632 bonds in the tetrahedral sheet occur in this range (Figure 8). Features are similar to 633 those observed in the ATR spectra, although the band positions are shifted, and as 634 the reflectance is sensitive to both the absorption and scattering coefficients, display 635 features related to changes in both the real and imaginary component of the index of 636 refraction. All samples have a strong peak centered between 1030-1045cm⁻¹ that is 637 attributed to the fundamental Si-O stretch. The position of this feature does not 638 demonstrate a clear trend as a function of composition in the Fe(III)-bearing 639 samples, but does shift to larger wavenumbers in the more aluminous Fe(II)-bearing 640 samples (Figure 8d). A peak around 455 cm⁻¹, which ranges from 410 to 480 cm⁻¹ 641 with decreasing Fe, is attributed to the Si-O bending mode (Frost and Kloprogge 642 2000b) (Figure 8b). The dioctahedral samples A, B, C, D, E, F, and G all have

643	secondary peaks between 490-510cm ⁻¹ ; samples A and B in particular have the most
644	distinct secondary peaks centered at 500 cm ⁻¹ , attributed to the Fe(III) _{tet} -O-Si
645	bending modes, due to Fe substitution into the tetrahedral sheet (Frost and
646	Kloprogge 2000b; Madejová and Pálková 2017). The secondary peaks in the other
647	dioctahedral samples are weaker relative to the tetrahedral Fe(III) as they are
648	caused by out of plane Fe-O bend, between the tetrahedral and octahedral sheets.
649	The trioctahedrally-coordinated samples, particularly H and J, typically show only a
650	single Si-O bending peak, but have a pronounced shoulder near 530 cm ⁻¹ attributed
651	to the Mg-O out of plane bending mode (Gates et al. 2017). Samples N and O in the
652	Fe(II)-bearing samples appear double peaked in this spectral region, consistent with
653	the peak splitting of the (06,33) peak in the XRD indicating multiple clay domains,
654	i.e., a partial trioctahedral and dioctahedral nature.
655	

656 The fundamental bending modes of the octahedral cation-OH bonds occur 657 between 600 and 1000 cm⁻¹. All of the Fe(III)-bearing samples have a broad band 658 near 845cm⁻¹ that does not manifest in the Fe(II)-bearing samples. This bending 659 feature is assigned to Fe(III)₂-OH in the dioctahedral samples and Fe-Mg-OH in the 660 trioctahedral Fe(III)-bearing samples (Keeling et al. 2000; Gates 2005). The peak 661 center shifts to shorter wavenumbers as the Mg content of the samples increase and 662 the Fe content decreases (Figure 8c). Samples A-D also have a have a shallow, broad 663 peak near 906 cm⁻¹ which is attributed to the Al-OH-Fe(III) bending mode (Andrieux 664 and Petit 2010).

665

666	Samples A – G have a low-intensity, very broad plateau between 745-802 cm ⁻¹
667	caused by overlapping contributions of OH bending modes and tetrahedral Si
668	vibrations (Gates 2005). The shoulders are better resolved as a function of
669	increasing Fe content; the bands associated with the feature are the Fe-Al-OH and
670	Fe-Mg-OH bends, which are broadened by lattice deformations caused by irregular
671	cation substitution (Grauby et al. 1994; Gates 2005; Andrieux and Petit 2010).
672	All samples save O and N exhibit a weak Fe-O out of plane bending mode between
673	octahedral Fe and Al and the bridging oxygen that contributes to an asymmetrical,
674	broad peak around 687cm ⁻¹ (Grauby et al. 1994; Gates 2005). This feature overlaps
675	with the Mg-Mg-OH bend that occurs closer to 630cm ⁻¹ , which is most apparent in
676	samples H, J.
677	

678 3.5. Raman Spectroscopy

679

680 Raman spectroscopy probes the vibrational modes within the mineral structure, 681 similar to IR spectroscopy methods, but not all bond structures are active in both 682 the IR and Raman, so the two methods are frequently complementary. Like IR 683 measurements, Raman spectroscopy is useful for identifying the stretching and 684 bending modes of the octahedral M-OH interactions and the tetrahedral silicate 685 structure. Smectite clays do not generally have strong Raman responses, due to the 686 low crystallinity and small grain sizes that characterize clay minerals. In particular, 687 the Fe(II)-bearing samples in this study have lower measured intensities and

- 688 greater photoluminescence effects that obscure features relative to the Fe(III)-
- 689 bearing samples.
- 690
- 691 3.5.1. 532nm Green Raman
- 692

693	The Raman spectra produced using the 532nm excitation laser are shown in
694	Figure 9. Most of the Raman peaks between 100 and 1100 cm ⁻¹ contain information
695	about the tetrahedral bonds (Figure 9b). All of the samples have a peak near 185 cm ⁻
696	¹ . It is sharply defined in the Fe(III) bearing samples and sample P, and is detectable
697	but weaker in samples with increasing Fe(II) content. There is not a significant
698	positional change as a function of composition (Figure 9d). Similar peaks near
699	187cm ⁻¹ observed in other nontronites were ascribed to an octahedral asymmetric
700	Fe(III) _{oct} -O _{tet} stretching vibration (Frost and Kloprogge 2000a).
701	
702	A pair of bands at 245 and 280 cm $^{-1}$ occur in all of the Fe(III)-bearing samples
703	(Figure 9b). In Fe(III)-rich samples, both peaks are evident, and the 245 cm ⁻¹ peak is
704	better resolved, whereas in the trioctahedral sample J only the 280 ${ m cm}^{-1}$ peak is
705	detected. The intensity and FWHM of the 245 $ m cm^{-1}$ peak decreases as Mg content
706	increases. In the Fe(II)-bearing samples, peaks around 255cm ⁻¹ are poorly resolved
707	in samples O and M, but the signal intensity in all of the Fe(II)-bearing clays make
708	identification challenging. These features are attributed to a lattice deformation
709	between the non-bridging oxygen atoms within the tetrahedral structure and the
710	octahedral OH molecules (Frost and Kloprogge 2000a).

711

712	Peaks observed in the Fe(III) samples at $360, 465, and 676-687 \text{ cm}^{-1}$ (Figure 9b) are
713	all associated with vibrational modes of the SiO $_4$ unit (Frost and Kloprogge 2000a).
714	The peak at 465 cm ⁻¹ can be resolved in all samples, although it is much weaker in
715	the Fe(II)-bearing samples due overlapping features at higher Raman shift, and does
716	not show a compositional dependence. The 465cm ⁻¹ feature is attributed to the Si-O
717	bending mode in the tetrahedral sheets. The \sim 680cm ⁻¹ feature in shifts in position
718	from longer to shorter wavenumbers as a function of decreasing Fe(III) content, and
719	occurs only as a weak shoulder in the Fe(II) bearing samples except in sample P
720	where it is well resolved. The 680cm ⁻¹ is attributed to Fe(III)-Si-O bending modes
721	between the octahedral and tetrahedral sheets.
722	
722 723	Samples J and H have a sharply defined peak at 432cm ⁻¹ that is much weaker in the
722 723 724	Samples J and H have a sharply defined peak at 432cm ⁻¹ that is much weaker in the rest of the Fe(III)-bearing samples and is not well resolved in the Fe(II)-bearing
722 723 724 725	Samples J and H have a sharply defined peak at 432cm ⁻¹ that is much weaker in the rest of the Fe(III)-bearing samples and is not well resolved in the Fe(II)-bearing samples (Figure 9b). It is plausible that this is a Mg-related feature, i.e. Mg-O or Mg-
722 723 724 725 726	Samples J and H have a sharply defined peak at 432cm ⁻¹ that is much weaker in the rest of the Fe(III)-bearing samples and is not well resolved in the Fe(II)-bearing samples (Figure 9b). It is plausible that this is a Mg-related feature, i.e. Mg-O or Mg- OH, given that these two samples tend to exhibit Mg-related features in the IR that
722 723 724 725 726 727	Samples J and H have a sharply defined peak at 432cm ⁻¹ that is much weaker in the rest of the Fe(III)-bearing samples and is not well resolved in the Fe(II)-bearing samples (Figure 9b). It is plausible that this is a Mg-related feature, i.e. Mg-O or Mg- OH, given that these two samples tend to exhibit Mg-related features in the IR that are not observed in the other more Fe-rich samples. There is also a broad
722 723 724 725 726 727 728	Samples J and H have a sharply defined peak at 432cm ⁻¹ that is much weaker in the rest of the Fe(III)-bearing samples and is not well resolved in the Fe(II)-bearing samples (Figure 9b). It is plausible that this is a Mg-related feature, i.e. Mg-O or Mg- OH, given that these two samples tend to exhibit Mg-related features in the IR that are not observed in the other more Fe-rich samples. There is also a broad absorption near 510cm ⁻¹ that is detected in all of the Fe(III)-bearing samples except
 722 723 724 725 726 727 728 729 	Samples J and H have a sharply defined peak at 432cm ⁻¹ that is much weaker in the rest of the Fe(III)-bearing samples and is not well resolved in the Fe(II)-bearing samples (Figure 9b). It is plausible that this is a Mg-related feature, i.e. Mg-O or Mg- OH, given that these two samples tend to exhibit Mg-related features in the IR that are not observed in the other more Fe-rich samples. There is also a broad absorption near 510cm ⁻¹ that is detected in all of the Fe(III)-bearing samples except J, and is best defined in the aluminous-Fe(III) bearing samples. Its presence cannot
 722 723 724 725 726 727 728 729 730 	Samples J and H have a sharply defined peak at 432cm ⁻¹ that is much weaker in the rest of the Fe(III)-bearing samples and is not well resolved in the Fe(II)-bearing samples (Figure 9b). It is plausible that this is a Mg-related feature, i.e. Mg-O or Mg- OH, given that these two samples tend to exhibit Mg-related features in the IR that are not observed in the other more Fe-rich samples. There is also a broad absorption near 510cm ⁻¹ that is detected in all of the Fe(III)-bearing samples except J, and is best defined in the aluminous-Fe(III) bearing samples. Its presence cannot be confirmed in the Fe(II)-bearing samples due to a very broad peak around 600cm

are also detected in most of the Fe(III) bearing samples. The peak position of the

733 600cm⁻¹ peak shifts to shorter wavenumbers with increasing Fe content, although

734	the trend is weak, and there is not a systematic variation in the 510cm ⁻¹ band
735	position as a function of composition. Due to the compositional dependencies, both
736	of these feature may be related to Fe and Al within the crystal structure (Bishop and
737	Murad 2004; Wang et al. 2015).
738	
739	The octahedral bonds in phyllosilicates are weaker Raman scatters than the
740	tetrahedral silicate structures (Wang et al. 2015). Between $800-1000$ cm ⁻¹ there is
741	very low signal to noise and very broad features that are tentatively attributed to M-
742	OH bending modes (Bishop and Murad 2004) (Figure 9b). In samples A-F, there is a
743	shoulder feature near 885cm ⁻¹ , and in samples D, E and F the hump center shifts
744	towards 920cm ⁻¹ . Samples K-O also have very weak, broad features centered near
745	920cm ⁻¹ . These features may be consistent with the Al-Fe(III)-OH and Al-Al-OH
746	bending modes, respectively (Bishop and Murad 2004). The signal to noise is
747	insufficient to positively identify other features, as laser interference patterns,
748	particularly apparent in J and H, are on a similar intensity scale (Figure 9b).
749	
750	The metal-OH stretching modes show a distinct compositional trend, and occur
751	between Raman shifts of 3500-3700 cm ⁻¹ as broad envelopes of overlapping peaks
752	(Figure 9c). Broader peaks caused by the Al-FeOH and Fe-FeOH stretches occur at
753	3630 and 3570 cm ⁻¹ , respectively, and are detected to varying degrees in all samples
754	except sample J. Sample P is the only Fe(II) bearing samples with detectable
755	stretching modes due to significant photoluminescence that dominated much of the
756	spectral range in the rest of the samples. Sample P has an overall shape consistent

757	with the Mg-rich samples H and J with the Mg-OH related shoulder at 3685 cm ⁻¹ ,
758	although the spectral contrast is reduced compared to the Fe(III)-bearing samples. A
759	low, broad hump centered at 3400 $\rm cm^{-1}$ in most of the samples is attributed to an
760	H_2O stretching mode, consistent with a hydrated interlayer, and is particularly
761	apparent in samples H, I, J and K (de Ligny et al.,2013).
762	
763	3.5.2. 248nm Deep-UV Raman
764	
765	The DUV Raman spectra of the synthetic smectites (Figure 10a) begin at $800 \mathrm{cm}^{-1}$
766	due to the use of an edge filter to suppress a second laser emission line at 700 $\rm cm^{-1}$
767	(252.9 nm). Therefore, any lattice modes of tetrahedral SiO $_4$ unit or octahedral M-
768	OH bending modes between 100-800cm ⁻¹ are not recorded. Every sample has a
769	broad (FWHM of 120-300 cm ⁻¹) peak feature at approximately 1065cm ⁻¹ , attributed
770	to a Si-O stretching mode (Figure 10c). This peak varies between about 1055 and
771	1070cm ⁻¹ ; although the Fe(III)-bearing samples do not demonstrate a clear
772	compositional trend, the Fe(II)-bearing samples show a shift to longer wavelengths
773	with increasing octahedral iron content. The presence of Fe in the samples also had
774	a marked impact on the measured Raman intensity of this Si-O stretch; a clear trend
775	is seen in the integrated peak intensity (after normalization to an internal standard,
776	the atmospheric N_2 signal), which decreased with increasing Fe content (Figure
777	10d). This is not unexpected, as smectites are known to have UV absorption bands
778	that are highly dependent on the concentration of octahedral Fe, particularly at
779	\sim 250 nm, very close to the laser excitation wavelength (Chen <i>et al.</i> , 1979). However,

both samples J and O show less intensity than the trend would predict for Fe-poor
smectite. The intensity of sample P is also compromised by a strong Raman
reflectance peak near 1075cm⁻¹ caused by minor calcite contamination that formed
after synthesis.

784

785 The Metal-OH stretching modes show demonstrable compositional trends (Figure 786 10b, 10e), and unlike in the Green Raman spectra, the Fe(II) bearing smectite 787 spectra are not photoluminescence dominated, such that stretching modes can be 788 detected. Samples J, P, O and N have a broad, multi-modal peak between 3300 and 789 3700 cm^{-1} consistent with the stretching mode of interlayer H₂O. These samples also 790 have distinct shoulders or superimposed peaks around 3660 and 3700cm⁻¹, which, 791 although shifted, are attributed to Mg and Al-OH stretching modes. Fe(III)-bearing 792 samples A-I, and Fe(II)-bearing samples K, L and M all have low intensity peaks that 793 vary between 3560 and 3620 cm⁻¹ with no systematic dependence on Fe or Al 794 content. This feature is attributed to Fe-OH stretching, although there is not a clear 795 distinction between Fe(III) and Fe(II) bonds. 796 797 A minor peak is observed at ~ 1600 cm⁻¹ in all samples, although the intensity

relative to the 1050cm⁻¹ peak varies widely and shows non-systematic

compositional trends (Figure 10a). This peak is not easily assigned, as few studies

- 800 for which Raman spectra are reported for smectites and other clay minerals have
- 801 considered the 1400-3000 cm⁻¹ region (Frost and Kloprogge 2000; Wang et al.
- 802 2015). The peak occurs in the same frequency range as either an H₂O bending mode

803	or the C=C stretching mode (Ferrari and Robertson 2001; Bishop and Murad 2004;
804	Socrates 2004), e.g., the 'G' band of carbonaceous material (Schopf et al. 2005;
805	Quirico et al. 2009). As the H_2O content does not show large variation in the IR or
806	Green Raman measurements, we tentatively assign the strongest ${\sim}1600 { m cm}^{-1}$ peaks
807	to a possible organic contaminant, which may have been picked up during handling.
808	Although a corresponding peak is not definitively observed under 532 nm excitation
809	in samples other than P, N and M, selective detection of carbon-rich contaminants
810	using 248 nm excitation can be attributed to resonant enhancement of C=C
811	vibrations associated with π - π * absorption in the UV(Asher and Johnson 1984;
812	Beegle et al. 2015; Sapers et al. 2019). Previous studies using the same UV Raman
813	instrument have shown that the resonant Raman scattering from certain carbon-
814	rich compounds, such as polycyclic aromatics, can be detected at concentrations as
815	low as 0.1 ppm within mineral matrices (Abbey et al. 2017).
816	
817	3.6. Mössbauer Spectroscopy
818	
819	The significant difference in isomer shift between ferrous and ferric iron make
820	Mössbauer spectroscopy a useful technique to determine iron oxidation state. In
821	general, a Mössbauer spectrum will display a quadrupole doublet for each type of
822	coordination environment. The center of the two lines, the isomer shift, is
823	dependent on various factors of which oxidation state and coordination geometry
824	are most important in clays. In addition to the isomer shift, information about the
825 electric field gradient can be gleaned from the quadrupole splitting (ΔE_Q), which can 826 be used to distinguish different coordination environments.

827

828 Mössbauer data were collected on 11 out of 16 species (Figure 11). Data 829 collection of samples G-J and P was hampered by the low concentrations of iron, 830 especially because samples were not synthesized using ⁵⁷Fe doped material. The 831 Mössbauer spectra collected for samples A-F show either an unresolved quadrupole 832 doublet or quadrupole doublets with a small quadrupole splitting (Figure 11a). The 833 small quadrupole splitting for these samples is characteristic of high-spin Fe(III) in 834 an octahedral coordination environment. Although the spectra of A-F are broad, 835 they can be fit well with a single quadrupole doublet with isomer shifts between 836 0.34 and 0.36 mm s⁻¹ (Table 5). These isomer shifts are characteristic of octahedral 837 Fe(III) sites (Burns, 1994) and within the range of Fe(III) smectites (0.33-0.37 mm s⁻ 838 ¹) (Murad and Schwertmann 1984; Treiman et al. 2014). No ferrous material is 839 present based on the absence of quadrupole doublets with an isomer shift above 1.0 840 mm s⁻¹ (Chemtob et al. 2015). For sample A, an improved fit was obtained with a 841 small tetrahedral site Fe component (7.5%), resulting in an isomer shift of 0.25 and 842 quadrupole splitting of 1.50, but the large overlap between peaks also produced 843 high uncertainty.

844

The Mössbauer spectra collected for K-O show a quadrupole doublet centered between 1.10 and 1.15 mm s⁻¹ characteristic for octahedral Fe(II) and a smaller broad unresolved quadrupole doublet due to Fe(III) (Figure 10b, Table 5). Most

848	spectra of K-O can be fit with well with a single quadrupole doublet with linewidths
849	between 0.4-0.5 mm s ⁻¹ . The high isomer shifts observed (>1 mm s ⁻¹) are
850	characteristic of octahedral Fe(II) sites and are comparable to those observed for
851	similar Fe(II) smectites (Chemtob et al. 2015). Although the spectra recorded by our
852	other techniques show distinct difference upon changing the iron ratio, the
853	quadrupole splitting and isomer shifts (Table 5, and Figure 10c, 10d) do not show
854	any consistent variation with increasing or decreasing Fe content. The absence of
855	any systematic variation with Fe content is consistent with Mössbauer observations
856	made for the jarosite family (McCollom et al. 2014) and for Fe(II) smectites by
857	Chemtob <i>et al</i> 2015.
858	
859	Fitting the areas of the doublets yields Fe(II)/Fe(III) ratios in close agreement
860	with those determined by other techniques (Table 5). The ratios of samples K and L
061	
001	deviate more, which is likely due to oxidation during storage or the handling
862	deviate more, which is likely due to oxidation during storage or the handling process of these samples. The Fe(II) ratio measured in sample K decreased between
862 863	deviate more, which is likely due to oxidation during storage or the handling process of these samples. The Fe(II) ratio measured in sample K decreased between subsequent measurements before and after the sample was handled in air (Figure
861 862 863 864	 deviate more, which is likely due to oxidation during storage or the handling process of these samples. The Fe(II) ratio measured in sample K decreased between subsequent measurements before and after the sample was handled in air (Figure S1). Due to the oxidation, the ratios only represent a lower bound on the Fe(II)
862 863 864 865	 deviate more, which is likely due to oxidation during storage or the handling process of these samples. The Fe(II) ratio measured in sample K decreased between subsequent measurements before and after the sample was handled in air (Figure S1). Due to the oxidation, the ratios only represent a lower bound on the Fe(II) content at the time of synthesis.
862 863 864 865 866	deviate more, which is likely due to oxidation during storage or the handling process of these samples. The Fe(II) ratio measured in sample K decreased between subsequent measurements before and after the sample was handled in air (Figure S1). Due to the oxidation, the ratios only represent a lower bound on the Fe(II) content at the time of synthesis.

and the temperature of sample measurement can vary under planetary conditions,

869 we investigated the temperature dependency on the isomer shift two samples,

870 Fe(III)-bearing sample A and Fe(II)-bearing K. Spectra were recorded between 80 and

871	320 K (Figure 12). In line with work on octahedral Fe(III) by e.g. DeGraven and Alboom
872	(1991), the isomer shift of both samples exhibits a dramatic decrease of 0.14 mm s ⁻¹ upon
873	cooling the samples from 320 to 80K (Table 6). The difference of 0.1 mm s ⁻¹ between
874	293 K and 80 K is the same that observed for certain nontronites (Murad et al. 1987). No
875	additional hyperfine features were resolved at lower temperatures and therefore the other
876	samples were collected at room temperature, which is also consistent with previous
877	studies (Chemtob et al., 2015, McCollom et al., 2014, Morris et al., 2006).
878	
879	4. Implications for planetary remote sensing and in-situ exploration
880	
881	This study demonstrates the synergies and limits of multiple measurement types
882	for the detection of smectite chemistry and oxidation state on planetary surfaces to
883	infer past geochemical conditions. Reflectance spectroscopy has previously been
884	shown to detect alteration minerals, including smectite clays, at levels ${\sim}10\%$ in
885	natural mineral assemblages (Ehlmann et al. 2012; Greenberger et al. 2012). We
886	demonstrate that smectite composition and the dominant oxidation state of Fe in
887	the octahedral state can be identified in the near infrared on the basis of their metal-
888	OH vibrational modes. The 2.0-3 μ m region is particularly useful. The fundamental
889	M-OH stretching modes between 2.6-2.9 μm vary systematically with chemistry, and
890	the metal-OH minimum wavelength increases for smectites with Mg, Al, Fe(II) and
891	Fe(III) respectively. Smectites dominated by Mg or Fe(III) are spectrally distinct,
892	whereas Al-rich and Fe(II) rich smectites both have minima near 2.76 (Figure 7).
893	This absorption has been interpreted to represent Al phyllosilicates in Ceres bright

894	spots (De Sanctis et al. 2016), but our study shows that the spectral pattern would
895	also be consistent with the presence of Fe(II) smectites. Use of multiple wavelength
896	regions in the NIR can yield unique solutions, if overtone and combination
897	absorptions are present in remotely sensed data. The ${\sim}2.24~\mu\text{m}$ absorption tracks
898	Mg substitution well, and the M-OH feature near 2.32 is diagnostic of Fe(III) vs.
899	Fe(II), shifting considerably with Mg substitution in Fe(II) smectites only (Figure 5).
900	This multiple wavelength approach extends previous analyses of the 2.3 $\mu\text{m}\mbox{'s}$
901	variation with octahedral sheet occupancy and iron content (Michalski et al., 2015).
902	The overtone and fundamental H_2O stretches at 1.9 and $3\mu m$ provide additional
903	information on the degree of hydration in smectites. The visible wavelength region
904	can provide qualitative auxiliary information about Fe oxidation, but the electronic
905	absorptions observed between 0.4-1 μm are not unique to smectite clays, so the M-
906	OH features are more diagnostic of smectite speciation, particularly in mineral
907	assemblages.
908	
909	As instrument builders consider implementation approaches, spatial and spectral

resolution, as well as signal-to-noise (SNR), are key considerations to enable
discrimination of the diagnostic absorptions. Many NIR reflectance spectrometers,
such as the Mars Express/OMEGA, MRO/CRISM, Dawn/VIR, Osiris-Rex/OVIRS and
Cassini/VIMS, are sensitive from ~1-4/5µm with sufficient spectral resolution to
distinguish the features discussed above, and provide global views of planetary
surfaces at relatively large pixel footprints between tens and hundreds of meters
square. Higher spatial resolution, of course, allows mineral identifications to be

917	better associated with particular strata or geomorphic features, improving geologic
918	interpretations and providing further constraints on alteration environments.
919	Detailed analysis of spectral variation on the hand-sample scale (mm-cm) is
920	particularly useful to identify alteration textures and spatial patterns, all of which
921	provide key context in understanding the alteration environment. Such fine
922	resolution VNIR spectral analysis will be employed for the first time on Mars
923	onboard the Mars-2020 rover by the SuperCam instrument (Wiens et al. 2017) and
924	on the Exo-Mars rover by Ma_MISS (De Sanctis et al. 2017) and micrOmega (Bibring
925	et al. 2017).

927 In the mid-infrared, the silicate stretching and bending modes active in smectite 928 clays are common to other silicates as well, and the M-OH bending modes are 929 discernable but overlap and combine, making direct identification of a particular 930 smectite species challenging, particularly if the measurement is of a bulk mineral 931 assemblage. Michalski et al. (2005) demonstrated how the Si-O and M-O bends 932 changed in character between dioctahedral and trioctahedral smectites. Here we 933 demonstrate that the 450 cm⁻¹ absorption systematically varies in position with 934 octahedral Fe(III) and Fe(II) content, although other information from the VNIR (or 935 Mössbauer in-situ) must be brought to bear to determine the oxidation state and the 936 the relationship between absorption position and Fe content (Figure 8b). The Mars 937 Global Surveyor Thermal Emission Spectrometer (TES) and Mars Exploration Rover 938 Mini-TES thermal emission instruments in orbit around and on the surface of Mars, 939 respectively, have been used with this multi-instrument approach to conduct

940 surveys with other orbiting or payload elements specifically characterizing smectite
941 minerals and alteration phases (Michalski et al. 2006, 2010; Ruff and Christensen
942 2007). OTES on Osiris-REX, along with OVIRS, is also characterizing the
943 phyllosilicates on the asteroid Bennu (Hamilton et al., 2019). With our expanded
944 spectral libraries, more refined characterization of smectites from MIR data is now
945 possible.

946

947 Raman spectroscopy is a new addition to planetary science instrumentation, and 948 is opening new avenues for in-situ remote mineralogical analysis of planetary 949 surfaces, as well as the detection of organic components. The green Raman 950 SuperCam Raman system is designed to obtain patterns from several meters distant 951 to the target from on the mast of the Mars 2020 rover (Wiens et al. 2017), and the 952 deep-UV Raman SHERLOC system will interrogate rock surfaces on the micrometer 953 scale from its position on the Mars 2020 rover arm (Beegle et al. 2017). Our data 954 provides the first Raman spectral libraries as a function of their chemistry (Figure 9, 955 10). Precise identification of smectite clays, and clay minerals in general, will likely 956 be a challenge in natural mineral assemblages due to the generally low Raman 957 intensities inherent to clay minerals and sensitivity to complex lattice variation. 958 However, the M-OH stretching modes between 3000-4000cm⁻¹ in both Green and 959 Deep UV Raman data sets will useful for identifying phyllosilicates and qualitatively 960 judging their composition. In both Raman excitation modes, it is possible in some 961 cases to detect the Fe(III), Al, and Mg-OH stretching modes, although intensity 962 decreases significantly as Fe content increases. The M-OH bending modes and

963	silicate features between 400-1000cm ⁻¹ require high signal to noise to be
964	distinguished, and are likely to be overlapping with more crystalline phases in
965	natural mineral assemblages that would mask phyllosilicate detection.
966	Photoluminescence, which is frequently much stronger than Raman signal, is also a
967	likely obstacle in identifying mineral assemblages on planetary surfaces; Fe(II)
968	bearing smectites are apparently more susceptible to photoluminescence when
969	using a 532nm excitation laser than DUV (Figure 10). Carrying more than one
970	excitation laser, as the Mars 2020 rover is planning, may help mitigate
971	photoluminescence concerns, as switching wavelengths can reduce the effect for a
972	given material. Thus, Raman is best used in concert with other approaches for
973	characterization smectite-bearing mineral assemblages.
974	
975	In-situ XRD analyses offer the most quantitative means to measure the absolute
976	abundance of smectite clays and their coordination (Figure 3). The Chemistry and
977	Mineralogy Analyzer instrument (CheMin), an X-Ray diffractometer onboard the
978	Mars Science Laboratory rover Curiosity, has demonstrated the common occurrence
979	of smectite clays in the sedimentary deposits within Gale Crater (Vaniman et al.
980	2013; Bristow et al. 2018). Notably, our sample set of synthetic smectites have peak

981 positions, as corrected for measurements using Co Ka radiation (Table 2), that cover

- 982 the full range of observations of martian smectites in Gale crater (Vaniman et al.
- 983 2013; Treiman et al. 2014; Bristow et al. 2018). This demonstrates that, potentially,
- 984 the compositions of the data set presented here is representative of the martian
- 985 samples, and that all martian observations can be consistent with the presence of a

986 single smectite, and that mixtures of dioctahedral and trioctahedral phases are not 987 required to describe the features observed (e.g., Bristow et al., 2018). The CheMin 988 instrument requires the use of the position of the (02.11) peak to calculate the 989 octahedral site occupancy of smectites measured in Gale Crater, Mars, as the (06,33) 990 peak occurs outside the diffraction range. Our results demonstrate that it is critical 991 to recognize that peak positions of the (02,11) bands produce substantial systematic 992 errors if used to obtain lattice parameters of smectites. Use of the (06.33) band peak 993 positions, widely employed in terrestrial studies of clays but inaccessible by the 994 ChemMin instrument on MSL, yields an order of magnitude smaller systematic 995 error. Thus, as with prior investigations, our study shows the value of incorporating 996 the (06.33) peak into instrument diffraction ranges in order to best distinguish 997 dioctahedral and trioctahedral smectites. In most laboratory settings, clay mineral 998 fractions are separated from the rest of the sample, making measurements more 999 straightforward, but martian samples are measured in bulk, which can further 1000 obfuscate precise analysis and calculation of lattice parameters. Consequently, 1001 identifications of specific phyllosilicate phases are most easily made when applying 1002 secondary information. On the Curiosity rover, this is water release temperature from Evolved Gas Analysis with the SAM instrument (Bristow et al. 2015). VNIR, 1003 1004 MIR and Mössbauer are also highly synergistic because they provide information on 1005 the Fe oxidation state that XRD alone cannot. 1006

1007 Mössbauer spectra can aid in confirming detections of smectite minerals using
1008 the measured isomer shifts and patterns in quadrupole splittings. Particularly,

1009	Mössbauer measurements provide a quantitative and highly sensitive means to
1010	determine Fe(II)/Fe(III) ratios better all other analysis techniques discussed here,
1011	but do not demonstrate uniquely identifying patterns that distinguish smectites of
1012	varying quantitative Fe content from one another. Consequently, Mössbauer
1013	spectroscopy is best utilized in conjunction with other in-situ approaches to
1014	examine alteration mineralogy. The Mössbauer parameters reported here, derived
1015	from room temperature measurements, can be used in direct comparison to extra-
1016	terrestrial Mössbauer measurements, despite overall ambient temperature
1017	differences between the library and in-situ measurements (Morris et. al., 2006). The
1018	temperature dependence derives from the temperature gradient between the
1019	sample and source, which while highlighting hyperfine structures, renders
1020	comparisons to measurements under different temperature gradient conditions ill-
1021	posed. However, Mössbauer measurements made in extra-terrestrial settings, such
1022	as by the Mars Exploration Rovers, have kept both the source and samples
1023	(planetary surfaces) at the same ambient temperature. Our measurements also have
1024	a negligible temperature difference between source and sample measured at room
1025	temperature, so we thus mitigate the temperature dependencies of the derived
1026	parameters, creating a database for application to determination of smectite
1027	presence and Fe.
1028	

1029 Collectively, the data presented here are foundational for the study of smectite clays1030 across the solar system. The ability to determine the coordination, crystal chemistry,

- 1031 and oxidation state will enable new insights into the geological and environmental
- 1032 evolution of planetary bodies.
- 1033
- 1034
- 1035 5. Acknowledgements
- 1036 This work was funded by a NASA Solar Systems Workings grant (NNX15AH53G) to
- 1037 B.L.E. Thanks to George Rossman for the use of his ATR and Raman instruments, as
- 1038 well as sage advice. Thanks also to Rohit Bhartia for use of the DUV Raman system.
- 1039 We also thank our reviewers, Benoit Dubacq and Jebril Hadi, for extremely
- 1040 thoughtful reviews that greatly improved the quality of our manuscript.

- 1042
- 1043 6. References
- *References noted by [#] are source materials of data in Figure 1.
- 1045 Abbey, W.J., Bhartia, R., Beegle, L.W., DeFlores, L., Paez, V., Sijapati, K., Sijapati, S.,
- 1046 Williford, K., Tuite, M., Hug, W., and others (2017) Deep UV Raman
- 1047 spectroscopy for planetary exploration: The search for in situ organics.
- 1048 Icarus, 290, 201–214.
- 1049 Ammannito, E., DeSanctis, M.C., Ciarniello, M., Frigeri, A., Carrozzo, F.G., Combe, J.-P.,
- 1050 Ehlmann, B.L., Marchi, S., McSween, H.Y., Raponi, A., and others (2016)
- 1051 Distribution of phyllosilicates on the surface of Ceres. Science, 353, aaf4279.

1052	Andrieux, P., and Petit, S. (2010) Hydrothermal synthesis of dioctahedral smectites:
1053	The Al–Fe3+ chemical series: Part I: Influence of experimental conditions.
1054	Applied Clay Science, 48, 5–17.
1055	[1] April, R.H., and Keller, D.M. (1992) Saponite and vermiculite in amygdales of the
1056	Granby Basaltic Tuff, Connecticut Valley. Clays and Clay Minerals, 40, 22-31.
1057	Arvidson, R.E., Squyres, S.W., Bell, J.F., Catalano, J.G., Clark, B.C., Crumpler, L.S., de
1058	Souza, P.A., Fairén, A.G., Farrand, W.H., Fox, V.K., and others (2014) Ancient
1059	Aqueous Environments at Endeavour Crater, Mars. Science, 343.
1060	Asher, S.A., and Johnson, C.R. (1984) Raman spectroscopy of a coal liquid shows that
1061	fluorescence interference is minimized with ultraviolet excitation. Science,
1062	225, 311–313.
1063	Badaut, D., Besson, G., Decarreau, A., and Rautureau, R. (1985) Occurrence of a
1064	ferrous, trioctahedral smectite in Recent sediments of Atlantis II Deep, Red
1065	Sea. Clay Minerals, 20, 389–404.
1066	Beegle, L., Bhartia, R., White, M., DeFlores, L., Abbey, W., Wu, YH., Cameron, B.,
1067	Moore, J., Fries, M., Burton, A., and others (2015) SHERLOC: Scanning
1068	habitable environments with Raman amp; luminescence for organics amp;
1069	chemicals. In 2015 IEEE Aerospace Conference pp. 1–11. Presented at the
1070	2015 IEEE Aerospace Conference.

1071	Beegle, L.W., Bhartia, R., Carrier, B., DeFlores, L., Abbey, W., Asher, S., Burton, A.,
1072	Fries, M., Conrad, P., Clegg, S., and others (2017) The SHERLOC Investigation.
1073	Lunar and Planetary Science Conference, 2839.
1074	Bergmann, J., Friedel, P., and Kleeberg, R. (1998) BGMN - a new fundamental
1075	parameters based Rietveld program for laboratory X-ray sources, it's use in
1076	quantitative analysis and structure investigations. Commission on Powder
1077	Diffraction (IUCr) Newsletter, 20, 5–8.
1078	[2] Besson, G., and Tchoubar, C. (1972) Détermination du groupe de symétrie du
1079	feuillet élémentaire de la beidellite. Comptes Rendus Hebdomadaires des
1080	Séances de l'Académie Des Sciences Serie D, 275, 633-636.
1081	Bibring, JP., Langevin, Y., Mustard, J.F., Poulet, F., Arvidson, R., Gendrin, A., Gondet,
1082	B., Mangold, N., Pinet, P., Forget, F., and others (2006) Global Mineralogical
1083	and Aqueous Mars History Derived from OMEGA/Mars Express Data. Science,
1084	312, 400–404.
1085	Bibring, JP., Hamm, V., Pilorget, C., Vago, J.L., and the MicrOmega Team (2017) The
1086	MicrOmega Investigation Onboard ExoMars. Astrobiology, 17, 621–626.
1087	Bishop, J. L., and Murad (2004) Characterization of minerals and biogeochemical
1088	markers on Mars: A Raman and IR spectroscopic study of montmorillonite.
1089	Journal of Raman Spectroscopy, 35, 480–486.

1090	Bishop, J.L., Pieters, C.M., and Edwards, J.O. (1994) Infrared Spectroscopic Analyses
1091	on the Nature of Water in Montmorillonite. Clays and Clay Minerals, 42, 702–
1092	716.

Bishop, J. L., Dobrea, E.Z.N., McKeown, N.K., Parente, M., Ehlmann, B.L., Michalski, J.R.,
Milliken, R.E., Poulet, F., Swayze, G.A., Mustard, J.F., and others (2008a)
Phyllosilicate Diversity and Past Aqueous Activity Revealed at Mawrth Vallis,
Mars. Science, 321, 830–833.

- 1097 Bishop, J.L., Lane, M.D., Dyar, M.D., and Brown, A.J. (2008b) Reflectance and emission
- 1098 spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-

serpentines, chlorites and micas. Clay Minerals, 43, 35–54.

1100 Bishop, J. L., Lane, M.D., Dyar, M.D., and Brown, A.J. (2008c) Reflectance and

1101 emission spectroscopy study of four groups of phyllosilicates: smectites,

1102 kaolinite-serpentines, chlorites and micas. Clay Minerals, 43, 35–54.

- 1103 Brindley, G.W., and Brown, G. (1980) Crystal structures of clay minerals of clay
- 1104 minerals and their X-ray identification. Mineralogical Society Monograph.
- 1105 Bristow, T.F., Bish, D.L., Vaniman, D.T., Morris, R.V., Blake, D.F., Grotzinger, J.P.,
- 1106 Rampe, E.B., Crisp, J.A., Achilles, C.N., Ming, D.W., and others (2015) The
- 1107 origin and implications of clay minerals from Yellowknife Bay, Gale crater,
- 1108 Mars. American Mineralogist, 100, 824–836.

1109	Bristow, T.F., Rampe, E.B., Achilles, C.N., Blake, D.F., Chipera, S.J., Craig, P., Crisp, J.A.,
1110	Marais, D.J.D., Downs, R.T., Gellert, R., and others (2018) Clay mineral
1111	diversity and abundance in sedimentary rocks of Gale crater, Mars. Science
1112	Advances, 4, eaar3330.
1113	Bunch, T.E., and Chang, S. (1980) Carbonaceous chondrites—II. Carbonaceous
1114	chondrite phyllosilicates and light element geochemistry as indicators of
1115	parent body processes and surface conditions. Geochimica et Cosmochimica
1116	Acta, 44, 1543–1577.
1117	Burns, R.G. (1970) Crystal field spectra and evidence of cation ordering in olivine
1118	minerals. American Mineralogist, 55, 1608–1632.
1119	Burns, R.G. (1993) Rates and mechanisms of chemical weathering of ferromagnesian
1120	silicate minerals on Mars. Geochimica et Cosmochimica Acta, 57, 4555–4574.
1121	Carter, J., Poulet, F., Bibring, JP., Mangold, N., and Murchie, S. (2013) Hydrous
1122	minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers:
1123	Updated global view. Journal of Geophysical Research: Planets, 118, 831–858.
1124	[3] Castellini, E., Malferrari, D., Bernini, F., Brigatti, M.F., Castro, G.R., Medici, L.,
1125	Mucci, A., and Borsari, M. (2017) Baseline Studies of the Clay Minerals Society
1126	Source Clay Montmorillonite STx-1b. Clays and Clay Minerals, 65, 220-233.

Catalano, J.G. (2013) Thermodynamic and mass balance constraints on iron-bearing
phyllosilicate formation and alteration pathways on early Mars. Journal of
Geophysical Research: Planets, 118, 2124–2136.
Catling, D.C., and Moore, J.M. (2003) The nature of coarse-grained crystalline
hematite and its implications for the early environment of Mars. Icarus, 165,
277–300.
Chemtob, S.M., Nickerson, R.D., Morris, R. V, Agresti, D.G., and Catalano, J.G. (2015)
Synthesis and structural characterization of ferrous trioctahedral smectites:
Implications for clay mineral genesis and detectability on Mars. Journal of
Geophysical Research: Planets, 120, 1119–1140.
Chemtob, S.M., Nickerson, R.D., Morris, R. V, Agresti, D.G., and Catalano, J.G. (2017)
Oxidative alteration of ferrous smectites and implications for the redox
evolution of early Mars. Journal of Geophysical Research: Planets,
2017JE005331.
Clark, R.N., King, T.V.V., Klejwa, M., Swayze, G.A., and Vergo, N. (1990) High spectral
Clark, R.N., King, T.V.V., Klejwa, M., Swayze, G.A., and Vergo, N. (1990) High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical
Clark, R.N., King, T.V.V., Klejwa, M., Swayze, G.A., and Vergo, N. (1990) High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research: Solid Earth, 95, 12653–12680.
 Clark, R.N., King, T.V.V., Klejwa, M., Swayze, G.A., and Vergo, N. (1990) High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research: Solid Earth, 95, 12653–12680. [4] Curtis, C.D. (1976) Unmixed Ca²⁺-Mg²⁺ saponite at Calton Hill, Derbyshire. Clay

1146	[5] Daynyak, L.G., Drits, V.A., Kudryavtsev, D.I., Simanovich, I.M., and Slonimskaya,
1147	M.V. (1981) Crystal chemical specificity of trioctahedral smectites: Products
1148	of secondary alteration of oceanic and continental basalts. Doklady Akademii
1149	Nauk SSSR, 259, 1458-1462.
1150	De Sanctis, M.C., Ammannito, E., Raponi, A., Marchi, S., McCord, T.B., McSween, H.Y.,
1151	Capaccioni, F., Capria, M.T., Carrozzo, F.G., Ciarniello, M., and others (2015)
1152	Ammoniated phyllosilicates with a likely outer Solar System origin on (1)
1153	Ceres. Nature, 528, 241–244.
1154	De Sanctis, M.C., Altieri, F., Ammannito, E., Biondi, D., De Angelis, S., Meini, M.,
1155	Mondello, G., Novi, S., Paolinetti, R., Soldani, M., and others (2017) Ma_MISS
1156	on ExoMars: Mineralogical Characterization of the Martian Subsurface.
1157	Astrobiology, 17, 612–620.
1158	[6] Desprairies, A., Tremblay, P., and Laloy, C. (1989) Secondary Mineral
1159	Assemblages in a Volcanic Sequence Drilled during ODP Leg 104 in the
1160	Norwegian Sea. Proceedings of the Ocean Drilling Program, Scientific Results,
1161	104, 397-409.
1162	Decarreau, A., and Bonnin, D. (1986) Synthesis and crystallogenesis at low
1163	temperature of Fe(III)-smectites by evolution of coprecipitated gels:
1164	experiments in partially reducing conditions. Clay Minerals, 21, 861–877.

1165	Decarreau, A., Petit, S., Martin, F., Farges, F., Vieillard, P., and Joussein, E. (2008)
1166	Hydrothermal synthesis, between 75 and 150° C, of high-charge, ferric
1167	nontronites. Clays and Clay Minerals, 56, 322–337.
1168	de Ligny, D., Guillaud, E., Gailhanou, H., & Blanc, P. (2013). Raman Spectroscopy of
1169	Adsorbed Water in Clays: First Attempt at Band Assignment. Procedia Earth and
1170	Planetary Science, 7, 203–206.
1171	Doebelin, N., and Kleeberg, R. (2015) Profex: a graphical user interface for the
1172	Rietveld refinement program BGMN. Journal of Applied Crystallography, 48,
1173	1573–1580.
1174	Ehlmann, B.L., and Edwards, C.S. (2014) Mineralogy of the Martian Surface. Annual
1175	Review of Earth and Planetary Sciences, 42, 291–315.
1176	Ehlmann, B.L., Mustard, J.F., Murchie, S.L., Bibring, JP., Meunier, A., Fraeman, A.A.,
1177	and Langevin, Y. (2011) Subsurface water and clay mineral formation during
1178	the early history of Mars. Nature, 479, 53–60.
1179	Ehlmann, B.L., Bish, D.L., Ruff, S.W., and Mustard, J.F. (2012) Mineralogy and
1180	chemistry of altered Icelandic basalts: Application to clay mineral detection
1181	and understanding aqueous environments on Mars. Journal of Geophysical
1182	Research: Planets, 117, E00J16.
1183	Ferrari, A.C., and Robertson, J. (2001) Resonant Raman spectroscopy of disordered,
1184	amorphous, and diamondlike carbon. Physical Review B, 64, 075414.

1185 Fox, V.K., Arvic	lson, R.E., Guinn	ess, E.A., McLenn	ian, S.M., Catalanc	, J.G., Murchie, S.L.,
-----------------------	-------------------	-------------------	---------------------	------------------------

- and Powell, K.E. (2016) Smectite deposits in Marathon Valley, Endeavour
- 1187 Crater, Mars, identified using CRISM hyperspectral reflectance data.

1188 Geophysical Research Letters, 43, 2016GL069108.

- Frost, R.L., and Kloprogge, J.T. (2000a) Raman Spectroscopy of Nontronites. Applied
 Spectroscopy, 54, 402–405.
- 1191 Frost, R.L, and Kloprogge, J.T. (2000b) Vibrational spectroscopy of ferruginous
- smectite and nontronite. Spectrochimica Acta Part A: Molecular and
- Biomolecular Spectroscopy, 56, 2177–2189.
- 1194 [7] Gailhanou, H., Blanc, P., Rogez, J., Mikaelian, G., Kawaji, H., Olives, J., Amouric, M.,
- 1195 Denoyel, R., Bourrelly, S., Montouillout, V., Vieillard, P., Fialips, C.I., Michau, N.,
- and Gaucher, E.C. (2012) Thermodynamic properties of illite, smectite and
- 1197 beidellite by calorimetric methods: Enthalpies of formation, heat capacities,
- 1198 entropies and Gibbs free energies of formation. Geochimica et Cosmochimica
- Acta, 89, 279-301.
- 1200 Gainey, S.R., Hausrath, E.M., Adcock, C.T., Tschauner, O., Hurowitz, J.A., Ehlmann, B.L.,
- 1201 Xiao, Y., and Bartlett, C.L. (2017) Clay mineral formation under oxidized
- 1202 conditions and implications for paleoenvironments and organic preservation
- 1203 on Mars. Nature Communications, 8, 1–7.

1204	[8]Gates, W.P. (2005) Infrared spectroscopy and the chemistry of dioctahedral
1205	smectites. In J.T. Kloprogge, Ed., CMS Workshop Lectures Vol. 13. Clay
1206	Minerals Society.
1207	Gates, W.P., Petit, S., and Madejová, J. (2017) Chapter 7 - Applications of NIR/MIR to
1208	Determine Site Occupancy in Smectites. In W.P. Gates, J.T. Kloprogge, J.
1209	Madejová, and F. Bergaya, Eds., Developments in Clay Science Vol. 8, pp. 200–
1210	221. Elsevier.
1211	[9] Gaudin, A., Petit, S., Rose, J., Martin, F., Decarreau, A., Noack, Y., and Borschneck,
1212	D. (2004) The accurate crystal chemistry of ferric smectites from the lateritic
1213	nickel ore of Murrin Murrin (Western Australia). II. Spectroscopic (IR and
1214	EXAFS) approaches. Clay Minerals, 39, 453-467.
1215	Grauby, O., Petit, S., Decarreau, A., and Baronnet, A. (1993) The beidellite-saponite
1216	series: an experimental approach. European Journal of Mineralogy, 623–636.
1217	Grauby, O., Petit, S., Decarreau, A., and Baronnet, A. (1994) The nontronite-saponite
1218	series: An experimental approach. European Journal of Mineralogy, 99–112.
1219	Greenberger, R.N., Mustard, J.F., Kumar, P.S., Dyar, M.D., Breves, E.A., and Sklute, E.C.
1220	(2012) Low temperature aqueous alteration of basalt: Mineral assemblages
1221	of Deccan basalts and implications for Mars. Journal of Geophysical Research:
1222	Planets, 117, E00J12.

1223	Grotzinger, J.P., Sumner, D.Y., Kah, L.C., Stack, K., Gupta, S., Edgar, L., Rubin, D., Lewis,
1224	K., Schieber, J., Mangold, N., and others (2014) A Habitable Fluvio-Lacustrine
1225	Environment at Yellowknife Bay, Gale Crater, Mars. Science, 343.
1226	Guven, N. (1988) Smectites. Reviews in Mineralogy and Geochemistry, 19, 497–559.
1227	Hunt, G. (1977) Spectral signatures of particulate minerals in the visible and near
1228	infrared. GEOPHYSICS, 42, 501–513.
1229	[10] Inoue, A., and Utada, M. (1991) Smectite-to-chlorite transformation in
1230	thermally metamorphosed volcanoclastic rocks in the Kamikita area,
1231	northern Honshu, Japan. American Mineralogist, 76, 628-640.
1232	Keeling, J.L., Raven, M.D., and Gates, W.P. (2000) Geology and characterization of
1233	two hydrothermal nontronites from weathered metamorphic rocks at the
1234	Uley graphite mine, South Australia. Clays and Clay Minerals, 48, 537–548.
1235	[11] Kimbara, K., and Honda, S. (1975) An iron-rich saponite-like mineral found in
1236	the Moriyama volcanic rocks, Gojome, Akita Prefecture, Japan. Bull. Geol.
1237	Surv. Japan, 26, 37-40.
1238	[12] Kodama, H., Dekimpe, C.R., and Dejou, J. (1988) Ferrian saponite in a gabbro
1239	saprolite at Mont Mégantic, Quebec. Clays and Clay Minerals, 36, 102-110.
1240	Kohyama, N., Shimoda, S., and Sudo, T. (1973) Iron-rich saponite (ferrous and ferric
1241	forms). Clays and Clay Minerals, 21, 229-237.

1242	Kohyama, N., Shimoda, S., and Sudo, T. (1973) Iron-Rich Saponite (Ferrous and
1243	Ferric Forms). Clays and Clay Minerals, 21, 229–237.
1244	[13] Koster, H.M., Ehrlicher, U., Gilg, H.A., Jordan, R., Murad, E., and Onnich, K. (1999)
1245	Mineralogical and chemical characteristics of five nontronites and Fe-rich
1246	smectites. Clay Minerals, 34, 579-599.
1247	Lajarige, C., Petit, S., Augas, C., and Decarreau, A. (1998) Stabilisation of Fe2+ ions in
1248	synthetic ferroan smectites. Comptes Rendus de l'Academie des Sciences
1249	Series IIA Earth and Planetary Science, 12, 789–794.
1250	Madejová, J., and Pálková, H. (2017) Chapter 13 - NIR Contribution to The Study of
1251	Modified Clay Minerals. In W.P. Gates, J.T. Kloprogge, J. Madejová, and F.
1252	Bergaya, Eds., Developments in Clay Science Vol. 8, pp. 447–481. Elsevier.
1253	Madejová, J., Komadel, P., and Číčel, B. (1994) Infrared study of octahedral site
1254	populations in smectites. Clay Minerals, 29, 319–326.
1255	Madejová, J., Bujdák, J., Petit, S., and Komadel, P. (2000) Effects of chemical
1256	composition and temperature of heating on the infrared spectra of Li-
1257	saturated dioctahedral smectites. (II) Near- infrared region. Clay Minerals,
1258	35, 753–761.
1259	Madejová, J., Janek, M., Komadel, P., Herbert, HJ., and Moog, H.C. (2002) FTIR
1260	analyses of water in MX-80 bentonite compacted from high salinary salt
1261	solution systems. Applied Clay Science, 20, 255–271.

1262	McCollom, T.M., Ehlmann, B.L., Wang, A., Hynek, B.M., Moskowitz, B., and Berquó, T.S.
1263	(2014) Detection of iron substitution in natroalunite-natrojarosite solid
1264	solutions and potential implications for Mars. American Mineralogist, 99,
1265	948-964.
1266	[14] Mermut, A.R., and Cano, A.F. (2001) Baseline studies of The Clay Minerals
1267	Society Source Clays: Chemical analyses of major elements. Clays and Clay
1268	Minerals, 49, 381-386.
1269	Michalski, J., Poulet, F., Bibring, JP., and Mangold, N. (2010) Analysis of
1270	phyllosilicate deposits in the Nili Fossae region of Mars: Comparison of TES
1271	and OMEGA data. Icarus, 206, 269–289.
1272	Michalski, J.R., Kraft, M.D., Sharp, T.G., Williams, L.B., and Christensen, P.R. (2006)
1273	Emission spectroscopy of clay minerals and evidence for poorly crystalline
1274	aluminosilicates on Mars from Thermal Emission Spectrometer data. Journal
1275	of Geophysical Research: Planets, 111, E03004.
1276	Michalski, J.R., Cuadros, J., Bishop, J.L., Darby Dyar, M., Dekov, V., and Fiore, S. (2015)
1277	Constraints on the crystal-chemistry of Fe/Mg-rich smectitic clays on Mars
1278	and links to global alteration trends. Earth and Planetary Science Letters,
1279	427, 215–225.
1280	Moore, D.M., and Reynolds, R.C. (1997) X-Ray Diffraction and the Identification and
1281	Analysis of Clay Minerals. Oxford University Press, New York.

- Morgan, J., and Warren, B.E. (1938) X-Ray Analysis of the Structure of Water. The
 Journal of Chemical Physics, 6, 666–673.
- 1284 Morris, R. V., Klingelhöfer, G., Schröder, C., Rodionov, D. S., Yen, A., Ming, D. W.,
- 1285 Souza, P. A. de, Fleischer, I., Wdowiak, T., Gellert, R., Bernhardt, B., Evlanov, E.
- 1286 N., Zubkov, B., Foh, J., Bonnes, U., Kankeleit, E., Gütlich, P., Renz, F., Squyres, S.
- 1287 W., & Arvidson, R. E. (2006). Mössbauer mineralogy of rock, soil, and dust at
- 1288 Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on
- 1289 the plains and pervasively altered basalt in the Columbia Hills. *Journal of*
- 1290 *Geophysical Research: Planets, 111*(E2).
- 1291 https://doi.org/10.1029/2005JE002584
- 1292 Murad, E., and Schwertmann, U. (1984) The influence of crystallinity on the
- 1293 Mössbauer spectrum of lepidocrocite. Mineralogical Magazine, 48, 507–511.
- 1294 [15] Niu, B., and Yoshimura, T. (1996) Smectite conversion in diagenesis and low
- grade hydrothermal alteration from Neogene basaltic marine sediments inNiigata Basin, Japan. Clay science, 10, 37-56.
- [16] Parthasarathy, G., Choudary, B.M., Sreedhar, B., Kunwar, A.C., and Srinivasan, R.
 (2003) Ferrous saponite from the Deccan Trap, India, and its application in
 adsorption and reduction of hexavalent chromium. American Mineralogist,
 88, 1983-1988.

1301	Petit, S., Decarreau, A., Gates, W., Andrieux, P., and Grauby, O. (2015) Hydrothermal
1302	synthesis of dioctahedral smectites: The Al–Fe3+ chemical series. Part II:
1303	Crystal-chemistry. Applied Clay Science, 104, 96–105.
1304	[17] Post, J.L. (1984) Saponite from near Ballarat, California. Clays and Clay
1305	Minerals, 32, 147-153.
1306	Poulet, F., Bibring, JP., Mustard, J.F., Gendrin, A., Mangold, N., Langevin, Y., Arvidson,
1307	R.E., Gondet, B., Gomez, C., Berthé, M., and others (2005) Phyllosilicates on
1308	Mars and implications for early martian climate. Nature, 438, 623–627.
1309	Poulet, F., Mangold, N., Loizeau, D., Bibring, JP., Langevin, Y., Michalski, J., and
1310	Gondet, B. (2008) Abundance of minerals in the phyllosilicate-rich units on
1311	Mars. Astronomy and Astrophysics, 487, L41–L44.
1312	Quirico, E., Montagnac, G., Rouzaud, JN., Bonal, L., Bourot-Denise, M., Duber, S., and
1313	Reynard, B. (2009) Precursor and metamorphic condition effects on Raman
1314	spectra of poorly ordered carbonaceous matter in chondrites and coals.
1315	Earth and Planetary Science Letters, 287, 185–193.
1316	Rampe, E.B., Ming, D.W., Blake, D.F., Bristow, T.F., Chipera, S.J., Grotzinger, J.P.,
1317	Morris, R.V., Morrison, S.M., Vaniman, D.T., Yen, A.S., and others (2017)
1318	Mineralogy of an ancient lacustrine mudstone succession from the Murray
1319	formation, Gale crater, Mars. Earth and Planetary Science Letters, 471, 172–
1320	185.

1321	Rivkin, A.S., Davies, J.K., Johnson, J.R., Ellison, S.L., Trilling, D.E., Brown, R.H., and
1322	Lebofsky, L.A. (2003) Hydrogen concentrations on C-class asteroids derived
1323	from remote sensing. Meteoritics & Planetary Science, 38, 1383–1398.
1324	Rivkin, A.S., Volquardsen, E.L., and Clark, B.E. (2006) The surface composition of
1325	Ceres: Discovery of carbonates and iron-rich clays. Icarus, 185, 563–567.
1326	Rossman, G.R. (1976) Spectroscopic and magnetic studies of ferric iron hydroxy
1327	sulfates: the series $Fe(OH)SO_4 \cdot nH_2O$ and the jarosites. American
1328	Mineralogist, 61, 398–404.
1329	Ruff, S.W., and Christensen, P.R. (2007) Basaltic andesite, altered basalt, and a TES-
1330	based search for smectite clay minerals on Mars. Geophysical Research
1331	Letters, 34, L10204.
1332	Sapers, H.M., Razzell Hollis, J., Bhartia, R., Beegle, L.W., Orphan, V.J., and Amend, J.P.
1333	(2019) The Cell and the Sum of Its Parts: Patterns of Complexity in
1334	Biosignatures as Revealed by Deep UV Raman Spectroscopy. Frontiers in
1335	Microbiology, 10.
1336	[18]Schmidt, E.R., and Heystek, H. (1953) A saponite from Krugersdorp district,
1337	Transvaal. Mineralogical Magazine and Journal of the Mineralogical Society,
1338	30, 201-210.
1339	Schopf, J.W., Kudryavtsev, A.B., Agresti, D.G., Czaja, A.D., and Wdowiak, T.J. (2005)
1340	Raman Imagery: A New Approach to Assess the Geochemical Maturity and
1341	Biogenicity of Permineralized Precambrian Fossils. Astrobiology, 5, 333–371.

1342	Sholes.	S.F.	Smith.	M.L.	Claire	M.W.	Zahnle	K.I.	and	Catling	D.C.	(2017)	Anoxic
1010	ULIUICS,	0.1.1	UTITUT,	1,	unun c		Luminic,	1	, unu	Juling			1 monie

- 1343 atmospheres on Mars driven by volcanism: Implications for past
- environments and life. Icarus, 290, 46–62.
- Socrates, G. (2004) Infrared and Raman Characteristic Group Frequencies: Tablesand Charts, 390 p. John Wiley & Sons.
- 1347 [19] Son, B.-K., Yoshimura, T., and Fukasawa, H. (2001) Diagenesis of dioctahedral
- and trioctahedral smectites from alternating beds in Miocene to Pleistocene
- rocks of the Niigata Basin, Japan. Clays and Clay Minerals, 49, 333-346.
- 1350 [20] Suquet, H., Calle, C.D.L., and Pezerat, H. (1975) Swelling and structural

1351 organization of saponite. Clays and Clay Minerals, 23, 1-9.

- 1352 Tarafder, P.K., and Thakur, R. (2013) An Optimised 1,10-Phenanthroline Method for
- 1353the Determination of Ferrous and Ferric Oxides in Silicate Rocks, Soils and
- 1354 Minerals. Geostandards and Geoanalytical Research, 37, 155–168.
- 1355 [21] Treiman, A.H., Morris, R.V., Agresti, D.G., Graff, T.G., Achilles, C.N., Rampe, E.B.,
- 1356 Bristow, T.F., Blake, D.F., Vaniman, D.T., Bish, D.L., and others (2014) Ferrian
- 1357 saponite from the Santa Monica Mountains (California, U.S.A., Earth):
- 1358 Characterization as an analog for clay minerals on Mars with application to
- 1359 Yellowknife Bay in Gale Crater. American Mineralogist, 99, 2234–2250.

1360	Uckert, K., Bhartia, R., and Michel, J. (2019) A Semi-Autonomous Method to Detect
1361	Cosmic Rays in Raman Hyperspectral Data Sets. Applied Spectroscopy, 73,
1362	1019–1027.
1363	Ufer, K., Roth, G., Kleeberg, R., Stanjek, H., Dohrmann, R., and Bergmann, J. (2004)
1364	Description of X-ray powder pattern of turbostratically disordered layer
1365	structures with a Rietveld compatible approach. Zeitschrift für
1366	Kristallographie - Crystalline Materials, 219, 519–527.
1367	Ulery, A.L., and Drees, L.R. (2008) Methods of soil analysis: Mineralogical methods.
1368	Part 5 Vol. 9. ASA-CSSA-SSSA.
1369	Vaniman, D.T., Bish, D.L., Ming, D.W., Bristow, T.F., Morris, R.V., Blake, D.F., Chipera,
1370	S.J., Morrison, S.M., Treiman, A.H., Rampe, E.B., and others (2013) Mineralogy
1371	of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 1243480.
1372	[22] Van Olphen, H., and Fripiat, J.J. (1979) Data Handbook for Clay Materials and
1373	Other Non-metallic Minerals. Pergamon Press, Oxford.
1374	[23] Vantelon, D., Montarges-Pelletier, E., Michot, L.J., Briois, V., Pelletier, M., and
1375	Thomas, F. (2003) Iron distribution in the octahedral sheet of dioctahedral
1376	smectites: An Fe K-edge X-ray absorption spectroscopy study. Physics and
1377	Chemistry of Minerals, 30, 44-53.
1378	Wang, A., Freeman, J.J., and Jolliff, B.L. (2015) Understanding the Raman spectral
1379	features of phyllosilicates. Journal of Raman Spectroscopy, 46, 829–845.

- 1380 [24] Weir, A.H., and Greene-Kelly, R. (1962) Beidellite. American Mineralogist, 47,
- 1381 137-146.

32.

- 1382 Wiens, R.C., Maurice, S., and Rull Perez, F. (2017) The SuperCam remote sensing
- instrument suite for the Mars 2020 rover mission: A preview. Spectroscopy,

- 1406 Tables

1408 <u>Table 1. Calculated molecular formulas of synthetic intermediate smectite samples.</u>

Sample	Calculated Formula	Octanedral Occupancy	%re(11)	
А	$Ca_{0.37}Na_{0.10}[Fe^{III}_{1.68}Mg_{0.40}][Si_{3.32}Al_{0.51}Fe^{III}_{0.17}]O_{10}(OH)_2$	2.08	-	-
В	$Ca_{0.28}[Fe^{III}_{1.54}Mg_{0.64}][Si_{3.55}Al_{0.39}Fe^{III}_{0.06}]O_{10}(OH)_2$	2.18	-	
С	$Ca_{0.35}Na_{0.22}[Fe^{III}_{1.24}Mg_{0.37}Al_{0.39}][Si_{3.43}Al_{0.57}]O_{10}(OH)_2$	2.00	-	
D	$Ca_{0.35}Na_{0.23}[Fe^{III}{}_{1.04}Mg_{0.46}Al_{0.53}][Si_{3.44}Al_{0.56}]O_{10}(OH)_2$	2.03	-	
Е	$Ca_{0.40}[Fe^{III}_{1.06}Mg_{0.93}Al_{0.15}][Si_{3.70}Al_{0.30}]O_{10}(OH)_2$	2.14	-	
F	$Ca_{0.35}Na_{0.07}[Fe^{III}_{0.96}Mg_{0.84}Al_{0.29}][Si_{3.80}Al_{0.20}]O_{10}(OH)_2$	2.09	-	
G	$Ca_{0.24}[Fe^{III}_{0.69}Mg_{1.12}Al_{0.52}][Si_{3.66}Al_{0.34}]O_{10}(OH)_2$	2.33	-	
Н	$Ca_{0.39}[Fe^{III}_{0.68}Mg_{1.75}Al_{0.02}][Si_{3.60}Al_{0.40}]O_{10}(OH)_2$	2.45	-	
Ι	$Ca_{0.31}Na_{0.28}[Fe^{III}_{0.57}Mg_{0.92}Al_{0.63}][Si_{3.67}Al_{0.33}]O_{10}(OH)_2$	2.12	-	

J	$Ca_{0.37}[Fe^{III}_{0.27}Mg_{2.31}Al_{0.08}][Si_{3.60}Al_{0.40}]O_{10}(OH)_2$	2.66	-
Κ	$Ca_{0.23}[Fe^{II}_{2.23}Fe^{III}_{0.28}Al_{0.26}Mg_{0.12}][Si_{3.51}Al_{0.49}]O_{10}(OH)_2$	2.89	89.0
L	$Ca_{0.30}[Fe^{II}_{1.43}Fe^{III}_{0.23}Al_{0.40}Mg_{0.66}][Si_{3.55}Al_{0.45}]O_{10}(OH)_2$	2.72	86.0
М	$Ca_{0.29}Na_{0.05}[Fe^{II}_{1.50}Fe^{III}_{0.11}Al_{0.29}Mg_{0.92}][Si_{3.46}Al_{0.54}]O_{10}(OH)_2$	2.81	93.1
Ν	$Ca_{0.27}Na_{0.08}[Fe^{II}_{0.80}Fe^{III}_{0.09}Al_{1.29}Mg_{0.10}][Si_{3.54}Al_{0.46}]O_{10}(OH)_2$	2.28	90.0
0	$Ca_{0.28}Na_{0.12}[Fe^{II}_{0.64}Fe^{III}_{0.11}Al_{1.08}Mg_{0.50}][Si_{3.56}Al_{0.44}]O_{10}(OH)_2$	2.34	85.4
Р	$Ca_{0.29}Na_{0.06}[Fe^{II}_{0.69}Fe^{III}_{0.11}Al_{0.35}Mg_{1.57}][Si_{3.57}Al_{0.43}]O_{10}(OH)_2$	2.72	86.6

^a Mol.% of total iron occurring as Fe(II); only measured for syntheses involving iron(II) chloride.

1432Table 2. Measured peak positions of diagnostic diffraction features of the synthetic

1433 smectites using Cu K_{α} and their calculated corresponding positions for

1434 measurements using Co K_{α} radiation.

Samula	°20 Cu Ka				°2θ Co Kα		
Sample	(001)	(02,11)	(06,33)	(001)	(02,11)	(06,33)	
А	$6.00(8)^{a}$	19.61(1)	60.856(8)	6.97	22.81	72.04	
В	6.29(2)	19.71(1)	60.93(1)	7.30	22.93	72.14	
С	5.99(8)	19.63(1)	60.800(9)	6.96	22.83	71.97	
D	6.31(3)	19.64(1)	60.87(1)	7.33	22.84	72.06	
Е	6.04(6)	19.76(2)	60.843(8)	7.01	22.98	72.02	
F	6.06(4)	19.71(1)	60.806(8)	7.04	22.93	71.98	
G	6.10(1)	19.68(1)	60.86(2)	7.08	22.89	72.05	
Н	6.13(1)	19.63(1)	60.718(6)	7.12	22.83	71.87	
Ι	6.51(2)	19.72(1)	60.807(9)	7.56	22.94	71.98	
J	6.37(2)	19.50(1)	60.584(4)	7.40	22.68	71.70	

Κ	5.36(5)	19.21(3)	59.37(2) ^b	6.22	22.35	70.20
L	5.2(1)	19.28(1)	60.019(8)	6.10	22.42	71.00
Μ	5.46(6)	19.32(2)	60.096(7)	6.34	22.47	71.10
Ν	5.7(1)	19.89(1)	$61.13(4)^{b}$	6.63	23.13	72.38
0	5.6(1)	19.81(2)	$60.84(3)^{b}$	6.51	23.04	72.01
Р	5.7(9)	19.50(2)	60.42(1)	6.62	22.68	71.51

a Numbers in parentheses represent fitting uncertainties in the last digit.

b Peaks consist of doublets but fitted as single feature. When modeled as doublets,
contain peaks at 58.32(14)° and 59.61(5)° for K, 60.42(12)° and 61.86(10)° for N,

- 1438 and 60.29(12)° and 61.65(18)° for 0.

1458Table 3. Comparison between d-spacings as derived from the fitted lattice

Sampla	d ₍₀₀₁₎ (Å)		$d_{(02,11)}$	d _(02,11) (Å)		d _(06,33) (Å)	
Sample	Lattice	Peak	Lattice	Peak	Lattice	Peak	
А	14.9	14.7	4.57	4.53	1.526	1.522	
В	14.2	14.0	4.55	4.50	1.524	1.520	
С	14.6	14.7	4.58	4.52	1.528	1.523	
D	14.0	14.0	4.57	4.52	1.526	1.522	
Е	14.8	14.6	4.56	4.49	1.527	1.522	
F	14.7	14.6	4.57	4.50	1.528	1.523	
G	14.7	14.5	4.57	4.51	1.526	1.522	
Н	14.6	14.4	4.58	4.52	1.530	1.525	
Ι	14.0	13.6	4.56	4.50	1.528	1.523	
J	13.0	13.9	4.60	4.55	1.533	1.528	
Κ	16.5	16.5	4.66	4.62	1.552	1.557 ^{<i>a</i>}	
L	16.8	16.8	4.64	4.60	1.545	1.541	
М	16.1	16.2	4.63	4.59	1.543	1.540	

Ν	15.4	15.5	4.53	4.46	1.520	1.516 ^{<i>a</i>}
0	15.5	15.8	4.55	4.48	1.525	1.523 ^{<i>a</i>}
Р	15.4	15.5	4.60	4.55	1.536	1.532

1460	^a Determined from position when fitting with a single peak. Fitting (06,33) bands as
1461	a double yield d-spacings of 1.582 Å and 1.551 Å for K, 1.532 Å and 1.500 Å for N,
1462	and 1.535 Å and 1.504 Å for O.
1463	
1464	
1465	
1466	
1467	
1468	
1469	
1470	
1471	
1472	
1473	
1474	
1475	
1476	
1477	
1478	
1479	
1480	
1481	
1482	
1483	
1484	
1485	
1486	Table 4. Lattice parameters derived from refinement to individual peaks assuming

1487 hexagonal sheet symmetry.

	J		
Sample	c (Å)	b (Å), (02,11)	b (Å), (06,33)
А	$14.87(12)^{a}$	9.146(7)	9.158(10)
В	14.18(3)	9.103(7)	9.147(11)
С	14.57(23)	9.150(8)	9.168(2)
D	14.04(18)	9.130(7)	9.154(5)
E	14.79(33)	9.122(7)	9.161(4)
F	14.72(21)	9.134(6)	9.167(5)
G	14.70(3)	9.135(3)	9.154(3)
Н	14.61(19)	9.156(4)	9.179(2)
Ι	13.95(43)	9.126(9)	9.169(2)
J	13.02(16)	9.194(3)	9.197(2)
Κ	16.52(9)	9.329(4)	9.310(17)
L	16.80(12)	9.274(6)	9.268(3)
М	16.11(11)	9.252(10)	9.259(41)
Ν	15.39(10)	9.063(29)	9.119(15)

		0	15.46(14)	9.102(13)	9.149(6)
		Р	15.35(12)	9.192(9)	9.217(2)
1488	^a Numbers in p	parenthes	ses represent f	fitting uncerta	inties in the last digit.
1489	-		-	-	-
1490					
1491					
1492					
1493					
1494					
1495					
1496					
1497					
1498					
1499					
1500					
1501					
1502					
1503					
1504					
1505					
1506					
1507					
1508					
1509					
1510					
1511					
1512					
1513					
1514					

1515 Table 5. <u>Isomer shift and quadrupole splitting of the Fe-rich smectite samples</u>.

S	Fe ^{II}	Fe ^{II}	Fe ^m	Fe ^{III}	E.II/E.III
Smecute	δ (mm s ⁻¹)	$\Delta E_Q (mm s^{-1})$	δ (mm s ⁻¹)	$\Delta E_Q (mm s^{-1})$	re /re
А			0.35 ± 0.02	0.61 ± 0.01	0
В			0.35 ± 0.02	0.61 ± 0.01	0
С			0.36 ± 0.02	0.64 ± 0.01	0
D			0.36 ± 0.02	0.67 ± 0.01	0
Е			0.34 ± 0.02	0.59 ± 0.01	0
F			0.35 ± 0.02	0.60 ± 0.01	0
Κ	1.11 ± 0.02	2.53 ± 0.01	0.40 ± 0.02	0.77 ± 0.01	77.2
L	1.13 ± 0.02	2.59 ± 0.01	0.42 ± 0.02	0.61 ± 0.01	72.1
М	1.16 ± 0.02	2.54 ± 0.01	0.44 ± 0.02	0.58 ± 0.01	91.8

Ν	1.13 ± 0.02	2.63 ± 0.01	0.40 ± 0.02	0.55 ± 0.01	85.1
0	1.13 ± 0.02	2.61 ± 0.01	0.39 ± 0.02	0.55 ± 0.01	88.8

1516

1517

1518

1519 Table 6. Variation in the isomer shift in samples A and K as temperature is adjusted.

	Temperature	δ (mm s ⁻¹) –	δ (mm s ⁻¹) –		
	(K)	Sample A	Sample K		
	80	0.46 ± 0.01	1.26 ± 0.01		
	120	0.44 ± 0.01	1.24 ± 0.01		
	160	0.43 ± 0.01	1.22 ± 0.01		
	200	0.41 ± 0.01	-		
	240	0.39 ± 0.01	-		
	280	0.37 ± 0.01	-		
	293	0.35 ± 0.01	-		
	310	0.35 ± 0.01	1.15 ± 0.01		
	320	0.33 ± 0.01	1.13 ± 0.01		
1521					
1522					
1524					
1525					
1520					
1528	Figure Captions				
1529 1530	Figure 1: Terrestrial continental and marine smectite clay minerals span a wide				
1531	range of bulk co	mpositions [refe	rences 1-24]. Con	nmon smectite spectral standard	
1532	samples are high	lighted as open	circles; Fe in thes	e standards is predominantly in	
1533	the 3+ oxidation	state.			
1534					
1535	Figure 2. Ternar	y diagrams show	ving the composit	ions of 16 synthetic ferruginous	
1536	smectite sample	s investigated in	this study. The fu	Ill structural composition is shown	

1537	in the left diagram, whereas the right diagram shows the composition of the
1538	octahedral sheet only. Fe(III)-bearing samples are shown in brown circles. Fe(II)-
1539	bearing samples are shown in blue-green diamonds. Colors trend from light to dark
1540	with increasing octahedral Fe content. Colors are kept consistent in following
1541	figures. Small squares show the compositions of Clay Mineral society standards
1542	NAu-1, NAu-2, Ng-1, SWa-1, Sap-Ca1, SWy-1, SAz-1, STx-1b, SCa-3, SBId-1 that are
1543	frequently used as spectroscopic standards (Van Olphen et al., 1979, Post, 1984,
1544	Gates 2005, Gailhanou et al., 2012, Castellina et al., 2017).
1545	
1546	Figure 3. (a) XRD patterns of the synthetic smectite samples. No background
1547	subtraction is performed to avoid aliasing broad features. (b) Peak positions of the
1548	(02,11) peaks and (c) of the 060 peak shift to smaller angles with decreasing Fe(III)
1549	content. (d) The calculated b-axis spacing based on fitting the (02, 11) peak with
1550	respect to octahedral occupancy; vertical lines delineate approximate distinctions
1551	between di, di-tri, and tri-octahedral structures. (e) Dioctahedral samples show little
1552	dependence of the d-spacing on octahedral iron content, although the trioctahedral
1553	Fe(II)-bearing samples show a more linear trend (trend lines fit only to the

- 1554 dioctahedral and trioctahedral samples, respectively).
- 1555
- 1556 Figure 4. Visible to near infrared reflectance spectra of (a) Fe(III) bearing smectite
- 1557 samples and (b) Fe(II) bearing smectite samples. (c) Continuum removed
- absorption features between 2.1 and 2.5 μ m for all samples with wavelengths of

overtones and combination absorptions from the literature indicated as detailed in 1559 1560 the text.

1561

1562	Figure 5. Trends in the position and intensity of metal-OH combination absorptions.
1563	Larger data points indicate greater relative band depth of the absorption, from 0.01-
1564	0.34, and are relative across panels. a) Position of ${\sim}2.24\mu m$ absorptions as a
1565	function of octahedral magnesium. Absorptions at shorter wavelengths (~2.235 μ m)
1566	are attributed to Al-Mg-OH combination bands, whereas absorptions at longer
1567	wavelengths (~2.25 μ m) are attributed to Al-Fe(II)-OH combination bands. The
1568	samples with the highest Fe(III) content have low Al content and therefore have
1569	negligible Al-M-OH absorptions. Trend line is fit to both Fe(II) and Fe(III) bearing
1570	samples that have a measurable absorption. b) Position of the ${\sim}2.3~\mu\text{m}$ absorption
1571	as a function of octahedral Fe content. Fe(II) $_2$ -OH combination modes trend towards
1572	$2.36 \mu m$ whereas Fe(III)_2-OH combination modes trend towards 2.29 $\mu m.$ Mg-M-OH
1573	combinations trend towards 2.31 $\mu m.$ c) Position of the ${\sim}2.45 \mu m$ absorption as a
1574	function of octahedral Mg content. This feature is broad and shallow in the Fe(III)-
1575	bearing samples, without a significant trend, but the Fe(II)-bearing samples
1576	demonstrate a linear trend towards shorter wavelengths with increasing octahedral
1577	Mg content.
1578	

Figure 6. Attenuated Total Reflectance (ATR) spectra of the synthetic ferruginous 1579

smectite suite. (a) The hydroxyl bending modes and (b) the hydroxyl and 1580

1581	tetrahedral stretching modes. Peak attributions are described in the text. The peak
1582	at ~850cm ⁻¹ in the shaded box is attributed to calcite contamination in sample P.
1583	
1584	Figure 7. (a) Mid-infrared Diffuse Reflectance spectra of the M-OH stretching modes
1585	of the sample suite. The deep broad feature around $3\mu m$ is caused by the
1586	fundamental H_2O stretching mode, and the narrower absorptions superimposed are
1587	the M-OH absorptions. (b) The position of the M-OH absorption as a function of
1588	octahedral iron content. The minima of both sample sets shifts to longer
1589	wavelengths with increasing octahedral iron, but the Fe(II) and Fe(III) bearings
1590	samples are offset from each other.
1591	
1592	Figure 8: (a) Mid-infrared Diffuse Reflectance spectra of the silicate bending and
1593	stretching and M-OH bending modes, scaled and offset to emphasize features. A
1594	peak attributed to calcite contamination in sample P is indicated by the translucent
1595	box. Other peak attributions are discussed in the text. (b) The position of the Si-O
1596	bend between 430-480cm ⁻¹ is dependent on octahedral Fe content, with decreasing
1597	iron shifting the peak position to longer wavenumbers. Fe(II) bearing samples are
1598	offset to longer wavenumbers than Fe(III)-bearing samples. (c)The Fe(III) samples
1599	show a Fe(III) ₂ -OH bending mode around 845 cm ⁻¹ that shifts in position as a
1600	function of octahedral iron. M-OH bending modes are much more subdued in the
1601	Fe(II) samples, although the Fe-OH and Mg-OH bends around 650 $\rm cm^{-1}$ are apparent
1602	in all samples. (d) The position of the Si-O stretch does not shift as a function of
1603	composition in the Fe(III)-bearing samples, but increasing Al content in the Fe(II)-
This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2021-7419CCBYNCND. http://www.minsocam.org/

bearings samples does shift this mode to larger wavenumbers. The trend line is onlyfit to the Fe(II) samples.

1606

- 1607 Figure 9. (a)Raman patterns obtained using a 532nm excitation laser. (b) Raman
- 1608 shifts between 100-1200 cm⁻¹ highlight silicate stretching and bending modes and
- 1609 overlapping metal-OH bends. (c) Metal-OH stretching modes occur between 3000-
- 1610 4000cm⁻¹. Labeled features are discussed in the text.
- 1611
- 1612 Figure 10: (a) Raman spectra obtained using a 248.6 nm excitation laser from 700-
- 1613 4000cm⁻¹, and (b) the M-OH stretching region from 3000-4000cm⁻¹. (c) The Si-O

1614 stretching mode is detected around 1060cm⁻¹ and (d) the normalized signal

1615 intensity decreases as Fe content increases, due to increased UV absorption. (e) The

- 1616 peak and shoulder positions of the Fe(II), Fe(III), Al and Mg-OH stretching modes
- 1617 shift as a function of composition.

1618

1619 Figure 11: Mössbauer spectra for (a) Fe(II)-bearing smectite samples A-F at room

1620 temperature and (b) of Fe(II)-bearing smectite samples K-O. The Isomer Shifts are

- 1621 shown as diamonds and the quadrupole splitting ΔE_Q is shown as circles for the (c)
- 1622 Fe(II)-bearing samples and (d) Fe(II)-bearing samples.

Figure 12. The Isomer shift is temperature dependent. (a) Mössbauer spectra of 'A'
collected from 80 to 320 K with 40 K intervals in black and the fit in red. The spectra
are referenced to the centroid of the spectrum of a α-Fe foil at room temperature.

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2021-7419CCBYNCND. http://www.minsocam.org/

- 1626 (b) The isomer shift of A decreases as a function of increasing temperature. (c)
- 1627 Mössbauer spectra of sample K collected from 80 to 293 K. (d). The isomer shift of K
- 1628 decreases as temperature increases.

Figure 1

Figure 3.

Figure 8

Figure 9

Figure 11

Figure 12

