1	Revision 1
2	Experimental constraints on the partial melting of sediment-metasomatized
3	lithospheric mantle in subduction zones
4	
5	Yanfei Zhang ^{1,3,*} , Xuran Liang ^{2,3} , Chao Wang ³ , Zhenmin Jin ³ , Lüyun Zhu ⁴ , Wei Gan ⁵
6	
7	¹ College of Oceanography, Hohai University, Nanjing 210098, China
8	² Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou
9	510640, China
10	³ State Key Laboratory of Geological Processes and Mineral Resources, China
11	University of Geosciences, Wuhan 430074, China
12	⁴ School of Earth Resources, China University of Geosciences, Wuhan 430074, China
13	⁵ School of Earth Sciences and Resources, China University of Geosciences, Beijing
14	100083, China
15	* Corresponding author: Y. Zhang
16	Email: yanfzhang@126.com
17	No. 1, Xikang road, Nanjing 210098, Jiangsu, China
18	No. 388, Lumo road, Wuhan 430074, Hubei, China

20 Abstract

21	Sedimentary diapirs can be relaminated to the base of the lithosphere during slab
22	subduction, where they can interact with the ambient lithospheric mantle to form
23	variably metasomatized zones. Here, high-pressure experiments in
24	sediment-harzburgite systems were conducted at 1.5–2.5 GPa and 800–1300 $^{\circ}$ C to
25	investigate the interaction between relaminated sediment diapirs and lithospheric
26	mantle. Two end-member processes of mixed experiments and layered (reaction)
27	experiments were explored. In the first end-member, sediment and harzburgite
28	powders were mixed to a homogeneous proportion (1:3) whereas in the second, the
29	two powders were juxtaposed as separate layers. In the first series of experiments, the
30	run products were mainly composed of olivine + orthopyroxene + clinopyroxene +
31	phlogopite in subsolidus experiments, while the phase assemblages were then
32	replaced by olivine + orthopyroxene + melt (or trace phlogopite) in supersolidus
33	experiments. Basaltic and foiditic melts were observed in all supersolidus mixed
34	experiments (~44–52 wt% SiO ₂ at 1.5 GPa, ~35–43 wt% SiO ₂ at 2.5 GPa). In the
35	phlogopite-rich experiment (PC431, 1.5 GPa and 1100 °C), the formed melts had low
36	alkali contents (~<2 wt%) and K ₂ O/Na ₂ O ratios (~0.4–1.1). In contrast, the quenched
37	melt in phlogopite-free/poor experiments showed relatively higher alkali contents
38	(~4–8 wt%) and K ₂ O/Na ₂ O ratios (~2–5). Therefore, the stability of phlogopite could
39	control the bulk K_2O and K_2O/Na_2O ratios of magmas derived from
40	sediment-metasomatized lithospheric mantle. In layered experiments, a reaction zone

41	dominated by clinopyroxene + amphibole (or orthopyroxene) was formed because of
42	the reaction between harzburgite and bottom sediment-derived melts (~62.5-67 wt%
43	SiO ₂). The total alkali contents and K_2O/Na_2O ratios of the formed melts were about
44	6-8 wt% and 1.5-3, respectively. Experimentally formed melts from both mixed and
45	reaction experiments were rich in large ion lithosphile elements and displayed similar
46	patterns with natural potassium-rich arc lavas from oceanic subduction zones (i.e.,
47	Mexian, Sunda, Central American and Aleutian). The experimental results
48	demonstrated that bulk sediment diapirs, in addition to sediment melt, may be another
49	possible mechanism to transfer material from a subducting slab to an upper mantle
50	wedge or lithospheric mantle. On the other hand, the breakdown of phlogopite may
51	play an important role in the mantle source that produces potassium-rich arc lavas in
52	subduction zones.
53	
54	Keywords: bulk sediment, lithosphere, partial melting, potassium-rich arc lava
55	

57 **1. Introduction**

58	Subducted sediment is thought to have played an important role in creating
59	mantle heterogeneity and the origin of potassium (K)-rich magmas in subduction
60	zones (e.g., Tatsumi et al. 1986; Blundy and Sparks 1992; Prouteau et al. 2001).
61	High-pressure experimental studies have demonstrated that subducted sediment may
62	experience partial melting or dehydration because of heating from the surrounding
63	mantle (e.g., Hermann and Spandler 2008; Hermann and Rubatto 2009; Castro et al.
64	2010; Mann and Schmidt 2015; Schmidt and Poli 2014; Schmidt 2015), which could
65	release trace elements to the upper mantle wedge and contribute to the origin of arc
66	lavas (e.g., Peacock 1990; Ulmer and Trommsdorff 1995; Shimoda et al. 1998;
67	Bindeman et al. 2005; Duggen et al. 2007; Turner et al. 2012; Spandler and Pirard
68	2013; Kendrick et al. 2014; Harvey et al. 2014; Scambelluri et al. 2015; Shu et al.
69	2017). The recycling of sediment melt or fluid back into a mantle wedge has been
70	demonstrated by matching the isotopic and trace element properties of sediment input
71	and volcanic magma output (e.g., Plank and Langmuir 1993; Peate et al. 1997; Porter
72	and White 2009; Turner et al. 2012).
73	Recent numerical simulations and geochemical analyses have revealed that
74	subducted sediments could detach from a downgoing slab at temperatures of 500-850
75	°C to form buoyancy diapirs (Behn et al. 2011). Then, a portion of the cold diapir

- 76 would rise buoyantly from the surface of the subducting slab and relaminate into the
- 77 mantle beneath arc lavas (Hacker et al. 2011; Marschall and Schumacher 2012;

78	Maunder et al. 2016), where they would form a variety of mélanges through physical
79	mixing before arc magma generation (Marschall and Schumacher 2012; Nielsen and
80	Marschall 2017). On the other hand, geochemical analyses of alkaline arc lavas (very
81	low Nd/Sr at low ¹⁴³ Nd/ ¹⁴⁴ Nd values, ⁸⁷ Sr/ ⁸⁶ Sr ratios close to the depleted mantle)
82	have suggested that the composition of these arc lavas plot on the mixing line between
83	bulk sediment and mantle peridotite, rather than sediment melt and mantle peridotite
84	in Sr-Nd isotope space (Cruz-Uribe et al. 2018). Recently, Shu et al. (2017)
85	investigated the variation of arc lava Tl, Sr, Nd and Pb isotopes from the Ryukyu Arc
86	and Okinawa Trough; their results demonstrated that a mixing model between bulk
87	sediment (without trace element fractionation) and lithospheric mantle should be the
88	principle source of these arc lavas. Therefore, it was suggested that melting of
89	bulk-mixed mélange between sediment and lithospheric mantle/peridotite should be
90	an important transfer mechanism for the recycling of sediment components from a
91	subducting slab to arc lavas (Marschall and Schumacher 2012). On one hand,
92	sediment diapirs may react with mantle peridotite (lherzolite) at sub-arc depths (~80-
93	120 km); on the other hand, some sediment diapirs may be relaminated into the bottom
94	of lithospheric mantle because of buoyancy and react with lithospheric mantle
95	(harzburgite). There are two key issues concerning the partial melting phase relations
96	of sediment-harzburgite mélange and partial melt chemical compositions. Many
97	high-pressure experiments have been conducted to constrain the partial melting phase
98	relations in sediment + mid-oceanic ridge basalt (MORB) (Castro et al. 2010),

99	eclogite-derived melt + lherzolite (Mallik and Dasgupta 2013, 2014; Gervasoni et al.
100	2017), hydrous rhyolite + lherzolite (Mallik et al. 2015), sediment melt + lherzolite
101	(Mallik et al. 2016), carbonate melt + lherzolite (Gervasoni et al. 2017), glimmerite +
102	harzburgite (Förster et al. 2017), phyllite + dunite (Wang et al. 2017; Wang and Foley
103	2018), adakite + lherzolite (Corgne et al. 2018) and sediment-dominated mélange +
104	lherzolite (Codillo et al., 2018). Those experimental results were mainly used to
105	constrain melt-rock reaction processes at subarc depths and the origin of arc lavas in
106	oceanic subduction zones. However, the metasomatism of lithospheric mantle by bulk
107	sediment diapirs or the partial melting phase relations of sediment +
108	harzburgite/dunite mélange is not completely understood because few experiments
109	have been done (Förster et al. 2019a, b).
110	In this study, we conducted a series of experiments to examine the partial melting
111	phase relations of sediment-harzburgite mélanges (mixed system vs. layered (reaction)
112	system] at 1.5–2.5 GPa and 800–1300 $^{\circ}$ C, which corresponds to depths of ~45–75 km
113	below the surface. The explored models assumed that a portion of sediment diapirs
114	have been relaminated to the bottom of the lithospheric mantle during slab subduction
115	and formed a variety of mélanges. The main purpose of this study was to investigate
116	the effect of bulk sediment diapirs on the partial melting phase relations of mantle,
117	and its implications for the origin of potassium-rich arc lavas.
118	

119 2. Experimental details

2.1 Starting materials

121	The natural sediment sample (MSCS-3) used in this study was collected from the
122	East China Sea continental shelf and is composed mainly of quartz, illite, chlorite and
123	trace amounts of calcite (Wang et al. 2009). The volatile components in the sediment
124	sample were mainly of H_2O (~4.9 wt%) and a small amount of CO_2 (~2.1 wt%). Both
125	the major and trace element compositions of MSCS-3 were similar to global
126	subducting sediment (GLOSS) (Plank and Langmuir 1998), except that it contained
127	relatively higher concentrations of Al_2O_3 and lower concentrations of SiO_2 and CaO .
128	The MSCS-3 powder was finely ground (~< 15 μ m) in alcohol with an agate mortar.
129	The harzburgite sample (Hz13) was synthesized by mixing approximately 82 wt%
130	olivine with 18 wt% enstatite. The olivine and enstatite crystals were first
131	hand-picked from a natural peridotite sample (DMP-018), then separately crushed
132	into fine powder (~5–15 μ m) and ground together in alcohol with an agate mortar to
133	produce a homogeneous mixture. The mixed powder of the starting material (HS1A)
134	was ground by mixing 25 wt% MSCS-3 with 75 wt% harzburgite in alcohol with an
135	agate mortar to form a homogeneous fine powder. For reaction experiments, MSCS-3
136	was juxtaposed at the bottom of Hz13; the proportions of the two powders were
137	roughly 1:1. Details of the starting material chemical compositions in this study and
138	previous experiments are listed in Table 1.

2.2 Experimental techniques

141	High-pressure and high-temperature experiments were conducted at the
142	laboratory for the Study of the Earth's Deep Interior (SEDI-Lab) at China University
143	of Geosciences (Wuhan, China). Experiments at 1.5 GPa were carried out using a 150
144	ton non-end-loaded piston cylinder apparatus; experiments at 2.5 GPa were conducted
145	in a 1000 ton multi-anvil press using 18/12 ((octahedral edge length/truncated edge
146	length) cell assembly. For experiments conducted in the piston cylinder apparatus, the
147	assembly consisted of a sample capsule placed between two MgO rods in a graphite
148	heater, enclosed by a Pyrex and salt sleeve; the sample capsule was separated by a
149	short MgO tube from the graphite heater (Wang et al. 2010). In terms of the 18/12
150	assembly, a ZrO ₂ sleeve was placed inside of the spinel octahedron for thermal
151	insulation and a graphite furnace was placed inside the ZrO ₂ sleeve for heating; the
152	sample capsule was placed inside a short MgO tube and sandwiched between two
153	MgO rods. Type C thermocouples were used to measure the temperature at the center
154	of the furnace without correcting for the effect of pressure on electromotive force.
155	Au_{80} -Pd ₂₀ tubes were used as sample capsules. The capsules were first laser-sealed at
156	one end, then the sample powders were loaded into the capsules, which were welded
157	shut to avoid volatile release during the experiments. Experiments were terminated by
158	switching off power to the furnace, quenching to below 200 °C within 10 s and then
159	automatic decompression to atmospheric pressure.

160

161 **2.3 Analytical techniques**

162	The recovered samples were first polished for microstructure analysis using a
163	scanning electron microscope (FE-SEM). Quantitative major element analyses of
164	minerals and melts in the recovered samples were made on a JXA-8100 electron
165	probe micro-analyzer (EPMA) using an accelerating voltage of 15 kV, a beam current
166	of 20 nA and a beam size of 1–2 μm for minerals, and a beam current of 10 nA and a
167	beam size of 5–30 μ m for quench melts. The count times for measured elements were
168	10 s on peaks and 5 s on the background on each side of the peaks. The standard
169	materials were diopside (Si, Mg and Ca), jadeite (Na), K-feldspar (K), pyrope (Al),
170	Ca ₅ P ₃ F (P), hematite (Fe), MnSiO ₃ (Mn), rutile (Ti), NiO (Ni) and eskolaite (Cr). The
171	measurement errors were generally about 5% for elements of no more than 1 wt%, <1%
172	for element concentrations of 1 wt% to 5 wt%, and <0.5% for elements contents of >5
173	wt%. Phase proportions in mixed experiments were estimated based on anhydrous
174	mass balance calculations; minor oxides, such as Cr ₂ O ₃ , NiO and P ₂ O ₅ , were excluded.
175	A spreadsheet package provided by Herrmann and Berry (2002) was used to calculate
176	the mineral and melt weight proportions from major element compositions of bulk
177	rock and each phase in the recovered samples. The amount of Fe-loss to the sample
178	capsule was also estimated based on mass balance calculations. The calculated weight
179	proportions of phases, uncertainties and residual errors are shown in Table 2.
180	Trace element contents of melt pools were measured by laser ablation inductively
181	coupled plasma-mass spectrometry (LA-ICP-MS). The laser ablation system is
182	GeoLas 2005, which is combining with an Angilent 7500a ICP-MS instrument at the

183	State Key Laboratory of Geological Processes and Mineral Resources (China
184	University of Geosciences). All samples were measured in a time-resolved analysis
185	mode and ablated by 193 nm laser under conditions of 5 J/cm ² (energy density), 6 Hz
186	(repetition rate) and 32 μ m (spot size). More detailed information about operating
187	conditions of the LA-ICP-MS are described in Zhu et al. (2013). Each analysis
188	includes a background acquisition section of approximately 20–30 s (gas blank) and a
189	data acquisition section of 50 s (sample). In this study, the combination data strategy
190	of external standard calibration and internal standard is adopted for data calibration, in
191	order to obtain accurate and precise element contents (Longerich et al. 1996;
192	Mukherjee et al. 2014). In details, the international reference material NIST610 and
193	U.S. Geological Survey reference glasses BIR-1G, BCR-2G, and BHVO-2G were
194	used for data calibration of LA-ICP-MS analysis. The time-drift of the signal is
195	corrected by linear interpolation (with time) according to the variations in NIST 610.
196	Moreover, BCR-2G, BHVO-2G and BIR-1G were adopted as the external standards
197	for the quantitative calibration. In general, off-line selection and integration of
198	background and analytical signals along with time-drift correction and quantitative
199	calibration were conducted using ICPMSDataCal (Liu et al. 2008).
200	

201 **3. Results**

Back-scattered electron images of representative run products are shown in
Figure 1. The stability range of mixed experiment phases in *P-T* space is shown in

204	Figure 2. Details of the experimental conditions and run products are summarized in
205	Table 2 and the mineral and quench melt chemical compositions in all experiments
206	are listed in Tables S1–S3 (supplementary data). In the reaction experiments, the
207	analyzed melt pools were greater than ~200–300 μ m in diameter; the quench melt
208	chemical compositions were homogeneous because no quench crystals were found in
209	the recovered charges. Therefore, representative melt compositions of both major and
210	trace elements can be analyzed in large melt pools far away from the solid minerals.
211	In most of the mixed experiments (Figure 1), re-crystallization textures were observed
212	in quench melt pools. For EPMA analyses, large beam sizes (5–30 $\mu m)$ were adopted
213	to mitigate compositional errors associated with the quench textures, and
214	representative values for each composition were obtained by averaging analytical
215	points (n=15–21) in deferent regions of the sample capsules. In these experiments, the
216	largest melt pools were usually no more than ${\sim}200~\mu\text{m}$ in diameter, which limited the
217	LA-ICP-MS analyses as the laser spot had to be at least 32 μ m in diameter. Reliable
218	trace element compositions were obtained for melt pools greater than ~50–100 μm in
219	diameter. Melt pools that were slightly smaller than ~50 μm (~30–50 μm) were also
220	selected for LA-ICP-MS analyses, but no reliable data were obtained because the
221	trace element compositions were easily contaminated by the surrounding solid phases.
222	Each time-resolved spectrum was carefully checked for possible contamination by
223	trace element-rich minerals. The analytical results in different domains showed

224	similar trace elements patterns, indicating that re-crystallization of quench melts had a
225	small effect on trace element migration during experiment quenching.
226	
227	3.1 Chemical equilibrium and the loss of iron in mixed experiments
228	In this study, reversal experiments were not conducted. In subsolidus
229	experiments, variable Mg# [100*Mg/(Mg+Fe)] of olivine and orthopyroxene may
230	indicate residual olivine crystals from the starting harzburgite that have not yet
231	achieved Fe-Mg exchange equilibrium with the rest of the minerals in the sample.
232	This is because a relatively lower temperature is adopted in those experiments, and it
233	is very difficult to achieve equilibrium without a liquid diffusive medium. In
234	supersolidus experiments, an approach to chemical equilibrium can be demonstrated
235	by: (1) limited heterogeneity in mineral composition from core to rim and in different
236	zones of the recovered sample capsule; (2) systematic changes in phlogopite
237	composition as a function of temperature (Figure 3c-f); (3) systematic changes in
238	olivine and orthopyroxene composition as a function of temperature (≥ 1100 °C)
239	(Figure 3a, b); (4) variations in olivine-melt and orthopyroxene-melt Fe^{2+} -Mg K _D
240	from 0.16 to 0.33, which is roughly consistent with previous partial melting
241	experiments in a sediment melt + lherzolite system ($K_D^{\text{Fe-Mg}}_{(Ol/Opx-melt)} = 0.2-0.4$) (e.g.,
242	Mallik et al. 2016); (5) the sum of residual squares ranges from 0.1 to 2.0, which is
243	low when considering the uncertainties in melt composition from average

244 1	heterogeneous	quench phases.	These criteria	may imply	that the exp	eriments hav	ve
-------	---------------	----------------	----------------	-----------	--------------	--------------	----

approached chemical equilibrium.

246	The relative amount of Fe-loss to the sample capsule was calculated based on
247	mass balance and varied from 17(1) to 32(1) % (Table 2). The relative Fe-loss in this
248	study is consistent with previous studies in sediment melt + lherzolite systems
249	$(\sim 10\% - 40\%)$ that used Au ₈₀ Pd ₂₀ or Au ₇₅ Pd ₂₅ capsules (e.g., Mallik et al. 2015, 2016).
250	Iron loss resulted in FeO deficiency in both the quench melt and solid phases. By
251	assuming that the partition coefficient of FeO between the melt and other solid phases
252	is not affected by Fe-loss, the deficiency of FeO in the quench melt can be calculated
253	using the following equation: $FeO_{Def} = FeO_{Blost} / [D_{FeO}*(1-F)+F]$
254	where FeO_{Def} represents the deficiency of FeO from the melt composition, which
255	can be added to measured melt FeO to obtain the FeO concentration of the melt prior
256	to Fe-loss; FeO_{Blost} is the lost FeO from the bulk composition; D_{FeO} represents the
257	bulk partition coefficient of FeO between the solid phases and melt, which can be
258	calculated through the weight percent of each mineral and the mineral/melt partition
259	coefficient of FeO; F is the weight proportion of melt.
260	

261 **3.2 Mixed experiments**

In mixed experiments, the starting material was first transformed into an assemblage consisting of olivine + orthopyroxene + clinopyroxene + phlogopite and trace accessory minerals (i.e., magnesite, hematite, rutile, apatite and zircon) within a

265	temperature range of 800–1000 °C at 1.5 GPa (Table 2, Figure 2). When the
266	temperature was increased to 1100 °C, phlogopite and traces of melt were observed in
267	the run products (Figure 1a, c), indicating that the stability field of phlogopite is
268	greater than ~1100 °C at pressures of 1.5–2.5 GPa (Figure 2). For experiments
269	conducted at 1200–1300 °C, a fraction of quench melt was observed within
270	interparticles or along the sample capsules, but clinopyroxene and phlogopite were
271	not present in the run products (Figure 1b, d; Figure 2). The observation of magnesite
272	in the run products is consistent with the presence of trace amounts of carbonate in the
273	starting material; therefore, the quench melts may also contain traces of CO ₂ because
274	no magnesite (or other carbonate phase) was detected in all supersolidus experiments.
275	Microprobe analyses provided compositional data for the coexisting phases in
276	the recovered experiments. Figure 3 shows the compositional variations of olivine,
277	orthopyroxene and phlogopite versus temperature at 1.5 GPa and 2.5 GPa. The Mg#
278	for olivine and orthopyroxene were corrected for Fe-loss by adding Fe to the resulting
279	experimental phases. The average Mg# of olivine and orthopyroxene in subsolidus
280	experiments was in the range of 88-90 and 87-89, respectively, while the Mg# of
281	olivine and orthopyroxene increased slightly with temperature in supersolidus
282	experiments (Figure 3a, b). As an important alkali-bearing phase, the concentrations
283	of K_2O and TiO_2 in phlogopite ranged from ~6–9 wt% and 0.4–1.6 wt%, respectively,
284	with temperatures from 800 $^{\rm o}C$ to 1200 $^{\rm o}C$; while the Na ₂ O and NiO contents were
285	reduced from ~ 2 wt% to 1 wt% and ~ 0.4 wt% to 0.2 wt%, respectively, with

286	temperatures from 800 °C to 1100 °C (Figure 3c-f). Both alkali contents and
287	K_2O/Na_2O ratios for quench melts were lower at 1100 °C compared with 1200–1300
288	^o C (Figure 3g, h), because a significant portion of K was contained by phlogopite
289	(PC431, ~8 wt%) that coexisted with melts in the run products.
290	
291	3.3 Reaction experiments
292	In the reaction experiments, the sediment powder was juxtaposed at the bottom
293	of the harzburgite layer (Figure 1e). Three experiments were carried out at 1.5–2.5
294	GPa and 950–1000 °C to simulate the reaction between sediment-derived melt and
295	lithospheric mantle. In the run products, the bottom sediment powder was composed
296	mainly of melt + garnet and a small fraction of plagioclase or clinopyroxene. The
297	upper harzburgite layer mainly consisted of olivine + orthopyroxene, and trace
298	amounts of spinel. For experiments conducted at 950 °C and 1.5 GPa, a reaction zone
299	composed mainly of clinopyroxene and amphibole was observed between the
300	sediment-derived melt and harzburgite (Figure 1f), which was replaced by
301	orthopyroxene at 1000 °C and pressures of 1.5–2.5 GPa.
302	
303	3.4 Melt composition

- Melt compositions obtained using EPMA are shown in Figures 4–5. The FeO
 concentrations in experimental melts were also corrected for Fe-loss by adding FeO to
- 306 melts, based on the partitioning of Fe between melt and other phases. Figure 4 shows

307	the SiO ₂ -(K ₂ O+Na ₂ O) diagram of melt compositions from both mixed and reaction
308	experiments. In mixed experiments, melts formed at 1.5 GPa were mainly located
309	within basalt and tephrite-trachybasalt regions in phlogopite-rich and
310	phlogopite-free/poor experiments, respectively. In phlogopite-free/poor experiments,
311	the experimental melts had total alkali contents and K_2O/Na_2O ratios of ~4–8 wt%
312	and ~2-5, respectively. In phlogopite-rich experiment (i.e., PC431), the quench melt
313	displayed SiO ₂ concentrations of ~44–52 wt% with total alkali contents and
314	K_2O/Na_2O ratios of ~0.7–3.7 wt% and ~0.4–1.1, respectively, because a significant
315	portion of the bulk K ₂ O was contained by phlogopite in the residue phases. With a
316	pressure increase to 2.5 GPa, the experimental melts were located in the
317	foidite-tephrite zone, which displayed similar alkali concentrations and K2O/Na2O
318	ratios to experimental melts from phlogopite-free/poor experiments at 1.5 GPa, but
319	had relatively lower SiO ₂ concentrations (\sim 35–43 wt%). In reaction experiments, the
320	resultant melts were mainly located within the dacite-trachydacite region, which
321	showed SiO ₂ concentrations of ~62.5–67 wt% and total alkalis and K ₂ O/Na ₂ O ratios
322	of ~6–8 wt% and ~1.5–3, respectively. The quench melt compositions in
323	phlogopite-rich (1.5 GPa) and reaction experiments belong to the subalkaline series,
324	while experimental melts formed at 2.5 GPa are in the alkaline series.
325	Harker diagrams (Figure 5) were used to show the variations in major element
326	compositions in this study. The Al_2O_3 concentrations in the quench melts showed
327	weak correlations with increased SiO_2 (Figure 5a). In melts derived from mixed

328	experiments, the Al_2O_3 contents varied from ~16 wt% to 20 wt% at 1.5 GPa and
329	1100–1300 °C, which then decreased to ~12–17 wt% when pressure was increased to
330	2.5 GPa. In melts formed in reaction experiments, the average Al_2O_3 concentrations
331	were about 14.6–15.8 wt% at 1.5 GPa and 950–1000 °C, which then decreased to
332	about 13.4–13.8 wt% at 2.5 GPa and 1000 °C. Both MgO and FeO concentrations
333	decreased with an increase of SiO ₂ (Figure 5b, c). In mixed experiments, the MgO
334	and FeO contents varied from ~10–19 wt% and ~6.5–9 wt%, respectively, at 2.5 GPa,
335	then decreased to ~1–10 wt% and ~2–7 wt%, respectively, at 1.5 GPa. In reaction
336	experiments, the experimental melts had the lowest MgO (~ $0.5-0.8$ wt%) and FeO
337	(~1.2–1.8 wt%) concentrations (Figure 5b, c). The CaO, Na ₂ O and K ₂ O
338	concentrations in experimental melts showed weak correlations with increased SiO_2
339	and narrower variations of CaO and K ₂ O in reaction experiments compared with
340	mixed experiments (Figure 5d-f). In reaction experiments, the resultant melts had
341	relatively lower concentrations of MgO and FeO, indicating that they did not achieve
342	chemical equilibrium with the upper harzburgite layer, because the bottom sediment is
343	depleted in MgO and FeO with respect to harzburgite. The hybrid melts in mixed
344	experiments were rich in MgO and FeO, which may represent well-equilibrated
345	products in the residual solid phases.
346	

347 **4. Discussion**

348 **4.1 Phlogopite stability in sediment-metasomatized lithospheric mantle**

349	Experimental results in phlogopite + diopside system (Sudo and Tatsumi 1990;
350	Luth 1997), phlogopite-doped peridotite system (Fumagalli et al. 2009; Tumiati et al.
351	2013; Condamine and Médard 2014; Condamine et al. 2016), sediment melt +
352	dunite/lherzolite system (Pirard and Hermann 2015; Mallik et al. 2015, 2016),
353	sediment + dunite system (Förster et al. 2019a, b) and glimmerite + harzburgite
354	system (Förster et al. 2017) have shown that phlogopite is an important K-bearing
355	phase in metasomatized lithospheric mantle or mantle wedge. The stability field of
356	phlogopite ranges from ~950 $^{\circ}$ C to >1300 $^{\circ}$ C at pressures of 1–3 GPa. For example,
357	phlogopite was observed as a stable phase at temperatures of 800–1050 $^{\rm o}{\rm C}$ and 3.5
358	GPa in a sediment melt (25 wt%) + dunite (75 wt%) system (Pirard and Hermann
359	2015); while in a sediment melt (25 wt%) + lherzolite (75 wt%) system, phlogopite
360	stability was thought to be $\leq 1250-1300$ °C at 2–3 GPa (Mallik et al. 2015). In this
361	study, phlogopite was observed at temperatures of no more than 1100–1200 $^{\circ}$ C (1.5–
362	2.5 GPa) in mixed experiments. The stability field of phlogopite obtained in this study
363	is roughly consistent with experiments conducted by Förster et al. (2017) and
364	Condamine and Médard (2014) in glimmerite + harzburgite and phlogopite-doped
365	peridotite systems, respectively. Figure 6 shows the variations of phase proportions in
366	mixed sediment + harzburgite system as a function of temperature at 1.5 GPa. The
367	proportion of olivine increased with temperature, accompanied by reductions in the
368	orthopyroxene and phlogopite fractions. The disappearance of phlogopite and
369	clinopyroxene was accompanied by the formation of quench melts, indicating that the

- 370 formation of potassium-rich melts should have a close relationship with the
- 371 breakdown of phlogopite.

372	In oceanic subduction zones, potassium can be introduced into mantle wedges
373	and lithospheric mantle through slab-derived fluid/melt, continental-derived sediment
374	and phlogopite-bearing peridotite and form a variety of metasomatized zones (e.g.,
375	Foley 1992, 1993; Prelević et al. 2008; Wang and Foley 2018). Then, partial melting
376	of the metasomatized peridotite may contribute to the origin of potassium-rich
377	magmas in these regions. Therefore, it has been suggested that the breakdown or
378	melting of phlogopite with increased temperature is essential for the generation of
379	potassium-rich magmas in subduction zones and post-collisional settings (Wyllie and
380	Sekine 1982; Foley et al. 1996; Prelević et al. 2012; Fritschle et al. 2013; Condamine
381	and Médard 2014; Mallik et al. 2015). However, phlogopite was also thought to be
382	unnecessary in a mantle source to produce potassium-rich magmas based on mixed
383	experiments in phyllite + dunite system (Wang et al. 2017; Wang and Foley 2018).
384	They suggested that potassium was introduced by the addition of continental-derived
385	sediment via phengite; the breakdown of phengite could then release a significant
386	amount of potassium into the resulting partial melt. Therefore, this phlogopite-free
387	mantle source may be an alternative explanation for the generation of potassium-rich
388	magmas in post-collisional settings (Wang et al. 2017; Wang and Foley 2018).
389	Phengite is an important potassium-bearing phase in subducted sediment, oceanic
390	crust and upper continental crust at depths ~<300 km below surface (e.g., Schmidt

- and Poli 1998; Ono 1998; Hermann and Green 2001; Hermann 2002; Hermann and
- 392 Spandler 2008; Wu et al. 2009). However, phengite has never been observed in mixed
- 393 experiments, such as andesite + lherzolite, sediment + MORB, sediment melt +
- 394 dunite/lherzolite, metasediment + dunite and sediment-dominated mélange +
- 395 Iherzolite systems (*e.g.*, Castro et al. 2010; Mallik and Dasgupta 2014, Pirard and
- Hermann 2015; Mallik et al. 2015, 2016; Codillo et al., 2018), because they have
- 397 compositions that are too high in Mg to produce phengite. In fact, neither phengite nor
- 398 phlogopite has been observed in all experiments conducted by Wang and Foley (2018)
- in phyllite + dunite systems. We suggest that the absence of phlogopite or phengite in
- 400 those experiments may indicate a relationship with lower H₂O in the starting material
- 401 (0.88 wt%), which is not conducive to the formation of these K-bearing minerals
- 402 because they are hydrous phases. In addition, the limited temperature range (1000–
- 403 1100 °C) in Wang and Foley (2018) may also be related to the absence of phlogopite
- 404 or phengite in the run products, because phlogopite has been mostly observed as a
- 405 stable phase in subsolidus conditions and the stable field of phengite is usually less
- 406 than ~900 °C at <5 GPa (Schmidt and Poli 1998). After combining our experimental
- 407 results with previous studies (e.g., Wyllie and Sekine 1982; Foley et al. 1996; Prelević
- 408 et al. 2012; Fritschle et al. 2013; Condamine and Médard 2014; Mallik et al. 2016),
- 409 we suggest that phlogopite is an important potassium-bearing phase in
- 410 sediment/sediment melt-metasomatized mantle at shallow depths because there is
- 411 little experimental evidence for the presence of phengite, although its presence is

412	unable to be ruled out completely by our experiments. With an increase in
413	temperature (or upwelling), the breakdown or melting of phlogopite may result some
414	potassium-rich melts. These melts could transport sediment signatures and potassium
415	into arc lavas in subduction zones or potassic magmas in post-collisional settings.
416	
417	4.2 Comparison of experimentally formed melts
418	Experimental melts formed in sediment melt + lherzolite (Mallik et al. 2016),
419	sediment melt + dunite (Pirard and Hermann 2015), mélange + lherzolite (Codillo et
420	al. 2018), phyllite/sediment + dunite (Wang and Foley 2018; Förster et al. 2019a, b)
421	and mélange (Cruz-Uribe et al., 2018) systems were selected for comparison (Figure
422	5). If the mixed and reaction experiments are assumed to be two end-member
423	processes of slab material reacting with lithospheric mantle, a mixing of the resultant
424	melts in our experiments may show similar Al ₂ O ₃ and FeO variations with melts
425	formed in mélange + lherzolite (Codillo et al. 2018) and sediment melt + dunite
426	(Pirard and Hermann 2015) systems (Figure 5a, c). The mixing line of MgO and CaO
427	in experimental melts from this study was roughly consistent with mélange-derived
428	melts (Figure 5b, d; Cruz-Uribe et al. 2018). The CaO concentrations in experimental
429	melts derived from mélange + lherzolite (Codillo et al. 2018) and sediment melt +
430	lherzolite (Mallik et al. 2016) systems were slightly higher than other experiments.
431	Experimental melts derived from mélange (Cruz-Uribe et al. 2018) and sediment melt
432	+ dunite (Pirard and Hermann 2015) had slightly higher Na ₂ O compared with melts

433	from other experiments (Figure 5e). In terms of a phyllite + dunite system (Wang and
434	Foley 2018), the experimental melts exhibited relatively higher SiO_2 because the
435	starting material they use is rich in SiO ₂ (~59 wt%). The composition of mélange +
436	lherzolite-derived melts (Codillo et al. 2018) displayed higher MgO and CaO and
437	lower Na ₂ O and K ₂ O than melts formed in a mélange system (Cruz-Uribe et al. 2018).
438	In a sediment + dunite system (Förster et al. 2019a, b), the experimental melts
439	exhibited lower concentrations of MgO and FeO (Figure 5b, c), because only layered
440	(reaction) experiments were conducted and the resulting melts may not have
441	equilibrated with the upper dunite layer (rich in MgO and FeO).
442	The N-MORB normalized trace element patterns of experimental melts in this
443	study are shown in Figure 7. Partial melts produced in mixed and reaction
444	experiments exhibited similar patterns for rare earth elements (REEs), large ion
445	lithosphile elements (LILEs) and high field strength elements (HFSEs), except for
446	slightly positive Zr-Hf anomalies in melts derived from reaction experiments (Figure
447	7). Recently, Wang and Foley (2018) found that melts formed in mixed experiments
448	are rich in heavy rare earth elements (HREEs) with respect to melts formed in
449	reaction experiments. This may be caused by the presence of higher proportions of
450	residual garnet in reaction experiments, which can preserve a significant portion of
451	the bulk rock HREE; therefore, the corresponding melts are poor in HREEs. The
452	mélange-derived melts exhibited similar trace element patterns with experimental
453	melts from this study (Figure 8a; Castro et al. 2010). Experimental melts formed in a

454	mélange + lherzolite system (Cruz-Uribe et al. 2018) displayed positive Zr-Hf
455	anomalies with respect to mélange-derived melts (Castro et al. 2010); this result may
456	indicate a relationship with relatively higher temperatures (Cruz-Uribe et al. 2018),
457	because it favors the breakdown of zircon and release of Zr-Hf to experimental melts.
458	In a sediment melt + lherzolite system (Mallik et al. 2016), the resultant melts
459	exhibited positive Sr and negative Th anomalies compared with melts in this study
460	(Figure 8b). Experimental melts formed in a phyllite + dunite system also showed
461	similar trace element patterns with melts derived from sediment + harzburgite, except
462	for relatively lower concentrations of HREEs and weak Zr-Hf anomalies (Figure 8c;
463	Wang and Foley 2018). The partial melts derived from reaction experiments between
464	sediment and dunite exhibited positive U and Ta anomalies compared with the melts
465	formed in this study (Figure 8c; Förster et al. 2019a). The melt/fluid from Pirard and
466	Hermann (2015) exhibited higher trace element concentrations and positive U, Ta, Sm
467	and Eu anomalies (Figure 8d); this result may be related to the relatively lower
468	temperatures they used, so that the proportions of the resulting melt/fluid were low
469	and the trace element concentrations in the melt/fluid were high.
470	

471 **4.3 Recycling of sediment diapirs in subduction zones**

472 Major element compositions of natural potassium-rich arc lavas from the

- 473 Aleutian, Sunda, Central American and Mexian subduction zones were selected for
- 474 comparison with experimental melts (Figure 5). The potassium-rich arc data

475	(K ₂ O/Na ₂ O ratios of \geq 1) were compiled from the GEOROC database
476	(http://georoc.mpch-mainz.gwdg.de). The mixing lines of melt composition between
477	mixed and reaction experiments are consistent with natural potassium-rich arc lavas in
478	SiO ₂ , Al ₂ O ₃ , MgO, K ₂ O and a portion of CaO and Na ₂ O (Figure 5a, b, d–f). At SiO ₂
479	concentrations lower than ~51 wt% (Figure 5a), the Al_2O_3 in potassium-rich arc lavas
480	was slightly lower than experimentally formed melt in a sediment + harzburgite
481	system, but consistent with melt derived from sediment melt + lherzolite (Mallik et al.
482	2016). In addition, experimentally formed melts exhibited lower FeO concentrations
483	than potassium-rich arc lavas (Figure 5c); this result may be caused by crystal
484	fractionation in natural arc lavas during ascent to near-surface, because early
485	differentiation could simultaneously increase the total FeO content of the residue
486	magmas and reduce Al ₂ O ₃ (e.g., Stakes et al. 1984). Therefore, it suggests that early
487	crystal fractionation of arc magmas could make variations in FeO and Al ₂ O ₃ approach
488	the compositions of experimental-derived melts. The variations of CaO and Na_2O in
489	potassium-rich arc lavas are slightly higher than experimental melts obtained in this
490	study (Figure 5d, e), but consistent with melts derived from mélange (sediment +
491	oceanic crust) + lherzolite (Codillo et al. 2018) and sediment melt (CaO-Na ₂ O-rich) +
492	lherzolite (Mallik et al. 2016) systems. This may indicate that a variety of CaO and
493	Na ₂ O-rich components, such as oceanic crust, may be involved in the origins of such
494	arc lavas. Therefore, we suggest that recycled bulk sediment alone is insufficient to
495	explain the major element compositions of potassium-rich arc lavas; a variety of

496 basaltic crust (or melt derived from basaltic crust) components may also be involved497 in the mantle source of these arc lavas.

498	To further constrain the involvement of bulk sediment diapirs in the genesis of
499	potassium-rich arc lavas, the trace element compositions of mixed and reaction melts
500	in this study were compared with natural potassium-rich arc lavas from subduction
501	zones (Figure 9). The trace element pattern of potassium-rich lavas from the Mexian
502	and Sunda subduction zones are consistent with the melts derived from sediment +
503	harzburgite experiments in this study (Figure 9a, b). The slightly positive Zr-Hf
504	anomalies in some of the arc lavas from the Mexian subduction zone can be
505	interpreted as melts from reaction experiments in sediment + harzburgite or
506	sediment-dominated mélange systems (Figure 8a). For potassium-rich arc lavas from
507	the Central American and Aleutian subduction zones, variations of Rb and Ba (or Th)
508	are inconsistent with experimental melts from both mixed and reaction experiments
509	(Figure 9c, d). This discrepancy can be explained by the involvement of mélange or
510	sediment melt in the mantle source of these magmas (Figure 8a-b). The similar trace
511	element patterns of melts derived from sediment + harzburgite experiments and
512	natural potassium-rich arc lavas provide evidence for the involvement of bulk
513	sediment diapirs in the mantle source of these arc lavas.
514	

515 **5. Implications**

516	The transfer mechanisms of continental-derived sediments from a subducting
517	slab to the overlying mantle wedge or lithospheric mantle include
518	metamorphism-induced melts or fluids (Plank and Langmuir 1993; Peate et al. 1997;
519	Porter and White 2009; Turner et al. 2012; Pirard and Hermann 2015), bulk sediment
520	diapirs (Behn et al., 2011; Nielsen and Marschall 2017), and sediment-dominated
521	mélanges (Codillo et al. 2018; Cruz-Uribe et al. 2018); however, the dominant
522	transfer mechanism for this material is still debated. Previous studies have suggested
523	that bulk sediment diapirs can be introduced into the bottom of lithospheric mantle
524	during slab subduction and form variable mélanges. Relaminated sediment
525	components may significantly affect the physical and chemical properties of
526	lithosphere (harzburgite), because they have different major and trace element
527	compositions. Partial melting of these mélanges may result in magmas with different
528	potassium concentrations, depending on the stability or breakdown of phlogopite. The
529	new data from this study have revealed similar trace element patterns for the partial
530	melts derived from sediment + harzburgite mélanges and natural potassium-rich arc
531	lavas from subduction zones, indicating that bulk sediment diapirs may be a possible
532	transfer mechanism for slab material from a subducting plate to the upper mantle
533	wedge/lithospheric mantle. Therefore, these experimental data may help to understand
534	the partial melting phase relations of sediment-modified lithospheric mantle and
535	provide constraints on the evolution of lithosphere and the generation of
536	potassium-rich arc lavas in oceanic subduction zones.

537

538 Acknowledgments

539	We thank Jihao Zhu and Wei Li for technical support during EPMA analyses. We
540	acknowledge the use of EPMA in the Key Laboratory of Submarine Geosciences,
541	State Oceanic Administration. We thank Junlong Yang, Zhenjiang Wang, Xiangfa
542	Wang, Juan Wang, Xingdong Zhou and Zhonghang Wang for technical support
543	during high-pressure experiments and SEM analyses. We are grateful to Fred Davis,
544	Ananya Mallik and two anonymous reviewers for their constructive suggestions and
545	comments. Editorial handling by Don R. Baker and Sylvie Demouchy is greatly
546	appreciated. This research was supported by the National Programme on Global
547	Change and Air-Sea Interaction (GASI-GEOGE-02), National Natural Science
548	Foundation of China (41772040, 91858104).
549	
550	References
551	Behn, M.D., Kelemen, P.B., Hirth, G., Hacker, B.R., and Massonne, H.J. (2011)
552	Diapirs as the source of the sediment signature in arc lavas. Nature Geoscience,
553	4, 641–646.
554	Bindeman, I.N., Eiler, J.M., Yogodzinski, G.M., Tatsumi, Y., Stern, C.R., Grove, T.L.,
555	Portnyagin, M., Hoernle, K., and Danyushevsky, L.V. (2005) Oxygen isotope
556	evidence for slab melting in modern and ancient subduction zones. Earth and
557	Planetary Science Letters, 235, 480–496.

558	Blundy, J.D., and Sparks, R.S.J. (1992) Petrogenesis of mafic inclusions in granitoids
559	of the Adamello Massif, Italy. Journal of Petrology, 33, 1039–1104.
560	Castro, A., Gerya, T., Garcia-Casco, A., Fernandez, C., Diaz-Alvarado, J.,
561	Moreno-Ventas, I., and Low, I. (2010) Melting relations of MORB-sediment
562	mélanges in underplated mantle wedge plumes: Implications for the origin of
563	cordilleran-type batholiths. Journal of Petrology, 51, 1267–1295.
564	Codillo, E.A., Le Roux, V., and Marschall, H.R. (2018) Arc-like magmas generated
565	by mélange-peridotite interaction in the mantle wedge. Nature Communications,
566	9(1), 2864.
567	Condamine, P., and Médard, E. (2014) Experimental melting of phlogopite-bearing
568	mantle at 1 GPa: Implications for potassic magmatism. Earth and Planetary
569	Science Letters, 397, 80–92.
570	Condamine, P., Médard, E., and Devidal, J.L. (2016) Experimental melting of
571	phlogopite-peridotite in the garnet stability field. Contributions to Mineralogy
572	and Petrology, 171(11), 95.
573	Corgne, A., Schilling, M.E., Grégoire, M., and Langlade, J. (2018) Experimental
574	constraints on metasomatism of mantle wedge peridotites by hybridized adakitic
575	melts. Lithos, 308-309, 213-226.
576	Duggen, S., Portnyagin, M., Baker, J., Ulfbeck, D., Hoernle, K., Garbe-SchoÅNnberg,
577	D., and Grassineau, N. (2007) Drastic shift in lava geochemistry in the
578	volcanic-front to near-arc region of the Southern Kamchatkan subduction zone:

- 579 Evidence for the transition from slab surface dehydration to sediment melting.
- 580 Geochimica et Cosmochimica Acta, 71, 452–480.
- 581 Foley, S.F. (1992) Vein-plus-wall-rock melting mechanisms in the lithosphere and the
- 582 origin of potassic alkaline magmas. Lithos, 28, 435–453.
- 583 Foley, S.F. (1993) An experimental study of olivine lamproite-first results from the
- diamond stability field. Geochimica et Cosmochimica Acta, 57, 483–489.
- 585 Foley, S.F., Jackson, S.E., Fryer, B.J., Greenouch, J.D., and Jenner, G.A. (1996)
- 586 Trace element partition coefficients for clinopyroxene and phlogopite in an
- 587alkaline lamprophyre from Newfoundland by LAM-ICP-MS. Geochimica et
- 588 Cosmochimica Acta, 604, 629–638.
- 589 Förster, M.W., Prelević, D., Buhre, S., Mertz-Kraus, R., and Foley, S.F. (2019a) An
- 590 experimental study of the role of partial melts of sediments versus mantle melts
- in the sources of potassic magmatism. Journal of Asian Earth Sciences, 177, 76–
- **592 88**.
- 593 Förster, M.W., Foley, S.F., Alard, O., and Buhre, S. (2019b) Partitioning of nitrogen
- 594 during melting and recycling in subduction zones and the evolution of

595atmospheric nitrogen. Chemical Geology, 525, 334–342.

- 596 Förster, M.W., Prelević, D., Schmück, H.R., Buhre, S., Veter, M., Mertz-Kraus, R.,
- 597 Foley, S.F., and Jacob, D.E. (2017) Melting and dynamic metasomatism of
- 598 mixed harzburgite + glimmerite mantle source: Implications for the genesis of
- orogenic potassic magmas. Chemical Geology, 455, 182–191.

600	Fritschle, T., Prelevic, D., Foley, S.F., and Jacob, D.E. (2013) Petrological
601	characterization of the mantle source of Mediterranean lamproites: Indications
602	from major and trace elements of phlogopite. Chemical Geology, 353, 267–279.
603	Fumagalli, P., Zanchetta, S., and Poli, S. (2009) Alkali in phlogopite and amphibole
604	and their effects on phase relations in metasomatized peridotites: a high-pressure
605	study. Contributions to Mineralogy and Petrology, 158, 723-737.
606	Gervasoni, F., Klemme, S., Rohrbach, A., Grützner, T., and Berndt, J. (2017)
607	Experimental constraints on mantle metasomatism caused by silicate and
608	carbonate melts. Lithos, 282-283, 173-186.
609	Hacker, B.R., Kelemen, P.B., and Behn, M.D. (2011) Differentiation of the
610	continental crust by relamination. Earth and Planetary Science Letters, 307,
611	501–516.
612	Harvey, J., Garrido, C.J., Savov, I., Agostini, S., PadroÅLn-Navata, J.A., Marchesi,
613	C., SaÅLnchez-VizcaiÅLno, V.L., and GoÅLmez-Pugnaire, M.T. (2014)
614	¹¹ B-rich fluids in subduction zones: The role of antigorite dehydration in
615	subducting slabs and boron isotope heterogeneity in the mantle. Chemical
616	Geology, 376, 20–30.
617	Hermann, J. (2002) Experimental constraints on phase relations in subducted

618 continental crust. Contributions to Mineralogy and Petrology, 143, 219–235.

619	Herrmann, W., and Berry, R.F. (2002) MINSQ-a least squares spreadsheet method
620	for calculating mineral proportions from whole rock major element analyses.
621	Geochemistry: Exploration, Environment, Analysis, 2, 361-368.
622	Hermann, J., and Green, D.H. (2001) Experimental constraints on high pressure
623	melting in subducted crust. Earth and Planetary Science Letters, 188, 149–168.
624	Hermann, J., and Rubatto, D. (2009) Accessory phase control on the trace element
625	signature of sediment melts in subduction zones. Chemical Geology, 265, 512-
626	526.
627	Hermann, J., and Spandler, C.J. (2008) Sediment melts at sub-arc depths: An
628	experimental study. Journal of Petrology, 49, 717-740.
629	Kendrick, M.A., Arculus, R.J., and Danyushevsky, L.V. (2014) Subduction-related
630	halogens (Cl, Br, and I) and H_2O in magmatic glasses from Southwest Pacific
631	Backarc Basins. Earth and Planetary Science Letters, 400, 165–176.
632	Liu, Y., Hu, Z., Gao, S., Günther, D., Xu, J., Gao, C., and Chen, H. (2008) In situ
633	analysis of major and trace elements of anhydrous minerals by LA-ICP-MS
634	without applying an internal standard. Chemical Geology, 257, 34-43.
635	Longerich, H.P., Jackson, S.E., and Günther, D. (1996) Laser ablation inductively
636	coupled plasma mass spectrometric transient signal data acquisition and analyte
637	concentration calculation. Journal of Analytical Atomic Spectrometry, 11(9),
638	899–904.

- 639 Luth, R.W. (1997) Experimental study of the system phlogopite diopside from 3.5 to
- 640 17 GPa. American Mineralogist, 82, 1198–1209.
- 641 Mallik, A., and Dasgupta, R. (2013) Reactive infiltration of MORB-eclogite derived
- 642 carbonated silicate melt into fertile peridotite at 3 GPa and genesis of alkalic
- magmas. Journal of Petrology, 54, 2267–2300.
- Mallik, A., and Dasgupta, R. (2014) Effect of variable CO₂ on eclogite derived
- andesite and lherzolite reaction at 3 GPa: Implications for mantle source
- 646 characteristics of alkalic ocean island basalts. Geochemistry Geophysics
- 647 Geosystems, 15, 1533–1557.
- 648 Mallik, A., Dasgupta, R., Tsuno, K., and Nelson, J. (2016) Effects of water, depth and
- temperature on partial melting of mantle-wedge fluxed by hydrous
- sediment-melt in subduction zones. Geochimica et Cosmochimica Acta, 195,
- 651 226–243.
- Mallik, A., Nelson, J., and Dasgupta, R. (2015) Partial melting of fertile peridotite
- fluxed by hydrous rhyolitic melt at 2–3 GPa: Implications for mantle wedge
- hybridization by sediment melt and generation of ultrapotassic magmas in
- 655 convergent margins. Contributions to Mineralogy and Petrology, 169, 48.
- Marschall, H.R., and Schumacher, J.C. (2012) Arc magmas sourced from mélange
- diapirs in subduction zones. Nature Geoscience, 5, 862–867.
- Maunder, B., and van Hunen, J. (2016) Relamination of mafic subducting crust
- throughout Earth's history. Earth and Planetary Science Letters, 449, 206–216.

- 660 Mukherjee, P.K., Khanna, P.P., and Saini, N.K. (2014) Rapid determination of trace
- and ultra trace level elements in diverse silicate rocks in pressed powder pellet
- targets by LA-ICP-MS using a matrix-independent protocol. Geostandards and
- 663 Geoanalytical Research, 38 (3), 363–379.
- Nielsen, S.G., and Marschall, H.R. (2017) Geochemical evidence for mélange melting
- in global arcs. Science Advance, 3, e1602402.
- 666 Ono, S. (1998) Stability limits of hydrous minerals in sediment and mid-ocean ridge
- basalt compositions: Implications for water transport in subduction zones.
- Journal of Geophysical Research, 103, 18253–18267.
- 669 Peate, D.W., Pearce, J.A., Hawkesworth, C.J., Colley, H., Edwards, C.M.H., and
- 670 Hirose, K. (1997) Geochemical variations in Vanuatu arc lavas: The role of
- subducted material and a variable mantle wedge composition. Journal of
- 672 Petrology, 38, 1331–1358.
- 673 Pirard, C., and Hermann, J. (2015) Experimentally determined stability of alkali
- amphibole in metasomatised dunite at sub-arc pressures. Contributions to
- 675 Mineralogy and Petrology, 169, 1–26.
- 676 Plank, T., and Langmuir, C.H. (1993) Tracing trace elements from sediment input to
- 677 volcanic output at subduction zones. Nature, 362, 739–743.
- 678 Plank, T., and Langmuir, C.H. (1998) The chemical composition of subducting
- sediment: implications for the crust and mantle. Chemical Geology, 145, 325–
- 680 394.

- 681 Porter, K.A., and White, W.M. (2009) Deep mantle subduction flux. Geochemistry
- 682 Geophysics Geosystems, 10, 1–23.
- 683 Prelević, D., Foley, S.F., Romer, R., and Conticelli, S. (2008) Mediterranean tertiary
- 684 lamproites derived from multiple source components in post-collisional
- geodynamics. Geochimica et Cosmochimica Acta, 72, 2125–2156.
- 686 Prelević, D., Akal, C., Foley, S.F., Romer, R.L., Stracke, A., and van den Bogaard, P.
- 687 (2012) Ultrapotassic mafic rocks as geochemical proxies for post-collisional
- dynamics of orogenic lithospheric mantle: The case of southwestern Anatolia,
- 689 Turkey. Journal of Petrology, 53, 1019–1055.
- 690 Prouteau, G., Scaillet, B., Pichavant, M., and Maury, R. (2001) Evidence for mantle
- 691 metasomatism by hydrous silicic melts derived from subducted oceanic crust.
- 692 Nature, 410, 197–200.
- 693 Scambelluri, M., Pettke, T., and Cannaò, E. (2015) Fluid-related inclusions in Alpine
- 694 high-pressure peridotite reveal trace element recycling during subduction-zone
- dehydration of serpentinized mantle (Cima di Gagnone, Swiss Alps). Earth and
- 696 Planetary Science Letters, 429, 45–59.
- 697 Schmidt, M.W. (2015) Melting of pelitic sediments at subarc depths: 2. Melt
- 698 chemistry, viscosities and a parameterization of melt composition. Chemical
- 699 geology, 404, 168–182.

- 700 Schmidt, M.W., and Poli, P. (1998) Experimentally based water budgets for
- 701 dehydrating slabs and consequences for arc magma generation. Earth and
- 702 Planetary Science Letters, 163, 361–379.
- 703 Schmidt, M.W., and Poli, S. (2014) Devolatilization during subduction. In H.H.D.
- Holland, K.K. Turekian, Ed., Treatise on Geochemistry (Second Edition), p.
- 705 669–701, Pergamon, Oxford.
- 706 Shimoda, G., Tatsumi, Y., Nohda, S., Ishizaka, K., and Jahn, B.M. (1998) Setouchi
- high-Mg andesites revisited: Geochemical evidence for melting of subducting

sediments. Earth and Planetary Science Letters, 160, 479–492.

- Shu, Y., Nielsen, S.G., Zeng, Z., Shinjo, R., Blusztajn, J., Wang, X., and Chen, S.
- 710 (2017) Tracing subducted sediment inputs to the Ryukyu arc-Okinawa Trough
- 711 system: Evidence from thallium isotopes. Geochimica et Cosmochimica Acta,
- 712 217, 462–491.
- 713 Spandler, C., and Pirard, C. (2013) Element recycling from subducting slabs to arc
- 714 crust: A review. Lithos, 170-171, 208–223.
- 715 Stakes, D.S., Shervais, J.W. and Hopson, C.A. (1984) The volcanic-tectonic cycle of
- the FAMOUS and AMAR Valleys, Mid-Atlantic Ridge (36°47′N): Evidence
- from basalt glass and phenocryst compositional variations for a steady state
- magma chamber beneath the valley midsections, AMAR 3. Journal of
- 719 Geophysical Research: Solid Earth, 89, 6995–7028.

720	Sudo, A., and Tatsumi, Y. (1990) Phlogopite and K-amphibole in the upper mantle:
721	Implication for magma genesis in subduction zones. Geophysics Research Letter,
722	17, 29–32.
723	Tatsumi, Y., Hamilton, D.L., and Nesbitt, R.W. (1986) Chemical characteristics of
724	fluid phase released from a subducted lithosphere and origin of arc magmas:
725	Evidence from high-pressure experiments and natural rocks. Journal of
726	Volcanology and Geothermal Research, 29, 293–309.
727	Tumiati, S., Fumagalli, P., Tiraboschi, C., and Poli, S. (2013) An experimental study
728	on COH-bearing peridotite up to 3.2GPa and implications for crust-mantle
729	recycling. Journal of Petrology, 54, 453-479.
730	Turner, S., Caulfield, J., Turner, M., van Keken, P., Maury, R., Sandiford, M., and
731	Prouteau, G. (2012) Recent contribution of sediments and fluids to the mantle's
732	volatile budget: Nature Geoscience, 5, 50-54.
733	Ulmer, P., and Trommsdorff, V. (1995) Serpentine stability to mantle depths and
734	subduction-related magmatism. Science, 268, 858-861.
735	Wang, C., Jin, Z., Gao, S., Zhang, J. and Zheng, S. (2010) Eclogite-melt/peridotite
736	reaction: Experimental constrains on the destruction mechanism of the North
737	China Craton. Science China: Earth Sciences, 53, 797–809.
738	Wang, X., Wang, Y., Gao, Y., Huang, Y., Wang, Z., and Shi, X. (2009) Preparation of
739	five China Sea and continental shelf sediment reference materials (MSCS-1-5)

- 740 with ultra-fineparticle size distributions. Geostandards and Geoanalytical
- 741 Research, 33, 357–368.
- 742 Wang, Y., Foley, S.F., and Prelević, D. (2017) Potassium-rich magmatism from a
- 743 phlogopite-free source. Geology, 45, 467–470.
- 744 Wang, Y., and Foley, S.F. (2018) Hybridization melting between continent-derived
- sediment and depleted peridotite in subduction zones. Journal of Geophysical
- 746 Research: Solid Earth, 123, 3414–3429.
- 747 Wu, Y., Fei, Y., Jin, Z., and Liu, X. (2009) The fate of subducted Upper Continental
- 748 Crust: An experimental study. Earth and Planetary Science Letters, 282, 275–
 749 284.
- 750 Wyllie, P.J., and Sekine, T. (1982) The formation of mantle phlogopite in subduction
- zone hybridization. Contributions to Mineralogy and Petrology, 79, 375–380.
- 752 Zhu, L., Liu, Y., Hu, Z., Hu, Q., Tong, X., Zong, K., Chen, H., and Gao S. (2013)
- 753 Simultaneous Determination of Major and Trace Elements in Fused Volcanic
- Rock Powders Using a Hermetic Vessel Heater and LA-ICP-MS. Geostandards
- and Geoanalytical Research, 37(2), 207–229.
- 756
- 757

758 Figure captions

759	Figure 1. Backscattered electron images of representative run products. (a) and (b)
760	Mixed experiments conducted at 1.5 GPa and 1100 °C (PC431) and 1.5 GPa and 1300
761	^o C (PC463), respectively; melt + phlogopite or melt coexisting with olivine +
762	orthopyroxene was observed in the run products. (c) Mixed experiment conducted at
763	2.5 GPa and 1100 °C (R908), showing that phlogopite and trace garnet coexisting
764	with olivine and orthopyroxene. (d) Mixed experiment at 2.5 GPa and 1200 °C (R957),
765	showing that an amount of quench melt was segregated along the sample capsule. (e)
766	and (f) Reaction experiment carried out at 1.5 GPa and 950 °C (PC370), showing a
767	reaction zone composed mainly of clinopyroxene and amphibole.
768	
769	Figure 2 . Experimental <i>P</i> - <i>T</i> phase diagram in the sediment + harzburgite system
769 770	Figure 2 . Experimental <i>P</i> - <i>T</i> phase diagram in the sediment + harzburgite system (mixed experiments). Major phases are shown in squares. The approximate solidus
769 770 771	Figure 2 . Experimental <i>P</i> - <i>T</i> phase diagram in the sediment + harzburgite system (mixed experiments). Major phases are shown in squares. The approximate solidus and stability limits of phlogopite were estimated from the experimental results.
769 770 771 772	Figure 2 . Experimental <i>P</i> - <i>T</i> phase diagram in the sediment + harzburgite system (mixed experiments). Major phases are shown in squares. The approximate solidus and stability limits of phlogopite were estimated from the experimental results.
769 770 771 772 773	Figure 2. Experimental <i>P-T</i> phase diagram in the sediment + harzburgite system (mixed experiments). Major phases are shown in squares. The approximate solidus and stability limits of phlogopite were estimated from the experimental results. Figure 3. Chemical compositions of minerals and melt in mixed experiments. (a) and
769 770 771 772 773 774	Figure 2. Experimental <i>P-T</i> phase diagram in the sediment + harzburgite system (mixed experiments). Major phases are shown in squares. The approximate solidus and stability limits of phlogopite were estimated from the experimental results. Figure 3. Chemical compositions of minerals and melt in mixed experiments. (a) and (b) Variations of Mg# in olivine and orthopyroxene versus temperature; Fe-loss was
769 770 771 772 773 774 775	Figure 2. Experimental <i>P-T</i> phase diagram in the sediment + harzburgite system (mixed experiments). Major phases are shown in squares. The approximate solidus and stability limits of phlogopite were estimated from the experimental results. Figure 3. Chemical compositions of minerals and melt in mixed experiments. (a) and (b) Variations of Mg# in olivine and orthopyroxene versus temperature; Fe-loss was corrected by adding Fe to olivine and orthopyroxene based on the partitioning of Fe
769 770 771 772 773 774 775 776	Figure 2. Experimental P-T phase diagram in the sediment + harzburgite system (mixed experiments). Major phases are shown in squares. The approximate solidus and stability limits of phlogopite were estimated from the experimental results. Figure 3. Chemical compositions of minerals and melt in mixed experiments. (a) and (b) Variations of Mg# in olivine and orthopyroxene versus temperature; Fe-loss was corrected by adding Fe to olivine and orthopyroxene based on the partitioning of Fe between solid phases and melt. (c) to (f) Variations of Na ₂ O, K ₂ O, TiO ₂ and NiO
769 770 771 772 773 774 775 776 777	Figure 2. Experimental P-T phase diagram in the sediment + harzburgite system(mixed experiments). Major phases are shown in squares. The approximate solidusand stability limits of phlogopite were estimated from the experimental results.Figure 3. Chemical compositions of minerals and melt in mixed experiments. (a) and(b) Variations of Mg# in olivine and orthopyroxene versus temperature; Fe-loss wascorrected by adding Fe to olivine and orthopyroxene based on the partitioning of Febetween solid phases and melt. (c) to (f) Variations of Na ₂ O, K ₂ O, TiO ₂ and NiOversus temperature in phlogopite. (g) and (h) Variations of K ₂ O+Na ₂ O and K ₂ O/Na ₂ O

7	7	9
		-

780	Figure 4. SiO ₂ -(K ₂ O+Na ₂ O) diagram of melt compositions obtained in both mixed
781	and reaction experiments. R-exp, melt in reaction experiments; M-1.5(Phl), melt in
782	mixed experiments at 1.5 GPa with phlogopite in the residue minerals (PC431); M-1.5,
783	melt in mixed experiments at 1.5 GPa, phlogopite was not present or only very trace
784	amounts were present in the residue phases (PC460, PC463); M-2.5, melt in mixed
785	experiments at 2.5 GPa, phlogopite was not present in the residue phases (R957,
786	R1010).
787	
788	Figure 5. Major element compositions of experimental melts and potassium-rich arc
789	lavas from this study and literatures. Major element variations of (a) Al ₂ O ₃ , (b) MgO,
790	(c) FeO, (d) CaO, (e) Na ₂ O and (f) K_2O versus SiO ₂ for experimental melts and
791	natural potassium-rich arc lavas. Mélange + lherzolite data were from Codillo et al.
792	(2018); mélange (Cruz-Uribe et al. 2018); sediment melt + lherzolite (Mallik et al.
793	2016); sediment melt + dunite (Pirard and Hermann 2015); phyllite + dunite (Wang
794	and Foley 2018); sediment + dunite (Förster et al. 2019a, b). Experimental melts
795	obtained in this study were corrected for Fe-loss, by adding FeO back to experimental
796	melts. The purple shadowed zone represents natural potassium-rich arc lavas with
797	K_2O/Na_2O ratios ≥ 1 from the Mexian, Sunda, Central American and Aleutian
798	subduction zones, compiled from the GEOROC database
799	(http://georoc.mpch-mainz.gwdg.de).

800

Figure 6. Weight proportions of the phases in mixed experiments versus temperatureat 1.5 GPa.

- **Figure 7**. Normal mid-oceanic ridge basalt (N-MORB) normalized trace element
- 805 compositions of experimental melts. Data for N-MORB were from Sun and
- 806 McDonough (1989).
- 807
- 808 Figure 8. N-MORB normalized trace element compositions of experimental melts
- from this study and literatures. Experimental melts in (a) mélange (Cruz-Uribe et al.
- 810 2018) or mélange + lherzolite (Codillo et al. 2018), (b) and (d) sediment melt +
- 811 Iherzolite/dunite (Mallik et al. 2016; Pirard and Hermann 2015), (c) phyllite + dunite
- 812 (Wang and Foley 2018) and sediment + dunite (Förster et al. 2019a). Melts in
- 813 M-experiments/ R-experiments indicate melts from mixed/reaction experiments in
- this study.
- 815

816 Figu	re 9. (Comparison	of trace	element	patterns	ın th	ne experimen	tal melts	s of this
----------	---------	------------	----------	---------	----------	-------	--------------	-----------	-----------

- study and natural potassium-rich arc lavas. Arc lavas from the (a) Mexian, (b) Sunda,
- 818 (c) Central American and (d) Aleutian subduction zones.
- 819
- 820
- 821

	MSCS-3	GLOSS	Hz13	HS-1A	SPMHKLB4	SPMHKLB6	Wang18	PER-SED	PH-high	PH-low
SiO ₂	57.72	58.57	43.86	47.20	51.81	50.44	59.43	47.80	48.60	47.03
TiO_2	0.80	0.62	0.04	0.23	0.22	0.21	0.37	0.28	0.13	0.11
Al_2O_3	16.95	11.91	0.72	4.78	6.37	5.81	5.90	5.83	3.47	2.72
Cr_2O_3	-	-	0.06	0.05	0.24	0.26	0.19	-	-	-
FeO^T	6.08	5.21	9.23	8.44	6.38	6.73	5.88	7.27	6.93	6.92
MnO	0.21	0.32	0.14	0.16	0.10	0.12	0.10	0.13	0.09	0.10
MgO	2.74	2.48	45.46	34.78	29.70	31.56	25.32	33.40	37.42	37.42
CaO	2.82	5.95	0.08	0.77	2.54	2.64	0.90	4.06	0.23	0.33
Na ₂ O	2.57	2.43	0.01	0.65	1.02	0.89	0.84	0.89	0.53	1.21
K_2O	3.40	2.04	-	0.85	1.61	1.31	0.95	0.33	1.51	0.73
P_2O_5	0.18	0.19	-	0.05	0.05	0.04	-	0.01	-	-
LOI	7.02	10.30	-	1.76	4.00	6.00	0.88	0.34	1.25	3.75
Total	100.00	100.02	99.60	99.70	104.04	106.01	100.73	100.35	100.15	100.31

Table 1. Compositions of starting materials used in this study and previous reports.

823 HS-1A, the hybrid sample powder used in this study, synthesized by mixing 25 wt% sediment (MSCS-3) with 75

824 wt% harzburgite (Hz13).

825 SPMHKLB4 and SPMHKLB6, synthesized by mixing 25 wt% sediment-melt with 75 wt% lherzolite, from Mallik

826 et al. (2016).

827 *Wang18*, synthesized by mixing 50 wt% phyllite with 50 wt% dunite, from Wang et al. (2018).

828 *PER-SED*, synthesized by mixing 15 wt% mélange with 85 wt% lherzolite, from Codillo et al. (2018).

829 PH-high and PH-low, synthesized by mixing 25 wt% sediment-melt with 75 wt% olivine, from Pirard and

830 Hermann (2015).

831 FeO^T, total Fe was calculated as FeO.

Run	Т	Р	D	Geometry	Phase Modes (wt%)									
no.	(°C)	(GPa)	(hrs)		Ol	Opx	Срх	Phl	Grt	melt	$\sum r^2$	Fe-loss	other minerals	
PC307	800	1.5	113	Mixture	29(2)	54(2)	4(2)	12(1)			0.7±0.5	19(2)	Mag, Hem, Rut	
PC322	900	1.5	72	Mixture	30(3)	53(3)	5(2)	11(1)			0.6±0.2	23(3)	Mag, Hem, Apa	
PC368	950	1.5	60	Mixture	31(2)	49(2)	7(1)	12(1)			0.3±0.3	18(0)	Mag, Hem, Zir	
PC365	1000	1.5	48	Mixture	32(3)	52(4)	6(2)	11(2)			0.3±0.1	17(1)	Mag, Hem,	
PC431	1100	1.5	48	Mixture	34(3)	51(4)		8(1)		5(1)	0.3±0.1	17(1)	Mag	
PC460	1200	1.5	53	Mixture	35(1)	50(1)				13(1)	0.2±0.1	26(1)		
PC463	1300	1.5	44	Mixture	46(2)	35(5)				18(3)	1.0±1.0	23(5)		
R908	1100	2.5	30	Mixture	27(1)	56(1)		9(1)	7(1)	‡	0.4±0.1	21(1)		
R957	1200	2.5	26	Mixture	34(1)	52(2)		‡		14(3)	0.3±0.1	18(2)		
R1010	1300	2.5	30	Mixture	32(3)	46(3)				21(2)	0.2±0.1	32(1)		
PC370	950	1.5	53	Layer						Harzburgite: Ol + Opx + Sp;				
										Sediment: Grt + Pl + melt;				
										Reaction zone: Cpx + Amp;				
PC478	1000	1.5	48	Layer						Harzburgite: Ol + Opx;				
										Sediment: Grt + Cpx + melt; Reaction zone: Opx				
R1028	R1028 1000 2.5		30	Layer						Harzburgite: Ol + Opx;				
										Sedime	nt: Grt + me	elt;		
										Reactio	n zone: Opx			
834 Mass balance calculations were performed to estimate the phase proportions (wt%) in mixed experiments.														
835 \$\\$, Indicates trace presence of a phase which could not be detected by mass balance.														
83	36 z	Σr^2 , Sum of residual square.												
83	Fe-loss, Indicates the relative Fe-loss to the Au-Pd capsules with respective to the bulk Fe concentration in the													

833 Table 2. Summary of experimental conditions and run products.

838 starting material, as estimated by mass balance.

839 Mineral abbreviations: *Ol*, olivine; *Opx*, orthopyroxene; *Cpx*, clinopyroxene; *Phl*, phlogopite; *Mag*, magnesite;

840 *Hem*, hematite; *Rut*, rutile; *Apa*, apatite; *Zir*, zircon; *Grt*, garnet; *Sp*, spinel; *Pl*, plagioclase; *Amp*, amphibole.

841

Figure 1

Figure 3

Figure 5

Figure 7

Figure 8

Figure 9