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 22 

ABSTRACT 23 

The genesis of high-silica igneous rocks is important for understanding the behavior of 24 

shallow magmatic systems. However, although many such studies have focused on the eruption 25 

of crystal-poor high-SiO2 rhyolites, the origin of high-silica granites (HSGs) has received 26 

comparatively little attention. Here, we present a detailed study of HSGs from the Narusongduo 27 

volcanic complex, Gangdese arc. Combining zircon U–Pb geochronology with stratigraphic 28 

investigations, we show that the Narusongduo magmatic system was constructed over a period of 29 

≥3.7 Myr with or without lulls. On the basis of zircon textures and ages, diverse zircon 30 

populations including antecrysts and autocrysts are recognized within the HSGs and volcanic 31 

rocks. All of the igneous rocks within the Narusongduo volcanic complex have highly radiogenic 32 

Sr–Nd isotopic compositions. Our results indicate the presence of an andesitic magma reservoir 33 

in the upper crust at a paleodepth of ⁓8 km. Ubiquitous zircon antecrysts in the HSGs, combined 34 

with compositional similarities between the HSGs and evolved melts of the andesitic magma 35 

reservoir, indicate that the Narusongduo HSGs represent melts extracted from the shallow magma 36 

reservoir. In addition, our results suggest that magma recharge promoted the escape of high-silica 37 

melts to form the Narusongduo HSGs. This work presents an excellent case that kilometer-scale 38 

high-silica granites are the differentiated products from an upper crustal magma reservoir. It 39 

would make a contribution to contemporary debates concerning the efficiency of crystal–melt 40 

separation in upper crustal magmatic systems. 41 

   Keywords: high-silica granite, magma reservoir, crystal–melt separation, upper crust, 42 
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rhyolite 43 

INTRODUCTION 44 

High-silica granites (HSGs) and rhyolites, although comprising a small proportion of the 45 

upper continental crust, are important for understanding the behavior of shallow magmatic 46 

systems. Their study can test the efficiency of crystal–melt separation within upper-crustal 47 

magma reservoirs (Bachmann and Huber 2019). In crustal magmatic systems, heat is one of the 48 

main controlling factors and determines rheological properties and dynamic behavior of magmas 49 

(e.g., Caricchi and Blundy 2015; Blundy and Annen 2016). Thus melt segregation in hot, deep 50 

crust is efficient, where chemical differentiation is achieved through crystal fractionation of 51 

primitive magmas and/or partial melting of crustal rocks (Hildreth and Moorbath 1988; Annen 52 

et al. 2006). 53 

In contrast, large-scale extraction of residual melts from upper-crustal magma bodies is 54 

currently debated. The obvious thermal problems might be reconciled by the existence of a 55 

long-lived (several million years) transcrustal magmatic system that would facilitate the 56 

formation of a magma reservoir with prolonged survivability in the upper crust (e.g., de Silva 57 

and Gregg 2014; Karakas et al. 2017). In such a case of a thermally mature system, the time 58 

needed for phase separation to occur might be enough (Bachmann and Huber 2019). 59 

Compaction is widely invoked as an efficient mechanism for driving separation of melt in silicic 60 

magma reservoirs (e.g., Miller et al. 1988; Bachmann and Bergantz 2004). However, there is 61 

little microstructural evidence in support of widespread compaction in the solidification of 62 

silicic magma chambers (Holness 2018), although this argument against compaction is not 63 
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widely accepted (e.g., Sparks et al. 2019). 64 

Field examples can help in understanding the dynamic behavior of shallow magmatic 65 

systems. Studies of large-scale evolved melts that have segregated from upper-crustal magma 66 

bodies have focused on crystal-poor high-SiO2 rhyolites (e.g., Hildreth 1979; Lipman 1988; 67 

Bachmann and Bergantz 2004; Deering et al. 2011). In contrast, convincing examples of their 68 

intrusive counterparts, representing separation of highly evolved melts at shallow crustal levels 69 

to form pluton-scale granites, are scarce. HSGs are commonly exposed in the roof or core of 70 

zoned intrusive suites (e.g., Miller and Miller 2002; Putirka et al. 2014) and have traditionally 71 

been interpreted to represent upward percolation of evolved melts (e.g., Bateman and Chappell 72 

1979; Hildreth 1981; Barnes 1983). However, petrographic variability in zoned intrusive suites 73 

can also be ascribed to incremental intrusion, and HSGs may represent discrete magmatic pulses 74 

from their lower-crustal source rather than the products of in situ differentiation (e.g., Clemens 75 

and Stevens 2012; Coleman et al. 2012). Thus, identification of pluton-scale HSGs that 76 

represent melts extracted from upper-crustal magma reservoirs is important for testing the 77 

efficiency of crystal–melt separation in shallow magmatic systems. 78 

Here, we present an excellent case that kilometer-scale HSG bodies are the differentiated 79 

products derived from a shallow andesitic magma reservoir, which is located within the 80 

Narusongduo volcanic complex, Gangdese arc, Tibet. In this study, we combine field, 81 

geochronologic, mineral and geochemical data, to provide a quantified petrologic reconstruction 82 

of the Narusongduo magmatic system, with particular focus on the genesis of HSGs. 83 

 84 
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GEOLOGICAL BACKGROUND 85 

The Gangdese arc, in the southern Tibetan Plateau, is a remnant of a Triassic–Tertiary 86 

continental arc that was sandwiched between the Indian and Asian plates during continental 87 

collision. It contains voluminous volcanic rocks that overlie predominantly felsic plutons and 88 

extends along strike for more than 1500 km (e.g., Hou et al. 2015; Zhu et al. 2017). Triassic to 89 

early Tertiary magmatism in the Gangdese arc originated through northward subduction of the 90 

Neo-Tethyan Ocean lithosphere along the southern margin of the Lhasa Terrane (e.g., Chung et 91 

al. 2005; Hou et al. 2015). Radiometric age data from intrusive and volcanic rocks show that arc 92 

magmatism began during the Late Triassic and lasted until the Paleocene (Chung et al. 2005; Ji 93 

et al. 2009; Zhu et al. 2017). Several periods of magmatic activity are recorded that reflect the 94 

episodic construction of the Gangdese batholith (e.g., Hou et al. 2015; Zhu et al. 2017), although 95 

the most intense phase of magmatism occurred during the early Tertiary (Mo et al. 2008; Zhu et 96 

al. 2017). Most of the volcanic rocks are Tertiary in age (Figure 1a), with compositions that vary 97 

mainly from andesite to rhyolite with calc-alkaline to high-K calc-alkaline signatures (e.g., 98 

Wang et al. 2015; Zhu et al. 2015). The Gangdese batholith contains gabbro, diorite, 99 

granodiorite, and monzogranite and/or syenogranite, (e.g., Ji et al. 2009), as well as 100 

peraluminous leucogranites (e.g., Ma et al. 2018). With the aim of determining the petrogenesis 101 

of the HSGs, we conducted a case study on rocks from the Narusongduo volcanic complex 102 

(Figure 1b), located within the central Gangdese arc (Figure 1a). 103 

 104 

SAMPLING AND METHODS 105 
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Sampling 106 

We performed detailed field mapping and several stratigraphic investigations, establishing 107 

that the Narusongduo volcanic field, though eroded, covers ~245 km2 and has a cumulative 108 

thickness of 948 m, with an estimated present-day volume of ~232 km3. The Narusongduo 109 

HSGs occur as isolated plutons with diameters less than 1.5 km (Figure 1b). Most HSGs are 110 

porphyritic and dominated by phenocrysts of quartz, altered feldspar, and biotite, in a matrix of 111 

finer-grained quartz and feldspar. Large volumes of intermediate volcanic rocks surround the 112 

HSGs (Figure 1b), comprising dacitic to andesitic lavas, breccias, crystal tuffs, and tuffaceous 113 

sandstones and siltstones. The dacites are vitrophyric, with a mineral assemblage consisting of 114 

plagioclase, magnetite, and zircon with or without quartz, clinopyroxene, and amphibole. The 115 

andesites exhibit a hyalopilitic texture and contain plagioclase, clinopyroxene, and Fe–Ti oxides, 116 

with variable amounts of amphibole, quartz, and zircon. Plagioclase is the most abundant 117 

phenocryst in the andesites and shows complex zoning patterns and sieve textures 118 

(Supplemental Figure S1a and b). Clinopyroxene is the second most abundant type of 119 

phenocryst. Notably, the andesites also contain two types of glomerocrysts, comprising 120 

clinopyroxene plus plagioclase, and amphibole plus quartz (Supplemental Figure S1c, d and f). 121 

Fresh samples of HSG, dacite, and andesite were collected for whole-rock major-element, 122 

trace-element, and Sr–Nd isotope geochemistry, zircon U–Pb dating, and mineral chemistry. 123 

Analytical methods 124 

Zircon U–Pb dating used a combination of secondary ionization mass spectrometry (SIMS) 125 

and laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) techniques. 126 
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SIMS analyses were performed using a CAMECA IMS 1280-HR at the State Key Laboratory of 127 

Isotope Geochemistry (SKLaBIG), Guangzhou Institute of Geochemistry, Chinese Academy of 128 

Sciences (GIG–CAS), Guangzhou, China. Analytical procedures followed those described by Li 129 

et al. (2009). The O2
− primary ion beam was accelerated at 13 kV with an intensity of ~10 nA, 130 

and the spot size was ~20 μm × 30 μm. Zircon U–Th–Pb isotopic ratios were determined relative 131 

to the Plešovice standard (Sláma et al., 2008). A reference standard (Qinghu; Li et al. 2013) was 132 

measured alongside the unknown samples, and two sets of measurements yielded concordia ages 133 

of 159.2 ± 1.5 Ma and 159.4 ± 2.1 Ma, within uncertainty of the recommended age (159.5 ± 0.2 134 

Ma). LA–ICP–MS analyses were conducted using a Finnegan Neptune multi-collector ICP–MS 135 

instrument with a Newwave UP 213 LA system at the Institute of Mineral Resources, Chinese 136 

Academy of Geological Sciences, Beijing, China. Analyses used a beam diameter of 25 μm, a 137 

repetition rate of 10 Hz, and an energy of 2.5 J/cm2. Zircon GJ-1 was used as an internal standard 138 

during analysis. Further details are provided in the Supplemental Materials. 139 

Whole-rock major- and trace-element analyses were performed at the Wuhan SampleSolution 140 

Analytical Technology Co. Ltd., Wuhan, China, and the Analytical Laboratory Beijing Research 141 

Institute of Uranium Geology, Beijing, China. Major-element compositions were determined 142 

using X-ray fluorescence spectrometry, whereas trace-element analyses were conducted via 143 

ICP–MS; in either case, with the exceptions of Li, Cr, Cu, Cs and Tl, most elements have a 144 

precision of better than 5%. 145 

Most whole-rock Sr and Nd isotopic compositions were determined at the SKLaBIG, 146 

GIG–CAS, following the analytical procedures of Li et al. (2006). All Sr and Nd isotopic ratios 147 
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were normalized to values of 86Sr/88Sr = 0.1194 and 146Nd/144Nd = 0.7219, respectively. The 148 

measured composition of the Sr (NBS-987) and Nd (Shin Etsu Jndi-1) standards were 0.710261  149 

13 (2σ; n = 10) and 0.512115  6 (2σ; n = 10), respectively. The USGS reference standard 150 

BHVO-2 was analyzed as an unknown and gave 86Sr/88Sr = 0.703476 ± 0.000012 and 151 

146Nd/144Nd = 0.512900 ± 0.000004, consistent with the recommended values (87Sr/86Sr = 152 

0.703481 ± 0.000020, 143Nd/144Nd = 0.512983 ± 0.000010; Weis et al. 2005). A further four 153 

Sr–Nd analyses were performed at the State Key Laboratory for Mineral Deposit Research at 154 

Nanjing University, Nanjing, China. Detailed analytical procedures can be found in the 155 

Supplemental Materials. 156 

Compositional profiles across selected plagioclase grains were analyzed for major elements 157 

including Mg contents using a Cameca SXFiveFE electron microprobe at the SKLaBIG, 158 

GIG–CAS. The Mg content was measured using a counting time of 120 s, yielding a detection 159 

limit of 34–36 ppm. Other mineral compositions were determined using a JEOL JXA-8800 160 

Superprobe at the Institute of Mineral Resources, Chinese Academy of Geological Sciences, 161 

Beijing, China. Further details are provided in the Supplemental Materials. Cathodoluminescence 162 

(CL) images of zircon and quartz were obtained using a Zeiss SUPRA55SAPPHIR Field 163 

Emission Scanning Electron Microscope (FESEM) + Gatan MonoCL4 at the SKLaBIG, 164 

GIG–CAS, using 60 s capture time, with image resolution of 2048 × 1536 pixels. Mineral 165 

trace-element compositions were analyzed using an ELEMENT XR (Thermo Fisher Scientific) 166 

ICP–SF–MS instrument coupled with a 193 nm (ArF) Resonetics RESOlution M-50 LA system 167 

at the SKLaBIG, GIG–CAS. A spot size of 33 μm was employed at a pulse energy of ~4 J cm−2 168 
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and a laser repetition rate of 5 Hz. The BCR-2G, GSD-1G, and BHVO-2G standards were 169 

measured to establish a calibration line for all elements. Analysis of USGS reference glass TB-1G 170 

as an unknown sample indicated that most trace elements are within 10% of the recommended 171 

values, with an analytical precision (2RSD, relative standard deviations) of better than 12%. 172 

Detailed analytical procedures and data reduction strategies are similar to those of Zhang et al. 173 

(2019). The SiO2 contents (from electron microprobe analyses) were utilized as the internal 174 

standard when normalizing trace-element concentrations. 175 

 176 

RESULTS 177 

Treatment of zircon U-Pb data  178 

A total of 181 zircon crystals from six samples representing the three main igneous units 179 

within the Narusongduo volcanic complex were analyzed, including 127 SIMS analyses and 54 180 

LA–ICP–MS analyses. All zircon U–Pb data are presented in Supplemental Table S1. Previously 181 

published zircon U–Pb data for the Narusongduo HSGs (sample NRSDⅢ09-1-1) are shown for 182 

comparison (compiled from Ji et al. 2012; Figure 2). Zircon crystals from the HSGs have sizes of 183 

~50 to ~200 m along the length and diverse aspect ratios. CL imaging of the internal textures of 184 

representative zircon crystals in the HSGs allowed two main populations to be defined 185 

(Supplemental Figure S2), one with bright CL responses and another with dark CL responses. 186 

Some crystals also exhibit CL-bright interiors with CL-dark overgrowths (Supplemental Figure 187 

S2). Zircon crystals from the andesites and dacites commonly show oscillatory zoning in CL, and 188 

discrete zircon populations are not clearly identifiable. 189 
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If all zircon crystals crystallized from a single magma pulse and the system conforms to 190 

closed-system behavior, then the quality of geochronological data can be evaluated by statistical 191 

measures, such as the mean square of weighted deviates (MSWD; Wendt and Carl 1991), which 192 

is near 1.0 when the goodness of fit is perfect. However, in a multi-cyclic magmatic system, a 193 

variety of crystal populations might be expected (e.g., Miller et al. 2007), including xenocrysts, 194 

antecrysts, and autocrysts (the terminology recommended by Miller et al. (2007)), as the case of 195 

this study (Supplemental Figure S2). Thus, we employed the Unmix Ages algorithm of 196 

Sambridge and Compston (1994), as implemented in Isoplot 4.15 (Ludwig 2003), to obtain age 197 

components of different zircon populations. The classical weighted average was used if 198 

calculated age components are essentially equal (within error of each other). The results are 199 

shown in Figure 2 with 2σ errors. Zircon grains from some HSGs fall into two main populations. 200 

Two samples yield younger populations of 62.6 ± 0.8 Ma, and 61.7 ± 0.6 Ma, with older 201 

populations of 66.6 ± 1.2 Ma, and 66.9 ± 1.6 Ma, respectively. One HSGs sample has a weighted 202 

mean 206Pb/238U age of 62.7 ± 0.4 Ma (MSWD = 0.49, n = 31). Grains from the two andesite 203 

samples also contain older populations with ages of 69.3 ± 0.9 Ma and 66.5 ± 1.5 Ma. However, 204 

three andesite samples yield near-identical younger ages of 63.4 ± 1.1 Ma, 63.2 ± 0.6 Ma, and 205 

63.3 ± 1.1 Ma, respectively. One dacite sample yielded a weighted mean 206Pb/238U age of 65.4  206 

0.4 Ma (MSWD = 0.87, n = 32).  207 

Whole-rock geochemistry 208 

The whole-rock major- and trace-element compositions of the Narusongduo HSGs and 209 

volcanic rocks are presented in Supplemental Table S2. The Narusongduo HSGs have high SiO2 210 
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contents (79.5–83.9 wt% SiO2) and low Zr/Hf ratios (22.5–37.0; Supplemental Table S2). The 211 

anomalously high SiO2 contents of the HSGs suggest alteration, so we restrict our discussion to 212 

concentrations or ratios of rare-earth elements (REEs) and high-field-strength elements (HFSEs), 213 

which are insensitive to alteration. On chondrite-normalized REE plots (Figure 3), the HSGs are 214 

enriched in light REEs (LREEs) relative to heavy REEs (HREEs), and show pronounced negative 215 

Eu anomalies (Eu/Eu* = 0.11–0.47). SiO2 contents of the andesites vary from 55.1 to 56.5 wt%, 216 

with Zr/Hf values in the range 31.9 to 40.9. The dacitic units are characterized by a wide range of 217 

major-element compositions, with SiO2 contents varying from 64.3 to 73.8 wt% and Zr/Hf values 218 

ranging from 34.7 to 38.7. The andesitic and dacitic rocks have similar REE patterns, for which 219 

Eu anomalies are weak or absent (Figure 3). 220 

Whole-rock Sr–Nd isotopic compositions are presented in Supplemental Table S3. Owing to 221 

high Rb/Sr ratios (Rb/Sr = 4.1–20.5; Supplemental Table S3) and radiogenic ingrowth, the HSGs 222 

have elevated 87Sr/86Sr ratios. Calculations for initial 87Sr/86Sr and εNd(t) show that the HSGs have 223 

87Sr/86Sri = 0.7082 to 0.7123 and εNd(t) = −7.9 to −8.9. The andesite samples define a range of 224 

87Sr/86Sri ratios from 0.7092 to 0.7096 and a range of εNd(t) from −7.2 to −7.7. The dacites have 225 

87Sr/86Sri ratios that vary from 0.7097 to 0.7109 and εNd(t) values from −7.9 to −8.0. 226 

Mineral chemistry 227 

Clinopyroxene within the andesites exhibits a limited compositional range. Most samples 228 

contain augite, although some are more diopsidic, with compositions in the range 229 

Wo41–49En39–44Fs11–17 (Supplemental Table S4). There is no significant difference in 230 

clinopyroxene compositions between the glomerocrysts (Supplemental Figure S1c and d; 231 

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) 
Cite as Authors (Year) Title. American Mineralogist, in press. 

DOI: https://doi.org/10.2138/am-2020-7369

Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld



12 
 

Wo41–49En39–44Fs12–17; Mg# = 68–74; where Mg# = atomic Mg/[Mg + Fetotal]) and discrete 232 

phenocrysts (Supplemental Figure S1e; Wo42–46En40–44Fs11–16; Mg# = 69–75). All clinopyroxene 233 

grains have relatively low trace-element concentrations (e.g., Sr = 29.2–40.9 ppm, Y = 18.8–37.9 234 

ppm, Zr = 21.1–61.9 ppm, and V = 243–424 ppm) and exhibit weak Eu anomalies (Eu/Eu∗ = 235 

0.72–0.88). 236 

Within the Narusongduo andesites, amphiboles in the amphibole–quartz aggregates (Figure 237 

4a) display a narrow range in SiO2 (45.1–47.7 wt%) and Al2O3 (5.56–6.33 wt%) concentrations 238 

(Supplemental Table S5), and are characterized by a limited range in Ti (0.14 to 0.17 atoms per 239 

formula unit; apfu), Altotal (0.98 to 1.11 apfu), and alkali contents (Na + K = 0.80 to 0.90 apfu). 240 

Values of Mg# are between 63 and 67. Most amphiboles are edenite (Figure 4b), with relatively 241 

high concentrations of some trace elements (e.g., Rb = 10.2–12.9 ppm, Y = 87.6–138 ppm, Zr = 242 

219–367 ppm, and Zn = 115–138 ppm) and pronounced negative Eu anomalies (Eu/Eu* = 243 

0.13–0.17). 244 

Plagioclase is a major phase in the Narusongduo andesites. Aside from any compositional 245 

zoning within individual grains, plagioclase has An contents varying from An42 to An71, with 246 

trace-element concentrations including 1211–1321 ppm Sr and 184–412 ppm Ba (Supplemental 247 

Table S6 and S7). The Ab–An exchange coefficient KD(An–Ab)plagioclase–liquid varies from 0.15 to 248 

0.48, suggesting equilibrium with whole-rock compositions. 249 

Pre-eruptive intensive parameters of the andesites 250 

The pressure (P) and temperature (T) of crystallization and the water contents of the magmas 251 

of the andesites were calculated using a clinopyroxene–liquid thermobarometer (Neave and 252 
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Putirka 2017) and a plagioclase–liquid hygrometer (Waters and Lange 2015), using the average 253 

whole-rock composition as the melt composition. The comparison between predicted and 254 

observed clinopyroxene components was used as a test of equilibrium between clinopyroxene 255 

and liquid (Figure 5a; Mollo et al. 2013). Pressures recorded by clinopyroxene range between 1.0 256 

and 4.3 kbar, with an average of 2.2 ± 0.8 kbar; Figure 5b), corresponding to depths of ~8 km 257 

(assuming an average crustal density of 2.8 g/cm3). Corresponding temperatures range between 258 

1023 and 1062 °C, with a mean of 1036 ± 8.4 °C (Figure 5b). Plagioclase crystals coexisting with 259 

clinopyroxene crystals were selected for estimation of initial magmatic water contents and 260 

clinopyroxene P-T were input into plagioclase-liquid hygrometer, giving melt water 261 

concentrations that range between ~3.0–3.4 wt%.  262 

 263 

DISCUSSION 264 

Evolution of the Narusongduo magmatic system 265 

On the basis of our stratigraphic investigations, the eruptive sequence in the Narusongduo 266 

volcanic complex is summarized in Figure 1b and comprises (from old to young) (1) pyroclastic 267 

deposits, (2) dacitic volcanic rocks, (3) thick pyroclastic deposits, and (4) andesitic volcanic 268 

rocks. This sequence is consistent with geochronological results (Figure 2). 269 

Concordant U–Pb data from igneous zircon is generally interpreted to date crystallization of 270 

igneous rocks, assuming that all analyzed zircon crystals precipitated from their host magmas. 271 

However, there has been an increasing emphasis on the different origins of zircon crystals (Bacon 272 

and Lowenstern, 2005; Miller et al. 2007) and multiple growth history of a single grain (e.g., 273 
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Klemetti et al., 2011). Here, we use the criteria of Miller et al. (2007) to subdivide the zircon 274 

populations. The dacitic lavas erupted at an early stage, with zircon U–Pb dating on one sample 275 

(NR18-2-1) yielding a weighted mean age of 65.4 ± 0.4 Ma (MSWD = 0.87; Figure 2). 276 

Application of the Unmix Ages algorithm of Sambridge and Compston (1994) was not able to 277 

distinguish separate age components in this sample, suggesting that most of the analyzed zircons 278 

are autocrysts. Three andesite samples yield near-identical younger ages of 63.4 ± 1.1 Ma, 63.2 ± 279 

0.6 Ma, and 63.3 ± 1.1 Ma (Figure 2b). These zircon crystals are also interpreted as autocrysts, 280 

and their ages likely represent the age of zirconium saturation, which regularly predate the 281 

eruption age by thousands to tens of thousands of years (e.g., Klemetti and Clynne 2014). 282 

However, older zircon populations are recognized in two of the andesite samples, one of which 283 

has an age of 69.3 ± 0.9 Ma (NR18-4-1) and another an age of 66.5 ± 1.5 Ma (NP2-15). The 284 

younger age is identical to the age of the dacites within analytical uncertainty, suggesting that 285 

these zircon grains can also be interpreted as antecrysts that crystallized within an earlier pulse. 286 

Whether the older population (69.3 ± 0.9 Ma) represents an earlier magma pulse or is genetically 287 

unrelated is unclear. 288 

One sample of HSG (NR18-1-1) shows evidence for the presence of zircon antecrysts based 289 

on textural criteria (Supplemental Figure S2), whereas age components cannot be distinguished 290 

due to limited precision of SIMS analysis. The three samples of HSG yield different 291 

crystallization ages of 61.7 ± 0.6 Ma, 62.6 ± 0.8 Ma, and 62.7 ± 0.4 Ma, and the two of them 292 

have antecrystic ages of 66.6 ± 1.2 Ma and 66.9 ± 1.6 Ma, respectively (Figure 2). They were 293 

collected from different outcrops (Figure 1b), implying that not all HSG plutons were emplaced 294 
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simultaneously. Overall, our results suggest that magmatic activity in the Narusongduo system 295 

started at 65.4 Ma or earlier and ended by 61.7 Ma, with a total duration of at least 3.7 Myr. 296 

Whole-rock isotopic compositions also yield important information regarding the evolution of 297 

magmatic systems. All magmatic suites within the Narusongduo volcanic complex have highly 298 

radiogenic Sr–Nd isotopic compositions (Supplemental Table S3). Such evolved isotopic 299 

signatures indicate a significant contribution of crustal material to the magmatic system, 300 

consistent with previous studies that have revealed the presence of ancient crustal basement 301 

beneath the northern Gangdese batholith (Zhu et al. 2011; Hou et al. 2015). Owing to the high 302 

Rb/Sr ratios of the HSGs and potential modification of strontium isotopes by alteration, we 303 

restrict our discussion to the neodymium isotopic compositions. Although most of the igneous 304 

suites have similar crustal isotopic signatures, a systematic variation can be identified. Epsilon 305 

Nd values increases from the andesites to the HSGs, and most of the HSG samples is nearly 306 

located on the line of the combined assimilation and fractional crystallization (AFC), with an r 307 

value of 0.1, where r = ma/mc (ma represents the mass fraction of assimilated material and mc is 308 

the amount of crystallized material, assuming the average andesite composition as the parental 309 

melt composition and an ancient crust-derived melts (represented by the ancient granites in the 310 

Gangdese arc, Zhang et al. 2012) is being assimilated; Supplemental Figure S3). Given the 311 

similarity in age between the andesites and HSGs, and the presence of abundant zircon antecrysts, 312 

it cannot be ruled out that the HSGs may represent evolved compositions derived from the 313 

andesitic magmas. Further discussion is provided in the following parts. 314 

 315 

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) 
Cite as Authors (Year) Title. American Mineralogist, in press. 

DOI: https://doi.org/10.2138/am-2020-7369

Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld



16 
 

The presence of an andesitic magma reservoir within the upper crust 316 

The andesitic lavas are the youngest eruptive products in the Narusongduo volcanic complex 317 

and show a close temporal relationship with the HSGs (Figure 1b, 2). Consequently, we focus our 318 

petrologic reconstruction on the magmatic plumbing system that fed the andesitic eruptions. 319 

Amphibole major and trace element compositions have been utilized to decipher magmatic 320 

processes and conditions of crystallization (e.g., Putirka 2016; Barnes et al. 2016; Zhou et al. 321 

2020), and the SiO2 content in coexisting liquids can be estimated reliably using only amphibole 322 

chemistry (Ridolfi et al. 2010; Ridolfi and Renzulli 2012; Erdmann et al. 2014; Zhang et al. 2017; 323 

Humphreys et al. 2019). Amphibole in the crystal aggregates (Figure 4a) within the andesites 324 

have Si atoms of 6.8 to 7.1 per 23 O atoms and they are crystallized from high-silica melts 325 

(74.8–75.7 wt% SiO2; Fig. 4b) using the equations presented by Putirka (2016). This scenario can 326 

be predicted approximately by the rhyolite-MELTS modelling (Gualda et al. 2012; Gualda and 327 

Ghiorso 2015), using the average whole-rock composition as a starting melt. The results suggest 328 

that amphibole crystallization begins when residual liquid SiO2 contents exceed 70 wt% (Fig. 4c). 329 

It is noteworthy that the phase assemblages from rhyolite-MELTS modelling here should be 330 

treated with caution because rhyolite-MELTS cannot easily deal with amphibole crystallization 331 

(Ghiorso and Sack 1995; Gualda et al. 2012). However, the situation that amphibole crystallizes 332 

from more evolved melts than the bulk-rock composition of the host is consistent with general 333 

observations in plutonic rocks (e.g., Werts et al., 2020), as well as the observed coexistence of 334 

amphibole and quartz within some glomerocrysts in this study (Fig. 4a; Supplemental Fig. S1f). 335 

These constraints on amphibole crystallization have important implications for the 336 
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pre-eruptive state of the andesitic magmas. In the Narusongduo andesitic magmas, amphibole 337 

becomes saturated when the system reaches a crystallinity of ~60 vol.% (Figure 4c). Although an 338 

increase in the volume of bubbles due to fluid saturation can decrease the residual melt viscosity 339 

(Figure 4c and d), non-Newtonian behavior induces an increase in the bulk viscosity of magmas 340 

(crystals plus melts plus bubbles) by several orders of magnitude (Caricchi et al. 2007) when the 341 

crystallinity rises above ~60 vol % (Figure 4d). Such high viscosity leads to a transition from 342 

active magmas to a rheologically locked crystal mush (e.g., Costa et al. 2009; Sparks and 343 

Cashman 2017). Combined with the results from clinopyroxene–liquid thermobarometry, these 344 

data provide evidence supporting the presence of an andesitic magma reservoir in the upper crust, 345 

at a depth of about 8 km, consistent with thermo-mechanical modeling results concerning the 346 

optimal depth of subvolcanic magma accumulation (e.g., Huber et al. 2019). 347 

Although reverse-zoned crystals are commonly interpreted as a record of pre-eruptive 348 

recharge of a magma reservoir (e.g., Murphy et al. 2000), complex phenocryst textures can also 349 

be ascribed to decompression-driven crystallization (e.g., Crabtree and Lange 2011), with no 350 

requirement for magma recharge. Changes in the liquid composition may distinguish between 351 

these two processes: decompression-driven crystallization will lead to compositions evolving 352 

along the liquid line of descent, whereas magma recharge may produce the opposite trend. Liquid 353 

compositions calculated using plagioclase trace-element compositions and equilibrium partition 354 

data depend mainly on An content and temperature (e.g., Bindeman et al. 1998). Calculations 355 

indicate that the liquids in equilibrium with reverse-zoned plagioclase crystals in the andesites 356 

had average Mg contents increasing from 0.73 wt% to 1.35 wt% (at 1000 °C) from core to rim 357 
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(Figure 6). Mg is a mobile element in plagioclase at magmatic temperatures (e.g., Van Orman et 358 

al. 2014; Fabbro et al. 2017), and the effects of subsequent diffusion cannot be ignored. However, 359 

the liquids in equilibrium with the Mg concentrations measured in the core do not overlap with 360 

those calculated to be in equilibrium with the rim (Figure 6), suggesting that the initial zoning in 361 

Mg was not destroyed completely by diffusion. This MgO distribution is the opposite of the 362 

liquid line of descent, and an abrupt change in the liquid composition (Figure 6) is more likely to 363 

be caused by mixing following magma recharge (Supplemental Figure S4). Thus, the 364 

reverse-zoned plagioclases in the Narusongduo andesites are also consistent with the presence of 365 

an andesitic magma reservoir. 366 

 367 

Constraining the magma reservoir evolution using trace-element systematics 368 

The Narusongduo HSGs are characterized by pronounced negative Eu anomalies (Eu/Eu* = 369 

0.11–0.47) and low Zr/Hf values (22.5–37.0). In the andesitic magma reservoir, the evolution of 370 

Eu/Eu* can be constrained by considering clinopyroxene and amphibole compositions, as the 371 

clinopyroxenes record near-liquidus temperatures (1023 to 1063 °C), whereas the amphiboles 372 

crystallized at near-solidus temperatures (798 to 841 °C). Here, a lattice strain model was used 373 

for estimating the mineral/melt partition coefficients of clinopyroxene and amphibole (Blundy 374 

and Wood 1994), for which the lattice strain parameters were obtained by parameterized models 375 

based on mineral compositions (Wood and Blundy 1997; Hill et al. 2011; Shimizu et al. 2017). 376 

The calculated partition coefficients for REEs for the clinopyroxenes and amphiboles were 377 

employed to calculate REE, Zr, and Hf concentrations of the melts from which the 378 

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) 
Cite as Authors (Year) Title. American Mineralogist, in press. 

DOI: https://doi.org/10.2138/am-2020-7369

Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld



19 
 

clinopyroxenes and amphiboles crystalized. As illustrated in Figure 7a, clinopyroxene 379 

equilibrium melts display weak Eu anomalies (Eu/Eu* = 0.72–0.88), but amphibole equilibrium 380 

melts have pronounced negative Eu anomalies (Eu/Eu* = 0.13–0.17). Combined with their 381 

crystallization temperatures, we would expect that evolved residual melts developed increasingly 382 

pronounced negative Eu anomalies with progressive crystallization of the andesitic magma 383 

reservoir. 384 

Zirconium saturation in magmas is dependent on temperature, the Zr content of the melt, and 385 

the parameter M, where M = [(Na + K + 2Ca)/(Al × Si)] (Boehnke et al. 2013). Residual melt Zr 386 

contents can be calculated throughout the crystallization interval using bulk partition coefficients 387 

(see Supplemental Materials) for the saturated phases as predicted by calculations using 388 

rhyolite-MELTS (Figure 4c). The major-element compositions of the residual liquids were used 389 

to determine the M parameter, and the zircon solubility model of Boehnke et al. (2013) was then 390 

employed to calculate the Zr concentration required for zircon crystallization. As shown in Figure 391 

7b, temperatures for zircon crystallization in the Narusongduo andesites are ~800 °C, and the 392 

window for crystal–liquid separation extends from 742 to 848 °C, suggesting low Zr/Hf ratios of 393 

some HSGs can be ascribed to zircon fractionation (e.g., Claiborne et al. 2006; Linnen and 394 

Keppler 2002). 395 

 396 

Extraction of HSGs from the shallow andesitic magma reservoir 397 

We propose that the Narusongduo HSGs represent melts extracted from the shallow andesitic 398 

magma reservoir, on the basis of several lines of evidence. First, the close temporal relationship 399 
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between the HSGs and andesites. Second, the Narusongduo HSGs contain abundant zircon 400 

antecrysts. Third, most HSGs show pronounced negative Eu anomalies (Figure 3), consistent 401 

with highly evolved melts that were derived from the andesitic magma reservoir, as recorded by 402 

the amphiboles in the andesites (Figure 7a). Fourth, the Narusongduo HSGs have low Zr/Hf 403 

ratios (average Zr/Hf = 28.4), which is a relatively robust proxy for identifying highly evolved 404 

magmas that were extracted from zircon-saturated mush zones (Linnen and Keppler, 2002; Bea et 405 

al., 2006; Claiborne et al., 2006; Deering and Bachmann, 2010; Deering et al., 2016; Wu et al., 406 

2017). The samples of HSG have variable Zr/Hf ratios varying from 22 to 37, suggesting either 407 

that they were extracted from the andesitic magma reservoir at different cycles or that they were 408 

derived from disconnected melt lenses (e.g., Till et al. 2019) with variable proportions of 409 

cumulate zircon, consistent with the diverse ages of zircon antecrysts (Figure 2). If the separation 410 

of melt-rich lenses occurred after zircon crystallization (Figure 7b), then the extracted melts 411 

would have significantly lower Zr/Hf ratios, such as the HSG samples with Zr/Hf = 22–24. 412 

The mechanisms for crystal–melt separation at shallow crustal levels are debated (e.g., Lee 413 

and Morton 2015; Holness 2018; Bachmann and Huber 2019). In the cold upper crust, heat is a 414 

critical factor in determining the behavior of shallow magmatic systems (e.g., Blundy and Annen 415 

2016). The capability for phase separation in upper-crustal magma reservoirs therefor depends on 416 

several factors, such as the timescale for concentrating intergranular melts and the longevity of 417 

magma bodies above their solidus. If active over several million years, a transcrustal magmatic 418 

system can modify the crustal geotherm, leading to the formation of shallow-crustal magma 419 

reservoirs with enhanced survivability (e.g., Karakas et al. 2017), ultimately providing sufficient 420 
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time for crystal–melt separation (Bachmann and Huber 2019). Magmatism in the Narusongduo 421 

system lasted at least ⁓3.7 Myr with or without lulls, during which emplacement of HSGs 422 

occurred only in the latter stages. This progression from lower to higher silica magmas over 423 

millions of years timescale has also been observed in other plutonic or volcanic systems (e.g., 424 

Glazner et al. 2004; Grunder et al. 2008) 425 

The importance of water to the segregation of SiO2-rich melts is widely recognized (e.g., 426 

Lee et al. 2015; Hartung et al. 2019). Amphiboles within the crystal aggregates (Figure 4a) from 427 

the andesites studied here have high fluorine contents (2.17 ± 0.18 wt%; Supplemental Table S5), 428 

and these amphiboles have been interpreted as a record of highly evolved melts of the magma 429 

reservoir (Figure 4b). Then we can expect that melt-rich lenses in the magma reservoir should be 430 

characterized by high fluorine concentrations. Dissolved F can decrease the density and viscosity 431 

of melt (Fig. 8), lower solidus temperatures, and increase the solubility of H2O (e.g., Holtz et al. 432 

1993; Giordano et al. 2004; Baasner et al. 2013). More importantly, unlike other volatiles such as 433 

H2O, F has a high solubility in SiO2-rich melts at low pressure (Giordano et al., 2004). 434 

Consequently, crystal–melt separation in shallow magma reservoirs should be facilitated by the 435 

presence of F, consistent with the observation that F is abundant in many highly evolved granites 436 

and rhyolites (e.g., Giordano et al. 2004; Audétat 2015). In addition, we examined quartz 437 

phenocrysts hosted in the Narusongduo HSGs using CL imaging. Quartz CL brightness tends to 438 

correlate with Ti concentration in igneous quartz (Matthews et al. 2012), and CL greyscale (a 439 

numerical value assigned to brightness) values can be used as a proxy for Ti concentration in 440 

quartz (Matthews et al. 2012) as well as temperature variations during crystal growth history 441 
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(Wark and Waston 2006). CL imaging reveals that some quartz phenocrysts in the Narusongduo 442 

HSGs exhibit distinct growth zonation, with low-intensity CL cores overgrown by high-intensity 443 

CL rims (Fig. 9a). The three-dimensional effect of CL greyscale values is presented in Fig. 9b 444 

using the MATLAB program. The major step in CL brightness towards the crystal rims provides 445 

evidence for a magma reservoir recharge event resulting in the elevation of temperature (Wark et 446 

al. 2007). Magma recharge is likely an efficient mechanism triggering magma ascent by lowering 447 

magma density in response to an injection of volatiles or temperature increase (e.g., Snyder 2000). 448 

Thus, we infer that the underplating of a hotter magma to the high-silica liquid cap of the magma 449 

reservoir promoted the melt extraction (Fig. 10). 450 

 451 

IMPLICATIONS 452 

Identification of the field examples that pluton-scale high-silica granites represent melts 453 

extracted from upper-crustal magma reservoirs is critical for understanding the behavior of 454 

shallow magmatic systems. This study provides an excellent example of kilometer-scale HSG 455 

bodies that formed through crystal–melt separation at shallow crustal levels. Our results indicate 456 

that the Narusongduo magmatic system was constructed over ⁓3.7 Myr with or without lulls, and 457 

the formation of the andesitic magma reservoir (at a paleodepth of ⁓8 km) as well as the 458 

emplacement of HSGs occurred during the late, thermally mature stage. It contributes to a broad 459 

range of issues concerning silicic magmatism such as the behaviors of shallow magmatic systems, 460 

the volcanic–plutonic connections, and particularly for currently hot debates on the capability and 461 

efficiency of crystal–melt separation in upper crustal magma reservoirs (e.g., Bachmann and 462 
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Huber 2019). In addition, one of the most destructive kinds of volcanic hazards on Earth is the 463 

eruptions of high-SiO2, viscous rhyolites. Dynamic processes of the emplacement of high-silica 464 

granites in this study is similar to those of high-SiO2 rhyolites and likely represent failed 465 

eruptions of rhyolites, then an important question arises that why some highly evolved melts 466 

erupt and others failed, which may require a comprehensive approach on better deciphering the 467 

physical processes. 468 
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 729 

FIGURE CAPTIONS 730 

FIGURE 1. (a) Geological map showing plutonic and volcanic suites of the central Gangdese arc, Tibet. 731 

The inset map shows the location of the central Gangdese arc. The yellow star shows the location of the 732 

Narusongduo volcanic complex. (b) Geological map of a part of the Narusongduo volcanic complex, showing 733 

stratigraphic investigations and sampling localities. The blue stars represent sample localities. All porphyritic 734 

granites are high-silica granites. 735 
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FIGURE 2. (a) Rank order plot of individual zircon SIMS and LA–ICP–MS 206Pb/238U dates. The data 736 

from one dacite sample (NR18-2-1) are shown along with a corresponding weighted mean age. (b) and (c) 737 

Probability density function plots of zircon 206Pb/238U dates with errors (blue regions) for samples andesite and 738 

HSGs. Age components of different zircon populations were calculated using the Unmix Ages algorithm of 739 

Sambridge and Compston (1994). The previously published zircon U–Pb data for HSGs (sample NRSDⅢ740 

09-1-1) are compiled from Ji et al. (2012). 741 

FIGURE 3. Chondrite-normalized REE patterns for the Narusongduo HSGs, andesites and dacites. 742 

Normalizing values are from Sun and McDonough (1989). 743 

FIGURE 4. Conditions of amphibole crystallization and rigid storage of the Narusongduo andesite. (a) 744 

Photomicrograph of an amphibole–quartz glomerocryst in andesite. Amp = amphibole; Qz = quartz. (b) 745 

Relationship between amphibole composition and the SiO2 content of coexisting liquid. The composition of the 746 

host andesite is denoted by the yellow bar. (c) Results of rhyolite-MELTS modeling of the Narusongduo 747 

andesite, showing mineral volume fraction and residual liquid SiO2 content. (d) Changes in relative viscosity as 748 

a function of crystal volume fraction of the Narusongduo andesitic magma. The blue curve shows the viscosity 749 

of the residual liquid. The red curve represents the viscosity of magmas containing solid suspended particles. 750 

Amphibole crystallization starts when the system reaches a crystallinity of ~60 vol. %, where rheological 751 

lock-up occurs. The detailed methods of rhyolite-MELTS and rheological modelling are presented in 752 

Supplemental Materials. 753 

FIGURE 5. (a) Comparison between predicted and observed clinopyroxene components as a test of 754 

clinopyroxene–liquid equilibrium (Mollo et al. 2013). (b) P-T estimates for the Narusongduo andesites based 755 

on the clinopyroxene–liquid thermobarometry (Neave and Putirka 2017). 756 
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FIGURE 6. Backscattered electron images, compositional profiles for selected plagioclase grains, and 757 

calculated liquid compositions. The profiles for Mg content (green spots) were calculated to be in equilibrium 758 

with liquid, which is in equilibrium with the crystal rim, using published An-dependent partition coefficients 759 

(Bindeman et al. 1998) at 1000 °C. A spot (a white circle in BSE image) whose Mg content was determined 760 

using LA-ICP-MS is also shown for comparison. Further details are contained in Supplemental Materials, and 761 

the data are presented in Supplemental Table S6. 762 

FIGURE 7. (a) Eu/Eu* vs temperature. Using compositions of amphibole and clinopyroxene (from the 763 

andesites), equilibrium melts were calculated using our predicted partition coefficients. The whole-rock 764 

compositions of the HSGs and andesites are shown by the gray bars. (b) Zr saturation modeling for the 765 

Narusongduo andesites. The Zr content of the residual liquid throughout the crystallization interval was 766 

calculated using bulk partition coeffcients for the saturated phases as predicted by rhyolite-MELTS modeling. 767 

The zircon solubility model of Boehnke et al. (2013) was employed to calculate the Zr concentration required 768 

for saturation of the evolving liquid. The window for efficient crystal–liquid separation is denoted by the blue 769 

region (Dufek and Bachmann 2010).  770 

FIGURE 8. Comparison of melt viscosities using the average composition of the Narusongduo HSGs 771 

with different H2O and F contents. The viscosity model of Giordano et al. (2008) was employed.  772 

FIGURE 9. CL and 3D grayscale image of selected quartz crystal from the Narusongduo HSGs. (a) show 773 

the quartz phenocryst have distinct growth zonation with low-intensity CL cores overgrown by a high-intensity 774 

CL rim, and granophyric intergrowths of quartz and alkali-feldspar in the groundmass. Markers (A, B, C and D) 775 

in (a) are correspond with the locations in (b). 776 

FIGURE 10. Schematic cross-section showing a model for emplacement of the Narusongduo HSGs. 777 
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After a long period of magmatic activity (> 3.7 Myr), the upper crust became thermally mature, enhancing the 778 

survivability of the andesitic magma reservoir. Evolved high-silica melts then segregated and ascended to form 779 

HSGs. The thermal structure of the upper crust after a long period of magmatic activity is modified from the 780 

modeling results by Karakas et al. (2019). 781 
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