1	Reconsidering initial Pb in titanite in the context of in situ dating
2	(Revision 1)
3	
4	Chloë E. Bonamici*
5	Tyler B. Blum
6	Department of Geoscience, University of Wisconsin-Madison, 1215 W. Dayton St., Madison,
7	WI 53706
8	
9	
10	Abstract
11	In situ U-Pb dating of titanite, which can preserve trace-element records of various
12	petrologic processes but also incorporates significant initial Pb, has proliferated in recent years.
13	The widespread use of titanite data to construct tectonic P-T-t paths warrants careful assessment
14	of the available dating techniques, as well as attention to the assumptions that underpin the U-Pb
15	data analysis. This contribution provides the first direct comparison of the two major analytical
16	methods – SHRIMP (SIMS) and LA-ICP-MS – for in situ U-Pb titanite dating. A set of well-
17	characterized titanite grains from Harrisville, NY, in the Adirondack Mountains were analyzed
18	for U-Th-Pb isotopes along the same cross-grain traverses by SHRIMP and LA-ICP-MS. Both
19	LA-ICP-MS and SHRIMP datasets define approximately linear arrays on the Tera-Wasserburg
20	Concordia (semi-total Pb/U) diagram and would commonly be interpreted as representing a
21	single date population with minor scatter. However, previous studies have suggested that
22	Adirondack titanite actually records two regionally well-defined thermal events, ~50-100 m.y.
23	apart. When titanite data arrays are treated in detail, attempts to determine concordia-intercept

^{*} Corresponding author. E-mail: <u>bonamici@wisc.edu</u>. Phone: +1 608 263 7754.

24	ages by robust three-dimensional linear regression produce large uncertainties and/or poor fit
25	statistics that suggest that the data are not, in fact, isochronous. Grain-by-grain analysis of U-Pb
26	titanite data shows that different subsets of titanite (determined by additional geochemical and
27	microstructural data) show different patterns of U-Pb data. By comparing predictions for Pb-
28	ingrowth evolution paths in Tera-Wasserburg diagrams with observed data, it is possible to
29	recognize both a change in initial Pb composition and Pb loss in the Adirondack titanite U-Pb
30	dataset. This study provides an example of how greater geochronologic detail can be extracted
31	from large in situ U-Pb titanite datasets. Even when precise dates are not recovered, geological
32	processes and events that cause data scatter can be recognized through analysis of U-Pb data
33	patterns using the Tera-Wasserburg diagram.
34	
35	Keywords: titanite; U-Pb geochronology; initial Pb correction; LA-ICP-MS; SHRIMP
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	

Introduction

50	Titanite is an increasingly popular U-Pb geochronometer and petrogenetic indicator in the
51	study of crystalline rocks (e.g., Aleinikoff et al., 2002; 2004; Chen et al., 2016; Essex and
52	Gromet, 2000; Gao et al., 2012; Garber et al., 2017; Holder and Hacker, 2019; Jung and
53	Hellebrand, 2007; Kirkland et al., 2016, 2017; Kohn, 2017; Kohn and Corrie, 2011; Li et al.,
54	2010; Marsh and Smye, 2017; Olierook et al., 2019; Papapavlou et al., 2017, 2018; Scibiorski et
55	al., 2019; Stearns et al., 2015; Storey et al., 2007; Timms et al., 2019). By comparison to zircon,
56	titanite is more reactive and therefore has the potential to display a greater range of petrologic,
57	geochemical, and microstructural variations to inform interpretations of petrogenesis and
58	deformation (Kohn, 2017). The major challenges in applying titanite as a geochronometer are its
59	generally low U and radiogenic Pb concentrations and its tendency to incorporate substantial
60	initial Pb (e.g., Aleinikoff et al., 2002; Frost et al., 2000; Prowatke and Klemme, 2005; Tiepolo
61	et al., 2002).
62	Initial Pb (Pb_i) must be corrected for and therefore complicates accurate U-Pb
63	geochronometry of high-Pbi phases, like titanite, apatite, allanite, and rutile (e.g., Chew et al.,
64	2014; Kirkland et al., 2017; Rubatto and Scambelluri, 2003; Schoene and Bowring, 2006;
65	Wohlgemuth-Ueberwasser et al., 2017) Here, we use Pb _i to mean the Pb that is incorporated into
66	a mineral at the time of crystallization or recrystallization, irrespective of its source and isotopic
67	composition. Pb _i includes what is often called "common Pb", Pb representing long-term
68	ingrowth from actinides incorporated in the primordial Earth (Stacey and Kramers, 1975). Pb_i
69	can also include Pb acquired from nearby actinide-partitioning minerals that have ingrown Pb
70	with a non-primordial isotopic composition. The most widely used Pb _i corrections derive from

72 on the average, reservoir-scale geochemical behavior of Pb - i.e., assumptions about crustal evolution at the scale of an orogenic region, a crustal domain, or even bulk silicate Earth. For Pb_i 73 corrections that employ these models to be accurate, the geochronology sample to which they are 74 applied must be compositionally representative of the large-scale reference reservoir, a 75 requirement that is problematic in the context of intragrain U-Pb measurements. Techniques for 76 in situ U-Pb dating, like SIMS/SHRIMP and LA-ICP-MS, complicate Pb_i corrections because 77 they sample micron-scale intracrystalline domains (compositional zones), which may now be 78 chemically and isotopically decoupled from their original environments of formation, including 79 coexisting phase assemblages and fluids. For instance, even when Pb_i is measured in a low-U 80 phase (e.g., K-feldspar) co-located with a zoned geochronometer, it can be difficult to determine 81 which zone within the geochronometer formed in equilibrium with that phase. 82 A common approach for correcting U-Pb isotope data for Pb_i is to calculate a Pb_i 83 composition based on an estimated age and a crustal evolution model, often the one- or two-stage 84 model of Stacey and Kramers (1975). The two most common variants of this approach are the 85 '204 method' and the '207 method'. In the 204 method, $Pb_i^{204}Pb/^{206}Pb$ is can be calculated 86 based on a crustal evolution model; measured in a reference material considered representative 87 of the crustal Pb isotope composition for the sample; or measured in a co-existing low-U phase 88 within the sample, such as K-feldspar (DeWolf and Mezger 1994; McGregor et al., 2019), and 89 the total 204 Pb/ 206 Pb is measured to determine Pb_i abundance (e.g., Ireland and Williams, 2003; 90 Stern, 1997; Storey et al., 2006; Williams, 1998) (Appendix). In the 207 method, $Pb_i^{207}Pb/^{206}Pb$ 91 is based on either a model value or a measured value in a co-existing phase, as well as an 92 93 expected age for the titanite (Appendix). The 204 method has traditionally been preferred for data collected by SIMS/SHRIMP analysis, during which ²⁰⁴Pb is readily measured (Stern et al., 94

95 2009; Stern, 1997; Storey et al., 2006). The 207 method is commonly preferred for data collected by LA-ICP-MS analysis, during which ²⁰⁴Hg contaminants in the Ar plasma interfere on mass 96 204 (Gehrels et al., 2008; Horstwood et al., 2003; Schoene, 2014; Storey et al., 2006), though 97 recent developments in quadrapole LA-ICP-MS analysis can mitigate this problem. The 98 underpinning assumption for the 204 and 207 method corrections that rely on model values is 99 100 that the continental crust has evolved as a coherent and largely closed reservoir with respect to U and Pb isotope systematics, and that titanite will crystallize with Pb_i composition representative 101 of this bulk crustal reservoir. The idea of an "average" or "bulk" composition, however, can 102 103 break down at the grain scale, where Pb isotope compositions of individual phases depend on phase-specific U and Pb partitioning. For instance, titanite forming from breakdown of rutile 104 may partition radiogenic Pb from rutile in addition to average, ambient Pb, and thus have a 105 different effective Pb_i composition from the bulk rock (Marsh and Smye, 2018). Thus, *in situ* 106 geochronology of phases that incorporate both U and Pb_i require careful evaluation of Pb_i 107 108 sources and possible grain-scale U-Pb fractionation. Another approach for titanite U-Pb data correction is equivalent to the classic isochron 109 regression method and employs the semi-total Pb/U (Tera-Wasserburg) or total Pb/U diagrams 110 (Ludwig, 1998, 2009, 2012). The samples used to define the linear regression can be 111 permutations of grain separates or individual grains but can also be multiple (e.g., Amelin, 2009; 112 Verts et al., 1996), in situ intergrain or intragrain analyses (e.g., Holder and Hacker, 2019; Kohn 113 114 and Corrie, 2011; Olierook et al., 2018; Storey et al., 2006). In practice, it is common to constrain the Pb₁²⁰⁷Pb/²⁰⁶Pb composition based on a Stacey and Kramers (1975) model and force 115 the regression through this Pb_i composition (e.g., Kohn and Corrie, 2011). However, it is 116

becoming more common to treat Pb_i composition as a variable that is retrieved from the

regression process (e.g., Kirkland et al., 2017). The Tera-Wasserburg-based isochron regression 118 correction method can avoid the pitfalls of assuming a crustal Pb isotope composition but only 119 works if i) the Pb_i composition is uniform in the grains or domains used to determine the 120 isochron ii) measured grains/domains formed at the same time (are isochronous), and iii) in the 121 case that the Pb_i composition is not fixed a priori, a sufficiently large range of intracrystalline 122 123 U/Pb and Pb/Pb ratios are sampled to tightly constrain the regression. With recent detailed characterizations of titanite (e.g., Essex and Gromet, 2000; Bonamici et al., 2015; Garber et al., 124 2017; Marsh and Smye, 2017; Olierook et al., 2018), it is clear that Pb_i can and does vary over 125 126 timescales of titanite growth and/or recrystallization, undercutting the first requirement for the isochron regression approach in some cases. 127

U-Pb isotope data for Pb_i-rich phases are treated on the Tera-Wasserburg Concordia 128 diagram in order to explicitly show the Pb_i contribution to U-Pb isotope composition. The Tera-129 Wasserburg diagram is a two-dimensional projection of the total Pb/U isochron diagram (Ludwig, 130 1998), which allows for direct display of the Pb_i trends in a dataset. The familiar Wetherill 131 concordia diagram works well for low-Pb_i phases and excels at revealing open system behavior 132 that affects the radiogenic U/Pb ratio (e.g., Schoene, 2014). In contrast, the U-Pb data patterns on 133 the Tera-Wasserburg diagram reflect a combination of Pbi-radiogenic Pb mixing and open 134 system behavior. Such patterns can, consequently, be less straightforward to interpret. 135 This work applies different Pb_i correction methods to a suite of well-characterized 136 137 Grenville-aged titanite grains from the Adirondack Mountains of New York. A review of U-Pb isotope evolution in the semi-total Pb/U isochron (Tera-Wasserburg) diagram illustrates how 138 both intragrain Pb_i compositional variations and grain scale Pb loss can be preserved within *in* 139 140 situ data sets. This analytical framework is applied to two U-Pb datasets for the same titanite

141	grains - one collected by SHRIMP and the other collected by LA-ICP-MS. Comparison of the
142	two in situ analytical techniques allows recognition of non-isochronous data and highlights the
143	relative strengths of each technique. These results reinforce both the complexity and
144	opportunities in microanalysis of geochronometers with significant initial Pb.
145	
146	Samples and Methods
147	Titanite-bearing samples used in this study are high-grade, midcrustal tectonites from the
148	Adirondack region of upstate New York. Titanite grains are hosted in metasyenite collected
149	within the Carthage-Colton mylonite zone, a major structure developed at the boundary between
150	Grenville-aged crustal domains. The Adirondack Lowlands to the northwest of the CCMZ record
151	peak metamorphic conditions during the Shawinigan-AMCG phase of the Grenville orogeny at
152	ca. 1150 Ma, whereas the Adirondack Highlands to the east-southeast of the CCMZ record peak
153	metamorphic conditions during the Ottawan phase at ca. 1050 Ma (Mezger et al., 1993; 1991a;
154	1991b). The tectonic context of the CCMZ has been previously discussed by Mezger et al.
155	(1991a), Mezger et al. (1991b), Mezger et al. (1992), Mezger et al. (1993), Cartwright et al.
156	(1993), Streepey et al. (2001), Baird and MacDonald (2004), Johnson et al. (2004), Johnson and
157	Selleck (2005), McLelland et al. (2010), and Bonamici et al. (2014). Structural, petrologic, and
158	geochemical characteristics of the specific Harrisville location of samples for the current study
159	have been addressed by Lamb (1993), Cartwright et al. (1993), Baird and MacDonald (2004),
160	Heumann (2004), Johnson and Selleck (2005), Bonamici et al. (2014), and Bonamici et al.
161	(2015).
162	Regional geochronology provides constraints within which to study and interpret U-Pb
163	titanite data from the CCMZ. Bonamici et al. (2015) documented the intragrain zoning patterns

164	of SHRIMP U-Pb dates within six Harrisville titanite samples (Table 1). Four different
165	generations of titanite were distinguished on the basis of microstructure and reinforced on the
166	basis of chemistry and oxygen-isotope zoning patterns (Bonamici et al., 2014, 2015). These
167	generations are interpreted to be igneous titanite crystallized in the protolith syenite at ~1160 Ma
168	(Type-1); igneous grains variably reset during later granulite-facies metamorphism at ca. 1050
169	Ma (Type-2); titanite from veins that likely intruded at ca. 1050 Ma (Type-3); and igneous
170	titanite with metamorphic overgrowths (Type-4). Table 1 provides grain descriptions and further
171	information summarizing these interpretations. LA-ICP-MS data presented in this study
172	significantly expand the number of Harrisville titanite grains investigated for U-Pb zoning. U-Pb
173	ratios were measured in a total of fourteen titanite grains, including one Type-1 grain, five Type-
174	2 grains, six Type-3, and two Type-4 grains.
175	Titanite was analyzed in thin sections of metasyenite cut into one-inch rounds. Thus, all
176	analyzed titanite grains are in situ with respect to their host microstructures and phase
177	assemblages. Grains of U-Pb titanite reference material BLR-1 (accepted 206 Pb/ 238 U age 1047 ±
178	0.4 Ma, Aleinikoff et al., 2007) were embedded in every sample each mount. BLR-1 was used
179	for calibration under the designation BLS at the Arizona Laserchron Center, along with
180	secondary reference material Ecstall West zircon (accepted 206 Pb/ 238 U age 91.5 ± 1 Ma, Butler et
181	al., 2002), also embedded in each analysis mount. Weighted average ages showing the
182	performance of the reference material grains in each mount during LA-ICP-MS analysis are
183	compiled in the Supplementary Materials. Within 2σ analytical uncertainties, the dates
184	determined for these reference materials during SHRIMP and LA-ICP-MS analysis overlap the
185	accepted ages.

186	SIMS U-Pb dates were collected with the SHRIMP II instrument at the Research School
187	of Earth Sciences (RSES) at the Australian National University using a focused, 4.5-nA O_2^-
188	primary beam. Data were acquired in single-collector mode with seven successive scans through
189	species ²⁰⁰ CaTi ₂ O ₄ , ²⁰⁴ Pb, ²⁰⁶ Pb, ²⁰⁷ Pb, ²⁰⁸ Pb, ²³⁸ U, ²⁴⁸ ThO, and ²⁵⁴ UO, with each individual
190	analysis taking 20 minutes. SHRIMP analysis sputtered pits 35-40 μm in diameter and 2-3 μm
191	deep (Fig. 1A). Grains of U-Pb titanite standard BLR-1 were analyzed at regular bracketing
192	intervals throughout each analysis session. Total ²³⁸ U/ ²⁰⁶ Pb, ²⁰⁷ Pb/ ²⁰⁶ Pb, and ²⁰⁴ Pb/ ²⁰⁶ Pb ratios
193	reported in Table S1 are corrected for U/Pb instrumental fractionation but are not corrected for
194	Pb_i . SHRIMP radiogenic ratios and $^{206}Pb/^{238}U$ dates were initially reported in Bonamici et al
195	(2015), where they were corrected for Pb_i with the 204 method using $^{204}Pb/^{206}Pb$ measured on
196	long-term RSES lab reference material, Broken Hills feldspar ($^{206}Pb/^{204}Pb = 16.00$, $^{207}Pb/^{204}Pb = 16.00$, $^{207}Pb/^$
197	15.39, and ${}^{208}\text{Pb}/{}^{204}\text{Pb} = 35.66$; Gulson, 1984). For the current study, SHRIMP data have been
198	re-corrected (Table S1) with the 204 method using both (1) the Stacey and Kramers (1975)
199	model and (2) the K-feldspar Pb-Pb ratios reported by Mezger et al. (1992) for a shear zone in
200	the Diana metasyentite (sample 90-49: ${}^{206}Pb/{}^{204}Pb = 17.132$, ${}^{207}Pb/{}^{204}Pb = 15.427$, and
201	208 Pb/ 204 Pb = 36.461). The dates corrected with Mezger et al. (1992) are preferred because these
202	Pb values come from the same outcrops as the titanite samples used in the current study. To
203	facilitate comparison with LA-ICP-MS data, the SHRIMP data have also been corrected with the
204	207 method (Table S1) using the Stacey and Kramers (1975) Pb isotope model implemented
205	through the Arizona Laserchron Center spreadsheet software, "Titanite AgeCalc 207Pbc".
206	Prior to LA-ICP-MS analysis, SHRIMP pits and carbon coats were removed from
207	samples by repolishing with $1-\mu m$ diamond-grit suspension. Samples were cleaned with several
208	cycles of sonication in distilled water and ethanol. LA-ICP-MS U-Pb dates were collected on a

209	Nu HR ICP-MS coupled to a Photon Machines Analyte G2 Excimer laser at the Arizona
210	Laserchron Center at the University of Arizona. Data were acquired in static multicollector mode,
211	with ²⁰² Hg and ²⁰⁴ Pb collected on ion counters and ²⁰⁶ Pb, ²⁰⁷ Pb, ²⁰⁸ Pb, ²³⁸ U, and ²³² Th collected
212	on 10 ¹¹ -ohm resistor Faraday cups. Each analysis included 15 seconds of background counting,
213	15 one-second laser pulses for sample signal and 30 seconds of wash-out time for a total of
214	approximately 60 seconds per analysis. Laser ablation produced pits 35-40 μ m in diameter and
215	~15 μ m deep (Fig. 1B). Grains of U-Pb titanite standard BLR-1 (²⁰⁶ Pb/ ²³⁸ U age 1047 Ma,
216	Aleinikoff et al., 2007; also called BLS in the Laserchron lab) were analyzed at regular
217	bracketing intervals throughout each analysis session. Total ²³⁸ U/ ²⁰⁶ Pb, ²⁰⁷ Pb/ ²⁰⁶ Pb, and
218	²⁰⁴ Pb/ ²⁰⁶ Pb ratios reported in Table S2 were corrected for U/Pb instrumental fractionation, as
219	well as the ²⁰⁴ Hg interference on ²⁰⁴ Pb. The ²⁰⁴ Pb interference correction is accomplished by
220	subtraction of mass 204 counts that are inferred to come from ²⁰⁴ Hg based on the measurement
221	of mass 202 and an assumed natural 202 Hg/ 204 Hg ratio of 4.34 (Gehrels et al. 2008). Data in
222	Table S2 and Figures 2, 3, 4, and 6 are not corrected for Pb_i . Radiogenic ratios and $^{206}Pb/^{238}U$
223	dates reported for LA-ICP-MS data (Table S2) were corrected for Pb _i by an iterative 207 method
224	implemented using internal Arizona Laserchron Center spreadsheet-based software ("Titanite
225	AgeCalc 207Pbc"). This correction uses the raw 206 Pb/ 238 U ratio before Pb _i correction as an
226	initial estimate of expected age and the Stacey and Kramers (1975) model for an estimate of the
227	Pb _i composition (Appendix). The 207-corrected age then recalculated several more times with
228	the 207-corrected age from the previous iteration used as the expected age for each subsequent
229	iteration. For titanite U-Pb measurements in this study, the calculation rapidly converges to a
230	stable corrected age within \leq 5 iterations. To facilitate comparison with the SHRIMP data, the

LA-ICP-MS data have also been corrected with the 204 method (Table S2) using the Stacey and
Kramers (1975) model.

233	Data are compared using total isotope ratios, uncorrected for Pb _i , on Tera-Wasserburg
234	Concordia plots. Error ellipses in Figures 2, 3 and 9 represent 2σ analytical uncertainties,
235	including counting statistics and U/Pb instrumental fractionation (as calibrated with titanite
236	BLR/BLS reference material). Uncertainties on ²⁰⁴ Pb/ ²⁰⁶ Pb for SHRIMP data have been
237	conservatively estimated at 3% (1 σ), which is double the largest ²⁰⁷ Pb/ ²⁰⁶ Pb uncertainty reported
238	for SHRIMP data. Uncertainties on all other ratios are as reported by the respective lab (Tables
239	S1 and S2). Error correlations between 238 U/ 206 Pb, 207 Pb/ 206 Pb, and 204 Pb/ 206 Pb ratios are
240	considered to be small and are neglected for the sake of more direct comparison of data arrays.
241	Two- and three-dimensional linear regressions were implemented in Isoplot 3.75 using
242	Model 1, which weights each measurement by the inverse square of the analytical errors under
243	the assumption that analytical errors are the only source of uncertainty in the data (Ludwig,
244	2012). A Model 1 regression fit is considered reasonable if the probability of fit is \geq 0.05.
245	Probability of fit for each regression is used as an indicator of additional (geological) sources of
246	scatter. Other models for regression (Models 2 and 3) were not considered to avoid additional
247	assumptions about sources of uncertainty (beyond analytical).

- 248
- 249

Results

When considered in aggregate, LA-ICP-MS and SHRIMP datasets for Harrisville titanite grains define steep, approximately linear trends on Tera-Wasserburg or semi-total Pb/U diagrams (Fig. 2). The LA-ICP-MS data array spread is larger for two reasons: 1) more than twice as many titanite grains were analyzed by LA-ICP-MS as by SHRIMP (Fig. 3) and many of the grains

254	analyzed by laser had lower Pb_i that extends the array farther toward concordia; and 2) the large
255	207 Pb/ 206 Pb uncertainties on the LA-ICP-MS data for the highest-Pb _i grains appear to stretch the
256	laser data array vertically. However, close comparison of the grains analyzed by both LA-ICP-
257	MS and SHRIMP in Figure 3, shows that, regardless of error ellipse shape, the individual data
258	points are centered at nearly identical locations.
259	Tera-Wasserburg-based, two-dimensional regression of the aggregate SHRIMP dataset
260	yields a concordia intercept age of 1138 ± 19 Ma with MSWD = 4.4, whereas 2D regression of
261	the aggregate LA-ICP-MS dataset yields a concordia intercept age of 1067 ± 12 Ma with MSWD
262	= 2.0 (Table S3). We note that the regression of SHRIMP data yield a MSWD indicating well
263	scatter beyond that expected based on analytical uncertainty alone, whereas that the precision of
264	LA-ICP-MS data result in a more ambiguous MSWD value. No concordia-intercept ages can be
265	obtained for either aggregate dataset (LA-ICP-MS or SHRIMP) using a total Pb/U isochron
266	(linear 3D) regression that includes the 204 Pb/ 206 Pb ratio (Table 1).
267	For Harrisville titanite samples, greater $^{238}\text{U}/^{206}\text{Pb}$ (average 2.3% 1 σ) than $^{207}\text{Pb}/^{206}\text{Pb}$
268	analytical uncertainties (average 1.0% 1σ) suggest that the U/Pb calibration dominates overall
269	SHRIMP analytical uncertainties. In contrast, greater $^{207}Pb/^{206}Pb$ (average 5.1% 1 σ) than
270	238 U/ 206 Pb (average 2.6% 1 σ) analytical uncertainties indicate that abundance sensitivity
271	dominates overall LA-ICP-MS analytical uncertainties.
272	On a grain-by-grain basis, both SHRIMP and LA-ICP-MS U-Pb measurements show a
273	range of behavior, with several grains having tightly clustered data (i.e. showing limited
274	238 U/ 206 Pb or 207 Pb/ 206 Pb dispersion) (Fig. 3). For those grains with tightly clustered spot analyses,
275	both 2D and 3D regressions of the U-Pb measurements yield large concordia-intercept age
276	uncertainties (> ±50 Ma), as well as large MSWD values for SHRIMP data sets. Titanite grains

277 from sample HA13 are an exception, showing sufficient analysis dispersion to provide moderately tight constraints on concordia-intercept ages regressed from LA-ICP-MS data (Fig. 278 3). SHRIMP U-Pb measurements for the HA13 S2 grain show a similar dispersion to LA-ICP-279 MS measurements and similar concordia-intercept age but with high MSWD values. 280 Results from 3D linear isochron regressions for each titanite Type are described below 281 with respect to the concordia-intercept age and the regressed Pb_i²⁰⁷Pb/²⁰⁶Pb value (Table 1, Fig. 282 4). Several unconstrained 3D regressions produce negative ²⁰⁷Pb/²⁰⁶Pb (y-axis) intercept values 283 because tightly clustered data do not adequately constrain the linear regression toward the 284 285 common Pb plane, resulting in a very large range of possible intercept values with a negative mean. Several constrained 3D regressions produce undefined ²⁰⁷Pb/²⁰⁶Pb values because very 286 large uncertainties push the mean regressed ²⁰⁶Pb/²⁰⁴Pb value to zero (Table 1), the lowest 287 allowed ²⁰⁶Pb/²⁰⁴Pb value for a constrained regression solution. Table S3 shows 2D regression 288 results, but these are not discussed in the text in order to avoid redundancy and because the larger 289 uncertainties on the 2D regression results generally hide details within the datasets. 290

Type 1 titanite results

Constrained 3D linear concordia intercept dates for the Type-1 grain for both LA-ICP-292 293 MS and SHRIMP data are > 1200 Ma, with large uncertainties of > 200 m.y. (Table 1). The unconstrained regression of LA-ICP-MS data intercepts concordia within analytical uncertainties, 294 but the unconstrained regression of more precise SHRIMP data set does not (Fig 4B). The Type-295 1 titanite grain has both the highest and largest range of ²⁰⁴Pb/²⁰⁶Pb ratios (Tables S1 and S2). 296 The Type-1 grain also has the lowest overall U, Th, and Pb concentrations. LA-ICP-MS data 297 298 points from this low-Pb grain all overlap significantly within error and no interpretable ²⁰⁷Pb/²⁰⁶Pb intercept is obtained with either constrained or unconstrained 3D regressions (Table 299

1). An unconstrained regression of the more precise SHRIMP data yields an upper intercept
 ²⁰⁷Pb/²⁰⁶Pb value of 0.967, similar to the Stacy and Kramers common Pb value of 0.922, though
 with large uncertainties (Table 1).

303 **Type 2 titanite results**

Type-2 titanite grains yield tightly clustered U-Pb data points, both within individual 304 305 grains (Fig. 3) and between grains (Fig. 2). Constrained 3D linear regressions of LA-ICP-MS data return concordia-intercept ages of 1143-1111 Ma, whereas regressions of SHRIMP data 306 return consistently older concordia-intercept ages of 1182-1146 Ma (Table 1). Both methods 307 308 produce intercept-age uncertainties of 48-130 m.y., and the SHRIMP data regressions are also associated with large MSWD values. Both constrained and unconstrained regressions yield 309 largely uninterpretable ²⁰⁷Pb/²⁰⁶Pb upper intercept values (Table 1), with the possible exception 310 of grain HA09A S15, which gives values consistent with a mixture of primordial (Stacey and 311 Kramers common Pb) and radiogenic Pb_i. 312

313 **Type 3 titanite results**

Aggregated Type-3 data show greater dispersion than Type-2 data, but data for individual 314 Type-3 grains are more clustered than the aggregate dataset (Fig. 3). Constrained 3D isochron 315 316 regressions of LA-ICP-MS Type-3 data yield the youngest concordia intercept ages, ranging from 935 Ma to 1101 Ma (Table 1, Fig. 4). Some of the older LA-ICP-MS dates have moderate 317 analytical uncertainties of 28-38 m.y., but many LA-ICP-MS dates are associated with large 318 319 analytical uncertainties of 63-190 m.y.. Constrained 3D regression for the one SHRIMPanalyzed Type-3 grain produces an imprecise concordia intercept age of 1220 ± 370 Ma. 320 321 Constrained and unconstrained regressions for most LA-ICP-MS-analyzed grains produce 207 Pb/ 206 Pb upper intercepts intermediate between the expected radiogenic value (~0.08) and the 322

expected Stacey and Kramers common-Pb model value (~0.92), though often with very large uncertainties.

325 **Type 4 titanite results**

Data from the Type-4 grains, in aggregate and individually, define approximately linear 326 or apparently offset linear trends. Whereas overlap in LA-ICP-MS data for grain HA13A-S1 327 328 obscures distinct internal data populations, three data populations can be distinguished in both the LA-ICP-MS and SHRIMP data for HA13A-S2 (Fig. 3). Constrained and unconstrained 329 regressions of both LA-ICP-MS and SHRIMP data produce very similar Tera-Wasserburg plane 330 331 intercepts and concordia intercept ages at 1124-1128 Ma (Table 1, Fig. 4). Uncertainties on LA-ICP-MS data are ~ 25 m.y. and those for the SHRIMP data are three times larger at 75 m.y.. In 332 addition, the MSWD value for the regression of the SHRIMP data is much larger than the 333 MSWD value for LA-ICP-MS data. Most constrained and unconstrained regressions for both 334 analytical techniques produce ²⁰⁷Pb/²⁰⁶Pb upper intercepts intermediate between the expected 335 radiogenic value (~ 0.08) and the expected Stacy and Kramers common Pb model value (~ 0.92). 336 The constrained regression for the SHRIMP-analyzed grain produces a ²⁰⁷Pb/²⁰⁶Pb upper 337 intercept greater than the expected Stacy and Kramers common Pb model value, though with 338 339 large uncertainties.

Zoning trends within titanite grains

In situ U-Pb data can also be assessed in the context of their spatial distribution within titanite grains (Fig 5; Supplemental Figures; Bonamici et al., 2015). The lower precision of LA-ICP-MS measurements precludes definitive recognition of intragrain zoning as the oldest and youngest Pb_i-correct dates determined for any given grain overlap within 2σ uncertainties; however, similarity of intragrain trends in grains for which both more precise SHRIMP data and

346	LA-ICP-MS data exist (Fig. 5), suggests that the LA-ICP-MS data are indicative of zoning.
347	Generally, both LA-ICP-MS and SHRIMP yield older ²⁰⁶ Pb/ ²³⁸ U dates toward grain centers and
348	younger dates near grain edges (Fig 5; Supplemental Figures); however, there is considerable
349	intragrain variability in Pb _i -corrected dates (particularly for SHRIMP data), which range from
350	pre-Shawinigan (>1180 Ma) to post-Ottawan (975 Ma). This result is the same, whether the Pb _i
351	model is the traditional Stacey and Kramers (1975), the ANU lab Broken Hill feldspar, or the
352	Mezger et al. (1992), providing that the same Pb _i composition is used for all corrections (Table
353	S1). For a given grain, most Pb _i -corrected dates differ significantly from the mean constrained
354	concordia-intercept date (Fig 5; Supplemental Figures); however, almost all dates overlap within
355	large uncertainties associated with both the individual Pb _i date corrections and the isochron
356	regressions.
357	
358	Discussion
359	Comparison of LA-ICP-MS and SHRIMP analysis of titanite
360	The collection and comparison of parallel U-Pb data sets for Harrisville titanite allows us
361	to examine the tradeoffs in analytical precision and data collection rates between the two
362	techniques for these grains. In general, both techniques recover very similar ranges in isotope
363	ratios, but the higher analytical precision of the SHRIMP data resolves intragrain complexity that
364	is obscured by the lower analytical precision of the LA-ICP-MS data. Consequently, the
365	precision of dates determined through individual Pb _i correction is generally lower for LA-ICP-
366	MS than for SHRIMP (Fig. 5; Tables S1 and S2), reflecting larger uncertainties in the Pb isotope
367	measurements by LA-ICP-MS and their propagation through the 207-method correction. On the

ICP-MS (Fig. 4), reflecting greater resolvable geologic scatter in the more precise SHRIMP data
 and thus poorer fits for linear regressions.

In situ U-Pb data collected within titanite grains are commonly assumed to represent 371 single age and Pb_i populations and are treated as such through the isochron regression method. 372 The facts that the aggregated Harrisville data (1) cannot be fit with a 3D regression and (2) yield 373 374 dates ~70 m.y. apart for 2D regressions (Table 2) point toward significant grain-to-grain age and/or Pb_i heterogeneity. Dates determined by the isochron regression method for within-grain 375 U-Pb data generally overlap the time period spanning the two known orogenic events in the 376 377 Adirondack Mountains, from beginning of the AMCG-Shawinigan phase at ca. 1180 Ma through the end of the Ottawan phase at ca. 1010 Ma (Fig. 4). The poor precision on these regression 378 dates, however, rarely allows a given date to be clearly assigned to one orogenic phase or the 379 other, let alone to a restricted period within one of the orogenic phases (Figs. 3, 4). The spread of 380 regression-determined dates is consistent with the conclusion from previous work that the 381 Harrisville titanite grains record both the AMCG-Shawinigan and Ottawan events (Bonamici et 382 al., 2015). It also suggests that regressions are not true isochrons, but rather that they are fits to 383 mixed, non-isochronous data that are variably resolved with different *in situ* measurement 384 385 techniques (see below for further discussion). Larger analytical uncertainties for LA-ICP-MS data, especially, mask the probable geologic scatter within the data, producing isochron 386 regressions with MSWD values ≤ 1 and probabilities of fit > 0.05. Only relatively large 387 388 propagated uncertainties, typically $\geq \pm 50$ m.y., suggest the presence of geologic scatter within the LA-ICP-MS datasets. By comparison, geologic scatter is more apparent in regressions of 389 390 SHRIMP data for the same titanite grains, which produce large MSWD values, probabilities of 391 fit close to zero, and large propagated uncertainties (Fig. 3).

392	Regression-determined dates and Pb _i -corrected dates for a given grain can be compared
393	to check for internal consistency between the analytical and correction methods. An ideal titanite
394	grain that has crystallized at a single time, though with a range of Pb _i concentrations, should
395	produce Pb _i -corrected dates that are identical to one another and to the regressed concordia-
396	intercept date. Differences in Pb _i -corrected dates and/or discrepancy between Pb _i -corrected and
397	regression-determined concordia-intercept dates would suggest internal zoning and non-
398	isochronous grain crystallization. Pb _i -corrected dates are, in fact, not identical across Adirondack
399	titanite grains. Intragrain zoning of Pb _i -corrected dates is statistically resolvable along most
400	traverses measured by SHRIMP, though not by LA-ICP-MS (Fig. 5); nonetheless, the similarity
401	between several SHRIMP and LA-ICP-MS profile shapes suggests that LA-ICP-MS is detecting
402	similar isotopic variability. Similarly, Pb _i -corrected dates and regressed concordia-intercept dates
403	for a given grain generally overlap within the propagated uncertainties of the respective
404	correction methods (Fig. 5). However, the resolvable intragrain zoning of Pb _i -corrected SHRIMP
405	dates and the poor fit metrics for many of the concordia-intercept regressions suggest that this
406	overlap is an artefact of temporally close events (≤100 m.y. apart at greater than 1 Ga) and
407	relatively large analytical uncertainties on the in situ data.
408	The LA-ICP-MS and SHRIMP datasets for several Adirondack titanite grains also allow

for assessment of differential Pb isotope sensitivity and its potential effects on the accuracy of Pb_i-corrected dates. Specifically, differential sensitivity to higher-abundance ²⁰⁶Pb relative to lower-abundance ²⁰⁴Pb or ²⁰⁷Pb could skew measured Pb/Pb ratios used for Pb_i corrections. A quick check for differential Pb isotope sensitivity is to compare 204-corrected versus 207corrected dates for both the SHRIMP and LAICPMS datasets. SHRIMP data corrected with the 204 and 207 methods yield dates that are essentially identical (Table S1), suggesting that

SHRIMP Pb/Pb ratios are not skewed by differential Pb isotope sensitivity. LA-ICP-MS data 415 corrected by the 204 and 207 methods yield different dates, with those corrected by the 204 416 method always systematically younger (Table S2). Differences between the LA-ICP-MS and 417 SHRIMP datasets can be compared graphically by plotting total ²⁰⁷Pb/²⁰⁶Pb vs. total ²⁰⁴Pb/²⁰⁶Pb 418 covariation trends (Fig. 6). The slopes of the covariation trends are markedly different, with the 419 steeper slope for the LA-ICP-MS data arising from the systematically lower ²⁰⁴Pb/²⁰⁶Pb values 420 and indicating lower ²⁰⁴Pb sensitivity relative to SHRIMP. On the other hand, the similar range 421 of ²⁰⁷Pb/²⁰⁶Pb measured by LA-ICP-MS and SHRIMP indicates that LA-ICP-MS-determined 422 ²⁰⁷Pb/²⁰⁶Pb ratios are unaffected by differential Pb isotope sensitivity in these samples. Note that 423 for the purposes of this discussion, the term Pb sensitivity includes the effects of instrument 424 sensitivity, the ²⁰⁴Hg interference correction applied to LA-ICP-MS-measured ratios, and 425 downhole Pb isotope fractionation. Because LA-ICP-MS ²⁰⁴Pb/²⁰⁶Pb ratios but not ²⁰⁷Pb/²⁰⁶Pb 426 ratios are affected, correction for ²⁰⁴Hg, which affects only the ²⁰⁴Pb/²⁰⁶Pb ratio, seems a likely 427 culprit for creating a differential Pb isotope sensitivity problem. This comparison suggests 428 cautious application of ²⁰⁴Hg corrections to LA-ICP-MS data for high Pb_i phases and use of the 429 207 method if differential Pb isotope sensitivity is suspected. 430

431

432 U-Pb isochron evolution on the Tera-Wasserburg (semi-total Pb/U) diagram

Ideally, when a set of titanite grains or domains crystallizes at the same time, the U-Pb data for this population will define sloped linear arrays in Tera-Wasserburg space. Such arrays are often referred to as discordia by analogy with the familiar Wetherill-diagram zircon discordia, which form as a result of changes to the U/Pb ratio due to open-system U or Pb loss. In titanite with no Pb_i, open-system modification of the U/Pb ratio would also produce a sloped, discordant

array of data (Tera and Wasserburg 1974; Schoene 2014). However, most titanite incorporates 438 Pb_i, and sloped, linear arrays are more often mixing arrays treated as isochrons resulting from 439 variable U/Pb_i ratio (μ). If the data are precise and well-spaced (have a range of U/Pb_i), then a 440 regression provides a tightly constrained upper y-axis intercept at the shared Pb_i²⁰⁷Pb/²⁰⁶Pb 441 value and lower intercept with the Tera-Wasserburg concordia at the age of crystallization. 442 The Tera-Wasserburg concordia is the locus of the time-integrated ²⁰⁷Pb/²⁰⁶Pb and 443 238 U/ 206 Pb ratios resulting from U decay in the absence of Pb_i; each point along the concordia is 444 an implicit function of initial ²³⁵U/²³⁸U, and thus time of crystallization. Paths in Figure 7A show 445 the temporal evolution of radiogenic 207 Pb/ 206 Pb and 238 U/ 206 Pb ratios for several initial 235 U/ 238 U 446 ratios. For titanite crystallized since ~ 3.0 Ga, the temporal evolution paths are nearly parallel to 447 the $^{238}\text{U}/^{206}\text{Pb}$ axis because of the much greater relative change in $^{238}\text{U}/^{206}\text{Pb}$ as compared to 448 ²⁰⁷Pb/²⁰⁶Pb during radiogenic Pb ingrowth. 449

The addition of Pb_i to titanite constrains the starting points of the temporal evolution 450 paths to a fixed ²⁰⁷Pb/²⁰⁶Pb value (Fig. 7B). The shapes of the evolution paths depend on the 451 evolving relative proportions of Pb_i with a fixed 207 Pb/ 206 Pb composition and radiogenic Pb, 452 growing in with a time-varying ²⁰⁷Pb/²⁰⁶Pb composition (Fig. 7B, pale gray curves). For 453 proportionally higher Pb_i, evolution paths are steeper, reflecting the dominance of the fixed 454 ²⁰⁷Pb/²⁰⁶Pb value of the Pb_i. For lower Pb_i, evolution paths are shallower, reflecting dominance 455 of the time-varying radiogenic ²⁰⁷Pb/²⁰⁶Pb ratio. Titanite domains that crystallize at the same 456 457 time and have remained closed throughout their evolution but contain varying concentrations of Pb_i will defined a mixing line between the Pb_i composition and the radiogenic Pb composition at 458 any given time. This mixing line will evolve in a systematic way with time, sweeping toward 459 lower ${}^{207}Pb/{}^{206}Pb$ and ${}^{238}U/{}^{206}Pb$, and is thus an isochron (Fig. 7B, dark gray lines). When the Pb_i 460

composition incorporated into titanite has a lower ²⁰⁷Pb/²⁰⁶Pb, the initial Pb-radiogenic Pb
mixing line and the resulting isochrons will have shallower slopes (Fig. 7C, blue lines).
Consequently, linear arrays of titanite U-Pb data that show changes in slope (curve or bend) or
appear to intersect with other linear arrays are indicative of changes in Pb_i composition during
crystallization or recrystallization.

Fractionation of U and Pb results in titanite with variable U/Pb ratio and can arise from 466 differential mobility of these elements during crystallization, recrystallization or intragrain 467 diffusion. In titanite that also incorporates Pb_i, fractionation of U and Pb manifests as 468 subhorizontal data arrays that approximately parallel the ²³⁸U/²⁰⁶Pb axis on the Terra-Wasserburg 469 diagram (Fig. 7D, E). Changes in U/Pb ratio that occur long after initial titanite crystallization 470 should generate more horizontal arrays than changes to U/Pb ratios that occur shortly after 471 crystallization (Fig. 7E; Tera and Wasserburg, 1974) because Pb_i makes ups a larger proportion 472 of total Pb in titanite early on. Pb loss can occur by Pb diffusion or by recrystallization that 473 produces a higher U/Pb ratio than present in earlier-formed titanite. Significant U diffusion in 474 titanite is unlikely (Frost et al., 2000); however, real or apparent U loss can occur when 475 recrystallization produces a lower U/Pb ratio than present in earlier-formed titanite. Significant U 476 477 loss can produce reverse discordance on the Tera-Wasserburg diagram (Fig. 7D). Pb isotopic fractionation during diffusion is expected to be negligible because of the 478 small relative mass differences between Pb isotopes. Pb isotopic variations during 479 480 recrystallization will also be negligible in the case that earlier-formed titanite is the primary

481 source of Pb to later-formed titanite (e.g., interface coupled dissolution-precipitation

recrystallization of Holder and Hacker (2019)). Significant changes to both the U/Pb and Pb/Pb

ratios of titanite are anticipated when recrystallization occurs in the presence of fluids that are

not in equilibrium with respect to the titanite-stabilizing phase assemblage – i.e. fluids external to
the local rock system.

486

487 Interpretation of the Harrisville titanite data from Tera-Wasserburg data patterns

The curvature in Adirondack titanite U-Pb data arrays suggest variation in Pb_i 488 489 composition. Both LA-ICP-MS and SHRIMP data show an approximately linear trend with a slight curvature toward lower slope at 207 Pb/ 206 Pb ~0.12 (Fig. 2). This is expressed by a small 490 offset of some Type-3 and Type-4 data relative to Type-1 and Type-2 data, as well as by greater 491 492 dispersion of data within Type-3 and Type-4 grains relative to Type-2 grains (Fig. 3). Departure from a single linear isochron is also supported by the lack of a three-dimensional model solution 493 for the aggregate data sets (Table 1). The curvature of the Adirondack data arrays suggests that 494 titanite incorporated at least two different compositions of Pb_i, as do linear regressions that 495 project toward varied Pb_i 207 Pb/ 206 Pb values, some of which are significantly lower than ~0.92 496 (Table 1). The subtlety of the array curvature makes defining linear segments by eye and 497 dividing the data into Pb_i compositional groups challenging and potentially quite arbitrary. 498 Differences in Pb_i composition can arise from variations in growth or recrystallization 499 500 environment (Bonamici et al., 2015; Kohn, 2017; Lucassen et al., 2011; Marsh and Smye, 2017; Romer and Rötzler, 2003; Scibiorski et al., 2019), which should also be reflected in other 501 compositional proxies, such as REE content, δ^{18} O, or Th/U ratio. Thus, additional compositional 502 information might be used to identify and define data populations that can appropriately be 503 regressed together. 504

505 In addition to multiple Pb_i components, titanite U-Pb data also show evidence for Pb loss. 506 For a given 207 Pb/ 206 Pb ratio, U-Pb data are dispersed subparallel to the 238 U/ 206 Pb axis (Fig. 8).

The 204 Pb/ 206 Pb ratio decreases toward the concordia (Fig. 8A), but for a given 204 Pb/ 206 Pb value, 507 the 204 Pb-corrected dates decrease systematically parallel to the 238 U/ 206 Pb axis (Fig. 8B). This 508 subhorizontal date gradient is consistent with Pb loss altering the $^{238}U/^{206}Pb$ ratio (Fig. 7D, E). 509 Diffusive Pb loss has been suggested for these grains based on previous work demonstrating 510 diffusion of oxygen isotopes, which have similar diffusivity to Pb at granulite facies conditions 511 512 (Cherniak, 1993; Zhang et al., 2006), and a lack of correlation between chemical and isotopic zoning in the Harrisville grains (Bonamici et al., 2014; 2015). 513 A quantitative model of Pb ingrowth and Pb loss can be constructed to approximate the 514 Harrisville titanite history (Fig. 9; Supplemental Materials). It shows that significant Pb loss 515 ~ 100 m.y. after initial titanite crystallization produces data scatter that is consistent with both the 516 direction and magnitude of offset of Harrisville U-Pb data relative to a 1150-Ma isochron (cf. Fig. 517 8). The model predicts that more recent Pb loss would have shifted the U-Pb data toward 518 significantly higher ²³⁸U/²⁰⁶Pb than observed. Thus, the relatively small, subhorizontal dispersion 519 of U-Pb data on the Tera-Wasserburg diagram is consistent with magmatic titanite crystallization 520 at ca. 1160 Ma followed by Pb loss during granulite-facies metamorphism at ca.1050 Ma. 521 522

523 Implications for interpreting (*in situ*) U-Pb titanite data

Generalizing the geometric considerations of the Tera-Wasserburg diagram and the results from the Harrisville titanite example, U-Pb data patterns can be used to recognize both Pb_i compositional variations on the grain scale and open-system U/Pb fractionation. Previous workers have long understood that data that form sloped linear arrays indicate a shared Pb_i composition and isochronous formation (Ludwig, 1998; Storey et al., 2006; Tera and Wasserburg, 1972; 1974). Indeed, these types of datasets were the motivation for the

development of the Tera-Wasserburg diagram. In many cases, linear data arrays can be
appropriately regressed to find both the shared, single crystallization age and Pb_i composition
(e.g., Stearns et al., 2016; Marsh and Smye, 2017).

In contrast, intersecting and/or curved arrays (e.g., Kirkland et al., 2016) suggest nonisochronous (re)crystallization and variations in the Pb_i composition. Ideally, if distinct linear segments can be recognized within a curved array, the subset of data defining a given segment can be regressed to find an isochron. This analysis also suggests that curved arrays with progressively shallower slopes toward the right, toward higher U/Pb, on the Tera-Wasserburg diagram, are expected because ingrowth of radiogenic Pb over time potentially supplies an increasing radiogenic component to the Pb_i being incorporated into newly (re)crystallized titanite.

Data arrays that are dispersed parallel to the $^{238}U/^{206}Pb$ axis (e.g., Scibiorski et al., 2019) 540 suggest open-system alteration of the U/Pb ratio in an existing titanite grain by diffusion or 541 (re)crystallization, possibly in the presence of a variable-composition fluid. In general, 542 horizontally dispersed data should be treated with caution in choosing isochron regressions 543 because data may have been shifted toward either lower or higher ²³⁸U/²⁰⁶Pb by open-system 544 U/Pb fractionation. Depending on the length scale of U or Pb mobility, ²³⁸U/²⁰⁶Pb may be shifted 545 to both higher and lower values within the same grain (i.e., dispersed horizontally away from the 546 central, true isochron location). Bidirectional dispersal would be expected in the case that Pb 547 diffusion depletes Pb from some regions of a grain while enriching other regions. Our results 548 549 also suggest that reversely discordant points (data that fall to the left of the Tera-Wasserburg concordia) have been shifted subparallel to the ²³⁸U/²⁰⁶Pb axis as a result of open-system 550 551 recrystallization that decreases the U/Pb ratio.

552	In some cases, a subset of titanite U-Pb data form a linear array that can be regressed with
553	the isochron method whereas other data fall significantly off the linear array (e.g., Garber et al.
554	2017). Analyses that do not form part of the linear isochron array represent titanite domains that,
555	relative to the data the define the linear isochron array, have incorporated a different Pb _i
556	composition, (re)crystallized at a different time, or a combination of both. These patterns cannot
557	be created by simple variations in the relative proportions of the same Pb _i and radiogenic Pb
558	between analyses.
559	Finally, data that form a cloud above concordia without well defined, linear or curvilinear,
560	sloped or horizontal, arrays (e.g., Kohn and Corrie, 2011; Garber et al., 2017) reflect some
561	combination of U/Pb fractionation, changing Pb _i composition, and/or variable crystallization age
562	during titanite formation. Interpretation of age significance from such datasets requires additional
563	geologic, petrologic, and microstructural constraints and/or a prior knowledge of expected age
564	populations.
565	
566	Implications
567	Titanite is an opportunistic mineral with highly adaptive crystal chemistry (e.g., Frost et
568	al., 2001; Kohn, 2017), and, as yet, the connections between titanite trace element content and
569	titanite (re)crystallization environment remain only partially explored, especially in subsolidus
570	hydrothermally altered and/or metamorphic titanite. Multiple processes can apparently produce
571	similar trace element variations and patterns in titanite. For instance, microscale intragrain
572	variations in high field strength elements have been linked to fine-scale fluid composition
573	variations (Lucassen et al., 2010a; 2010b; 2011; Gao et al., 2012; Chen et al., 2016), sector

zoning and trace element entrapment during growth (Hayden et al., 2008; Kohn, 2017), and

575	equilibrium or disequilibrium dissolution-reprecipitation processes (Romer and Rötzler, 2003;
576	Olierook et al., 2018; Hartnady et al., 2019; Holder and Hacker, 2019). Trends in titanite rare
577	earth element and actinide contents have also been linked to dissolution-reprecipitation (Garber
578	et al., 2017), as well as to coeval allanite or garnet growth (Garber et al., 2017; Scibiorski et al.,
579	2019), and sector zoning (Kohn, 2017; Bruand et al., 2019). Collectively, these studies suggest
580	that titanite chemistry can record equilibrium trace-element partitioning, especially between
581	titanite and melt, but that equilibrium may be very local (at the scale of grains) and/or that
582	titanite can reflect kinetic limitations on element mobility, attachment, or detachment.
583	Approaches like the Tera-Wasserburg analysis utilized in this study help to reduce the effect of
584	these poorly understood controls on the interpretation of U-Pb systematics by allowing Pb_i
585	variations to be distinguished from U/Pb ratio variations, regardless of the exact process(es)
586	responsible.
587	Moreover, when combined with grain-scale characterization of element and isotopic
588	zoning, the Tera-Wasserburg-based analysis of this study demonstrates an approach for
589	maximizing geochronologic information obtained by in situ U-Pb titanite analysis, especially for
590	rocks with polyphase thermal histories. The approach described here also aids in identifying
591	sources of uncertainty in U-Pb data, whether arising from the analysis itself or from actual
592	geological variability. Even when precise dates are not recovered, geological processes and
593	events that cause data scatter can be recognized through analysis of U-Pb data patterns using the
594	Tera-Wasserburg diagram.

595

596

Acknowledgements

- 597 We thank C. Mark Fanning of the Research School of Earth Sciences at the Australian National
- ⁵⁹⁸ University for enabling SHRIMP U-Th-Pb data collection. We thank Nicki Geisler and Mark
- 599 Pecha of the Arizona Laserchron Center for supporting LA-ICP-MS U-Th-Pb analysis and
- 600 providing data analysis spreadsheets. Brian Hess expertly prepared samples. This work was
- supported through the National Science Foundation [grant number EAR-0838058] (award to
- John Valley). We also thank two anonymous reviewers for useful comments and suggestions for
- 603 the improvement of this manuscript.

604	References Cited
605	Aleinikoff, J.N., Wintsch, R.P., Fanning, C.M., and Dorais, M.J. (2002) U-Pb geochronology of
606	zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA: an
607	integrated SEM, EMPA, TIMS, and SHRIMP study. Chemical Geology, 188, 125-147.
608	Aleinikoff, J.N., Horton, J.W., Drake, A.A., Wintsch, R.P., Fanning, C.M., and Yi, K. (2004)
609	Deciphering multiple Mesoproterozoic and Paleozoic events recorded in zircon and
610	titanite from the Baltimore Gneiss, Maryland: SEM imaging, SHRIMP U-Pb
611	geochronology, and EMP analysis. In Proterozoic Tectonic Evolution of the Grenville
612	Orogen in North America Vol. 197, pp. 411–434. Geological Society of America.
613	Aleinikoff, J.N., Wintsch, R.P., Tollo, R.P., Unruh, D.M., Fanning, C.M., and Schmitz, M.D.
614	(2007) Ages and origins of rocks of the Killingworth dome, south-central Connecticut:
615	Implications for the tectonic evolution of southern New England. American Journal of
616	Science, 307, 63–118.
617	Amelin, Y. (2009) Sm-Nd and U-Pb systematics of single titanite grains. Chemical Geology,
618	261, 53–61.
619	Baird, G.B., and MacDonald, W.D. (2004) Deformation of the Diana syenite and Carthage-
620	Colton mylonite zone: Implications for timing of Adirondack Lowlands deformation. In
621	Memoir 197: Proterozoic Tectonic Evolution of the Grenville Orogen in North America
622	Vol. 197, pp. 285–297. Geological Society of America.
623	Bonamici, C.E., Kozdon, R., Ushikubo, T., and Valley, J.W. (2014) Intragrain oxygen isotope
624	zoning in titanite by SIMS: Cooling rates and fluid infiltration along the Carthage-Colton
625	Mylonite Zone, Adirondack Mountains, NY, USA. Journal of Metamorphic Geology, 32,
626	71–92.

627	Bonamici, C.E., Fanning, C.M., Kozdon, R., Fournelle, J.H., and Valley, J.W. (2015) Combined
628	oxygen-isotope and U-Pb zoning studies of titanite: New criteria for age preservation.
629	Chemical Geology, 398, 70–84.
630	Butler, R.F., Gehrels, G.E., Baldwin, S.L., and Davidson, C. (2002) Paleomagnetism and
631	geochronology of the Ecstall pluton in the Coast Mountains of British Columbia: Evidence
632	for local deformation rather than large-scale transport. Journal of Geophysical Research:
633	Solid Earth, 107, EPM 3-1.
634	Bruand, E., Storey, C., Fowler, M., and Heilimo, E. (2019) Oxygen isotopes in titanite and
635	apatite, and their potential for crustal evolution research. Geochimica et Cosmochimica
636	Acta, 255, 144–162.
637	Cartwright, I., Valley, J., and Hazelwood, AM. (1993) Resetting of oxybarometers and oxygen
638	isotope ratios in granulite facies orthogneisses during cooling and shearing, Adirondack
639	Mountains, New York. Contributions to Mineralogy and Petrology, 113, 208-225.
640	Chen, YX., Zhou, K., Zheng, YF., Gao, XY., and Yang, Y.H. (2016) Polygenetic titanite
641	records the composition of metamorphic fluids during the exhumation of ultrahigh-
642	pressure metagranite in the Sulu orogen. Journal of Metamorphic Geology, 34, 573-594.
643	Cherniak, D.J. (1993) Lead diffusion in titanite and preliminary results on the effects of radiation
644	damage on Pb transport. Chemical Geology, 110, 177-194.
645	—— (2010) Diffusion in Accessory Minerals: Zircon, Titanite, Apatite, Monazite and
646	Xenotime. Reviews in Mineralogy and Geochemistry, 72, 827-869.
647	Chew, D.M., Petrus, J.A., and Kamber, B.S. (2014) U-Pb LA-ICPMS dating using accessory
648	mineral standards with variable common Pb. Chemical Geology, 363, 185–199.

649	DeWolf, C.P., and Mezger, K. (1994) Lead isotope analyses of leached feldspars: Constraints on
650	the early crustal history of the Grenville Orogen. Geochimica et Cosmochimica Acta, 58,
651	5537–5550.

Essex, R.M., and Gromet, L.P. (2000) U-Pb dating of prograde and retrograde titanite growth

during the Scandian orogeny. Geology, 28, 419–422.

- Frost, B.R., Chamberlain, K.R., and Schumacher, J.C. (2001) Sphene (titanite): phase relations
 and role as a geochronometer. Chemical Geology, 172, 131–148.
- 656 Gao, X.-Y., Zheng, Y.-F., Chen, Y.-X., and Guo, J. (2012) Geochemical and U-Pb age
- 657 constraints on the occurrence of polygenetic titanites in UHP metagranite in the Dabie

658 orogen. Lithos, 136–139, 93–108.

659 Garber, J.M., Hacker, B.R., Kylander-Clark, A.R.C., Stearns, M., and Seward, G. (2017)

660 Controls on Trace Element Uptake in Metamorphic Titanite: Implications for

661 Petrochronology. Journal of Petrology, 58, 1031–1057.

- 662 Gehrels, G.E., Valencia, V.A., and Ruiz, J. (2008) Enhanced precision, accuracy, efficiency, and
- spatial resolution of U-Pb ages by laser ablation–multicollector–inductively coupled

664 plasma–mass spectrometry. Geochemistry, Geophysics, Geosystems, 9.

- Gulson, B.L. (1984) Uranium-lead and lead-lead investigations of minerals from the Broken Hill
 lodes and mine sequence rocks. Economic Geology, 79, 476–490.
- 668 Hartnady, M.I.H., Kirkland, C.L., Clark, C., Spaggiari, C.V., Smithies, R.H., Evans, N.J., and
- 669 McDonald, B.J. (2019) Titanite dates crystallisation; slow Pb diffusion during super-
- solidus re-equilibration. Journal of Metamorphic Geology, 37, 823–838.
- 671 Heumann, Mattew J. (2004) Thermochronological and Geochronological studies in the
- 672 Adirondack Highlands and Lowlands, New York. Syracuse University.

- Holder, R.M., and Hacker, B.R. (2019) Fluid-driven resetting of titanite following ultrahigh-
- temperature metamorphism in southern Madagascar. Chemical Geology, 504, 38–52.
- Horstwood, M.S., L. Foster, G., R. Parrish, R., R. Noble, S., and M. Nowell, G. (2003)
- 676 Common-Pb corrected *in situ* U–Pb accessory mineral geochronology by LA-MC-ICP-
- MS. Journal of Analytical Atomic Spectrometry, 18, 837–846.
- Ireland, T.R., and Williams, I.S. (2003) Considerations in Zircon Geochronology by SIMS.
- 679 Reviews in Mineralogy and Geochemistry, 53, 215–242.
- Johnson, E.L., Goergen, E.T., and Fruchey, B.L. (2004) Right lateral oblique slip movements
- followed by post-Ottawan (1050–1020 Ma) orogenic collapse along the Carthage-Colton
- shear zone: Data from the Dana Hill metagabbro body, Adirondack Mountains, New
- 683 York. In Memoir 197: Proterozoic Tectonic Evolution of the Grenville Orogen in North
- 684 America Vol. 197, pp. 357–378. Geological Society of America.
- Johnson, E.L., Selleck, B.W., DeLorraine, B., and Lupulescu, M. (2005) The nature and
- significance of the Carthage-Colton shear zone and related late-to-post tectonic granitesand ore deposits. Friends of the Grenville.
- Jung, S., and Hellebrand, E. (2007) Textural, geochronological and chemical constraints from
- polygenetic titanite and monogenetic apatite from a mid-crustal shear zone: An integrated
 EPMA, SIMS, and TIMS study. Chemical Geology, 241, 88–107.
- Kirkland, C.L., Spaggiari, C.V., Johnson, T.E., Smithies, R.H., Danišík, M., Evans, N., Wingate,
- 692 M.T.D., Clark, C., Spencer, C., Mikucki, E., and others (2016) Grain size matters:
- Implications for element and isotopic mobility in titanite. Precambrian Research, 278,
- 694 283–302.

695	Kirkland,	C.L.,	Hollis, J	., Danišík,	М.	Petersen,	J.,	Evans,	N.J.	, and McDonald	, B.J.	(2017))
	,		, ,	, ,		, ,		,		/	,	`	

- 696 Apatite and titanite from the Karrat Group, Greenland; implications for charting the
- 697 thermal evolution of crust from the U-Pb geochronology of common Pb bearing phases.

698 Precambrian Research, 300, 107–120.

- Kohn, M.J. (2017) Titanite Petrochronology. Reviews in Mineralogy and Geochemistry, 83,
 419–441.
- Kohn, M.J., and Corrie, S.L. (2011) Preserved Zr-temperatures and U–Pb ages in high-grade
 metamorphic titanite: Evidence for a static hot channel in the Himalayan orogen. Earth
 and Planetary Science Letters, 311, 136–143.
- Lamb, W.M. (1993) Retrograde deformation within the Carthage-Colton Zone as recorded by

fluid inclusions and feldspar compositions: tectonic implications for the southern
 Grenville Province. Contributions to Mineralogy and Petrology, 114, 379–394.

707 Li, J.-W., Deng, X.-D., Zhou, M.-F., Liu, Y.-S., Zhao, X.-F., and Guo, J.-L. (2010) Laser

- ablation ICP-MS titanite U–Th–Pb dating of hydrothermal ore deposits: A case study of
- the Tonglushan Cu–Fe–Au skarn deposit, SE Hubei Province, China. Chemical Geology,
 270, 56–67.
- Lucassen, F., Dulski, P., Abart, R., Franz, G., Rhede, D., and Romer, R.L. (2010a) Redistribution
 of HFSE elements during rutile replacement by titanite. Contributions to Mineralogy and
 Petrology, 160, 279–295.
- Lucassen, F., Franz, G., Rhede, D., and Wirth, R. (2010b) Ti-Al zoning of experimentally grown
- 715 titanite in the system CaO-Al₂O₃-TiO₂-SiO₂-NaCl-H₂O-(F): Evidence for small-scale
- fluid heterogeneity. American Mineralogist, 95, 1365.

- Lucassen, F., Franz, G., Dulski, P., Romer, R.L., and Rhede, D. (2011) Element and Sr isotope
 signatures of titanite as indicator of variable fluid composition in hydrated eclogite.
 Lithos, 121, 12–24.
- Ludwig, K.R. (1998) On the Treatment of Concordant Uranium-Lead Ages. Geochimica et
 Cosmochimica Acta, 62, 665–676.
- 722 Ludwig, K (2009) SQUID 2: A User's Manual, rev. 12 Apr, 2009, 110 p.
- Ludwig, K.R. (2012) User's Manual for Isoplot 3.75: A Geochronlogical Toolkit for Microsoft
 Excel, 75 p.
- Marsh, J.H., and Smye, A.J. (2017) U-Pb systematics and trace element characteristics in titanite

from a high-pressure mafic granulite. Chemical Geology, 466, 403–416.

- 727 McGregor, M., McFarlane, C.R.M., and Spray, J.G. (2019) In situ multiphase U-Pb
- geochronology and shock analysis of apatite, titanite and zircon from the Lac La Moinerie
- impact structure, Canada. Contributions to Mineralogy and Petrology, 174, 62.
- 730 McLelland, J.M., Selleck, B.W., and Bickford, M.E. (2010) Review of the Proterozoic evolution
- 731 of the Grenville Province, its Adirondack outlier, and the Mesoproterozoic inliers of the
- Appalachians. Geological Society of America Memoirs, 206, 21–49.
- 733 Mezger, K., Pluijm, B. a. V.D., Essene, E.J., and Halliday, A.N. (1991a) Synorogenic Collapse:
- A Perspective from the Middle Crust, the Proterozoic Grenville Orogen. Science, 254,
 695–698.
- 736 Mezger, K., Rawnsley, C.M., Bohlen, S.R., and Hanson, G.N. (1991b) U-Pb Garnet, Sphene,
- 737 Monazite, and Rutile Ages: Implications for the Duration of High-Grade Metamorphism
- and Cooling Histories, Adirondack Mts., New York. The Journal of Geology, 99, 415–
- 739 428.

740	Mezger, K., Pluijm, B.A. van der, Essene, E.J., and Halliday, A.N. (1992) The Carthage-Colton
741	Mylonite Zone (Adirondack Mountains, New York): The Site of a Cryptic Suture in the
742	Grenville Orogen? The Journal of Geology, 100, 630-638.
743	Mezger, K., Essene, E.J., van der Pluijm, B.A., and Halliday, A.N. (1993) U-Pb geochronology
744	of the Grenville Orogen of Ontario and New York: constraints on ancient crustal
745	tectonics. Contributions to Mineralogy and Petrology, 114, 13-26.
746	Olierook, H.K.H., Taylor, R.J.M., Erickson, T.M., Clark, C., Reddy, S.M., Kirkland, C.L., Jahn,
747	I., and Barham, M. (2019) Unravelling complex geologic histories using U-Pb and trace
748	element systematics of titanite. Chemical Geology, 504, 105-122.
749	Papapavlou, K., Darling, J.R., Storey, C.D., Lightfoot, P.C., Moser, D.E., and Lasalle, S. (2017)
750	Dating shear zones with plastically deformed titanite: New insights into the orogenic
751	evolution of the Sudbury impact structure (Ontario, Canada). Precambrian Research, 291,
752	220–235.
753	Papapavlou, K., Darling, J.R., Moser, D.E., Barker, I.R., White, L.F., Lightfoot, P.C., Storey,
754	C.D., Dunlop, J., and EIMF (2018) U-Pb isotopic dating of titanite microstructures:
755	potential implications for the chronology and identification of large impact structures.
756	Contributions to Mineralogy and Petrology, 173, 82.
757	Prowatke, S., and Klemme, S. (2005) Effect of melt composition on the partitioning of trace
758	elements between titanite and silicate melt. Geochimica et Cosmochimica Acta, 69, 695-
759	709.
760	Romer, R.L., and Rötzler, J. (2003) Effect of metamorphic reaction history on the U-Pb dating of
761	titanite. Geological Society, London, Special Publications, 220, 147–158.

- Rubatto, D., and Scambelluri, M. (2003) U-Pb dating of magmatic zircon and metamorphic
 baddeleyite in the Ligurian eclogites (Voltri Massif, Western Alps). Contributions to
- 764 Mineralogy and Petrology, 146, 341–355.
- Schoene, B. (2014) 4.10-U–Th–Pb Geochronology. Treatise on Geochemistry, 4, 341–378.
- 766 Scibiorski, E., Kirkland, C.L., Kemp, A.I.S., Tohver, E., and Evans, N.J. (2019) Trace elements
- in titanite: A potential tool to constrain polygenetic growth processes and timing.
 Chemical Geology, 509, 1–19.
- Stacey, J.S., and Kramers, J.D. (1975) Approximation of terrestrial lead isotope evolution by a
 two-stage model. Earth and Planetary Science Letters, 26, 207–221.
- 571 Stearns, M.A., Hacker, B.R., Ratschbacher, L., Rutte, D., and Kylander-Clark, A.R.C. (2015)
- Titanite petrochronology of the Pamir gneiss domes: Implications for middle to deep
 crust exhumation and titanite closure to Pb and Zr diffusion. Tectonics, 34, 784–802.
- 574 Stearns, M.A., Cottle, J.M., Hacker, B.R., and Kylander-Clark, A.R.C. (2016) Extracting thermal
- histories from the near-rim zoning in titanite using coupled U-Pb and trace-element depth
- profiles by single-shot laser-ablation split stream (SS-LASS) ICP-MS. Chemical Geology,
- 777 422, 13–24.
- Stern, Robert (1997) The GSC sensitive high resolution ion microprobe (SHRIMP): analytical

techniques of zircon U–Th–Pb age determinations and performance evaluation.

- 780 Geological Survey of Canada Report, 10, 1–31.
- 781 Storey, C.D., Jeffries, T.E., and Smith, M. (2006) Common lead-corrected laser ablation ICP-
- MS U–Pb systematics and geochronology of titanite. Chemical Geology, 227, 37–52.

783 Sto	ev. C.D	. Smith.	M.P.,	and Jeffries.	T.E.	(2007)) In situ	LA-	ICP-MS	U–Pb	dating	of
---------	---------	----------	-------	---------------	------	--------	-----------	-----	--------	------	--------	----

- metavolcanics of Norrbotten, Sweden: Records of extended geological histories in
 complex titanite grains. Chemical Geology, 240, 163–181.
- Streepey, M., E. L. Johnson, K. Mezger, and B. A. van der Pluijm (2001) Early History of the
- 787 Carthage-Colton Shear Zone, Grenville Province, Northwest Adirondacks, New York
 788 (U.S.A.). The Journal of Geology, 109, 479–492.
- problem of initial Pb in lunar rocks. Earth and Planetary Science Letters, 14, 281–304.

Tera, F., and Wasserburg, G.J. (1972) U-Th-Pb systematics in three Apollo 14 basalts and the

791 Tera, F., and Wasserburg, G.J. (1974) U-Th-Pb systematics on lunar rocks and inferences about

- lunar evolution and the age of the moon. In Lunar and Planetary Science Conference
 Proceedings Vol. 5, pp. 1571–1599.
- 794 Tiepolo, M., Oberti, R., and Vannucci, R. (2002) Trace-element incorporation in titanite:

constraints from experimentally determined solid/liquid partition coefficients. ChemicalGeology, 191, 105–119.

- 797 Timms, N.E., Pearce, M.A., Erickson, T.M., Cavosie, A.J., Rae, Auriol S. P., Wheeler, J.,
- 798 Wittmann, Axel, Ferrière, Ludovic, Poelchau, Michael H., Tomioka, Naotaka, and others
- (2019) New shock microstructures in titanite (CaTiSiO5) from the peak ring of the
- 800 Chicxulub impact structure, Mexico. Contributions to Mineralogy and Petrology, 174, 38.
- 801 Verts, L.A., Chamberlain, K.R., and Frost, C.D. (1996) U-Pb sphene dating of metamorphism:
- the importance of sphene growth in the contact aureole of the Red Mountain pluton,
- Laramie Mountains, Wyoming. Contributions to Mineralogy and Petrology, 125, 186–
- 804

199.

- Williams, I.S. (1998) U-Th-Pb geochronology by ion microprobe. Reviews in Economic
 Geology, 7, 1–35.
- 807 Wohlgemuth-Ueberwasser, C.C., Tegner, C., and Pease, V. (2017) LA-Q-ICP-MS apatite U/Pb
- geochronology using common Pb in plagioclase: Examples from layered mafic intrusions.
- American Mineralogist, 102, 571–579.
- 810 Zhang, X.Y., Cherniak, D.J., and Watson, E.B. (2006) Oxygen diffusion in titanite: Lattice
- diffusion and fast-path diffusion in single crystals. Chemical Geology, 235, 105–123.

813	Figure Captions
814	Figure 1. Post-analysis images of U-Pb LA-ICP-MS and SHRIMP analysis pits at a similar scale.
815	Both sets of analysis pits have similar diameters, 35-40 μ m. SHRIMP pits are 2-3 μ m deep; LA-
816	ICP-MS pits are 15 µm deep.
817	
818	Figure 2. Total LA-ICP-MS and SHRIMP U-Pb titanite datasets, colored by grain 'Type' as
819	determined by microstructural setting (Bonamici et al., 2014; 2015). The LA-ICP-MS dataset is
820	more extensive ($n = 280$) than the SHRIMP dataset ($n = 101$) because of the shorter analysis time.
821	
822	Figure 3. Total Pb/U plots for each Adirondack titanite grain. Grain designations are listed in
823	upper right corner of each plot with the Type in parentheses behind. See Table 1 for grain Type
824	explanations. LA-ICP-MS data shown in gray; SHRIMP data shown in black. Constrained 3D
825	linear regressions are projected into the 2D space of the Tera-Wasserburg diagram. Lower
826	concordia intercepts and MSWDs for constrained 3D and 2D regressions are given for each grain.
827	Leftmost column contains Type-1 and -2 grains, which show generally small U/Pb ratio spread
828	and highly clustered analyses. Center column contains Type-3 grains, which show greater U/Pb
829	variations. The rightmost column contains Type-4 grains showing the largest spread in U/Pb
830	ratios.
831	

Figure 4. Results of 3D linear isochron regressions (Ludwig, 2012) for individual Adirondack
titanite grains, showing large uncertainties and relatively poor age constraints provided by this
type of analysis. See also Figure 3 and Table 1. (A) Concordia-intercept ages and 2SD
uncertainties from regressions with constrained Pb_i ²⁰⁷Pb/²⁰⁶Pb. Light gray fields show the

known age ranges for the Shawinigan and Ottawan phases of the Grenville orogenic cycle for
reference. (B) Lower intercepts and 2SD uncertainties, in the Tera-Wasserburg plane, of
unconstrained regressions. Within large uncertainties, all but one grain (HA12B) give lower
intercepts the overlap concordia. All regressions of SHRIMP data return MSWD values greater
than 2. Approximate ages for the Shawinigan and Ottawan phases are indicated on the concordia
for reference.

842

Figure 5. Comparison of individually Pb_i-corrected U-Pb dates for a subset of Adirondack 843 titanite grains that were analyzed by both LA-ICP-MS and SHRIMP. Traverses show the spatial 844 variations in Pb_i-corrected ²³⁸U/²⁰⁶Pb dates. Profiles are generated using the preferred Pb_i-845 correction for each analytical technique-207 method for LA-ICP-MS and 204-method for 846 SHRIMP. Vertical bars show average, external 1_o uncertainties for SHRIMP (red) and LA-ICP-847 MS (blue). Dashed horizontal lines show mean concordia-intercept ages from 3D linear isochron 848 regressions; note that uncertainties on these regression ages are not shown but are generally large 849 (see Fig. 4). U-Pb profiles for all grains in this study can be found in Supplemental Figures S1 850 through S13. 851

852

Figure 6. Plot of total ²⁰⁷Pb/²⁰⁶Pb vs. total ²⁰⁴Pb/²⁰⁶Pb measured in Harrisville titanite by LAICP-MS (blue) and SHRIMP (red). See text for discussion.

855

Figure 7. Schematic diagrams showing the behavior of U-Pb data on a Tera-Wasserburg diagram.

(A) Selected paths showing the ingrowth of radiogenic Pb in the absence of Pb_i as function of

various starting U isotope compositions. Topmost path shows ingrowth trajectory for a titanite

grain crystallized at the time of Earth formation with the primodial (meteoritic) U isotope 859 composition. (B) Evolution of a mixing line (isochron) between Pb* and Pb_i with 207 Pb/ 206 Pb = 860 0.96. Black line with the steepest slope represents the present-day isochron. Gray lines with 861 negative slopes show the position of the isochron at different arbitrary times during its evolution 862 from its initial to its present-day position. Gray lines with positive slopes show ingrowth curves 863 for Pb* mixed with variable proportions of Pb_i. Pb_i composition is shown by the horizontal 864 dashed line. (C) Same as B with a different isochron evolution superimposed (blue lines), 865 demonstrating the effect of later titanite (re)crystallization with a different, more radiogenic Pb_i 866 $(^{207}\text{Pb}/^{206}\text{Pb} = 0.6)$. (D) Schematic representation of Pb ingrowth trajectories for titanite suffering 867 open-system modification of its U/Pb ratio. Thin colored lines are normal ingrowth trajectories 868 (with varying proportions of Pb_i); heavier arrows simulate instantaneous change in U/Pb ratio by 869 either recent or ancient open-system event. Subsequently, Pb ingrowth returns to closed-system 870 behavior (thin lines). (E) Schematic representation of the U-Pb data arrays expected in the case 871 of open-system U/Pb ratio modification, as demonstrated in D. 872 873 874 Figure 8. U-Pb analyses with color scaling showing covariation with additional isotopic data. (A) SHRIMP data and (B) LA-ICP-MS data with color scaling showing total ²⁰⁴Pb/²⁰⁶Pb. The 875 876 transition from warm to cool colors toward concordia is consistent with decreasing relative abundance of Pb_i. (C) SHRIMP data and (D) LA-ICP-MS data with color scaling showing 204-877 corrected date. Comparison with A and B suggests that for a given 204 Pb/ 206 Pb value (Pb_i) 878 879 abundance), variation in Pb_i-corrected dates reflects variation in U/Pb ratio. Only Type 1 and Type 2 data, which retain evidence for oxygen isotope and Pb diffusion (Bonamici et al. 2014; 880 2015), are shown in B and D. 881

883	Figure 9. Quantitative models showing the effect of Pb loss on U-Pb systematics for titanite with
884	Pb _i on the Terra-Wasserberg diagram. Model is constructed to simulate possible scenarios for the
885	Harrisville titanite grains: initial crystallization at 1150 Ma with low Pb _i followed by Pb loss
886	shortly after crystallization at 1050 Ma (orange curve) or Pb loss long after crystallization at 650
887	Ma (green curve). Modeling details in Supplemental Materials. (A) Ingrowth curves showing full
888	ingrowth trajectories, including Pb loss events. (B) Expanded region of A showing where
889	evolution curves end (X's), relative to the 1150 Ma and 1050 Ma isochrons, and depending on
890	the timing of Pb loss.

Appendix

Stacey and Kramers (1975) determined modern-day crustal average Pb isotope ratios to be $^{206}Pb/^{204}Pb = 18.70$, $^{207}Pb/^{204}Pb = 15.63$, and $^{208}Pb/^{204}Pb = 38.63$, based on Pb isotopic data from "conformable" galena. They then fitted a two-stage Pb evolution curve, the second stage having $\mu = ^{238}U/^{204}Pb = 9.74$. In practice, Pb_i ratios based on the Stacey and Kramers (1975) model can be calculated for materials younger than 3.7 Ga from equations 1 and 2 below, using the modernday crustal average Pb isotope ratios and an approximate age (Stacey and Kramers model Pb ratios are superscipted SK).

900

901
$$\left(\frac{{}^{206}Pb}{{}^{204}Pb}\right)_{i}^{SK} = \left(\frac{{}^{206}Pb}{{}^{204}Pb}\right)_{i}^{SK} (e^{238^{t}} 1) [eq.1]$$

902
$$\left(\frac{{}^{207}Pb}{{}^{204}Pb}\right)_{i}^{SK} = \left(\frac{{}^{207}Pb}{{}^{204}Pb}\right)_{today}^{SK} \frac{1}{137.82} (e^{235t} 1) [eq.2]$$

903

The 204 method initial Pb correction (Stern, 1997) subtracts the initial Pb fraction ($^{204c}f_{206}$), calculated using Stacey and Kramers (1975) Pb_i ratios, from the total measured 206 Pb/ 238 U to determine the radiogenic 206 Pb/ 238 U ratio.

907
$${}^{204c}f_{206} = \frac{{}^{206}Pb_i}{{}^{206}Pb_{total}} = \frac{\left(\frac{{}^{204}Pb/{}^{206}Pb}{{}^{measured}}\right)_{measured}^{unknown}}{\left(\frac{{}^{204}Pb/{}^{206}Pb}{{}^{5K}}\right)_i^{5K}} \qquad [eq.3]$$

908
$$\left(\frac{{}^{206}Pb^{*}}{{}^{238}U}^{\right)}_{corrected}^{unknown} = \left(1 {}^{204c}f_{206}\right) \left(\frac{{}^{206}Pb}{{}^{238}U}^{\right)}_{measured}^{unknown} [eq.4]$$

910 The 207 method Pb_i correction (Stern, 1997) subtracts the initial Pb fraction ($^{207c}f_{206}$), calculated 911 using Stacey and Kramers (1975) Pb_i values and a starting guess or "expected" radiogenic 912 207 Pb/ 206 Pb ratio, from the total measured 207 Pb/ 206 Pb to determine the corrected radiogenic 913 207 Pb/ 206 Pb ratio.

914
$${}^{207c}f_{206} = \frac{{}^{206}Pb_i}{{}^{206}Pb_{total}} = \frac{\left(\frac{{}^{206}Pb}{{}^{207}Pb}\right)_{measured}^{unknown}}{\left(\frac{{}^{206}Pb}{{}^{207}Pb}^*\right)_{expected}} \left(\frac{{}^{206}Pb}{{}^{207}Pb}\right)_i^{SK}}{\left(\frac{{}^{206}Pb}{{}^{207}Pb}^*\right)_{expected}} \left[eq.5\right]$$

915
$$f_{207} = {}^{207c} f_{206} \quad \frac{\left({}^{207} Pb/{}^{206} Pb\right)_{i}^{SK}}{\left({}^{207} Pb/{}^{206} Pb\right)_{measured}^{unknown}} \quad [eq.6]$$

916
$$\left(\frac{{}^{207}Pb^{*}}{{}^{206}Pb^{*}}\dot{j}_{corrected}\right)^{unknown} = \left(\frac{{}^{207}Pb}{{}^{206}Pb}\dot{j}_{measured}\right)^{unknown} \times \frac{\left(1 \quad f_{207}\right)}{\left(1 \quad {}^{207c}f_{206}\right)} \qquad [eq.7]$$

917

918

919

Table 1. Summary descriptions and interpretations of titanite types from Harrisville area from previous work.

Titanite Type	Microstructural and Zoning Description	Reference
1	Anhedral grains (100-500 μ m) within lenses of grain-size-reduced augite + quartz + oxides ± hornblende that define local S ₁ protomylonitic fabric. Subtle oscillatory zoning in major, minor elements and Th/U. Core-to-rim decreasing δ^{18} O of $\leq 0.8\%$. Interpretation: Magmatic titanite crystallized in AMCG Diana syenite; solid-state grain-size reduction during Ottawan deformation.	Bonamici et al. 2011; 2014; 2015
2	Rounded porphyroclasts (100-1300 µm) within local S ₂ shear zones. Some show subgrain development and/or recrystallization at margins. Some are transected by one set of thin deformation twins. Chemical zoning marked by small, step-like and oscillating changes in minor and trace elements and Th/U. Core-to-rim decreasing δ^{18} O of $\leq 1.5\%$ <i>Interpretation:</i> Late magmatic titanite crystallized in AMCG Diana syenite, sheared as porphyroclasts during Ottawan deformation	Mezger et al. 1992; Bonamici et al., 2014; 2015
3	Anhedral/xenoblastic grains and grain aggregates (~500-5000 μ m) within veins that crosscut local S ₁ foliation and variably contain local S ₂ foliation. Grains commonly contain one or two sets of deformation twins. Veins vary in mineralogy but commonly contain augite, K-feldspar, apatite, scapolite, and other calcsilicate minerals in addition to titanite. Sharply oscillating zoning in minor and trace elements. <i>Interpretation:</i> Vein titanite crystallized from alkaline fluids cross-cutting Diana metasyenite during Ottawan deformation and metamorphism.	Johnson et al. 2005; Heumann, 2006; Bonamici et al. 2014; 2015
4	Xenoblastic grains partially overgrowing local S_3 mylonitic fabric. Pronounced zoning marked by sharp changes in minor and trace elements and Th/U. Nearly uniform δ^{18} O across grain interiors with increasing δ^{18} O (up to 1‰) in outer grain domains, coincident with pronounced chemical zoning. <i>Interpretation:</i> Magmatic titanite crystallized in AMCG Diana syenite; solid- state grain-size reduction during Ottawan metamorphism and deformation; solid-state rim growth during waning Ottawan metamorphism.	Bonamici et al. 2014; 2105

	Concordia Intercept	2a + (Ma)	MOWD	Prob of Fit	TW plane incercept 238/206 ¹
	Age (Ma)	20 ± (Wa)	IVISVUD	FIOD. OF III	230/200
HA12B HRIMP - uncon⁴			2.5	0	5.1
SHRIMP - BH con ⁵ LAICPMS - uncon	1251	460	3.5 0.2	0 0.999	4.78
LAICPMS - con ⁶	1206	210	0.2	1	
<u>TYPE 2</u> HA03A S1					
SHRIMP - uncon SHRIMP - BH con	1146	120	4.7 5.8	0 0	4.76
LAICPMS - uncon LAICPMS - con	1111	48	0.62	0.98	5.27
SHRIMP - uncon SHRIMP - con	1182	390	3 3.1	0 0	4.4
LAICPMS - uncon LAICPMS - con	1128	130	0.49 1.5	0.999 0.016	3.31
HA09A2 S3 SHRIMP - uncon SHRIMP - con	1167	110	5.5 6.4	0 0	4.03
HA09A S2 LAICPMS - uncon LAICPMS - con	1143	110	1.2 1.2	0.17 0.18	4.76
HA09A S15 LAICPMS - uncon LAICPMS - con	1120	69	0.56 0.57	0.98 0.98	5.33
<u>TYPE 3</u> HA07B S1 LAICPMS - uncon	no solution	00	0.55	0.00	
LAICPMS - con HA07B S9	1064	63	0.55	0.99	
LAICPMS - uncon LAICPMS - con	935	190	0.57 0.54	0.81 0.85	6.4
HA08A S1 LAICPMS - uncon LAICPMS - con	947	110	2.2 2.1	0.001 0.002	6.31
HA12A S1 LAICPMS - uncon LAICPMS - con	1016	44	1.03 1.03	0.42 0.41	5.86

Table 2. Total Pb/U (3D) isochron regressions of U-Pb titanite data and associated go

HA18					
SHRIMP - uncon			4	0	4.3
SHRIMP - con	1220	370	4 1	0	
LAICPMS - uncon		•.•	1.3	0 14	5 38
LAICPMS - con	1101	38	1.3	0.13	0.00
HA10D					
I AICPMS - uncon			0 71	0.96	57
LAICPMS - con	1043	28	0.72	0.96	011
			•=	0.00	
TYPE 4					
HA13 S1					
LAICPMS - uncon			0.37	1	5 24
LAICPMS - con	1127	27	0.39	1	0.21
HA13 S2					
SHRIMP - uncon			4 5	0	5 53
SHRIMP - con	1124	75	5.8	0	0.00
	1124	10	0.0	0 94	5 23
	1100	22	0.74	0.04	0.20
LAIGEINIS - COIT	1120	23	0.76	0.9	
A1 1					
	no colution				
	no solution				
SHRIMP - con	no solution				
LAICPMS - uncon	no solution				
LAICMPS - con	no solution				

¹Regressed Tera-Wasserburg plane intercept value. For grains formed between ~1200 and 1000 Ma, concordia (ra

²Regressed common Pb plane intercept value. For grains formed between ~1200 and 1000 Ma, concordia (radioge ³Ratio of regressed mean 207/204 and 206/204 values giving the upper intercept 207/206 value. Errors on 206/204

⁴Unconstrained 3D isochron solution with no restriction on initial Pb composition.

⁵3D isochron regression constrained with initial Pb composition based on the Broken Hills feldspar standard. Broke does not return a solution. Ratios less than zero are not allowed.

⁶3D isochron solution constrained with initial Pb composition based on present day Stacey and Kramers (1975) Pb

	TW plano		Common Pb		Common Pb	
	intercept		intercept		intercept	
2σ ±	207/206 ¹	2σ ±	206/204 ²	2σ ±	207/204 ²	2σ ±
1.4	0.128	0.025	9 0	27 45	8.7 12.8	4.4 6.2
0.95	0.06	0.12	-4 0	42 39	27 23.3	27 5.2
0.53	0.089	0.0081	-35 0	51 49	5.6 13.5	5.8 6.3
0.25	0.0807	0.0084	-8 0	37 37	21.5 25.3	7.3 4.5
1.6	0.097	0.016	-53 0	170 160	9 13	18 21
0.73	0.096	0.015	-448 0	270 100	-32 26	29 12
0.46	0.0888	0.0045	-14 0	54 56	6.3 13.3	5.4 6.8
0.56	0.078	0.012	-75 0	110 90	18 24	14 11
0.36	0.0811	0.008	56 48	54 54	26.1 28.7	7.9 6.4

odness-of-fit metrics.

			100	87	37.1	9.9
1.3	0.078	0.028	280 280	210 220	28 56	35 23
0.8	0.079	0.033	127 128	68 68	33 38	20 7.5
0.27	0.081	0.013	75 75	30 30	26.9 32	9.6 3.8

1.6	0.094	0.022	-42 0	140 110	6 14	16 15
0.2	0.087	0.016	51 50	23 23	27 33.7	10 3.8
0.17	0.0765	0.004	143 141	50 51	37.2 41.1	8.6 5.9
0.14	0.0832	0.0084	36 36	11 11	25.5 28	3.9 1.9
0.36	0.0844	0.0045	28 14	19 23	14.1 15 1	2.3 2.8
0.11	0.0838	0.0067	46 46	11 11	27.5 30.9	3.9 2

adiogenic) values are in the range of 5-6.

enic) values are in the range 0.07-0.08.

1 and 207/204 propagated in quadrature to determine uncertainty on 207/206.

In Hills fsp Pb ratios are: 6/4 = 16.0, 7/4 = 15.39, 8/4 = 35.66, thus 7/6 = 0.962. Used only when a present day Stace

values: 6/4 = 18.5 and 7/4 = 15.6, thus 7/6 = 0.843. Ratios less than zero are not allowed

Common Pb plane intercept	
207/206 ³	2σ ±
0.967	2.94
undef	undef
-6.750	71.20
undef	undef
-0.160	0.29
undef	undef
-2.688	12.46
undef	undef
-0.170	0.64
undef	undef
0.071	0.08
undef	undef
-0.450	1.78
undef	undef
-0.240	0.40
undef	undef
0.466	0.47
0.598	0.69
0.371	0.34
0.100	0.15
0.200	0.18
0.260	0.21
0.297	0.17
0.359	0.19
0.427	0.18

-0.143	0.61
undef	undef
0.529	0.31
0.674	0.32
0.260	0.11
0.291	0.11
0.708	0.24
0.778	0.24
0.504	0.35
1.079	1.78
0.598	0.17
0.672	0.17

y and Kramers (1975) correction

