This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7333

Revision 1

1	Interlayer energy of pyrophyllite: Implications for macroscopic friction
2	
3	Hiroshi Sakuma ¹ , Kenji Kawai ² , and Toshihiro Kogure ²
4	¹ Functional Clay Materials Group, National Institute for Materials Science, Tsukuba, Japan
5	² Department of Earth and Planetary Science, School of Science, University of Tokyo, Tokyo, Japan
6	
7	Corresponding author: H. Sakuma (SAKUMA.Hiroshi@nims.go.jp)
8	
9	Running title: Interlayer energy of pyrophyllite

10

11 Abstract 12 Deformation of phyllosilicate can control the dynamics of the Earth's crust. The 13 phenomenological relationship between stress and deformation is known for some typical 14 phyllosilicates; however, the underlying physics originating from the crystal structures is 15 poorly understood. In this study, the deformation mechanism of pyrophyllite along basal 16 planes was revealed through density functional theory calculations and atomic-scale theory 17 of friction. The stable and meta-stable interlayer structures formed by interlayer slide were 18 consistent with the experimental results reported previously by high resolution transmission 19 electron microscopy. The difference in potential energies between stable and meta-stable 20 interlayer structures can be interpreted as the difference in stacking of dioctahedral sheets 21 between the adjacent layers. The estimated friction coefficient of the pyrophyllite between 22 adjacent layers was consistent with the results of atomic force microscopy, suggesting that 23 atomic-scale friction can be adequately estimated by this method. The calculated shear 24 stress in our simulations has a linear relationship with the normal stress and has no 25 significant crystallographic dependence on sliding direction along the basal planes. The 26 crystallographic isotropy of interlayer friction is explained by the absence of interlayer 27 cations in pyrophyllite, while muscovite showed crystallographic anisotropy as observed in

28	previous studies. The macroscopic friction of a single crystal of pyrophyllite was estimated
29	from atomic-scale friction by using the area of contact. The macroscopic friction coefficient
30	of ideal interlayer sliding was estimated to be 0.134, which was smaller than a reported
31	value (0.276) in shear experiments conducted for wet polycrystalline gouge layers. This
32	difference can be primarily explained by the degree of orientation of pyrophyllite particles
33	in the gouge layers. The friction coefficient estimated by a simple model of randomly
34	oriented pyrophyllite gouge layer was 0.203 ± 0.001 , which was similar to the reported
35	value of 0.276 and clearly smaller than the values (0.6-0.85) of common minerals
36	estimated by the empirical Byerlee's law. These results indicate that weak interlayer friction
37	of phyllosilicates has a large effect on the low frictional strength of gouge layers in natural
38	faults. Our methodology and results are useful for understanding the physics behind the
39	phenomenological friction laws of phyllosilicate gouge. Keywords: pyrophyllite, friction
40	coefficient, interlayer friction, gouge layers, density functional theory
41	

42	Introduction
43	Deformation of rocks and minerals controls crustal dynamics. The shear strength of
44	rocks can be reduced by the presence of phyllosilicates (Byerlee 1978; Shea and
45	Kronenberg 1993; Wintsch et al. 1995; Jefferies et al. 2006; Mariani et al. 2006; Amiguet et
46	al. 2012). Phyllosilicates have been found in many natural faults and on sliding planes of
47	landslides; therefore, the frictional properties of phyllosilicates are critical for
48	understanding the dynamics of the Earth's crust.
49	The stability of gouge-bearing faults have been evaluated in a laboratory using shear
50	tests and through analyses based on a phenomenological rate- and state-dependent friction
51	(RSF) law (Dieterich 1979; Ruina 1983); however, the physics behind the law depends on
52	the materials, is complicated, and it is difficult to extrapolate the results to natural faults.
53	Grain boundary friction, grain-size reduction, grain rolling, and pressure solution are
54	critical parameters effecting granular fault gouges (Bos and Spiers 2001). Recent
55	development of a microphysical model partly reveals the physics behind the macroscopic
56	frictional strength of granular fault gouges (Chen and Spiers 2016; Chen et al. 2017). In
57	their model, the shear strength of the gouge is mainly controlled by porosity and grain
58	boundary friction. However, the model was limited to spherical particles and grain

59 boundary friction was still expressed by an empirical parameter.

60	Grain boundary friction of phyllosilicates may be weaker than for other minerals
61	because of two reasons. First, friction can be lubricated by adsorbed and interlayer water in
62	hydrophilic phyllosilicates (Horn and Deere 1962; Morrow et al. 2000; Sakuma et al. 2006;
63	Ikari et al. 2007; Moore and Lockner 2007; Sakuma et al. 2011; Behnsen and Faulkner
64	2012; Sakuma 2013; Katayama et al. 2015; Kawai et al. 2015; Morrow et al. 2017; Tetsuka
65	et al. 2018). Second, the presence of weak bonding planes in phyllosilicate crystal
66	structures can reduce the frictional force (Moore and Lockner 2004; Kawai et al. 2015;
67	Sakuma et al. 2018; Okuda et al. 2019).
68	Here, we focused on the second hypothesis during dry conditions by studying
69	hydrophobic pyrophyllite minerals. Recent experimental and theoretical calculations
70	revealed that sub-meter scale frictional strength of a single muscovite crystal along basal
71	planes can be explained by the roughness of the atomic-scale potential energy surface
72	during sliding (Sakuma et al. 2018). The potential energy should depend on the crystal
73	structures; therefore, this mechanism should be tested on various phyllosilicates and
74	sheet-structured minerals. A theoretical calculation of brucite revealed the difference
75	between interlayer friction with muscovite which would originate from the differences in

76 interlayer interactions (Okuda et al. 2019).

77 Pyrophyllite is a 2:1 type dioctahedral clay mineral and the charge of the layer is 78 neutral. The interlayer bonding energy is characterized by weak van der Waals forces, in 79 contrast to the relatively strong Coulomb forces of micas and hydrogen bonding in 80 hydroxides (Sakuma and Suehara 2015). During atomic-scale friction, a low friction 81 coefficient was observed between a silicon nitride tip and pyrophyllite flakes by using 82 atomic force microscopy (Bucholz et al. 2012). For macroscopic friction under a confining 83 pressure of 100 MPa, the maximum friction coefficient of pyrophyllite was 0.4 for highly 84 aligned pyrophyllite grains within shear planes, while muscovite had a value of 0.55 85 (Moore and Lockner 2004). It would be difficult to determine the relationship between 86 atomic-scale and macroscopic friction only from these previous studies, because of 87 non-negligible effects of the silicon nitride tip on atomic-scale friction.

Here the change in potential energy of pyrophyllite along six sliding paths on a basal plane was calculated based on the density functional theory (DFT) (Hohenberg and Kohn 1964; Kohn and Sham 1965). The reliability of the DFT calculations were confirmed by comparing the stable and meta-stable structures with high-resolution transmission electron microscopy (HRTEM) observations (Kogure et al. 2006; Kogure and Kameda 2008). The

93	frictional strength of a single pyrophyllite crystal determined using DFT calculations are
94	discussed and the results were used to understand the origin of macroscopic deformation of
95	pyrophyllite in a frictional regime.
96	
97	Computational methods
98	Potential energy surface and frictional force
99	Atomic-scale friction can be estimated from the roughness of the potential energy
100	surface during sliding (Zhong and Tománek 1990; Schwarz and Hölscher 2016; Sakuma et
101	al. 2018). The computational method to obtain the potential energy profile along a sliding
102	path is the same as in previous studies (Zhong and Tománek 1990; Sakuma et al. 2018).
103	Briefly, the interlayer energy E_{IL} as a function of sliding distance x and interlayer distance z
104	was calculated as follows.
105	
106	$E_{\rm IL}(x,z) = E_{\rm 2layers}(x,z) - 2E_{\rm 1layer} \qquad (1)$
107	

Here, $E_{2\text{layers}}$ and $E_{1\text{layer}}$ are the total energy of two pyrophyllite layers and the single layer in

109 the supercell, respectively. The interlayer distance z depends on the applied load f_{ext} as

110 follows.

111

112
$$f_{\text{ext}} = -\frac{\partial E_{\text{IL}}(x,z)}{\partial z}$$
(2)

113

Potential energy V as a function of x and f_{ext} can be obtained by considering the interlayer energy and the work against the applied load as follows.

116

117
$$V(x, f_{ext}) = E_{IL}(x, z) + f_{ext}z$$
 (3)

118

119 The potential energy difference is only required for calculating the frictional force; 120 therefore, V was expressed as the difference from the minimum potential energy in this 121 study. The frictional force f_{friction} as a function of x and f_{ext} can be obtained by the derivative 122 with respect to x of the potential energy as follows.

123

124
$$f_{\text{friction}}(x, f_{\text{ext}}) = \frac{\partial V}{\partial x}$$
 (4)

125

126 To obtain the frictional force, the potential energy surface can be estimated from

127 DFT calculations.

128

129

9 Density functional theory calculations

130 The relaxed structure and potential energies of pyrophyllite layers under shear 131 were derived from the DFT calculations. The exchange and correlation energy were 132 calculated using the generalized gradient approximation of the Perdew-Burke-Ernzerhof 133 (GGA-PBE) method (Perdew et al. 1996). Valence electrons in atoms were explicitly 134 considered in the calculations using a pseudopotential method (Garrity et al. 2014). A 135 semiempirical dispersion force correction (DFT-D2) (Grimme 2006; Barone et al. 2009) 136 was included in the calculations for reproducing weak van der Waals forces among atoms. 137 The reliability of the corrections were confirmed in our previous study by comparing the 138 results with several dispersion-correction methodologies (Sakuma and Suehara 2015). All 139 DFT calculations were performed using QUANTUM ESPRESSO (Giannozzi et al. 2009, 140 2017).

141 Bulk calculations. To test the reliability of the employed computational method, 142 pyrophyllite lattice constants were calculated under various input parameters in DFT 143 calculations. The initial structure of pyrophyllite was set to that reported by an X-ray

144	diffraction (XRD) method (Lee and Guggenheim 1981). The supercell includes 40 ions
145	composed of two $Al_2(Si_4O_{10})(OH)_2$ units. Convergence thresholds on the total ion energies
146	in the supercell, forces, and stresses were 1×10^{-6} Ry (=0.0136 meV), 1×10^{-4} Ry/bohr/ion
147	(=1.36 meV/bohr/ion), and 0.5 kbar, respectively. Kinetic energy cutoffs for wavefunction
148	and charge density were chosen to be 40 Ry (=544.2 eV) and 320 Ry (= 4353.6 eV),
149	respectively, by confirming the energy and structural convergences. These cutoff energies
150	were fixed for subsequent calculations on slab geometry. Sampling of k-points in the
151	Brillouin zone was established using $4 \times 2 \times 2$ in Monkhorst-Pack grids (Monkhorst and
152	Pack 1976), which was sufficient to achieve energy and structural convergences.
153	Slab calculations. Interlayer energy was calculated using the total energy of two layers in
154	the supercell subtracted by two single layers in the supercell, as calculated in our previous
155	studies (Sakuma and Suehara 2015; Sakuma et al. 2017, 2018). The size of the supercell
156	was determined to be $a = 5.17539$ Å, $b = 8.98879$ Å, $c = 46.78165$ Å, $\alpha = 90.97^{\circ}$, $\beta =$
157	100.58°, and $\gamma = 89.83°$ based on the relaxed structures in bulk calculations, except for
158	length c . Length c was elongated to include vacuum space. Sampling of k-points in the
159	Brillouin zone was set to 4 \times 2 \times 1 in Monkhorst-Pack grids. A dipole correction
160	(Bengtsson 1999) was applied perpendicular to the basal plane of pyrophyllite to remove an

161	artifact arising from periodic boundary conditions. In this supercell, the size of <i>a-b</i> plane
162	was equal to the area in only one crystallographic unit cell. A comparison of calculated
163	elastic constants and shear modulus with experimental values may be a clue for
164	understanding the effect of system size, though it is difficult to obtain precise values in
165	experiments. A DFT study on kaolinite (Weck et al. 2015) revealed that calculated shear
166	constants and shear modulus using a small supercell of $a = 5.18$ Å, $b = 8.98$ Å, and $c = 7.33$
167	Å were consistent with experiments. These results imply that the small system size used in
168	our study has insignificant effect on shear deformation. Atomic relaxations were
169	conducted for ions in the supercell except Al ions in octahedral sites. Fixing the position of
170	these Al ions is required to fix the interlayer distance. Convergence thresholds on the total
171	ion energies in the supercell and forces were 1×10^{-6} Ry (=0.0136 meV) and 1×10^{-4}
172	Ry/bohr/ion (=1.36 meV/bohr/ion), respectively.
173	
174	Results and discussion
175	The bulk structure of pyrophyllite
176	Calculated lattice constants of pyrophyllite are listed in Table 1. The differences
177	between and the calculated and experimental lattice constants were less than 0.3% for all

11

178 parameters.

179 Interlayer energy along six sliding paths

180 Six sliding paths parallel to the basal plane were tested by considering 181 crystallographic symmetry as shown in Fig 1. The length of sliding paths L depends on the 182 sliding directions, because crystallographic equivalent positions to the initial positions are 183 required for averaging the frictional forces. The interlayer energies $E_{\rm IL}$ were calculated 184 every ~0.5 Å along the paths. The results along path 1 are shown in Fig. 2. Horizontal 185 sliding of the top layers can be confirmed by analyzing the top views of the interfacial 186 tetrahedral sheets. The triangle indicating the same SiO₄ tetrahedron in the top layer moved 187 from left to right along path 1 as shown in Figs. 2 (A), (B), and (C). The interlayer energy 188 was calculated at various x displacements in the top layer by moving the top layer up and 189 down perpendicular to the basal plane as shown in Fig. 2 (D). The interlayer energies at 190 various x's were plotted in Fig. 2 (E). The lowest energy was obtained at x = 0 which 191 corresponds to the stacking structure reported by the single-crystal X-ray measurements of 192 pyrophyllite (Lee and Guggenheim 1981). The energy increased as the two layers 193 approached each other indicating the repulsion between the layers. The z positions of 194 lowest energies in the profiles changed depending on the displacement x. The interlayer

195	energies were fitted to an eighth- or seventh-degree polynomial equation and analytically
196	calculated derivatives were used to derive the z position balanced with applied normal
197	forces. All interlayer energies along the six sliding paths are available in the supplemental
198	figure S1.
199	Potential energy profiles along six sliding paths and experimentally observed
200	interlayer structures
201	Potential energy changes along six sliding paths are plotted in Fig. 3. The difference
202	between the lowest and highest potential energies increased as the applied normal stress σ_{n}
203	increased from 0 to 10.7 GPa. The most common interlayer structures determined by XRD
204	measurements correspond to the lowest potential energy at $x = 0$ and $\sigma_n = 0$ GPa for all
205	sliding paths. Similar low potential energy configurations were derived for paths 1, 3, and 5
206	at $x = 3.1$, 5.9, and 2.8 Å, respectively. Several meta-stable configurations appeared for
207	paths 1 (<010>) and 3 (<310>) at $x = 6.2$ and 3.1 Å, respectively. These stable and
208	metastable layered structures viewed at right angles to the basal plane are shown in Fig. 4.
209	The overlap between the interfacial tetrahedral sheets at right angles to the basal planes are
210	almost identical for these three structures. The difference between the stable and metastable
211	structures were clear when considering the overlap of octahedral and tetrahedral sheets near

212	the interface. The stable structures seem to avoid overlap, while the metastable structure
213	overlaps between the tetrahedra and octahedra as shown in Fig. 4. Such overlap would
214	render repulsive interactions owing to the electrostatic interactions among oxygen atoms
215	and among cations.
216	These interlayer structures were compared to actual pyrophyllite crystals with stacking
217	disorder, and observed using HRTEM (Kogure et al. 2006; Kogure and Kameda 2008). The
218	HRTEM image in Fig. 5 was interpreted as pyrophyllite and observed along [-110]. The
219	dark spots in the tetrahedral sheets and octahedral sheets correspond to a pair of Si
220	tetrahedra and Al octahedra, respectively. The stacking sequence is represented as a black
221	solid line connecting the dark spots, to act as a visual guide. There are three types of
222	interlayer structures. A structure indicated by asterisks in Fig. 5, which correspond to the
223	metastable structures found in our study, is rare. On the other hand, the other two interlayer
224	structures that are abundant in the image correspond to stable structures in our study.
225	Therefore, the occurrence of these three stacking structures in natural pyrophyllite probably
226	corresponds to their stability derived by our simulation.

- 227 Frictional forces along six sliding paths
- 228

The distance derivative of potential energy profiles provides the frictional force

229	along the sliding paths. The shear stress is plotted in Fig. 6. Assuming that the energy to
230	reduce the potential energy is dissipated via surface phonons (Cieplak et al. 1994), the
231	negative shear stress cannot contribute to the friction (Zhong and Tománek 1990). The
232	positive shear stress increases with increasing normal stress for all sliding paths. The
233	average shear stress, which may correspond to steady-state friction, can be calculated by
234	integrating the positive shear stress along x and dividing by the path length. The average
235	shear stress τ as a function of normal stress σ_n is plotted in Fig. 7. The average gradient μ
236	among six paths obtained by fitting a simple linear equation of $\tau = \mu \sigma_n + C$ was $\mu = 0.078$
237	which is consistent within an order of magnitude of that (0.03) measured for atomic-scale
238	friction between a pyrophyllite surface and a silicon nitride Si_3N_4 tip (Bucholz et al. 2012).
239	It should be noted that the shear and normal stresses are the values at the real contact area;
240	therefore, these values are not equal to the macroscopic shear and normal stresses applied
241	in macroscopic experiments. Shear stresses are required even when $\sigma_n = 0$ GPa and a linear
242	relationship can be obtained for all six sliding directions. The differences among sliding
243	directions reflect the degree of overlap of SiO_4 tetrahedra and AlO_6 octahedra during
244	sliding. Shear stresses were smaller than those calculated for muscovite basal planes
245	(Sakuma et al. 2018). The large shear stress for muscovite is due to the strong electrostatic

246	repulsion between positive potassium ions in the interlayer space and cations in tetrahedral
247	sheets during sliding. In contrast, the basal plane of pyrophyllite does not have an interlayer
248	cation, resulting in low shear stresses.
249	A possible uncertainty to compare our results with real material would be the
250	presence of defects and/or isomorphic substitutions of cations which were neglected in our
251	study. We cannot estimate the potential energy change due to the presence of such defects
252	and substitutions without further additional simulations. These effects should be discussed
253	combined with the density of defects and impurities in future works.
254	
255	Implications for macroscopic frictions
255 256	Implications for macroscopic frictions Friction coefficient of basal plane
255 256 257	Implications for macroscopic frictions Friction coefficient of basal plane Most observable macroscopic frictional forces have a linear relationship with
255 256 257 258	Implications for macroscopic frictions Friction coefficient of basal plane Most observable macroscopic frictional forces have a linear relationship with applied loads according to Amontons's law (Amontons 1699). This relationship can be
 255 256 257 258 259 	Implications for macroscopic frictions Friction coefficient of basal plane Most observable macroscopic frictional forces have a linear relationship with applied loads according to Amontons's law (Amontons 1699). This relationship can be interpreted as the change in the real contact area as observed at the µm to mm scale (Abe et
 255 256 257 258 259 260 	Implications for macroscopic frictions Friction coefficient of basal plane Most observable macroscopic frictional forces have a linear relationship with applied loads according to Amontons's law (Amontons 1699). This relationship can be interpreted as the change in the real contact area as observed at the µm to mm scale (Abe et al. 2002) and the real contact area <i>A</i> _r can be described as a function of the normal load <i>L</i> as
 255 256 257 258 259 260 261 	Implications for macroscopic frictions Friction coefficient of basal plane Most observable macroscopic frictional forces have a linear relationship with applied loads according to Amontons's law (Amontons 1699). This relationship can be interpreted as the change in the real contact area as observed at the µm to mm scale (Abe et al. 2002) and the real contact area A_r can be described as a function of the normal load L as follows (Dieterich and Kilgore 1996).

$$A_r = \frac{L}{p} \tag{5}$$

264

Here *p* is the indentation hardness of the material. In this expression, the possible finite real contact area at L = 0 was ignored. In the previous section, the shear stress at the real contact area was calculated using the DFT method; therefore, macroscopic shear stress τ_{macro} of pyrophyllite can be obtained as follows.

269

270
$$\tau_{\text{macro}} = \frac{A_r}{A} \tau = \frac{A_r}{A} (\mu \sigma_n + C) = \left(\mu + \frac{C}{p}\right) \sigma_{n,\text{macro}}$$
(6)

271

272 Here, A is the surface area and $\sigma_{n, macro}$ is the macroscopic normal stress. This equation was 273 confirmed to be plausible by the analysis of a single-crystal muscovite surface (Sakuma et 274 al. 2018). The macroscopic frictional coefficient $\mu_{macro} = \mu + C/p$ is estimated to be $\mu_{macro} =$ 275 0.134 by using $\mu = 0.078$ and C = 0.182 GPa for averaging six sliding paths in our 276 simulations and the experimental value of p = 3.3 GPa (Zhang et al. 2013). The 277 macroscopic frictional value (0.134) is smaller than those experimentally measured friction 278 coefficients of pyrophyllite gouge (0.276 for wet and 0.375 for dry) (Moore and Lockner 279 2004). The reason for this discrepancy should be the presence of large frictional forces in

280	experiments among various crystallographic planes (Moore and Lockner 2004; Kawai et al.
281	2015). Pyrophyllite is a hydrophobic mineral and the effect of water would enhance the
282	preferred orientation of gouge particles rather than the lubrication of adsorbed water.
283	The friction coefficient of randomly oriented pyrophyllite particles
284	Here the friction coefficient of simulated gouge was estimated by using a model,
285	schematically shown in Fig. 8. In the shear zone, pyrophyllite particles should have a
286	distribution in the orientation. The orientation of pyrophyllite particles was defined by a
287	unit vector n perpendicular to the basal plane as shown in Fig. 8 (A). The external force \mathbf{F}_{ext}
288	can be decomposed to in-plane $\mathbf{F}_{\text{interlayer}}$ and out-of-plane forces $\mathbf{F}_{\text{normal}}$ for the top
289	pyrophyllite particle as shown in Fig. 8 (C) and (D). Both forces depend on the angles θ and
290	φ as follows in cartesian coordinates.
291	
292	$\mathbf{F}_{\text{interlayer}} = \mathbf{F}_{\text{ext}} (-\sin^2\theta\cos\varphi\sin\varphi, 1 - \sin^2\theta\sin^2\varphi, -\sin\theta\cos\theta\sin\varphi) (7a)$
293	$\mathbf{F}_{\text{normal}} = \mathbf{F}_{\text{ext}} (\sin^2\theta\cos\varphi\sin\varphi,\sin^2\theta\sin^2\varphi,\sin\theta\cos\theta\sin\varphi) (7b)$
294	

295 The force F_{friction} required to slide the interlayer of pyrophyllite can be estimated by the

296 macroscopic frictional coefficient of 0.134 calculated in this study and by the normal force

applied to the basal plane. If the confining pressure P_c is applied on the gouge, the normal

298 force F_{nc} from the confining pressure on the basal plane of pyrophyllite is independent of

299 the orientation. The net normal force F_n was calculated as follows.

300

301
$$F_{n} = \begin{cases} F_{nc} - |\mathbf{F}_{normal}|, & \text{for } 0 \le \varphi < \pi \\ F_{nc} + |\mathbf{F}_{normal}|, & \text{for } \pi \le \varphi < 2\pi \end{cases}$$
(8)

302

Here, the direction toward the basal plane was defined to be positive and the direction changes at below and above $\varphi = 180^{\circ}$ as observed in Fig. 8 (C) and (D). The interlayer frictional force can be described as follows.

306

$$307 \quad F_{\rm friction} = \mu_{\rm macro} F_{\rm n} \qquad (9)$$

308

309 If the interlayer force $F_{\text{interlayer}}$ is larger than the frictional force F_{friction} , then interlayer 310 sliding occurs. If the frictional force F_{friction} is larger than the frictional force between the 311 edges of pyrophyllite particles, then sliding should occur at the edge-edge interface. The 312 friction coefficient, except for interlayer sliding, can be calculated from Byerlee's law 313 (Byerlee 1978). We used the friction coefficient of 0.85 for the frictional force F_{Byerlee} . The

314 external forces F_{ext} for randomly oriented pyrophyllite particles were calculated by 315 following the above criterion and the average friction coefficient μ_{gouge} was obtained as 316 follows.

317

318
$$\mu_{\text{gouge}} = \frac{1}{N} \sum_{i=1}^{N} \frac{F_{\text{ext}}(i)}{F_{\text{n}}}$$
 (10)

319

320 Here $F_{ext}(i)$ is the external force of the *i*-th oriented pyrophyllite, N is the number of 321 differently oriented pyrophyllite particles. The sampled normal vectors \mathbf{n} of pyrophyllite 322 are plotted in Fig. 8 (B). The figure indicates that the vectors were randomly distributed in 323 space with N = 50,000. Examples of the forces at $\varphi = 90^{\circ}$ and 270° are plotted in Fig. 8 (E) 324 and (F), respectively. The net normal force F_n increased and decreased with increasing cos θ at $\varphi = 90^{\circ}$ and $\varphi = 270^{\circ}$, respectively. These changes of $F_{\rm n}$ were because of the presence 325 326 of \mathbf{F}_{normal} generated by the external force \mathbf{F}_{ext} . The friction coefficient of *i*-th particle 327 $\mu_{gouge}(i)$ was determined using lower force between $|\mathbf{F}_{ext}|$ and $F_{Bverlee}$. The macroscopic coefficient of pyrophyllite gouge calculated by this simple model was $\mu_{gouge} = 0.203 \pm$ 328 329 0.001, which is slightly smaller than 0.276 of preferentially oriented pyrophyllite gouge in 330 wet triaxial experiments (Moore and Lockner 2004) and clearly smaller than Byerlee's law.

331	The difference between the estimated and experimental friction coefficients may imply a
332	difference in the degree of preferred orientation and the presence of other deformation
333	mechanisms which are ignored in this study. From these results, macroscopic friction is
334	strongly related to atomic-scale friction in the interlayer and therefore the crystallographic
335	structure has a large effect on the frictional properties of gouge layers.
336	
337	Acknowledgements
338	We acknowledge H. Okuda for a discussion on modeling the gouge friction. The DFT
339	calculations were conducted using the Numerical Materials Simulator at NIMS. This work
340	was supported by JSPS KAKENHI grant number 17H05320.
341	
342	References
343	Abe, S., Dieterich, J.H., Mora, P., and Place, D. (2002) Simulation of the influence of rate-
344	and state-dependent friction on the macroscopic behavior of complex fault zones with
345	the lattice solid model. Pure and Applied Geophysics, 159, 1967–1983.
346	Amiguet, E., Reynard, B., Caracas, R., Van de Moortèle, B., Hilairet, N., and Wang, Y.
347	(2012) Creep of phyllosilicates at the onset of plate tectonics. Earth and Planetary

348	Science Letters, 345–348, 142–150.
349	Amontons, M. (1699) De la resistance cause'e dans les machines. Histoire de l'Académie
350	Royale des Sciences, 206–223.
351	Barone, V., Casarin, M., Forrer, D., Pavone, M., Sambi, M., and Vittadini, A. (2009) Role
352	and effective treatment of dispersive forces in materials: Polyethylene and graphite
353	crystals as test cases. Journal of Computational Chemistry, 30, 934–939.
354	Behnsen, J., and Faulkner, D.R. (2012) The effect of mineralogy and effective normal
355	stress on frictional strength of sheet silicates. Journal of Structural Geology, 42, 49-
356	61.
357	Bengtsson, L. (1999) Dipole correction for surface supercell calculations. Physical Review
358	B, 59, 12301–12304.
359	Bos, B., and Spiers, C.J. (2001) Experimental investigation into the microstructural and
360	mechanical evolution of phyllosilicate-bearing fault rock under conditions favouring
361	pressure solution. Journal of Structural Geology, 23, 1187–1202.
362	Bucholz, E.W., Zhao, X., Sinnott, S.B., and Perry, S.S. (2012) Friction and wear of
363	pyrophyllite on the atomic scale. Tribology Letters, 46, 159–165.
364	Byerlee, J. (1978) Friction of Rocks. Pure and Applied Geophysics, 116, 615–626.

365	Chen, J., and Spiers, C.J. (2016) Rate and state frictional and healing behavior of carbonate
366	fault gouge explained using microphysical model. Journal of Geophysical Research:
367	Solid Earth, 121, 8642–8665.
368	Chen, J., Niemeijer, A.R., and Spiers, C.J. (2017) Microphysically derived expressions for
369	rate-and-state friction parameters, a , b , and D_c . Journal of Geophysical Research: Solid
370	Earth, 122, 9627–9657.
371	Cieplak, M., Smith, E.D., and Robbinst, M.O. (1994) Molecular Origins of Friction: The
372	Force on Adsorbed Layers. Science, 265, 1209–1212.
373	Dieterich, J.H. (1979) Modeling of rock friction: 1. Experimental results and constituve
374	equations. Journal of Geophysical Research, 84, 2161–2168.
375	Dieterich, J.H., and Kilgore, B.D. (1996) Imaging surface contacts: power law contact
376	distributions and contact stresses in quartz, calcite, glass and acrylic plastic.
377	Tectonophysics, 256, 219–239.
378	Garrity, K.F., Bennett, J.W., Rabe, K.M., and Vanderbilt, D. (2014) Pseudopotentials for
379	high-throughput DFT calculations. Computational Materials Science, 81, 446-452.
380	Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D.,
381	Chiarotti, G.L., Cococcioni, M., Dabo, I., and others (2009) QUANTUM ESPRESSO: a
	23

382	modular and open-source software project for quantum simulations of materials.
383	Journal of Physics: Condensed Matter, 21, 395502.
384	Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra,
385	M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., and others (2017) Advanced
386	capabilities for materials modelling with Q_{UANTUM} ESPRESSO. Journal of
387	Physics:Condensed Matter, 29, 465901.
388	Grimme, S. (2006) Semiempirical GGA-type density functional constructed with a
389	long-range dispersion correction. Journal of Computational Chemistry, 27, 1787-
390	1799.
391	Hohenberg, P., and Kohn, W. (1964) Inhomogeneous electron gas. Physical Review, 136,
392	B864–B871.
393	Horn, H.M., and Deere, D.U. (1962) Frictional Characteristics of Minerals. Géotechnique,
394	12, 319–335.
395	Ikari, M.J., Saffer, D.M., and Marone, C. (2007) Effect of hydration state on the frictional
396	properties of montmorillonite-based fault gouge. Journal of Geophysical Research,
397	112, B06423.
398	Jefferies, S.P., Holdsworth, R.E., Wibberley, C.A.J., Shimamoto, T., Spiers, C.J., Niemeijer,

399	A.R., and Lloyd, G.E. (2006) The nature and importance of phyllonite development in
400	crustal-scale fault cores: An example from the Median Tectonic Line, Japan. Journal
401	of Structural Geology, 28, 220–235.
402	Katayama, I., Kubo, T., Sakuma, H., and Kawai, K. (2015) Can clay minerals account for
403	the behavior of non-asperity on the subducting plate interface? Progress in Earth and
404	Planetary Science, 2, 30.
405	Kawai, K., Sakuma, H., Katayama, I., and Tamura, K. (2015) Frictional characteristics of
406	single and polycrystalline muscovite and influence of fluid chemistry. Journal of
407	Geophysical Research B: Solid Earth, 120, 6209–6218.
408	Kogure, T., and Kameda, J. (2008) High-resolution TEM and XRD simulation of stacking
409	disorder in 2:1 phyllosilicates. Zeitschrift für Kristallographie - Crystalline Materials,
410	223, 69–75.
411	Kogure, T., Jige, M., Kameda, J., Yamagishi, A., Miyawaki, R., and Kitagawa, R. (2006)
412	Stacking structures in pyrophyllite revealed by high-resolution transmission electron
413	microscopy (HRTEM). American Mineralogist, 91, 1293-1299.
414	Kohn, W., and Sham, L.J. (1965) Self-consistent equations including exchange and
415	correlation effects. Physical Review, 140, 1133-1138.

416	Lee, J.H., and Guggenheim, S. (1981) Single crystal X-ray refinement of pyrophyllite-1 <i>Tc</i> .
417	American Mineralogist, 66, 350–357.
418	Mariani, E., Brodie, K.H., and Rutter, E.H. (2006) Experimental deformation of muscovite
419	shear zones at high temperatures under hydrothermal conditions and the strength of
420	phyllosilicate-bearing faults in nature. Journal of Structural Geology, 28, 1569–1587.
421	Monkhorst, H.J., and Pack, J.D. (1976) Special points for Brillouin-zone integrations.
422	Physical Review B, 13, 5188–5192.
423	Moore, D.E., and Lockner, D.A. (2004) Crystallographic controls on the frictional behavior
424	of dry and water-saturated sheet structure minerals. Journal of Geophysical Research,
425	109, 1–16.
426	Moore, D.E., and Lockner, D.A. (2007) Friction of the Smectite Clay Montmorillonite, A
427	review and interpretation of data. In T.H. Dixon and J.C. Moore, Eds., The
428	Seismogenic Zone of Subduction Thrust Faults pp. 317–345. Columbia University
429	Press.
430	Morrow, C.A., Moore, D.E., and Lockner, D.A. (2000) The effect of mineral bond strength
431	and adsorbed water on fault gouge frictional strength. Geophysical Research Letters,
432	27, 815–818.

433	Morrow, C.A., Moore, D.E., and Lockner, D.A. (2017) Frictional Strength of Wet and Dry
434	Montmorillonite. Journal of Geophysical Research: Solid Earth, 122,
435	doi:10.1002/2016JB013658.
436	Okuda, H., Kawai, K., and Sakuma, H. (2019) First-principles investigation of frictional
437	characteristics of brucite: An application to its macroscopic frictional characteristics.
438	Journal of Geophysical Research: Solid Earth, 124, 10423–10443.
439	Perdew, J.P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation
440	made simple. Physical Review Letters, 77, 3865–3868.
441	Ruina, A. (1983) Slip instability and state variable friction laws. Journal of Geophysical
442	Research: Solid Earth, 88, 10359–10370.
443	Sakuma, H. (2013) Adhesion energy between mica surfaces: Implications for the frictional
444	coefficient under dry and wet conditions. Journal of Geophysical Research: Solid
445	Earth, 118, 6066–6075.
446	Sakuma, H., and Suehara, S. (2015) Interlayer bonding energy of layered minerals:
447	Implication for the relationship with friction coefficient. Journal of Geophysical
448	Research B: Solid Earth, 120, 2212–2219.
449	Sakuma, H., Otsuki, K., and Kurihara, K. (2006) Viscosity and lubricity of aqueous NaCl

450	solution confined between mica surfaces studied by shear resonance measurement.
451	Physical Review Letters, 96, 046104.
452	Sakuma, H., Kondo, T., Nakao, H., Shiraki, K., and Kawamura, K. (2011) Structure of
453	hydrated sodium ions and water molecules adsorbed on the mica/water interface. The
454	Journal of Physical Chemistry C, 115, 15959–15964.
455	Sakuma, H., Tachi, Y., Yotsuji, K., Suehara, S., Arima, T., Fujii, N., Kawamura, K., and
456	Honda, A. (2017) Stability of montmorillonite edge faces studied using first-principles
457	calculations. Clays and Clay Minerals, 65, 252–272.
458	Sakuma, H., Kawai, K., Katayama, I., and Suehara, S. (2018) What is the origin of
459	macroscopic friction? Science Advances, 4, eaav2268.
460	Schwarz, U.D., and Hölscher, H. (2016) Exploring and explaining friction with the
461	Prandtl-Tomlinson model. ACS Nano, 10, 38–41.
462	Shea, W.T., and Kronenberg, A.K. (1993) Strength and anisotropy of foliated rocks with
463	varied mica contents. Journal of Structural Geology, 15, 1097-1121.
464	Tetsuka, H., Katayama, I., Sakuma, H., and Tamura, K. (2018) Effects of humidity and
465	interlayer cations on the frictional strength of montmorillonite. Earth, Planets and
466	Space, 70, 56.

467	Weck, P.F., Kim, E., and Jové-Colón, C.F. (2015) Relationship between crystal structure
468	and thermo-mechanical properties of kaolinite clay: beyond standard density
469	functional theory. Dalton Transactions, 44, 12550-12560.
470	Wintsch, R.P., Christoffersen, R., and Kronenberg, A.K. (1995) Fluid-rock reaction
471	weakening of fault zones. Journal of Geophysical Research, 100, 13021–13032.
472	Zhang, J., Hu, L., Pant, R., Yu, Y., Wei, Z., and Zhang, G. (2013) Effects of interlayer
473	interactions on the nanoindentation behavior and hardness of 2:1 phyllosilicates.
474	Applied Clay Science, 80-81, 267-280.
475	Zhong, W., and Tománek, D. (1990) First-principles theory of atomic-scale friction.
476	Physical Review Letters, 64, 3054–3057.

- 477
- 478

479	List of figure captions
480	Fig. 1 (A) Side view of two pyrophyllite layers in the supercell. A sliding plane was placed
481	between the layers. The thin black line indicates the supercell. (B) Top view of the six
482	sliding directions from 1 to 6 between the pyrophyllite layers. Tetrahedral SiO ₄ sheets on
483	the interface of the top layer are only shown here. The end of each arrow indicates the
484	crystallographic equivalent position from the initial position by sliding.
485	
486	Fig. 2 Structures of SiO ₄ tetrahedral sheets at the interface of the sliding plane along path 1
487	at (A) $x = 0$, (B) $x = 10/19 L$, and (C) $x = L$. Triangles indicate the SiO ₄ tetrahedra in the top
488	pyrophyllite layer and are used as a guide in order to determine the displacement. (D)
489	Definition of the z axis perpendicular to the basal plane. (E) The interlayer energies
490	calculated at various x and z positions. Lines are fitting curves to the calculated values.
491	
492	Fig. 3 Potential energy changes along six sliding paths as a function of normal stresses from
493	0 to 10.7 GPa. Solid lines are fitted curves and can be described by a linear combination of
494	sine and cosine functions.
495	

496	Fig. 4 A comparison of stable and metastable structures obtained from this study. The
497	overlap of interfacial tetrahedral sheets (top) and tetrahedral-octahedral sheets (bottom) are
498	shown for the structures along path 1 at three minimum potential energies.
499	
500	Fig. 5 Comparison of three stacking structures predicted by our simulations and the
501	observations of natural pyrophyllite by using HRTEM (Kogure et al. 2006) with permission
502	from the American Mineralogical Society. A solid line was added on the HRTEM image as
503	a visual guide for the eye. The asterisks indicate a rare stacking structure found by the
504	HRTEM.
505	
506	Fig. 6 Shear stress calculated by the displacement derivative of potential energy along six
507	sliding paths. Negative shear stresses were not used for deriving average shear stress by
508	assuming the dissipation of phonon energy.
509	
510	Fig. 7 Shear stress τ as a function of normal stress σ_n at the real contact area. Lines near the
511	symbols indicate the best-fit linear equations to the calculated values. For comparison, the
512	results of muscovite (Sakuma et al. 2018) are plotted as solid lines.
	21

513

514	Fig. 8 (A) Definition of the unit vector \mathbf{n} perpendicular to the basal plane of a pyrophyllite
515	particle. The angles θ and ϕ are defined as shown in the figure. The direction of shear is
516	parallel to the y_1 axis. (B) Sampled n for calculating the frictional force of randomized
517	oriented pyrophyllite particles. One dot corresponds to one \mathbf{n} vector. The number of
518	sampling N was 50,000. Examples of the external interlayer force $F_{\text{interlayer}}$ to slide along the
519	basal plane generated by the external force F_{ext} at (C) $\varphi = 90^{\circ}$ and (D) $\varphi = 270^{\circ}$. Calculated
520	forces and friction coefficients of gouge at (E) $\phi = 90^{\circ}$ and (F) $\phi = 270^{\circ}$. Here all forces on
521	the basal plane of pyrophyllite applied by confining pressure were normalized by external
522	normal force $F_{\rm nc}$.

- 523
- 524

Table 1. Calculated and experimental lattice constants of pyrophyllite.

Mineral	Lattice	Calculated	Experimental results
	constants	lattice constants	(Lee and
		by PBE + D2	Guggenheim 1981)
Pyrophyllite	а	5.175 Å (+0.3%)	5.160
	b	8.989 Å (+0.3%)	8.966
	С	9.356 Å (+0.1%)	9.347
	α	90.97° (-0.2%)	91.180
	β	100.58° (+0.1%)	100.460
	γ	89.83° (+0.2%)	86.640

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7333

Revision 1

525

Figure 1

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7333

Figure 3 Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Stable 1

Stable 2

Metastable

Figure 5

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)

Figure 6 Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 7

Figure 8 Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld