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Abstract
Scandium is often associated with iron oxides in the environment. Despite the use of scandium as a
geochemical tracer and the existence of world-class supergene deposits, uncertainties on speciation
obscure the processes governing its sequestration and concentration. Here, we use first-principles
approaches to interpret experimental K-edge X-ray absorption near-edge structure spectra of scandium
either incorporated in or adsorbed on goethite and hematite, at concentrations relevant for the
environment. This modeling helps to interpret the characteristic spectral features, providing key
information to determine scandium speciation when associated with iron oxides. We show that

scandium is substituted into iron oxides at low concentration without modifying the crystal structure.
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When scandium is adsorbed onto iron oxide surfaces, the process occurs through outer-sphere
complexation with a reduction in the coordination number of the hydration shell. Considering available
X-ray absorption spectra from laterites, the present results confirm that scandium adsorption onto iron
oxides is the dominant mechanism of sequestration in these geochemical conditions. This speciation
explains efficient scandium recovery through mild metallurgical treatments of supergene lateritic ores.
The specificities of scandium sorption mechanisms are related to the preservation of adsorbed
scandium in million-years old laterites. These results demonstrate the emerging ability to precisely
model fine X-ray absorption spectral features of trace metals associated with mineral phases relevant to
the environment. It opens new perspectives to accurately determine trace metals speciation from high-
resolution spatially-resolved X-ray absorption near-edge structure spectroscopy in order to constrain
the molecular mechanisms controlling their dynamics.

Keywords: Scandium, XANES, Ab-Initio Calculations, Speciation, Fe oxides, Sorption, Critical Zone.

Introduction
In the critical zone (CZ: the interface between geological, hydrological and atmospheric compartments
where rocks interact with air, water and biota), iron oxides, in particular goethite (0—FeO(OH)) and
hematite (a—Fe,0;), are ubiquitous. They affect the biogeochemical cycling of many elements as they
bind through adsorption onto mineral surfaces or incorporate within the crystal structure (Brown and
Calas, 2012). Adsorption can also be followed by diffusive penetration into the interior of mineral
particles through lattice or pore diffusion (Briimmer et al. 2013). Recurring changes of the
biogeochemical conditions within the CZ lead to dynamic dissolution and crystallization of Fe oxides
controlling the fate of trace metals (e.g., Frierdich et al., 2011).
The fate of scandium (Sc) in the CZ is a case in point. Scandium is used as a conservative element to

model mass transfer during weathering (e.g., Eshel et al., 2015). The absence of accessory Sc minerals
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in supergene contexts (Samson and Chassé¢ 2016) implies that its sequestration in the CZ depends on
the rock-forming phases present. Scandium association with Fe oxides is well-known (Norman and
Haskin 1968) and illustrated by worldwide findings of Sc-rich laterites (e.g., Aiglsperger et al., 2016;
Chassé et al., 2017; Teitler et al., 2019), expected to become a potential source for this critical metal.
Nonetheless, the processes of Sc trapping in laterites remain elusive. Isomorphous substitution in Fe
oxides or sequestration by adsorption have been invoked in Sc-bearing laterites (Chassé et al. 2017;
Vind et al., 2018; Ulrich et al., 2019), making necessary an accurate determination of Sc speciation to
constrain Sc dynamics in the CZ.

In this perspective, the chemical selectivity and high sensitivity of X-ray absorption spectroscopy
proved to be invaluable (Chassé et al. 2017, 2019). The low Sc concentration in natural systems
requires the use of Sc K-edge X-ray absorption near-edge structure (XANES) spectroscopy.
Nonetheless, a precise analysis of Sc speciation based on XANES spectroscopy requires theoretical
modeling to understand the origin of the spectral features. This has been made for the first time on the
Sc K-edge XANES spectra of mineral compounds using first-principles calculations (Chassé et al.,
2018). We apply this density functional theory (DFT) approach to model XANES spectra of Sc trapped
by Fe oxides, stressing the interest of the method to unravel the role of incorporation and sorption

processes on Sc fate in the CZ.

Experimental methods and theoretical approach
We studied a Sc-chloride solution (ca. 1 wt%), Sc-substituted (ca. 1 wt%) and Sc-adsorbed (ca. 0.1 wt
%) goethite and hematite, and Sc-adsorbed montmorillonite ((Na,Ca)o3(ALMg),S14010(OH), - nH,O,
ca. 1 wt%). The Sc-chloride solution was prepared by dilution of Sc¢** chloride hexahydrate powder.
Scandium-substituted goethite was prepared by maintaining a ferrihydrite suspension at 65 °C for two

days after precipitation from Fe** nitrate at a basic pH in presence of Sc chloride. Scandium-substituted
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hematite was obtained by dehydroxylation of goethite through heating. Scandium-adsorbed samples
were prepared by adding a Sc-chloride solution to Sc-free synthetic goethite, hematite or natural
montmorillonite, later separated and dried. Details are given in Supplemental Material.

We recorded Sc K-edge XANES spectra at the LUCIA beamline (SOLEIL synchrotron) using an
Si(311) double crystal monochromator calibrated against a Sc,Os standard. Measurements were
performed in the energy range (4400—4800) eV with energy steps of (5, 0.2, 0.5 and 1) eV in energy
ranges of (4400—4485) eV, (4485-4534) eV, (4534-4586) eV and (4586—4800) eV, respectively.
Spectra were collected at room temperature, under vacuum in XRF mode on pellets obtained from
powdered material and mounted on a holder between two 2 um thick Ultralene® films, using a four-
element silicon drift detector (SDD). Two spectra were recorded for each reference with a counting
time of ca. 50 s per spectrum. The spectra acquired for each reference were merged before background
subtraction and normalization. Details can be found in Chassé et al. (2017).

Theoretical XANES spectra were calculated using the Quantum ESPRESSO plane-wave based DFT
suite of codes (Giannozzi et al. 2009) in the generalized gradient approximation (Perdew—Burke—
Ernzerhof parametrization, Perdew et al., 1996). The charge density is obtained via a relaxation of the
atomic positions and a self-consistent field calculation using the PWscf code. Then, XANES spectra
are computed in a continued fraction approach using the XSpectra code (Taillefumier et al. 2002;
Gougoussis et al. 2009). Computational details are given in Supplemental Material.

Charge density calculations were initialized using cell parameters and atomic positions obtained from
structure relaxations of goethite (Ducher et al. 2015) and hematite (Blanchard et al. 2008). Either one
or two adjacent Sc atoms (isolated or paired models, Supplemental Material) were substituted for Fe
atoms into the crystal structure to model Sc-substituted goethite (Fig. 1a) and hematite (Fig. 1b). It
corresponds to ca. 2 wt% and 4 wt% Sc for goethite models and ca. 1 wt% and 2 wt% Sc for hematite

models. Physiosorbed Sc was modeled by a 6-fold coordinated water complex (Rudolph and Pye
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94 2000).

95 Results and discussion

96 Spectral signature of scandium associated with iron oxides

97 Experimental Sc K-edge XANES spectra of Sc-substituted goethite and hematite exhibit four major

98 features in the main edge (Ao, A, B and C, Fig. 2a,b), respectively located at ca. 4501 eV, 4508 eV,

99 4512 eV and 4524 eV. In the pre-edge region, two low-intensity features (P; and P»), observed in
100 compounds with six-fold coordinated Sc (Lindqvist-Reis et al. 2006; Oberti et al. 2006; Chassé et al.
101  2018), are present at ca. 4492 eV and 4494 eV. The position, shape and intensity of the main-edge
102 features are reproduced in the theoretical spectra obtained from structural models of Sc-incorporated
103  goethite and hematite indicating the robustness of the calculation method and the validity of the
104 structural models (Fig. 2a,b). In the pre-edge region, the P, feature is less intense and split in two
105 components in the theoretical spectra (close view, Figs. 3 and S1). When Sc atoms are paired in the
106 model structure of goethite, a feature appears at higher energy (Fig. 3, *).
107 To interpret the pre-edge spectra, the DOS, correlated to the spectral features, are projected on the
108 absorbing Sc (Sc*) and its first neighbors (Fig. 3 and S1). These DOS describe, for each energy level,
109 the number of empty states available that can be reached with a certain transition probability by the
110  photoelectron during XANES experiments. The contribution of electric quadrupole (E2) transitions to
111  the P, and P, features, corresponding respectively to 1s — 3d—t,, and 1s — 3d—e, transitions is minor
112 (Figs. 3 and S1). Electric dipole (E1) transitions 1s — 4p dominate the P features. They reflect local
113 transitions due to 4p—3d hybridization of Sc*, observed for non-centrosymmetric sites, such as
114  tetrahedra (Knoll et al. 2014) or distorted octahedra (Chassé et al. 2018). Non-local transitions also
115 contribute to E1 transitions and result from orbital mixing between the 4p orbitals of Sc* and 3d
116 orbitals of its nearest Fe neighbors via the empty 2p orbitals of the oxygen ligands. This orbital mixing

117  of Sc* is documented for Sc-bearing compounds exhibiting 3d neighbors (Chassé et al. 2018). The
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DOS show that the energy difference between 3d—t,, and 3d—e, orbitals, i.e. the crystal field splitting
energy (10Dq), is greater for Sc than for Fe, inducing the splitting of the P, feature. The 10Dq value for
Fe tends to be underestimated compared to experiments (Ducher et al. 2016). A higher 10Dq would
lead to the superimposition of the theoretical P, features, matching experimental spectra. When Sc
atoms are paired in the model structure of goethite and hematite, non-local E1 transitions may also
arise from orbital mixing with 3d orbitals of the adjacent Sc ions. Due to the absence of core hole on
these neighbors, the position of the 3d orbitals is at higher energies, leading to additional features on
the calculated pre-edge (Figs. 3 and S1, shown as *, at ca. 4497 eV for goethite and at ca. 4496 eV and
4498 eV for hematite), absent from experimental spectra. This additional feature is unambiguous in the
hematite spectrum when plotting the different polarization dependent components of the isotropic
spectrum (Fig. S2). Such additional pre-edge features are also observed for Sc oxides (Chassé et al.
2018) and for other 3d ions in oxides such as Ti** (Cabaret et al. 2010) and Cr*" ions (Verger et al.

2016) accounting for the presence of neighbors with the same nature as the absorbing atom.

Atomic environment of scandium associated to iron oxides

The agreement between experimental and theoretical spectra in the main edge confirms the structural
incorporation of Sc in the synthesized Fe oxides. Despite small discrepancies in the energy and
intensity of some transitions, inherent to the limitation of DFT-based methods to model the core—hole
electron interaction and the 3d electron—electron repulsion (Cabaret et al. 2010), the transitions
observed in the pre-edge are reproduced and interpreted from the projected DOS. The absence of the
feature diagnostic of Sc pairing (Figs. 3 and S1, *) in experimental spectra of goethite and hematite
indicates that substituted Sc sites are isolated. A correct modeling of the spectra does not require
volume-cell relaxation. At low Sc concentrations, below a few wt%, the structure of these Fe oxides

accommodates Sc substitution without significant changes in the cell volume, the changes in Sc—O
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distances relative to Fe—O distances remaining low (< 7 %, Supplemental Table S1). When Sc is
structurally incorporated, it is dispersed at low concentration, without modifying the Fe-oxides cell
volume.

Scandium K-edge XANES spectra of Sc-adsorbed goethite and hematite are similar and alike that of Sc
adsorbed on Fe-free clay surfaces (Fig. 2c). Specific affinity for a given site of Fe-oxide surfaces and
adsorption through covalent bonding is thus excluded. Scandium binding must occur through outer
sphere complexes. Comparison with such Sc complexes indicates that the splitting of the pre-edge
associated with the low intensity of the main edge is consistent with six-fold coordinated complexes
but incompatible with higher coordination numbers (Fig. 2¢, Sc-chloride solution and Lindqvist-Reis et
al., 2006; Yamaguchi et al., 1997). A theoretical spectrum is calculated using an isolated 6-fold
coordinated [Sc(H,0)4(OH),]" complex, Sc(OH)," being the dominant species at the slightly acidic pH
of adsorption experiments (Wood and Samson 2006). The calculated spectrum reproduces the major
features exhibited by experimental spectra (A and B, Fig. 2¢). The splitting of the pre-edge and the
relative intensity of the two features is reproduced (P, and P, Fig. 2¢). Despite discrepancies in this
region arising from the simpleness of the model, the closeness between the calculated spectrum and the
experimental spectra of adsorbed Sc indicates that adsorption results in a reduction of the coordination
number of the Sc** complex. This complex is seven- to nine-fold coordinated in solution
(Vchirawongkwin et al. 2012, illustrated by the spectrum of the Sc-chloride solution, Fig. 2¢) and six-
fold coordinated at the surface of Fe oxides (illustrated by the spectrum of Sc-adsorbed goethite and
hematite, Fig. 2¢). The lability of the Sc** hydration shell supports this observation (Migliorati and

D’Angelo 2016).

Mechanisms of scandium sequestration by iron oxides in the critical zone

First-principles calculations do not show significant difference of affinity for Sc substitution in goethite
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or hematite (AEGinem = 0.33 €V, Supplemental Material and Table S2). Preferential incorporation into
goethite (Ulrich et al. 2019) or hematite (Vind et al., 2018) must reflect the role of the conditions of
formation in determining the nature of the phase incorporating Sc, as shown for lutetium (Yokosawa et
al. 2019). In particular, differences in specific surface area or distinct precursor phases during Fe oxides
crystallization can explain variations in affinity for Sc. Sorption to goethite in lateritic Fe oxide-rich
horizons plays a major role in Sc trapping and concentration processes (Chassé et al. 2019). The
theoretical modeling of the spectra of outer-sphere Sc complexes exhibit features for which the
position, intensity and shape are comparable to experimental spectra of Sc-adsorbed species and bulk
lateritic samples (Fig. 2c). The agreement with experimental spectra of Sc-substituted goethite and
hematite excludes trapping by structural incorporation within crystallized Fe oxides in supergene
contexts, despite the existence of a solid solution Fe,Sc(;_O(OH) in mild hydrothermal conditions (70
°C, Levard et al., 2018). Subtle differences between spectra of lateritic samples and Sc-adsorbed Fe
oxides (Fig. 2c, +), close to major features observed in Sc-substituted reference spectra, indicate minor
incorporation. With aging, as other metallic ions (Briimmer et al., 2013), Sc could penetrate Fe oxides
following adsorption processes enhanced by nanoporosity or lattice diffusion. The physico-chemical
parameters and growth kinetics are key determinants of the mechanism of Sc sorption. At increasing
metal concentration in solution, the process of adsorption through complexation at goethite surface may
be replaced by the formation of surface precipitates and structural incorporation, such as is the case for
nickel (Ugwu et al. 2019). At environmental conditions, with low Sc concentrations (< a few tenth

of wt%) and room temperature (ca. 30 °C on average under tropical climates), the surface complexation
process and slow kinetics must favor Sc adsorption onto goethite at the expense of structural
incorporation. In particular, the kinetics of this process in competition with successive dissolution and
crystallization processes may lead to the preservation of Sc complexes during the formation and

evolution of lateritic profiles.
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Implications
A speciation explaining mineral processing results. The speciation of critical metals has direct
implications for ore processing. For instance, cobalt sorption to goethite is mainly irreversible when
forming monodentate complexes while leaching remains efficient when polydentate polynuclear
complexes form (Ugwu and Sherman, 2017). The preservation of Sc sorbed onto Fe oxides surfaces in
laterites explains why Sc is efficiently recovered from lateritic ores using ion exchange (79 % recovery,
Williams-Jones and Vasyukova, 2018) or high-pressure acid leaching processes (94 % recovery with
limited Fe-oxides dissolution, Wang et al., 2011).
An original sorption process controlling Sc fate in the critical zone. The nature of the adsorption
process may be of importance to the stability of Sc sorption after aging. The exchange of water
molecules inside the solvation shell of Sc with the solvent is eased by the existence of a far-coordinated
water molecule capping the complex (Migliorati and D’ Angelo 2016), facilitating geometric changes
required for Sc adsorption and stabilizing the six-fold coordinated complex. The persistence of
adsorbed Sc species in million-years old laterites may result from this original sorption mechanism.
A promising tool to study the speciation of trace metals in the critical zone. This study
demonstrates that state-of-the-art first-principles calculations can reproduce XANES spectra of metals
associated with phases ubiquitous in the CZ. The complexity of the pathways leading to Sc trapping in
the CZ and their dependence to varying environmental conditions are evidenced. As for other trace
metals, experimental sequestration on model systems prepared in diverse but controlled conditions are
required as references to determine speciation in natural contexts. This theoretical tool, combined to
XANES, offers a new opportunity to make the link between experiments and natural environments to
obtain direct information on the molecular environment of trapping at trace concentration.

Future directions for first-principles-assisted investigation in environmental mineralogy. X-ray
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absorption spectroscopy has become a central tool in environmental sciences (Brown and Calas 2012).
In the case of transition elements, the pre-edge features are used to determine element speciation but
their understanding is still complicated by the limitation of DFT-based approaches in this region. A
better modeling of the core-hole effects and of electron-electron interactions in DFT-based software is
developed (e.g., Cabaret et al. 2010) and will further improve the agreement between experimental and
calculated pre-edge spectra. Another direction, specific to adsorbed elements, would be to combine
DFT-based calculations of X-ray absorption spectra with DFT-based molecular dynamic simulations to

determine the molecular environments of adsorption and their energies (e.g., Watts et al. 2019).
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List of figures
Figure 1 Representations of the supercells of Sc-substituted goethite (2 x 1 x 3) (a) and hematite
(2 x 2 x 1) (b), and of the [Sc(H20)4(OH),]" model complex (¢) considered in the present study. The
two-tone sites can either be occupied by Fe (isolated model) or by Sc (paired model).
Figure 2 Comparison between experimental (red) and calculated (black) normalized Sc K-edge
XANES spectra for Sc-substituted goethite (a) and hematite (b) and Sc-adsorbed goethite and hematite
(¢). Additional reference spectra of a ScCl; solution (ca. 1 wt% Sc), Sc-adsorbed montmorillonite
(ca. 1 wt% Sc) and from a lateritic sample (ca. 750 ppm Sc, Chassé et al. 2017) are given for
comparison in (¢). Calculated spectra are shifted in energy to match the experimental A feature. The
symbols + indicate features discussed in the paper.
Figure 3 Experimental and calculated pre-edge regions of Sc K-edge XANES spectra of Sc-substituted
goethite: (a) isolated structural model; (b) paired structural model. The calculated electric dipole (E1)
and quadrupole (E2) contributions are displayed. The partial densities of the absorbing Sc (Sc*) 4p and
3d states, of the first six O neighbors 2p states, of the first Fe and Sc neighbors 3d states are shown.
The energy scale of the experimental spectra is shifted to match calculated spectra. The vertical line

indicates the Fermi level (Er). The * symbol indicate features discussed in the paper.
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Feuillel
Goethite
Interatomic distances (A)

Oxygen neighbor Fe-O Sc—O (isolated) Difference relative to Fe—O distances (%)
(0] 1.90 2.03 6.84
02 1.98 2.07 4.55
03 1.98 2.07 4.55
04 2.12 2.16 1.89
05 2.12 2.16 1.89
06 2.14 2.15 0.47

Hematite
Interatomic distances (A)

Oxygen neighbor Fe-O Sc—O (isolated) Difference relative to Fe—O distances (%)
(0] 1.93 2.04 5.70
02 1.93 2.04 5.70
03 1.93 2.04 5.70
04 2.14 2.17 1.40
05 2.14 2.17 1.40
06 2.14 2.17 1.40

Table S1
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Feuillel

Sc—O (paired) Difference relative to Fe—O distances (%)

2.03 6.40
2.04 2.94
2.08 4.81
2.16 1.85
2.16 1.85
2.15 0.47

Sc—O (paired) Difference relative to Fe—O distances (%)

2.03 5.18
2.03 5.18
2.03 5.18
2.19 2.34
2.19 2.34
2.19 2.34
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Feuillel
Total energy (eV)

Goethite Sc-substituted goethite (isolated)  Sc-substituted goethite (paired)
39459.87 40037.77 40615.77

Hematite Sc-substituted hematite (isolated)  Sc—substituted hematite (paired)
67718.57 68296.14 68873.69

Table S2
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