	Revision 1 Page 1
1	
2	
3	
4	A multi-method characterization of natural terrestrial birnessites
5	
6	
7	Florence T. Ling ^{1,2,*} , Jeffrey E. Post ³ , Peter J. Heaney ¹ , Cara M. Santelli ⁴ , Eugene S. Ilton ⁵ ,
8	William D. Burgos ⁶ , Arthur W. Rose ¹
9	
10	
11	¹ Department of Geosciences, Penn State University, University Park, PA 16802, USA,
12	² Department of Biology, Environmental Science Program, La Salle University, Philadelphia, PA
13	19141, USA
14	*ling@lasalle.edu
15	³ Department of Mineral Sciences, NHB 119, Smithsonian Institute, Washington, DC 20013-
16	7012, USA
17	⁴ Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN
18	55455
19	⁵ Pacific Northwest Laboratory, 902 Battelle Blvd, Richland, WAV 99352, USA
20	⁶ Department of Civil and Environmental Engineering, Penn State University, University Park,
21	PA 16802, USA
22	
23	

24

Page 2

ABSTRACT

25 With a focus on a large set of natural birnessites collected from terrestrial, freshwater 26 systems, we applied and compared the capabilities of X-ray diffraction (XRD), extended X-ray 27 absorption fine structure (EXAFS), Fourier-transform infrared spectroscopy (FTIR), and X-ray 28 photoelectron spectroscopy (XPS) to characterize crystal structure and chemistry. Using XRD, 29 we successfully identified 3 of the 11 natural birnessite samples as hexagonal ranciéite-like 30 phases, but the remaining samples yielded less interpretable "3-line" diffraction patterns with broad. asymmetrical peaks at d-spacings of ~7.2 Å, ~2.4 Å, and ~1.4 Å. EXAFS analysis 31 32 suggested that many of these samples had characteristics of both triclinic and hexagonal 33 birnessite. However, application of EXAFS to the ranciéite-like phases vielded unreasonably 34 high concentrations of triclinic birnessite as an intergrowth, calling into question the use of 35 synthetic hexagonal H-birnessite as an appropriate standard in the linear combination fitting of EXAFS data for natural birnessites. FTIR spectroscopy of the "3-line" birnessite samples 36 37 successfully distinguished triclinic and hexagonal constituents, and analyses of peak positions 38 suggested that natural birnessites occur as a full spectrum of triclinic and hexagonal intergrowths. XPS analysis of these samples revealed that higher Mn³⁺ concentrations relative to 39 Mn^{2+} and Mn^{4+} are correlated to increased proportions of triclinic birnessite. 40 41

- 41
- 42 **KEYWORDS:** manganese oxide, birnessite, FTIR, EXAFS, XPS, XRD

Page 3

43 **INTRODUCTION** 44 Manganese oxides occur in a wide variety of surficial environments, for example as fine-45 grained sediments in soils, as nodules in lakes and oceans, and as coatings on rock surfaces (Post 46 1999). Their fine grain sizes and high surface areas result in their high reactivity, and Mn oxides 47 consequently play a vital role in heavy metal cycling and redox reactions occurring in the 48 environment (Paterson et al. 1986; Lopano et al. 2007, 2009, 2011; Fleeger et al. 2013). For 49 instance, Mn oxides can sorb Zn, Sn, and Ni (Chao and Theobald 1976; Usui and Mita 1994), and they can oxidize Se^{4+} to Se^{6+} , Cr^{3+} to Cr^{6+} , and Co^{2+} to Co^{3+} , just a few of the redox reactions 50 51 in which Mn oxides are involved (Bartlett and James 1979; Murray and Dillard 1979; Oscarson 52 et al. 1981; Scott and Morgan 1996; Kay et al. 2001; Fandeur et al. 2009; Lafferty et al. 2011; 53 Peacock and Moon 2012; Kazakis et al. 2015; Kong et al. 2019). Due to their high reactivity 54 with organic carbon, they also play a role in carbon cycling, making Mn oxides an important 55 mineral for modeling the role of mineral-carbon reactions in climate change (Remucal and 56 Ginder-Vogel 2014; Johnson et al. 2015; Allard et al. 2017; Stuckey et al., 2018). 57 The layered Mn oxide minerals in the birnessite family are widely studied for their 58 natural occurrence in a range of terrestrial settings and for their chemical reactivity (Potter and 59 Rossman 1979; Post 1999; McKeown and Post 2001; Manceau et al. 2002, 2007; Weaver and 60 Hochella 2003). Birnessites exist as two symmetries, triclinic and hexagonal (Fig. 1). 61 According to Post and Veblen (1990) and Post et al. (2002), synthetic triclinic Na-birnessite $(Na_{0.58}(Mn^{4+}_{1.42}Mn^{3+}_{0.58})O_4 \bullet 1.5H_2O)$ consists of layered Mn octahedral sheets with ~71% Mn^{4+}_{1.42}Mn^{3+}_{1.42}Mn^{3+}_{1.42}O_4 \bullet 1.5H_2O) 62 and $\sim 29\%$ Mn³⁺, along with hydrated Na⁺ cations in the interlayer sites. In contrast, Silvester et 63 al. (1997) describe synthetic hexagonal H-birnessite $(H_{0.33}Mn^{3+}_{0.111}Mn^{2+}_{0.055}(Mn^{4+}_{0.722}Mn^{3+}_{0.111})$ 64 $\Box_{0.167}$)O₂) as having Mn octahedral sheets consisting of ~72% Mn⁴⁺ cations, ~11% Mn³⁺ 65

Page 4

66	cations, and ~17% vacancies, along with Mn^{2+} , Mn^{3+} , and H^+ cations that occupy the interlayer
67	near the octahedral vacancy sites. As the Mn oxidation states and the vacancy concentrations are
68	different for triclinic and hexagonal birnessite, they can behave differently in similar
69	geochemical environments. The vacancies in hexagonal birnessite, for example, act as sites for
70	the sorption of Pb and Zn (Toner et al. 2006; Kwon et al. 2010). In contrast, the absence of
71	octahedral vacancies in triclinic birnessite diminishes the capacity for transition metal uptake
72	(Wang et al. 2012). Moreover, Mn^{3+} , which exists in higher concentrations in triclinic birnessite,
73	plays a role in the oxidation of Cr^{3+} to Cr^{6+} and Co^{2+} to Co^{3+} (Manceau et al. 1992; Weaver and
74	Hochella 2003; Simanova and Peña 2015; Kong et al. 2019). Identifying the structural
75	characteristics of a natural birnessite sample can help predict which chemical processes will
76	dominate.

77 The characterization of natural birnessites is challenged by their small particle size and 78 poor crystallinity. X-ray diffraction (XRD), a standard method for phase identification, often 79 falls short of properly identifying natural Mn oxides due to the absence of long-range order (Post 80 1999). Birnessite, specifically, is distinguished by its ~ 7 Å d-spacing. In many natural samples, 81 the birnessite may initially be identified as buserite, the hydrated relative of birnessite that has a 82 distinct ~10 Å spacing. Upon heating buserite to 110°C, the 10 Å spacing collapses as interlayer 83 water is lost, yielding the \sim 7 Å spacing of birnessite. This collapse distinguishes birnessite from todorokite, which has a ~10 Å peak that does not collapse upon heating at 110°C (Usui & Mita 84 85 1994). This method of identifying natural birnessites is widely utilized (Post 1999; Bilinski et al. 86 2002; Zhao et al. 2012; Frierdich et al. 2011), but when diagnostic X-ray diffraction peaks are 87 not evident, XRD may not be able to reveal whether a birnessite is triclinic or hexagonal. The 88 situation is complicated further by the conventional use of Cu rather than, for example, Mo X-

89	ray radiation, since the absorption edge for Cu is close to that of Mn and absorption and
90	fluorescence greatly degrade the signal-to-noise ratio (SI Fig. 1).
91	Instead, synchrotron X-ray absorption spectroscopy (XAS) has been employed
92	extensively for the structural characterization of Mn oxides by focusing on the bonding
93	environment surrounding Mn atoms. XAS is particularly useful for samples containing minor
94	amounts of Mn or for identifying the coordination of other elements on or within Mn oxides, and
95	has also been used to identify the phase distributions in poorly crystalline natural Mn oxides and
96	those precipitated by bacteria and fungi in laboratory cultures. Unlike X-ray diffraction analysis
97	of "3-line" birnessite, XAS sometimes can offer insights into the relative concentrations of
98	triclinic and hexagonal birnessite through linear combination fitting (LCF) and/or modeling of
99	the extended absorption fine structure (EXAFS) or X-ray absorption near edge structure
100	(XANES) regions (Jürgensen et al. 2004; Webb et al. 2005a, 2005b; Villalobos et al. 2006;
101	Bargar et al. 2009; Saratovsky et al. 2009; Learman et al. 2011; Santelli et al. 2011; Hinkle et al.
102	2016).
103	Most studies of natural birnessites in freshwater environments presume that they form
104	through a mix of biotic and abiotic processes. For phases that form biotically, it is hypothesized
105	that biogenic birnessites precipitate at least initially as δ -MnO ₂ , a form of hexagonal birnessite.
106	This interpretation originates from laboratory experiments in which hexagonal birnessite has
107	consistently been observed as the first phase produced under most chemical conditions examined
108	(Villalobos et al. 2003, 2006; Bargar et al. 2005; Saratovsky et al. 2006; Learman et al. 2011;
109	Santelli et al. 2011; Hansel et al. 2012). Whether or not these laboratory phases are
110	representative of natural minerals needs greater investigation as some recent studies have shown
111	that certain synthetic media components may impact the Mn oxide structures. Specifically,

Page 6

112	Good's buffers, used regularly in biological growth experiments because they are non-toxic and
113	thought to be biochemically inert, can force the formation of hexagonal birnessite under abiotic
114	conditions (Ling et al. 2015; Simanova et al. 2015), potentially skewing results of
115	bioprecipitation experiments with bacteria and fungi. Although "pseudo-orthogonal" birnessite
116	and the tunnel-structured Mn oxide todorokite have been reported as secondary crystallization
117	phases (Webb et al. 2005b; Feng et al. 2010), and Tan et al. (2010) observed that both triclinic
118	and hexagonal can co-exist in natural environments, most experimental work uses a form of
119	synthetic hexagonal birnessite for investigations into the reactivity of Mn oxides in natural
120	environments. More work is required to characterize natural birnessites to enhance our
121	knowledge of which birnessite varieties are most prevalent and how other phases contribute to
122	birnessite-mediated reactions and, ultimately, impact the environment.
123	By characterizing eleven birnessite samples from a variety of nonmarine environments
124	using a suite of analytical approaches, here we explore the variety of natural birnessites that
125	prevail in terrestrial, freshwater systems. We interrogated the samples with scanning electron
126	microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDS), electron
127	microprobe analysis (EPMA), X-ray diffraction, X-ray absorption spectroscopy, and X-ray
128	photoelectron spectroscopy (XPS) to survey the chemical compositions and Mn oxidation state
129	ratios of naturally occurring birnessites. Following the demonstration by Ling et al. (2016) that
130	Fourier-transform infrared spectroscopy (FTIR) can differentiate between synthetic triclinic and
131	hexagonal birnessites, we also applied FTIR to natural birnessites, and we evaluated the relative
132	accuracy and ease of these techniques to gauge their suitability for birnessite characterization.
133	

134

METHODS

Page 7

135 Samples

136	Synthesis of standard triclinic birnessite. Triclinic Na-birnessite was synthesized
137	according to the procedure described in Golden et al. (1986). A 200 ml solution of 0.5 M $MnCl_2$
138	(Mallinckrodt Baker) was mixed with 250 ml of 5.5 M NaOH (J.T. Baker). The mixture was
139	oxygenated through a glass frit for ~5 hrs at a rate of 1.5 L/min. The precipitate was divided
140	evenly and centrifuged in 14 centrifuge tubes. The solution was decanted and replaced with pH
141	6.49 deionized (DI) water to rinse. The rinse cycle was repeated five times. Na-birnessite was
142	stored in ~350 ml DI water until experimental use. For experiments, aliquots of Na-birnessite
143	were filtered with a 0.05 μ m Nuclepore Track-Etched polycarbonate membrane filter
144	(Whatman), rinsed three times with 100 ml DI water, and left to air-dry at room temperature. X-
145	ray diffraction with a Rigaku D/MAX-RAPID microdiffractometer using a Mo tube source (λ =
146	0.71069 Å) confirmed the synthesis of triclinic birnessite.
147	Synthesis of standard hexagonal birnessite. Our hexagonal birnessite standard was
148	synthesized by reacting ~100 mg of dried triclinic Na-birnessite in 100 ml of 0.01 M HCl for 24
149	hrs. The H-birnessite then was filtered with a 0.05 μ m Nuclepore Track-Etched polycarbonate
150	membrane filter (Whatman), rinsed three times with 100 ml DI water, and left to air-dry. X-ray
151	diffraction confirmed the synthesis of hexagonal birnessite.
152	Synthetic fungal sample. The fungal species Stagnospora sp. SRC11sM3a was obtained
153	from a passive acid mine drainage remediation system in Central Pennsylvania that effectively
154	removed high concentrations of Mn through precipitation of Mn oxides as described in Santelli
155	et al. (2010). The culture was inoculated in a 20 mM pH 7 HEPES-buffered AY medium that
156	consisted of 0.25 g L^{-1} sodium acetate, 0.15 g L^{-1} yeast extract, 1 mL L^{-1} trace elements stock (10

Page 8

158 Na₂MoO₄•2H₂O), and supplemented with 150 µM MnCl₂ and 0.1 mM CaCl₂. Mn was held 159 constant during growth for ~20 days, but not supplemented after. The selected conditions were 160 chosen to simulate the average geochemical conditions measured in the treatment systems during 161 sampling. The culture was grown in 50 mL of liquid AY medium without agitation to resemble 162 a submerged environment, and incubated in the dark at room temperature for $\sim 20 - 24$ days and 163 stored in dark conditions to prevent photoreduction of Mn oxides. 164 **Natural samples.** We collected four birnessite-containing samples from passive coal 165 mine drainage treatment sites near the central Pennsylvania towns of De Sale (near Eau Claire, 166 Butler Co.) (labeled DS1-M3f and DS2-M3f) and Central City in Somerset Co. (labeled PBS-167 M3f-1 and PBS-M3f-2) (Table 1). The treatment systems consist of rectangular beds filled with 168 crushed limestone to ~ 1 m in depth. The coal mine drainage horizontally flowed through the 169 limestone beds on which Mn oxide sediments precipitated. Further descriptions of sampling 170 methods and localities for the De Sale and the Central City specimens are described in Tan et al. 171 (2010) and Luan et al. (2012). Likewise, we collected another birnessite sample (labeled 172 Glasgow) from a similar passive coal mine drainage treatment site in Glasgow near Tyrone, Blair 173 Co., PA. The powder was recovered from a Metal Removal Unit (MRU) built by EcoIslands 174 LLC. The MRUs consisted of ~6 ft x 4 ft plywood boxes, with each box divided into 3 sections

175 containing coconut coir fiber (SI Fig. 2). The influent water to the MRUs was analyzed monthly,

176 with Mn concentrations from 26.4 mg/L to 39.8 mg/L. The MRUs were partially drained to

allow settling of sediment particles prior to sample collection. Mn oxide coatings were scraped

178 off the coconut coir for analysis. We recognize that these samples are produced from engineered

179 systems, but we will refer to them as natural samples for this work with the understanding that

180 the conditions are likely similar to those of natural freshwater systems that form birnessite.

Page 9

181	Another birnessite-containing sample (labeled Spring Branch) originated as a Mn oxide
182	coating on limestone cobbles from a stream in Spring Branch, TN, and this site was deemed a
183	natural environmental analog to the Pennsylvania acid mine remediation sites. In contrast, we
184	also studied a sample from Lake Vermilion in northeastern MN (kindly provided by Michael G.
185	Sommers). The sampling method and site description are detailed in Sommers et al. (2002), with
186	this particular sample described as a "reef-type stromatolite" based on its reef-like shape and
187	resemblance to biotically precipitated specimens.
188	The remaining samples were provided by the Smithsonian's Mineral Reference
189	Collection in the Department of Mineral Sciences, National Museum of Natural History. Mn
190	oxides from Paxton Cave, VA (Smithsonian Institution NMNH #160078) were identified as
191	ranciéite in previous studies (Richmond et al. 1969). Ranciéite is a Ca-rich member of the
192	birnessite family with hexagonal symmetry (Post et al. 2008). Ranciéite from Spain originated in
193	an abandoned open pit Fe/Mn mine near Trevelez, Las Alpujaras, Granada, Spain. Finally, the
194	one ranciéite sample that might have formed at slightly elevated temperatures (Smithsonian
195	Institution NMNH #128319) was collected from a hydrothermal vein in the French Pyrenees.
196	
197	X-ray diffraction (XRD)

198 All samples were lightly ground in an agate mortar under acetone to disaggregate clumps. 199 For XRD analysis, ~2 mg of sample were mounted on glass fibers and data were collected using 200 a Rigaku D/MAX-RAPID microdiffractometer with an imaging plate detector (Smithsonian 201 Institution, Mineral Sciences Department) and a Mo tube source ($\lambda = 0.71069$ Å). Samples were 202 rotated 360° around the *phi* axis at 1° s⁻¹ during data collection with a 10 min exposure time. 203 XRD data were analyzed using JADE 2010 (Materials Data, Inc.).

Page 10

205	Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS)
206	A FEI Nova NanoSEM 600 (Department of Mineral Sciences, Smithsonian Institution)
207	operating at an accelerating voltage of 15 keV and a beam current of 1 to 2 nA, and equipped
208	with a ThermoFisher energy dispersive X-ray detector (EDS), was used for elemental analyses of
209	the birnessite samples. The data were processed using the Noran System Six 3 (NSS 3) software.
210	Samples were initially prepared by putting carbon tape on top of an aluminum stub, and placing
211	the sample onto the tape for chemical analysis and imaging. Additional samples were also
212	prepared as polished sections using cold-set epoxy to avoid heating. Samples were not C coated,
213	and the EDS data were collected using the low-vacuum mode for chemical analysis.
214	
215	Electron probe microanalysis (EPMA)
216	The polished sections of samples used for SEM/EDS were carbon coated for analysis on
217	an electron probe microanalyzer. A JEOL 8900 electron probe microanalyzer (Department of
218	Mineral Sciences, Smithsonian Institution) was used to determine chemical compositions. The
219	instrument was equipped with five wavelength-dispersive spectrometers (WDS), and was
220	operated at 15 kV accelerating voltage and 20 nA beam current. Electron probe point analyses
221	were collected for 15 elements using a 10 x 12 μ m beam.
222	Chemical formulae for all birnessite samples are reported in Table 1. Note that for all
223	samples, EPMA measurements were complicated by the porous nature and lack of smooth, flat
224	surfaces due to small particle sizes and the flaky nature of the materials, making surface
225	polishing difficult during sample preparation. Consequently, weight percents often totaled to
226	~60%, although the low totals in part resulted from uncertainties of Mn oxidation states (and

227	calculation of oxide weight composition), and the presence of significant amounts of water in the
228	birnessite structures (H ₂ O and OH). In general, the calculations of chemical formulas assumed
229	that all Mn had a valence of 4+, except for those samples that were analyzed by X-ray
230	photoelectron spectroscopy, which provided additional information regarding Mn oxidation
231	states.
232	
233	Fourier transform infrared spectroscopy (FTIR)
234	Samples were disaggregated under acetone in a mortar and pestle and sieved through a
235	325 mesh sieve. Then, 0.5 to 1 mg of Mn oxide sample was milled with \sim 250 mg KBr using a
236	SPECAC ball mixing mill for 1-2 min, and pressed into a pellet. Transmission vibrational
237	spectra were collected on a Nicolet 6700 Analytical FTIR Spectrometer for a range of 400 to
238	4000 cm ⁻¹ . The resolution was set at 3.86 cm ⁻¹ and 64 scans were co-added for each spectrum.
239	The Omnic 8 software (Nicolet) was used to view data during data collection.
240	
241	X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS)
242	For X-ray absorption spectroscopy, samples were ground under acetone in a mortar and
243	pestle, and sieved into a thin layer with a 425 or 500 mesh sieve onto Kapton® (polyimide) tape.
244	The Kapton tape was then folded to seal in the sample. Manganese K-edge XAS spectra were
245	collected using a synchrotron source at Beamline 12-BM of the Advanced Photon Source (APS),
246	Argonne National Laboratory using a Si(111) double-crystal, fixed exit monochromator and a
247	double mirror system (flat plus torroidal) with an energy cutoff of 23 keV. The pre-edge peak of
248	a Mn foil was used for energy calibration (6539 eV). Fluorescence data were collected with a 13-
249	element Ge detector with a Cr fluorescence Z-1 filter in front of the Ge detector to reduce the

250	contribution from elastic scattering. Three to six scans were collected per sample at room
251	temperature from -200 eV to about +800 eV around the Mn K-edge (6539 keV). During data
252	collection, the peak positions and line forms in the near edge region (XANES) were examined to
253	check for photochemical reduction with successive scans, and no changes were observed.
254	Data analyses of spectra were conducted using the ATHENA software (Ravel &
255	Newville 2005). XAS spectra were calibrated using a Mn foil, averaged, background-subtracted,
256	normalized, and deglitched if outlier points were present. Analysis of the Mn K-edge EXAFS
257	region was used for identification and phase fraction quantification of samples (Webb et al.
258	2005a, 2005b; Villalobos et al. 2006; Saratovsky et al. 2009; Feng et al. 2010). The $\chi(k)$ spectra
259	were converted to k (Å ⁻¹) (Sayers & Bunkers, 1988). The resulting data were k^2 -weighted and
260	analyzed using the <i>k</i> -range from 2.3 to 11.3 Å^{-1} .
261	Following previously reported practices, linear combination fitting (LCF) of the $\chi(k)$
262	spectra collected for natural phyllomanganates (or birnessite-like phases) yielded phase fractions
263	of Mn oxides. The following standards were used to fit the EXAFS data: todorokite from South
264	Africa (Smithsonian Insitution #NMNH R15434), romanechite from Van Horne, TX
265	(Smithsonian Insitution #NMNH 97618), lithiophorite from South Africa (Smithsonian Insitution
266	#NMNH 162391), cryptomelane from India (Smithsonian Insitution #NMNH 89104),
267	chalcophanite from Sterling, NJ (Smithsonian Insitution #NMNH C1814), manganosite from
268	Franklin, New Jersey (Smithsonian Insitution #NMNH #C6088), manganite from Germany
269	(Smithsonian Insitution #NMNH 157872), manganese carbonate (Sigma-Aldrich), pyrolusite
270	from Rossbach, Germany (Smithsonian Insitution #NMNH B6724), synthetic triclinic Na-
271	birnessite, and synthetic pH 2 hexagonal birnessite. All weights were set between 0 and 1, and
272	all combinations were fit with at most 3 standards. Principal component analysis (PCA) was

Page 13

273	used to determine the number of components representing the entire data set (Manceau et al.
274	2002) with results shown in SI Table 1. Target transformations were used to evaluate the fitness
275	of each reference sample to the data set. LCF of the X-ray absorption near-edge structure
276	(XANES) region were also performed to determine the Mn oxidation states of samples using
277	manganese carbonate, manganite, and pyrolusite standards.
278	In a separate analysis, to determine a sample's resemblance to synthetic triclinic and/or
279	synthetic hexagonal birnessite, only synthetic triclinic Na-birnessite and synthetic pH 2
280	hexagonal birnessite were used in the LCF. Todorokite was included as a third phase in the
281	analysis only if XRD indicated that it was present. Weights of standards were not forced to sum
282	to 1.
283	
284	X-ray photoelectron spectroscopy (XPS)
285	For XPS analysis, data collection and fitting procedures were followed as reported by
286	Ilton et al. (2016). Powder samples were mounted on strips of conductive copper tape affixed to
287	copper stubs and then pressed with clean borosilicate glass blocks onto copper stubs.
288	Measurements were conducted with a Kratos Axis Ultra DLD spectrometer with an Al $K\alpha$ X-ray
289	source (1486.7 eV) operating at 10 mA and 15 kV. Magnetic immersion lenses were used to
290	improve collection efficiency. The instrument work function was calibrated to give a binding
291	energy (BE) of 83.96 eV \pm 0.05 eV for the $4f_{7/2}$ line of metallic gold. The spectrometer
292	dispersion was adjusted to yield a BE of 932.62 eV for the $Cu2p_{3/2}$ line of metallic copper.
293	Measurements of the Mn2p, Mn3s, Mn3p, O1s, C1s, and various alkali and alkaline Earth lines
204	

295 (PE) of 20 or 40 eV. The resultant full-width-at-half-maximums (FWHM) for the Ag $3d_{5/2}$ line

296	were 0.54 and 0.77 eV, respectively. The low sensitivity of the Mn3s line resulted in
297	measurements only with $PE = 40 \text{ eV}$. Survey scans were conducted at $PE = 160 \text{ eV}$ and step size
298	= 0.5 eV. XPS spectra were fit by non-linear least squares after Shirley background subtractions
299	with the CasaXPS curve resolution software package. Gaussian/Lorentzian contributions to line
300	shapes were numerically convoluted with a Voigt function.
301	
302	RESULTS AND DISCUSSION
303	Comparison of natural birnessites to "δ-MnO ₂ "
304	We sought to determine whether the extreme turbostratic disorder observed in lab
305	biomineralizations of MnO ₂ was characteristic of birnessites in terrestrial, freshwater systems.
306	Villalobos et al. (2003) analyzed Mn oxides precipitated by cultures of the bacterium
307	Pseudomonas putida strain MnB1 as an analog for birnessite-like phases produced biogenically
308	in soils and fresh water environments. These experiments consistently yielded vernadite-like
309	nanoparticles. Vernadite is a birnessite-like phase that is either disordered in the layer stacking
310	direction, or consists of crystallites with so few MnO ₆ layers that powder XRD patterns show no
311	basal reflections (Bricker 1965; Giovanoli & Arrhenius 1988). The term "δ-MnO ₂ ", often used to
312	distinguish birnessite from other MnO ₂ polymorphs, typically is used more restrictively in the
313	environmental geochemistry literature to denote a poorly crystalline biogenic vernadite.
314	The laboratory-produced biogenic birnessites generated diffuse X-ray diffraction patterns
315	with weak or absent 001 and 002 reflections, suggesting to those authors that the nanoparticles
316	contained only a few randomly stacked sheets per particle like vernadite. For comparison, we
317	examined our samples first using conventional (Mo K_{α}) X-ray diffraction. In a striking
318	difference from lab-cultured δ -MnO ₂ , all eleven XRD patterns of the natural samples exhibited

Page 15

319	prominent 10 Å or 7 Å basal reflections (Fig. 2, 4). Whereas some patterns seemed to match that
320	of hexagonal ranciéite, others were less interpretable "3-line" birnessite varieties. The natural
321	ranciéite-like samples included specimens from Paxton Cave, VA, Granada, Spain, and the
322	French Pyrenees (Fig. 2). SEM images of specimens from France and Spain showed flake-like
323	crystals that measured ~100 μ m in diameter but were only tens of nanometers thick (Fig. 3). The
324	Paxton Cave sample, on the other hand, appeared as fluffy orbicules of birnessite mixed with
325	diatoms (Fig. 3b). EPMA analyses revealed that Ca was the dominant interlayer cation in all
326	three of these samples, although a host of other metals, including Mg, Fe, Zn, Al, Ba, K, Na and
327	possibly Si, also were observed in various samples above trace concentrations (Table 1). As the
328	natural birnessite samples sometimes were intergrown with aluminum silicate, assumed to be
329	kaolinite, Al and Si may have originated from aluminosilicate clays that fell below the EPMA
330	imaging resolution.
331	The diffraction patterns for the remaining natural samples showed 3 broad, relatively

332 asymmetric peaks in their XRD patterns (so-called "3-line birnessite") with d-spacings of ~7.2 Å, ~2.4 Å, and ~1.4 Å (Fig. 4). The XRD patterns for the sample from Spring Branch, TN and 333 three from central Pennsylvania (DS1-M3f, DS2-M3f, and PBS-M2f-2) exhibited a 10 Å basal d-334 335 spacing, indicating buserite-like structures (SI Fig. 4); these were dried at 110°C to collapse the layer spacing to 7 Å to confirm that they were layer phases (and not todorokite) and to allow a 336 337 more direct comparison with other natural 7 Å phases. Interestingly, one of the central 338 Pennsylvanian samples (PBS-M2f-1) that exhibited a 10 Å d-spacing failed to collapse completely upon heating. However, linear combination fitting of EXAFS did not identify any 339 todorokite in this sample that might produce the 10 Å spacing observed by XRD. Ca^{2+} , Mg^{2+} , 340 Ni^{2+} , and Co^{2+} cations have been observed to stabilize the buserite structure, and both Ca^{2+} and 341

Revision 1

Page 16

- Mg²⁺ were detected by EPMA in these samples (Table 1). It still is unclear why some buserites fully collapse upon heat treatment at 110° C, while others do not.
- In SEM images, the "3-line" birnessite samples consisted typically of flake-like crystals that measured <10 μ m across, somewhat similar to the crystal habits observed in the Paxton Cave sample, but commonly the "3-line" birnessites were agglomerated into fluffy spherules measuring ~10 to ~20 μ m in diameter (Fig. 5a – 5c). Diatoms were commonly observed associated with the "3-line" birnessite spherules, but any role that the diatoms may have played in the precipitation of the Mn oxide phases is not clear. Additional SEM images of the natural birnessites are presented in SI Fig. 5.
- 351 As all of the natural "3-line" birnessite samples shown in Fig. 5 were associated with 352 limestone/dolomite-lined streambeds or Fe/Mn treatment systems, with the exception of the 353 sample from Lake Vermilion, it is not surprising that the major cations detected by EPMA 354 analyses included Ca, Mg, and Fe (Table 1). The Al and Si, as mentioned above, were likely 355 associated with aluminosilicate clays intergrown with the Mn oxides, as shown in Fig. 5c and 5e. 356 In the lake nodule from Vermilion, MN, Ba was the dominant cation after Mn (Table 1). We 357 presume that Ba, Ca and Mg are located in the interlayer, based on numerous birnessite synthesis 358 and exchange studies (Golden et al. 1987; Post & Veblen 1990; Lopano et al. 2007). Additional 359 presumed interlayer cations detected in various natural "3-line" birnessite specimens included 360 Zn, K, and Na. Some analyses also detected Cu, which likely substitutes into the octahedral 361 sheets (e.g., Manceau et al. 1992).
- 362

363 Local structure of "3-line" birnessites using EXAFS

364	Although XRD analysis confirmed that the "3-line" Mn oxide samples were members of
365	the birnessite family, the limited number of peaks in these patterns and peak asymmetry indicate
366	a degree of structural disorder that cannot be modeled by routine Rietveld analysis methods.
367	Consequently, XRD alone could not definitively distinguish these samples as triclinic or
368	hexagonal, or some mixture of the two. Previous researchers have employed linear combination
369	fitting (LCF) of EXAFS spectra, which are sensitive to local structure, as one strategy to
370	characterize poorly crystalline birnessite-like samples (Tan et al. 2010; Learman et al. 2011,
371	2013; Santelli et al. 2011; Zhao et al. 2016).
372	Previous studies have concluded that in $\chi(k)$ plots generated from EXAFS data, a single,
373	sharp antinode at ~8.2 \AA^{-1} is indicative of hexagonal birnessite whereas a positive double
374	antinode at ~8.0 Å ⁻¹ is indicative of triclinic birnessite (Webb et al. 2005a). These features are
375	clearly visible in the EXAFS data for our synthetic hexagonal H-birnessite and triclinic Na-
376	birnessite (Fig. 6). Among our "3-line" birnessite samples, analysis of the $\chi(k)$ plots at 8.2 Å ⁻¹
377	suggests that most samples have features that lie between those of the triclinic and hexagonal
378	birnessite end-members, as is consistent with the analyses of birnessites associated with acid-
379	mine treatment sites described in Tan et al. (2010) (Fig. 6). The laboratory cultured fungal
380	produced specimen (labeled Stag50Ca1.5Mn) exhibited the sharpest distinct peak at ~8.2 Å ⁻¹ ,
381	suggesting that its structure is close to that of hexagonal birnessite. On the other hand, the
382	samples from Spring Branch, TN and from a central Pennsylvania treatment site (PBS-M2f-2)
383	displayed a double antinode at ~8.2 Å ⁻¹ suggesting that they consist primarily of triclinic
384	birnessite phases (Fig. 6). Although the double antinodes in the "3-line" birnessite samples were
385	not as obvious as those in synthetic triclinic Na-birnessite, the overall features at 8.2 Å^{-1} in these
386	samples contrast to the single, well-defined peak from synthetic hexagonal H-birnessite.

387	Other features in the $\chi(k)$ spectra also can be suggestive of either triclinic or hexagonal
388	character. As the apparent "hexagonality" of a sample increases, the match for the shapes and
389	intensities of the peaks at ~7.0 and at ~9.3 Å ⁻¹ in the $\chi(k)$ plots improved relative to those
390	observed for the synthetic hexagonal H-birnessite (Fig. 6). By contrast, the shapes and
391	intensities for the ~7.0 Å ⁻¹ and ~9.3 Å ⁻¹ peaks for natural samples with a highly triclinic
392	character matched better for those in the $\chi(k)$ spectrum of synthetic triclinic birnessite than for
393	the hexagonal H-birnessite.
394	According to McKeown and Post (2001), the 6.8, 8.0, and 9.3 Å ⁻¹ peaks in the $\chi(k)$ plots
395	are sharper and have higher amplitudes for layer structures like birnessite than for tunnel
396	structures like todorokite. The dampening of these peaks in todorokite is attributed to the 4
397	symmetrically distinct Mn sites in todorokite, giving rise to slightly different local environments
398	for Mn, in contrast to the single symmetrically distinct Mn site in ideal hexagonal birnessite.
399	Modeling by Webb et al. (2005a) showed that the double antinode at ~8.0 Å ⁻¹ in triclinic
400	birnessites is a consequence of out-of-plane bending in the Mn octahedral sheet. We extend the
401	above interpretations to our data to suggest that peak dampening and shifts toward higher
402	wavenumbers, especially for the 6.8 and 9.3 \AA^{-1} peaks, can be attributed to Jahn-Teller
403	distortions associated with increased Mn ³⁺ concentrations, and thus increasing triclinicity in
404	birnessite (Ling et al. 2018).
405	Overall, the total radial distribution functions (RDFs) of "3-line" birnessite samples
406	matched those generated from the synthetic hexagonal and triclinic birnessites to varying degrees
407	(Fig. 7). The RDFs generated for the Spring Branch, TN and central Pennsylvanian DS2-M3f
408	samples matched that of triclinic Na-birnessite over the range of 4 to 5 Å. Likewise, the RDFs
409	produced by the fungal Stag50Ca1.5Mn and the central Pennsylvanian DS1-M3f and Glasgow

Page 19

samples matched those for synthetic hexagonal birnessite reasonably well in the range 4.3 to 5.7
Å. Other regions of the RDFs yielded noticeable differences between the "3-line" birnessites and
the synthetic triclinic or hexagonal birnessites.

413

414 LCF analysis of EXAFS spectra for natural birnessites

415 One aim of the present study was to determine whether the natural birnessites associated 416 with freshwater, terrestrial systems could be identified as having either hexagonal or triclinic 417 symmetry, since birnessite reactivity is so strongly correlated with crystal chemistry and 418 structure. The EXAFS spectra generated by the natural birnessite samples analyzed in this study 419 were similar overall to those from the synthetic hexagonal and triclinic birnessite standards when 420 analyzed with the subset of references determined from target transformations. As mentioned 421 above, it has also been a common practice to apply linear combination fitting (LCF) methods 422 using Mn oxide standards to determine the relative amounts of triclinic and hexagonal 423 constituents in birnessite samples. Therefore, we applied LCF analysis to the EXAFS spectra 424 generated by the three samples that our XRD patterns indicated are hexagonal ranciéite-like 425 phases - the samples from France, Spain, and Paxton Cave, VA. Because minor amounts of 426 todorokite were identified with XRD in addition to the ranciéite-like phase in these samples, 427 LCF was conducted with 3 standards: todorokite, synthetic triclinic Na-birnessite, and synthetic 428 pH 2 hexagonal birnessite. The ranciéite samples were not included as a standard due to 429 todorokite impurities as indicated by XRD. 430 To our surprise, LCF analyses for these specimens yielded significant fractions of

431 triclinic birnessite in these hexagonal samples, ranging from 15±4 vol% (Paxton Cave, VA) to

432 19±5 vol% (France Pyrenees) triclinic birnessite (Table 2). As the XRD patterns for these three

Page 20

433 samples can be well fit using only a single hexagonal birnessite structure with Rietveld 434 refinement (Post et al. 2008), the LCF result might be explained in several ways. One 435 interpretation is that the Rietveld refinements did not detect an existing minor triclinic phase. 436 Although possible, our refinements routinely reveal even 5-10% triclinic birnessite in standard 437 hexagonal/triclinic mixtures. Alternatively, the natural samples might contain triclinic birnessite 438 intergrowths at a length scale that falls below the correlation distance of X-ray diffraction, on the 439 order of 10 unit cells, or \sim 7 nm along the c axis direction. We are skeptical of this interpretation 440 based on our XPS analyses of some of these same samples (Ilton et al. 2016). For example, XPS results for the ranciéite from Paxton Cave, VA yielded a higher fraction of Mn⁴⁺ (91 mol%) and 441 no Mn^{3+} (0 mol%), less than even our hexagonal H-birnessite standard. As the Jahn-Teller 442 distortions associated with Mn^{3+} drive the departure from hexagonal symmetry (Silvester et al. 443 1997; Drits et al. 1997), it seems unreasonable that a birnessite specimen with little or no Mn^{3+} 444 445 would exhibit significant triclinic character. 446 Perhaps the most likely explanation for the discrepancies observed between powder X-

ray diffraction and LCF analysis of EXAFS data arise from the use of standard birnessite end-447 448 members in the linear combination fitting, neither of which matches the compositions, or precise 449 structures, of possible phases making up the natural samples. Synthetic H-birnessite is different 450 from ranciéite, and presumably from the other natural samples studied here. In natural ranciéite, 451 Ca is the dominant inter-layer cation, as was seen in the Paxton Cave and our other natural samples, whereas the interlayer cations for H-birnessite are Mn^{2+} (and perhaps Mn^{3+}) and 452 possibly H^+ . The interlayer cation in our standard triclinic birnessite is Na^+ , which again is 453 454 different than for any of our natural samples. Additionally, XPS data given here and in previous 455 studies (Ilton et al. 2016) reveal a range of Mn oxidation state profiles for synthetic and natural

456	phyllomanganates, even for nominally hexagonal birnessite-like phases, and even when the
457	average Mn oxidation states are similar. Variations of Mn^{4+}/Mn^{3+} values will affect the unit-cell
458	and other parameters of the birnessite structure, and if those ratios are different for standard
459	phases than for the samples being characterized, errors will accompany the LCF analyses. We
460	attempted to synthesize hexagonal Ca-birnessite that is similar to ranciéite to explore its use as
461	an endmember for LCF analysis, but our efforts have not been successful. We propose that the
462	disparities in the EXAFS spectra of synthetic H-birnessite and natural Ca-rich hexagonal
463	birnessites are compensated in the LCF procedure through the incorporation of triclinic Na-
464	birnessite.
465	Moreover, we also question the use of synthetic triclinic Na-birnessite as an analog for
466	most natural birnessites from freshwater environments. Ling et al. (2018) showed that synthetic
467	birnessites with different interlayer cations have structural characteristics that fall between those
468	of hexagonal H-birnessite and triclinic Na-birnessite. For example, the powder X-ray diffraction
469	pattern for a synthetic triclinic Ca-birnessite was best fit, using Rietveld methods, with a mixture
470	of 59.4 vol% hexagonal and 40.6 vol% triclinic birnessite. In natural non-marine birnessite
471	samples that can have several different interlayer cations, is it appropriate to use synthetic
472	triclinic Na-birnessite (or K-birnessite) as one endmember of an LCF analysis, especially when
473	the natural sample contains little or no Na? Although Na was the dominant interlayer cation in
474	the type birnessite from Birness, Scotland (Jones and Milne 1956), EPMA of our natural samples
475	indicated that Na, although sometimes present, was never the dominant cation (Table 1). The
476	complexity of natural birnessite-like Mn oxides suggests that LCF of EXAFS spectra using
477	synthetic endmember compositions may not accurately assess the degree of hexagonality and
478	triclinicity, particularly if the fits are done without appropriate reference mineral spectra. In

479	addition, LCF analysis does not differentiate a mixture of hexagonal and triclinic phases and a
480	single phase that is structurally intermediate between the endmember triclinic and hexagonal
481	standards. Instead of LCF analysis, full modeling of the local Mn coordination environment,
482	such as the complete models for biogenically produced Ca-birnessites and Na-birnessite (Webb
483	et al. 2005a, 2005b; John R. Bargar et al. 2009; Santelli et al. 2011; Hinkle et al. 2016), might be
484	the most accurate method of determining the specific birnessite structures of natural Mn oxide
485	minerals from XAS data.
486	
487	Distinguishing the symmetry of natural birnessites by FTIR spectroscopy
488	Although XRD readily identified some of our natural birnessites as hexagonal, it
489	provided only limited information for the "3-line" birnessites. LCF of EXAFS suggested that
490	these 3-line birnessites contained a mixture of triclinic and hexagonal birnessite, but as discussed
491	above, there are limitations to quantification of triclinic and hexagonal birnessite using LCF.
492	Ling et al. (2016) showed that Fourier transform infrared spectroscopy (FTIR) is sensitive to
493	differences between synthetic triclinic and hexagonal birnessite, particularly within the 400 to
494	750 cm ⁻¹ Mn-O bond stretching region. Like EXAFS and unlike XRD, FTIR probes short-range
495	atomic interactions, and it may provide a more accurate characterization of mixtures of triclinic
496	and hexagonal birnessite in synthetic samples than LCF of EXAFS.
497	Our FTIR analyses of the ranciéite-like natural samples confirmed their structures as
498	purely hexagonal birnessites, in agreement with our XRD and XPS results. As with synthetic
499	hexagonal H-birnessite, the FTIR spectra produced by the specimens from France, Spain, and
500	Paxton Cave, VA exhibited two distinct peaks at ~426 cm ⁻¹ and ~493 cm ⁻¹ (Fig. 11, Table 3),
501	and peaks were sharper for the natural hexagonal birnessites from Spain and France than for the

502	synthetic H-birnessite standard. The sample from Paxton Cave, VA yielded broad peaks due to
503	an additional weak peak at 456 cm ⁻¹ , which likely represented an Si-O band from inclusions of
504	diatoms and/or quartz. The full FTIR spectra for all natural samples can be found in SI Fig. 6.
505	The FTIR provided insights into the "3-line birnessites" that could not be clearly
506	identified as triclinic or hexagonal using XRD. Samples from Spring Branch, TN and from
507	central Pennsylvania (PBS-M2f-1, PBS-M2f-2, and DS2-M3f) exhibited three distinct peaks that
508	clearly resembled those associated with synthetic triclinic Na-birnessite: at ~431, ~472, and ~510
509	cm ⁻¹ (Fig. 12, Table 3). However, the natural sample peaks were broader, perhaps because of
510	poor crystallinity, or the presence of some hexagonal birnessite, or both. These samples initially
511	were all buserites. After dehydration at 110°C, the FTIR spectra remained unchanged in the 400
512	to 750 cm ⁻¹ range (Fig. 13), despite evidence by XRD of structural collapse, with the exception
513	of PBS-M2f-1, which did not fully collapse (SI Fig. 7). The central Pennsylvanian DS1-M3f
514	sample, also a buserite, somewhat resembled triclinic birnessite initially in the FTIR spectra with
515	broad peaks at 431, 468, and 498 cm ⁻¹ , but appeared more hexagonal after dehydration, perhaps
516	from the broadening related to increased structural disorder, and merging, of the peaks at 431
517	and 468 cm ⁻¹ (Fig. 13). A birnessite sample from a different remediation site in Pennsylvania,
518	labeled as Glasgow, and the fungally precipitated synthetic sample, labeled as Stag50Ca1.5Mn,
519	yielded peaks at ~447 and ~496 cm ⁻¹ that closely resembled those of synthetic hexagonal H-
520	birnessite (Fig. 12, Table 3). The FTIR spectra in Fig. 12 are ordered according to their general
521	resemblance to synthetic triclinic (top) or synthetic hexagonal birnessite (bottom).
522	Although FTIR was able to differentiate the overall hexagonal and triclinic character of
523	natural birnessites with greater clarity than did LCFs of EXAFS, the broad peaks challenged our
524	efforts at quantification. Even recognizing the limitations, however, it is possible that the

525	fractions of triclinic and hexagonal birnessite determined from LCF of EXAFS spectra (Table 2)
526	might provide some insights for better interpreting the FTIR spectra. If we order the FTIR
527	spectra for the "3-line" birnessites based on the degree of hexagonal character as suggested by
528	our LCF analyses of the EXAFS spectra, we observe consistent shifts in the peak positions,
529	particularly for peak 3 (Fig. 14, Table 3). Peak 3 (Fig. 14) shifts from 514 to 496 cm ⁻¹ as the
530	amount of hexagonal character in the sample increases. However, we note that in general, LCF
531	analysis of the FTIR spectra confronts the same limitations as does LCF analysis of EXAFS
532	data: using synthetic triclinic Na-birnessite and synthetic hexagonal H-birnessite for the spectral
533	unmixing of FTIR peaks, as described for synthetic samples by Ling et al. (2016), is
534	inappropriate for natural samples.
535	
536	Relationship between Mn oxidation state and crystal structure of natural birnessites
537	XPS was applied to a subset of the natural samples examined in the present study in order
538	to determine Mn oxidation states (Ilton et al. 2016), and a direct correlation between Mn^{3+}
539	concentration and the fraction of triclinic birnessite, as ascertained from EXAFS and FTIR, was
540	observed. For example, XPS analysis of the natural birnessite from Spring Branch, TN yielded
541	37 mol% Mn^{3+} (Fig. 10), comparable to our synthetic triclinic Na-birnessite (with 38 mol%)
542	Mn ³⁺). Both EXAFS and FTIR analyses indicated a high degree of triclinicity for this sample
543	(Fig. 6, 12). At the opposite end of the spectrum, XPS analysis of the central Pennsylvanian
544	Glasgow sample yielded only 23 mol% Mn ³⁺ , within error of the value for our synthetic
545	hexagonal H-birnessite (with 22 mol% Mn^{3+}). As previously noted, the sample from Paxton
546	Cave, VA contained the lowest concentration of Mn ³⁺ of any samples that we analyzed by XPS
547	(0 mol% Mn ³⁺), and the XRD (Fig. 2) and FTIR (Fig. 11) analyses indicated that this sample is

548	purely hexagonal. In fact, the Mn-O stretching vibrations for the Paxton Cave, VA sample as
549	revealed by the FTIR data were shifted to even lower wavenumbers than was observed in
550	synthetic hexagonal H-birnessite. Whereas our synthetic hexagonal H-birnessite standard
551	yielded IR peaks at 447 and 496 cm ⁻¹ , the Paxton Cave, VA sample exhibited corresponding
552	vibrations at 426 and 492 cm ⁻¹ (Fig. 11, Table 3).
553	These results are consistent with our conclusions in a study of cation-exchanged synthetic
554	birnessites (Ling et al. 2018) that FTIR peak positions may provide an estimate for Mn oxidation
555	state ratios. By contrast, LCF analyses of EXAFS spectra seem less reliable than FTIR, given
556	that the "very triclinic" Spring Branch, TN sample (37 mol% Mn ³⁺) was fitted as 56 vol%
557	triclinic Na-birnessite and 44 vol% hexagonal H-birnessite, and the "very hexagonal" Glasgow
558	sample (22 mol% Mn^{3+}) was fitted as 24 vol% triclinic Na-birnessite and 78 vol% hexagonal H-
559	birnessite. For samples that contained >57 vol% hexagonal H-birnessite, when fitting all
560	possible combinations with LCF and limiting the fit to 2 standards, best results were achieved
561	when either chalcophanite or cryptomelane were included. However, XRD showed no indication
562	of cryptomelane and chalcophanite. The inclusion of chalcophanite was likely due to its
563	structural resemblance to hexagonal birnessite as a layered Mn oxide, but with all Mn^{4+} in the
564	octahedral sheet and Zn^{2+} ions in the interlayer.
565	Analyses of the XANES region using LCF yielded Mn oxidation state ratios comparable
566	to XPS values within $\pm 5\%$ (SI Table 2), with the exception of the Spring Branch sample that
567	yielded values within $\pm 17\%$. The high Mn ³⁺ content of the Spring Branch sample relative to the
568	other birnessites may have led to the differences in oxidation state values between the two

- techniques. Likewise, Chalmin et al. (2009) and Manceau et al. (2012) report difficulties in
- 570 determining Mn oxidation state ratios through basic LCF of the XANES region of XAS data for

Page 26

571 mixed-valence Mn oxides with more than 2 Mn oxidation states present. Furthermore, LCF of 572 this region is highly dependent on the selection of reference standards. For example, the use of a natural manganosite as the reference for Mn^{2+} as opposed to the synthetic manganese carbonate 573 574 yielded values within $\pm 25\%$ of the XPS values. If we plot the peak positions in the 400 to 750 cm⁻¹ range for the samples in which we 575 576 have XPS data in the same manner as for Fig. 14, we find that as Peak 3 shifts from 496 to 514 cm^{-1} , Mn^{3+}/Mn_{total} also increases, yielding a linear fit with an R^2 value of 0.82 (Fig. 15). The 577 relationship between the fraction of Mn^{3+} and the position of Peak 3 can be described as: 578 579 $P_3 = 56.8 X_{Mn^{3+}} + 488.8$ (1)where P_3 is the Peak 3 position in the FTIR spectra and $X_{Mn^{3+}}$ is the molar fraction of Mn³⁺ 580 (Mn^{3+}/Mn_{total}) 581 582 583 Structural differences in birnessite samples with similar formation environments 584 One of the most surprising conclusions of the present study is that birnessite minerals that 585 formed in ostensibly very similar environments can exhibit dramatically different crystal 586 chemistries. We included several samples from mine remediation sites having analogous designs 587 in central Pennsylvania. The samples labeled as Glasgow, DS1-M3f, DS2-M3f, PBS-M2f-1, and 588 PBS-M2f-2 all formed at ambient temperatures in run-off waters from Appalachian coal wastes that were enriched in Mn²⁺ (Tan et al. 2010; Santelli et al. 2011; Luan et al. 2012). As a result of 589 acid neutralization by limestone cobbles in the passive treatment systems, dissolved Mn^{2+} was 590 591 likely oxidized by a combination of microbiological activity and surface-catalyzed heterogeneous oxidation on Mn^{3+,4+} oxide surfaces (Davies & Morgan 1989; Junta & Hochella 592 593 1994).

594	When examined by SEM, these precipitates all appeared as flakey spherules measuring
595	$<10 \ \mu m$ in diameter (Fig. 5), and XRD of all these samples yielded "3-line" birnessite patterns.
596	Thus, by many of the techniques conventionally used to characterize minerals in the
597	environment, these samples were indistinguishable. When XPS, EXAFS and FTIR were all
598	applied to these birnessite-like precipitates, however, variations in Mn oxidation state ratios and
599	in degree of triclinic and hexagonal character emerged without ambiguity. These samples
600	displayed a range of structures from highly triclinic (DS2-M3f) to hexagonal (Glasgow), with
601	other samples from the same sites falling in between (Fig. 12). We infer that subtle differences
602	in solution chemistry, organic activity, and temperature can affect the Mn oxidation state and the
603	variety of birnessite that forms.
604	
605	IMPLICATIONS
606	In this largest study of nonmarine birnessites to date, we observed a variety of birnessites
607	that differed with respect to crystallographic phase, particle size, interlayer cations, and Mn
608	oxidation state ratios. Both triclinic and hexagonal varieties were detected in these natural
609	samples, although it is unclear whether the varieties grew as interlayered endmembers or whether
610	the mixed composites exhibited structures that are intermediate between the endmembers.
611	Our previous study used FTIR to differentiate between various synthetic analogues of
612	birnessite (Ling et al. 2018), and here we demonstrated that FTIR can successfully yield
613	information concerning natural birnessites. The insights provided by FTIR are even more robust
614	when combined with XPS, which allows for the complementary determination of Mn oxidation
615	state ratios, and chemical analyses. The observed correlation between the XPS and FTIR
616	analyses of natural samples reveals that FTIR data can be used to determine Mn ³⁺ content. Our

Page 28

617 results support the observations of Tan et al. (2010) that triclinic birnessite is abundant in natural618 samples.

619

620

ACKNOWLEDGMENTS

621 Funding for this work was provided by NSF Grant EAR-1147728 and EAR-1552211 and 622 the Committee on Institutional Cooperation (CIC) and Smithsonian Institution Fellowship. This 623 research also utilized samples from the Smithsonian Mineral Research Collection at the Museum 624 of Natural History. The FTIR laboratory at the Smithsonian Institution was established with 625 generous support from Stephen Turner. This research used resources of the Advanced Photon 626 Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the 627 DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-628 06CH11357. ESI is supported by the PNNL managed Geosciences Research Program of the 629 U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical 630 Sciences, Geosciences & Biosciences. The research was performed in part using the 631 Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U.S. DOE's Office of Biological and Environmental Research and located at 632 633 Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle 634 Memorial Institute under Contract# DE-AC06-76RLO-1830. Special thanks David McKeown 635 for his help with learning XAS, to Alexandre Fowler for her contribution to data collection, to 636 Carla E. Rosenfeld for her preparation of the fungal birnessite, to Margaret A.G. Hinkle for her 637 help with LCF, and to Michael Sommers for his donation of samples from Lake Vermilion.

638	References
639	Allard, S., Gutierrez, L., Fontaine, C., Croué, J. P., & Gallard, H. (2017). Organic matter
640	interactions with natural manganese oxide and synthetic birnessite. Science of the Total
641	Environment, 583, 487-495. https://doi.org/10.1016/j.scitotenv.2017.01.120
642	Bargar, J.R., Tebo, B. M., Bergman, U., Webb, S. M., Glatzel, P., Chiu, V. Q., & Villalobos, M.
643	(2005). Biotic and abiotic products of Mn(II) oxidation by spores of the marine Bacillus sp.
644	strain SG-1. American Mineralogist, 90, 143-154. https://doi.org/10.2138/am.2005.1557
645	Bargar, John R., Fuller, C. C., Marcus, M. A., Brearley, A. J., Perez De la Rosa, M., Webb, S.
646	M., & Caldwell, W. A. (2009). Structural characterization of terrestrial microbial Mn oxides
647	from Pinal Creek, AZ. Geochimica et Cosmochimica Acta, 73, 889–910.
648	https://doi.org/10.1016/j.gca.2008.10.036
649	Bartlett, R. J., & James, B. (1979). Behavior of Chromium in Soils: III. Oxidation. Journal of
650	Environment Quality, 8(1), 31–35.
651	https://doi.org/10.2134/jeq1976.00472425000500040010x
652	Bilinski, H., Giovanoli, R., Usui, A., & Hanzel, D. (2002). Characterization of Mn oxides in
653	cemented streambed crusts from Pinal Creek, Arizona, U.S.A., and in hot-spring deposits
654	from Yuno-Taki Falls, Hokkaido, Japan. American Mineralogist, 87, 580-591.
655	Bricker, O. (1965). Some Stability Relations in the System Mn-O2-H2O at 25° and One
656	Atmosphere Total Pressure. The American Mineralogist, 50, 1296–1354.
657	Chalmin, E., Farges, F., & Brown, G. E. (2009). A pre-edge analysis of Mn K-edge XANES
658	spectra to help determine the speciation of manganese in minerals and glasses.
659	Contributions to Mineralogy and Petrology, 157, 111-126. https://doi.org/10.1007/s00410-
660	008-0323-z

- 661 Chao, T. T., & Theobald, P. K. (1976). The significance of secondary iron and manganese oxides
- in geochemical exploration. *Economic Geology*, 71, 1560–1569.
- 663 https://doi.org/10.2113/gsecongeo.71.8.1560
- 664 Davies, S. H. R., & Morgan, J. J. (1989). Manganese (II) Oxidation Kinetics on Metal Oxide
- 665 Surfaces. Journal of Colloid & Interface Science, 129(1), 63–77.
- Drits, V. A., Silvester, E., Gorshkov, A. I., & Manceau, A. (1997). Structure of synthetic
- 667 monoclinic Na-rich birnessite and hexagonal birnessite: II. Results from chemical studies
- and EXAFS spectroscopy. *American Mineralogist*, 82(9–10), 962–978.
- 669 Fandeur, D., Juillot, F., Morin, G., Olivi, L., Cognigni, A., Webb, S. M., ... Brown, G. E. (2009).
- 670 XANES evidence for oxidation of Cr(III) to Cr(VI) by Mn-oxides in a lateritic regolith
- 671 developed on serpentinized ultramafic rocks of New Caledonia. *Environmental Science* &
- 672 *Technology*, *43*, 7384–7390. Retrieved from
- 673 http://www.ncbi.nlm.nih.gov/pubmed/19848150
- 674 Feng, X. H., Zhu, M., Ginder-Vogel, M., Ni, C., Parikh, S. J., & Sparks, D. L. (2010). Formation
- 675 of nano-crystalline todorokite from biogenic Mn oxides. *Geochimica et Cosmochimica*
- 676 *Acta*, 74, 3232–3245. https://doi.org/10.1016/j.gca.2010.03.005
- 677 Fleeger, C. R., Heaney, P. J., & Post, J. E. (2013). A time-resolved X-ray diffraction study of Cs
- 678 exchange into hexagonal H-birnessite. *American Mineralogist*, 98, 671–679.
- 679 Frierdich, A. J., Hasenmueller, E. a., & Catalano, J. G. (2011). Composition and structure of
- 680 nanocrystalline Fe and Mn oxide cave deposits: Implications for trace element mobility in
- 681 karst systems. *Chemical Geology*, 284(1–2), 82–96.
- 682 https://doi.org/10.1016/j.chemgeo.2011.02.009
- 683 Giovanoli, R., & Arrhenius, G. (1988). The Manganese Nodule Belt of the Pacific Ocean. (P.

Revision 1

- Halbach, G. Friedrich, & U. von Stackelberg, Eds.).
- 685 Golden, D. C., Chen, C. C., & Dixon, J. B. (1986). Synthesis of todorokite. Science (New York,
- 686 *N.Y.*), *231*(4739), 717–719. https://doi.org/10.1126/science.231.4739.717
- 687 Golden, D. C., Chen, C. C., & Dixon, J. B. (1987). Transformation of birnessite to buserite,
- todorokite, and manganite under mild hydrothermal treatment. *Clays and Clay Minerals*,
- 689 *35*(4), 271–280.
- Hansel, C. M., Zeiner, C. A., Santelli, C. M., & Webb, S. M. (2012). Mn(II) oxidation by an
- ascomycete fungus is linked to superoxide production during asexual reproduction.
- 692 Proceedings of the National Academy of Sciences, 109(31), 12621–12625.
- 693 https://doi.org/10.1073/pnas.1203885109
- Hinkle, M. A. G., Flynn, E. D., & Catalano, J. G. (2016). Structural response of
- 695 phyllomanganates to wet aging and aqueous Mn(II). *Geochimica et Cosmochimica Acta*,
- 696 *192*, 220–234. https://doi.org/10.1016/j.gca.2016.07.035
- Ilton, E. S., Post, J. E., Heaney, P. J., Ling, F. T., & Kerisit, S. N. (2016). XPS determination of
- Mn oxidation states in Mn (hydr)oxides. *Applied Surface Science*, *366*, 475–485.
- 699 https://doi.org/10.1016/j.apsusc.2015.12.159
- Johnson, K., Purvis, G., Lopez-Capel, E., Peacock, C., Gray, N., Wagner, T., ... Greenwell, C.
- 701 (2015). Towards a mechanistic understanding of carbon stabilization in manganese oxides.
- 702 *Nature Communications*, (May). https://doi.org/10.1038/ncomms8628
- Junta, J. L., & Hochella Jr., M. F. (1994). Manganese (II) oxidation at mineral surfacees A
- 704 microscopic and spectroscopic study. *Geochimica et Cosmochimica Acta*, 58(22), 4985–
- 705 4999.
- Jürgensen, A., Widmeyer, J. R., Gordon, R. A., Bendell-Young, L. I., Moore, M. M., & Crozier,

707	E. D. (2004). The structure of manganese oxide on the sehath of the bacterium Leptothrix
708	discophora: An XAFS study. American Mineralogist, 89, 1110-1118.
709	Kay, J. T., Conklin, M. H., Fuller, C. C., & O'Day, P. A. (2001). Processes of nickel and cobalt
710	uptake by a manganese oxide forming sediment in Pinal Creek, Globe mining district,
711	Arizona. Environmental Science & Technology, 35(24), 4719–4725. Retrieved from
712	http://www.ncbi.nlm.nih.gov/pubmed/11775144
713	Kazakis, N., Kantiranis, N., Voudouris, K. S., Mitrakas, M., Kaprara, E., & Pavlou, a. (2015).
714	Geogenic Cr oxidation on the surface of mafic minerals and the hydrogeological conditions
715	influencing hexavalent chromium concentrations in groundwater. Science of The Total
716	Environment, 514, 224-238. https://doi.org/10.1016/j.scitotenv.2015.01.080
717	Kong, K. P., Fischer, T. B., Heaney, P. J., Post, J. E., Stubbs, J. E., & Eng, P. J. (2019).
718	Mineralogical and geochemical constraints on chromium oxidation induced by birnessite.
719	Applied Geochemistry, 108. https://doi.org/10.1016/j.apgeochem.2019.104365
720	Kwon, K. D., Refson, K., & Sposito, G. (2010). Surface complexation of Pb(II) by hexagonal
721	birnessite nanoparticles. Geochimica et Cosmochimica Acta, 74(23), 6731-6740.
722	https://doi.org/10.1016/j.gca.2010.09.002
723	Lafferty, B. J., Ginder-Vogel, M., & Sparks, D. L. (2011). Arsenite Oxidation by a Poorly-
724	Crystalline Manganese Oxide. 3. Arsenic and Manganese Desorption. Environmental
725	Science & Technology, 45, 9218-9223. https://doi.org/10.1021/es201281u
726	Learman, D.R., Wankel, S. D., Webb, S. M., Martinez, N., Madden, A. S., & Hansel, C. M.
727	(2011). Coupled biotic-abiotic Mn(II) oxidation pathway mediates the formation and

- structural evolution of biogenic Mn oxides. *Geochimica et Cosmochimica Acta*, 75, 6048–
- 729 6063. https://doi.org/10.1016/j.gca.2011.07.026

Page 33

730	Learman, Deric R	, Voelker, B	B. M., Madden,	A. S., & Hansel,	C. M. (2013)	. Constraints on
-----	------------------	--------------	----------------	------------------	--------------	------------------

- superoxide mediated formation of manganese oxides. *Frontiers in Microbiology*, *4*, 1–11.
- 732 https://doi.org/10.3389/fmicb.2013.00262
- 733 Ling, F. T., Heaney, P. J., Post, J. E., & Gao, X. (2015). Transformations from triclinic to
- hexagonal birnessite at circumneutral pH induced through pH control by common
- biological buffers. *Chemical Geology*, *416*, 1–10.
- 736 https://doi.org/10.1016/j.chemgeo.2015.10.007
- 737 Ling, F. T., Post, J. E., Heaney, P. J., & Ilton, E. S. (2018). The relationship between Mn
- 738 oxidation state and structure in triclinic and hexagonal birnessites. *Chemical Geology*,

739 *479*(January), 216–227. https://doi.org/10.1016/j.chemgeo.2018.01.011

- 740 Lopano, C. L., Heaney, P. J., & Post, J. E. (2009). Cs-exchange in birnessite: Reaction
- 741 mechanisms inferred from time-resolved X-ray diffraction and transmission electron
- 742 microscopy. American Mineralogist, 94, 816–826. https://doi.org/10.2138/am.2009.3068
- 743 Lopano, C. L., Heaney, P. J., Post, J. E., Hanson, J., & Komarneni, S. (2007). Time-resolved
- structural analysis of K- and Ba-exchange reactions with synthetic Na-birnessite using

synchrotron X-ray diffraction. *American Mineralogist*, *92*, 380–387.

- 746 https://doi.org/10.2138/am.2007.2242
- Lopano, Christina L., Heaney, P. J., Bandstra, J. Z., Post, J. E., & Brantley, S. L. (2011). Kinetic
- analysis of cation exchange in birnessite using time-resolved synchrotron X-ray diffraction.
- 749 *Geochimica et Cosmochimica Acta*, 75(14), 3973–3981.
- 750 https://doi.org/10.1016/j.gca.2011.04.021
- Luan, F., Santelli, C. M., Hansel, C. M., & Burgos, W. D. (2012). Defining manganese(II)
- removal processes in passive coal mine drainage treatment systems through laboratory

Page 34

753	incubation	experiments.	Applied	Geochemistry	, 27(8)	. 1567-1578.
			1100000		$\gamma = \gamma (\nabla)$, 1007 1070

754 https://doi.org/10.1016/j.apgeochem.2012.03.010

755 Manceau, A., Gorshkov, A. I., & Drits, V. A. (1992). Structural chemistry of Mn, Fe, Co, and Ni

in manganese hydrous oxides: Part I. Information from XANES spectroscopy. *American*

- 757 *Mineralogist*, 77, 1133–1143.
- 758 Manceau, A., Marcus, M. A., & Tamura, N. (2002). Quantitative Speciation of Heavy Metals in

759 Soils and Sediments by Synchrotron X-ray Techniques. *Applications of Synchrotron*

760 *Radiation in Low-Temperature Geochemistry and Environmental Science*, 49, 341–428.

761 Manceau, Alain, Lanson, M., & Geoffroy, N. (2007). Natural speciation of Ni, Zn, Ba, and As in

ferromanganese coatings on quartz using X-ray fluorescence, absorption, and diffraction.

763 *Geochimica et Cosmochimica Acta*, 71, 95–128. https://doi.org/10.1016/j.gca.2006.08.036

764 Manceau, Alain, Marcus, M. A., & Grangeon, S. (2012). Determination of Mn valence states in

- 765 mixed-valent manganates by XANES spectroscopy. *American Mineralogist*, 97, 816–827.
- 766 https://doi.org/10.2138/am.2012.3903
- 767 McKeown, D. A., & Post, J. E. (2001). Characterization of manganese oxide mineralogy in rock

varnish and dendrites using X-ray absorption spectroscopy. *American Mineralogist*, 86,

- 769 701–713. Retrieved from %5C%5CScancyp%5CLiteratur%5CLit6-pdf%5CAmerMineral
- 770 86 McKeown_701-713_01.pdf
- 771 Murray, J. W., & Dillard, J. G. (1979). The oxidation of cobalt(II) adsorbed on manganese
- dioxide. *Geochimica et Cosmochimica Acta*, *43*, 781–787.
- 773 Oscarson, D. W., Huang, P. M., Defosse, C., & Herbillon, A. (1981). Oxidative power of
- 774 Mn(IV) and Fe(III) oxides with respect to As(III) in terrestrial and aquatic environments.
- 775 *Nature*, *291*, 50–51.

Revision 1

- Paterson, E., Bunch, J. L., & Clark, D. R. (1986). Cation exchange in synthetic manganates: I.
- Alkylammonium exchange in a synthetic phyllomanganate. *Clay Minerals*, *21*, 949–955.
- 778 Peacock, C. L., & Moon, E. M. (2012). Oxidative scavenging of thallium by birnessite:
- Explanation for thallium enrichment and stable isotope fractionation in marine
- ferromanganese precipitates. *Geochimica et Cosmochimica Acta*, 84, 297–313.
- 781 https://doi.org/10.1016/j.gca.2012.01.036
- 782 Post, J.E. (1999). Manganese oxide minerals: Crystal structures and economic and environmental
- significance. *Proceedings of the National Academy of Sciences*, 96, 3447–3454.
- 784 https://doi.org/10.1073/pnas.96.7.3447
- Post, J.E., Heaney, P. J., & Ertl, A. (2008). Rietveld refinement of the ranciéite structure using
- synchrotron powder diffraction data. *Powder Diffraction*, 23(1), 10–14.
- 787 https://doi.org/10.1154/1.2836477
- Post, J.E., Heaney, P. J., & Hanson, J. (2002). Rietveld refinement of a triclinic structure for
- 789 synthetic Na-birnessite using synchrotron powder diffraction. *Powder Diffraction*, *17*(3),
 790 218–221.
- 791 Post, J.E., & Veblen, D. R. (1990). Crystal structure determinations of synthetic sodium,
- magnesium, and postassium birnessite using TEM and the Rietveld Method. *American*
- 793 *Mineralogist*, 75, 477–489.
- Post, Jeffrey E., Heaney, P. J., & Ertl, A. (2008). Rietveld refinement of the ranciéite structure
- using synchrotron powder diffraction data. *Powder Diffraction*, 23, 10–14.
- 796 https://doi.org/10.1154/1.2836477
- 797 Potter, R. M., & Rossman, G. R. (1979). The tetravalent manganese oxides : identification ,
- hydration, and structural relationships by infrared spectroscopy. *American Mineralogist*,

- 799 *64*, 1199–1218. Retrieved from
- 800 http://www.minsocam.org/ammin/AM64/AM64_1199.pdf?ref=PandoraISP
- 801 Ravel, B., & Newville, M. (2005). ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-
- 802 ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537–
- 803 541. https://doi.org/10.1107/S0909049505012719
- 804 Remucal, C. K., & Ginder-Vogel, M. (2014). A critical review of the reactivity of manganese
- 805 oxides with organic contaminants. Environmental Sciences: Processes and Impacts, 16(6),
- 806 1247–1266. https://doi.org/10.1039/c3em00703k
- 807 Richmond, W. E., Fleischer, M., & Mrose, M. E. (1969). Studies on manganese oxide minerals.
- 808 IX. Rancieite. *Bulletin de La Societe Francaise Mineralogie et de Cristallographie*, 92(2),
- 809 191–195.
- 810 Santelli, C. M., Pfister, D. H., Lazarus, D., Sun, L., Burgos, W. D., & Hansel, C. M. (2010).
- 811 Promotion of Mn(II) oxidation and remediation of coal mine drainage in passive treatment
- 812 systems by diverse fungal and bacterial communities. *Applied and Environmental*
- 813 *Microbiology*, 76(14), 4871–4875. https://doi.org/10.1128/AEM.03029-09
- 814 Santelli, C. M., Webb, S. M., Dohnalkova, A. C., & Hansel, C. M. (2011). Diversity of Mn
- 815 oxides produced by Mn(II)-oxidizing fungi. Geochimica et Cosmochimica Acta, 75, 2762-
- 816 2776. https://doi.org/10.1016/j.gca.2011.02.022
- 817 Saratovsky, I., Gurr, S. J., & Hayward, M. A. (2009). The Structure of manganese oxide formed
- 818 by the fungus Acremonium sp. strain KR21-2. *Geochimica et Cosmochimica Acta*, 73,
- 819 3291–3300. https://doi.org/10.1016/j.gca.2009.03.005
- 820 Saratovsky, I., Wightman, P. G., Pastén, P. A., Gaillard, J.-F., & Poeppelmeier, K. R. (2006).
- 821 Manganese Oxides: Parallels between Abiotic and Biotic Structures. *Journal of the*

- 822 American Chemical Society, 128, 11188–11198. https://doi.org/10.1021/ja062097g
- 823 Sayers, D. E., & Bunkers, B. A. (1988). X-ray Absorption Principles, Applications, Techniques
- 824 *of EXAFS, SEXAFS, and XANES*. New York: Wiley.
- 825 Scott, J. M., & Morgan, J. J. (1996). Reactions at oxide surfaces. 2. Oxidation of Se(IV) by
- 826 synthetic Birnessite. *Environmental Science & Technology*, *30*, 1990–1996.
- 827 https://doi.org/10.1021/es950741d
- 828 Silvester, E., Manceau, A., & Drits, V. A. (1997). Structure of synthetic monoclinic Na-rich
- 829 birnessite and hexagonal birnessite: II. Results from chemical studies and EXAFS
- 830 spectroscopy. *American Mineralogist*, *82*, 962–978.
- 831 Simanova, A. A., Kwon, K. D., Bone, S. E., Bargar, J. R., Refson, K., Sposito, G., & Peña, J.
- 832 (2015). Probing the sorption reactivity of the edge surfaces in birnessite nanoparticles using
- 833 nickel(II). *Geochimica et Cosmochimica Acta*, 191–204.
- 834 https://doi.org/10.1016/j.gca.2015.04.050
- 835 Simanova, A. a., & Peña, J. (2015). Time-resolved investigation of cobalt oxidation by Mn(III)-
- rich δ-MnO2 using quick X-ray absorption spectroscopy. *Environmental Science* &
- 837 *Technology*, 49, 10867–10876. https://doi.org/10.1021/acs.est.5b01088
- 838 Sommers, M. G., Dollhopf, M. E., & Douglas, S. (2002). Freshwater ferromanganese
- 839 stromatolites from Lake Vermilion, Minnesota: Microbial culturing and environmental
- scanning electron microscopy investigations. *Geomicrobiology Journal*, 19(4), 407–427.
- 841 Retrieved from isi:000177532300002
- 842 Stuckey, J. W., Goodwin, C., Wang, J., Kaplan, L. A., Vidal-Esquivel, P., Beebe, T. P., &
- 843 Sparks, D. L. (2018). Impacts of hydrous manganese oxide on the retention and lability of
- dissolved organic matter. *Geochemical Transactions*, *19*, 1–19.

Page 38

- 845 https://doi.org/10.1186/s12932-018-0051-x
- Tan, H., Zhang, G., Heaney, P. J., Webb, S. M., & Burgos, W. D. (2010). Characterization of
- 847 manganese oxide precipitates from Appalachian coal mine drainage treatment systems.
- 848 *Applied Geochemistry*, 25, 389–399. https://doi.org/10.1016/j.apgeochem.2009.12.006
- 849 Toner, B., Manceau, A., Webb, S. M., & Sposito, G. (2006). Zinc sorption to biogenic
- 850 hexagonal-birnessite particles within a hydrated bacterial biofilm. *Geochimica et*
- 851 *Cosmochimica Acta*, 70, 27–43. https://doi.org/10.1016/j.gca.2005.08.029
- Usui, A., & Mita, N. (1994). IX. Mineralogy, geochemistry and internal growth structure of
- manganese nodules in the western part of the Penrhyn Basin, South Pacific (GH83-3 area).

654 *Geological Survey of Japan Cruise Report*, (23), 165–185.

- Villalobos, M., Lanson, B., Manceau, A., Toner, B., & Sposito, G. (2006). Structural model for
- the biogenic Mn oxide produced by Pseudomonas putida. *American Mineralogist*, 91, 489–
- 857 502. https://doi.org/10.2138/am.2006.1925
- Villalobos, Mario, Toner, B., Bargar, J., & Sposito, G. (2003). Characterization of the
- 859 manganese oxide produced by Pseudomonas putida strain MnB1. *Geochimica et*
- 860 *Cosmochimica Acta*, 67(14), 2649–2662. https://doi.org/10.1016/S0016-7037(03)00217-5
- 861 Weaver, R. M., & Hochella, M. F. J. (2003). The reactivity of seven Mn-oxides with Cr 3 + aq :
- A comparative analysis of a complex , environmentally important redox reaction. *American Mineralogist*, 88, 2016–2027.
- 864 Webb, S. M., Tebo, B. M., & Barger, J. R. (2005). Structural Influences of Sodium and Calcium
- 865 Ions on the Biogenic Manganese Oxides Produced by the Marine Bacillus Sp., Strain SG-1.
- 866 *Geomicrobiology Journal*, 22, 181–193. https://doi.org/10.1080/01490450590946013
- 867 Webb, S.M., Tebo, B. M., & Bargar, J. R. (2005). Structural characterization of biogenic Mn

	Revision 1 Page 39
868	oxides produced in seawater by the marine bacillus sp. strain SG-1. American Mineralogist,
869	90, 1342–1357. https://doi.org/10.2138/am.2005.1669
870	Webb, Sam M., Tebo, B. M., & Bargar, J. R. (2005a). Structural characterization of biogenic Mn
871	oxides produced in seawater by the marine bacillus sp. strain SG-1. American Mineralogist,
872	90, 1342–1357. https://doi.org/10.2138/am.2005.1669
873	Webb, Sam M., Tebo, B. M., & Bargar, J. R. (2005b). Structural characterization of biogenic Mn
874	oxides produced in seawater by the marine bacillus sp. strain SG-1. American Mineralogist,
875	90(8-9), 1342-1357. https://doi.org/10.2138/am.2005.1669
876	Zhao, H., Zhu, M., Li, W., Elzinga, E. J., Villalobos, M., Liu, F., Sparks, D. L. (2016). Redox
877	Reactions between Mn(II) and Hexagonal Birnessite Change its Layer Symmetry.
878	Environmental Science & Technology, 1-33. https://doi.org/10.1021/acs.est.5b04436
879	Zhao, W., Liu, F., Feng, X., Tan, W., Qiu, G., & Chen, X. (2012). Fourier transform infrared
880	spectroscopy study of acid birnessites before and after Pb2+ adsorption. Clay Minerals, 47,
881	191-204. https://doi.org/10.1180/claymin.2012.047.2.04
882	
883 884	

885	FIGURE CAPTIONS
886	Fig. 1. Schematic diagram of (a) triclinic and (b) hexagonal birnessite after Lanson et al. (2000).
887	Fig. 2. XRD patterns for (a) synthetic triclinic Na-birnessite, (b) synthetic hexagonal H-
888	birnessite, (c) France 128319, (d) rancieite Spain, and (3) Paxton Cave. These natural
889	samples from France, Spain, and Paxton Cave were identified as hexagonal birnessite
890	using XRD.
891	Fig. 3. Select SEM images of XRD-identified hexagonal birnessite samples for (a) rancieite
892	Spain, (b) France 128319, and (c) Paxton Cave.
893	Fig. 4. XRD patterns for (a) synthetic triclinic Na-birnessite, (b) synthetic hexagonal H-
894	birnessite, (c) the fungally precipitated 3-line birnessite fungal Stag50Ca1.6Mn, and
895	natural 3-line birnessite samples (d) Glasgow, (e) Vermilion, (f) DS1-M3f, (g) DS2-M3f,
896	(h) PBS-M2f-1, (i) PBS-M2f-2, and (j) Spring Branch. The dotted lines represent the
897	identifying d-spacings for 3-line birnessite.
898	Fig. 5. Select SEM images of 3-line birnessite samples (a) DS1-M3f, (b) Glasgow, (c) DS2-M3f,
899	(d) Spring Branch, (e) PBS-M2f-1, and (f) Vermilion.
900	Fig. 6. $\chi(k)$ plots of 3-line birnessite samples with overlays of synthetic triclinic Na-birnessite
901	and synthetic hexagonal H-birnessite $\chi(k)$ plots.
902	Fig. 7. Radial distribution functions (RDFs) of 3-line birnessite samples with overlays of
903	synthetic triclinic Na-birnessite and synthetic hexagonal H-birnessite RDFs.
904	Fig. 8. $\chi(k)$ plots of XRD-identified hexagonal birnessite samples with overlays of synthetic
905	triclinic Na-birnessite and synthetic hexagonal H-birnessite $\chi(k)$ plots.
906	Fig. 9. Radial distribution functions (RDFs) of XRD-identified hexagonal birnessite with
907	overlays of synthetic triclinic Na-birnessite and synthetic hexagonal H-birnessite RDFs.

Revision 1

908	Fig. 10. Mn oxidation state ratios determined from XPS for select samples Paxton Cave,
909	Glasgow, and Spring Branch compared to synthetic triclinic and synthetic hexagonal
910	birnessites.
911	Fig. 11. FTIR spectra of (a) synthetic triclinic Na-birnessite, and XRD-identified hexagonal (b)
912	Paxton Cave, (c) rancieite Spain, (d) France 128319 samples, and (d) synthetic hexagonal
913	H-birnessite.
914	Fig. 12. FTIR spectra of (a) synthetic triclinic Na-birnessite, the 3-line birnessites (b) Spring
915	Branch, (c) PBS-M2f-1, (d) PBS-M2f-2, (e) DS2-M3f, (f) Vermilion, (g) DS1-M3f, (h)
916	Glasgow, (i) fungal Stag50Ca1.5Mn, and (j) synthetic hexagonal H-birnessite.
917	Fig. 13. FTIR spectra of original buserites and their spectra after drying at 110°C to become
918	birnessite for (a-b) Spring Branch, (c-d) PBS-M2f-1, (e-f) PBS-M2f-2, (g-h) DS2-M3f,
919	(i-j) DS1-M3f.
920	Fig. 14. (a) Trends in Peak 1, Peak 2, and Peak 3 observed from the FTIR for 3-line birnessites
921	as hexagonality increases according to LCF of EXAFS data. (b) The peak shifts are
922	depicted in the FTIR spectra in the range from 400 to 650 cm ⁻¹ .
923	Fig. 15. Trends in Peak 1, Peak 2, and Peak 3 observed from FTIR according to their Mn ³⁺
924	concentrations for the select samples on which XPS was conducted. Samples include
925	synthetic hexagonal birnessite (HB), synthetic triclinic Na-birnessite (NaB), Paxton Cave
926	(PC), Glasgow (GL), and Spring Branch (SB).

TABLES

Revision 1

Page 42

927

Table 1. List of birnessite samples, categorized as either XRD-identified hexagonal birnessites of 3-line birnessites.

Samples	Locality	Chemical Formula (calculated assuming all Mn ⁴⁺ cations and no H ⁺)	Identified Phases	
	XRD-Identified Hexagonal Birnessites			
Paxton Cave	Paxton Cave, VA	$(Na_{0.02}Mg_{0.06}Ca_{0.17}K_{0.03}) (Mn(IV)_{1.44}Mn(III)_{0.17}Mn(II)_{0.16})$	Hexagonal birnessite~°,	
		$Si_{0.09}Al_{0.07}Fe_{0.06}\square_{0.02}O_4 \bullet xH_2O$	diatoms (or quartz?)°×, quartz [~] , calcite [~] , todorokite [~]	
France 128319	French Pyrenees	$(Mg_{0.10}Ca_{0.24}Ba_{0.01}Zn_{0.12})$	Hexagonal birnessite~°,	
	hydrothermal vein	$Mn_{1.75}\square_{0.25}O_4 \bullet xH_2O$	todorokite, quartz [×]	
Spain Rancieite	Las Alpujarras,	$(Mg_{0.12}Cu_{0.01}Ca_{0.23}Ba_{0.06})$	Hexagonal birnessite~°,	
	Granada, Spain	$Mn(IV)_{1.75}Cu_{0.01}Fe_{0.04}\Box_{0.20}O_4 \bullet xH_2O$	todorokite, goethite*	
		3-line Birnessites		
Glasgow	coal mine drainage treatment site in Glasgow, PA	* $(Na_{0.01}Mg_{0.02}Ca_{0.04}K_{0.01}Mn(II)_{0.34}Mn(III)_{0.06})$ $(Mn(IV)_{1.32}Mn(III)_{0.40}\Box_{0.13}Si_{0.03}Fe_{0.13})O_4 \bullet xH_2O$	birnessite ^{~°} , calcite/dolomite ^{~°} , diatoms ^{×°}	
DS1-M3f	coal mine drainage treatment site in De Sale, PA	$\begin{array}{l} (Mg_{0.049}Ca_{0.163}K_{0.028}) \\ Mn(IV)_{1.70}Si_{0.09}Al_{0.07}Fe_{0.05}\Box_{0.11}O4 \bullet xH_2O \end{array}$	buserite ^{~°} , calcite? [°] , diatoms ^{×°} , aluminosilicates ^{×°}	
DS2-M3f	coal mine drainage treatment site in De Sale, PA	$\begin{array}{l} (Na_{0.05}Mg_{0.06}Ca_{0.10}K_{0.03}Zn_{0.01}) \\ Mn(IV)_{1.36}Si_{0.10}Al_{0.33}Fe_{0.19} \Box_{0.02}O_4 \bullet xH_2O \end{array}$	buserite ^{~°} , calcite? [°] , quartz ^{~°} , diatoms ^{×°} , aluminosilicates ^{×°}	
PBS-M2f-1	coal mine drainage treatment site near Central City, PA	$\begin{array}{l} (Na_{0.02}Mg_{0.05}Ca_{0.09}Zn_{0.03}) \\ Mn(IV)_{1.60}Si_{0.02}Al_{0.31}Fe_{0.04}\Box_{0.03}O_4 \bullet xH_2O \end{array}$	buserite ^{~°} , quartz ^{~°} , calcite/dolomite ^{~°} , aluminosilicates ^{×°}	

Revision 1

Page 43

PBS-M2f-2	coal mine drainage treatment site, sampled at a different time than PBS-M2f-1	N/A	buserite ^{~°} , quartz ^{~°} , calcite/dolomite ^{~°} , aluminosilicates [°] (no SEM done)
Vermilion	lake nodule from Lake Vermilion, MI	$\begin{array}{l} (Mg_{0.01}Ca_{0.04}K_{0.02}Ba_{0.16}) \\ Mn(IV)_{1.85}Si_{0.01}Al_{0.02}Fe_{0.01} \Box_{0.12}O_4 \bullet xH_2O \end{array}$	birnessite ^{~°} , goethite [~] , aluminosilicates ^{×°} , calcite/dolomite? [°]
Spring Branch	Spring Branch, TN	* $(Mg_{0.06}Ca_{0.28}K_{0.01})$ $(Mn(IV)_{0.94}Mn(III)_{0.88}Mn(II)_{0.05}Si_{0.03}Al_{0.01}Fe_{0.04}\Box_{0.13})O_4 \bullet xH_2O$	birnessite ^{~°} , calcite/dolomite ^{~°} , diatoms ^{×°} , aluminosilicates ^{×°}
Fungal Stag50Ca1.5Mn	bioprecipitated by Stagnospora sp. SRC11sM3a	N/A	birnessite~°, fungi°
Cations below the *chemical formula ~observed in XRD °observed in FTIR *phase observed in	analytical threshold wer as calculated with Mn ox	e not included in the chemical formulas. idation states determined from XPS	

935 936

Revision 1

Page 44

937 **Table 2**. EXAFS linear combination fitting results.

EXAFS Linear Combination Fitting				
	Vol. fraction triclinic	Vol. fraction pH 2	Vol. fraction	
Well-crystalline	Na-birnessite	hexagonal birnessite	todorokite	R-factor
France 128319	0.19 ± 0.05	0.52 ± 0.05	0.29 ± 0.06	0.0569
Rancieite Spain	0.19 ± 0.06	0.56 ± 0.04	0.26 ± 0.06	0.0440
Paxton Cave	0.15 ± 0.04	0.69 ± 0.04	$0.16\ \pm 0.05$	0.0370
Poorly-crystalline				
CaBuserite TN	0.56 ± 0.02	0.44 ± 0.03	N/A	0.0230
DS2-M3f	0.46 ± 0.03	0.54 ± 0.04	N/A	0.0376
PBS-M2f-1	0.43 ± 0.05	0.58 ± 0.06	N/A	0.1000
PBS-M2f-2	0.43 ± 0.03	0.57 ± 0.03	N/A	0.0317
Vermilion	0.32 ± 0.03	0.68 ± 0.03	N/A	0.0334
Glasgow MRU3P1	0.24 ± 0.03	0.76 ± 0.03	N/A	0.0550
DS1-M3f	0.22 ± 0.03	0.78 ± 0.04	N/A	0.0494
Stag50Ca1.5Mn	0.07 ± 0.04	0.93 ± 0.05	N/A	0.0991

Revision 1

940 **Table 3**. FTIR peaks for birnessites.

Sample	Peak 1	Peak 2	Peak 3
XRD-identified hexagonal			
Paxton Cave	426	$(456)^{q}$	492
Spain Rancieite	430		494
France 128319	430		495
Synthetic			
Synthetic hexagonal H-			
birnessite	$(435)^{b}$	447	496
Synthetic triclinic Na-			
birnessite	418	478	511
3-line			
Spring Branch	425	473	514
DS2-M3f	432	471	514
PBS-M2f-1	433	472	517
PBS-M2f-2	432	471	512
Vermilion	$(429)^{b}$	470	503
DS1-M3f	$(431)^{b}$	468	498
Glasgow	$(438)^{b}$	458	499
Fungal	439	$(462)^{b,f}$	496

941 q = quartz peak

942 b = broad, subtle peak that has mostly merged into its neighboring peak

943 f = peak from fungal organic material

944

945

946

Revision 1

FIGURES a.) Triclinic Na-birnessite b.) Hexagonal H-birnessite Mn³⁺, Mn⁴⁺ Mn^{otahedral sheets} Mn⁴⁺ Mn⁴⁺</l

Fig. 2

Fig. 3

Fig. 4

Fig. 6

Fig. 7

Fig. 8

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 15