1	Revision 1
2	
3	
4	
5	
6	
	Ti Diffusion in Foldsnar
7	Ti Diffusion in Feldspar
8	D.J. Cherniak*, E.B. Watson
9	Department of Earth and Environmental Sciences
10	Rensselaer Polytechnic Institute
11	Troy, NY 12180 USA
12	
13	
14	
15	
16	
17	
17	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	*Corresponding author:
33	D.J. Cherniak
34	Department of Earth & Environmental Sciences
35	Rensselaer Polytechnic Institute
36	Troy, NY 12180
37	chernd@rpi.edu
38	\sim 1
39	
40	
41	Keywords: titanium, feldspar, diffusion, Rutherford Backscattering spectrometry

42 Abstract

Chemical diffusion of Ti has been measured in natural K-feldspar and plagioclase. The
sources of diffusant used were TiO_2 powders or pre-annealed mixtures of TiO_2 and Al_2O_3 .
Experiments were run in crimped Pt capsules in air, or in sealed silica glass capsules with solid
buffers (to buffer at NNO). Rutherford Backscattering Spectrometry (RBS) was used to measure
Ti diffusion profiles. From these measurements, the following Arrhenius relations are obtained
for diffusion normal to (001):
For oligoclase, over the temperature range 750-1050°C: $D_{Olig} = 6.67 \times 10^{-12} \exp(-207 \pm 31 \text{ kJ mol}^{-1}/\text{RT}) \text{ m}^2 \text{sec}^{-1}$ For labradorite, over the temperature range 900-1150°C: $D_{Lab} = \text{of } 4.37 \times 10^{-14} \exp(-181 \pm 57 \text{ kJ mol}^{-1}/\text{RT}) \text{ m}^2 \text{sec}^{-1}$
For K-feldspar, over the temperature range 800-1000°C: $D_{Ksp} = 3.01 \times 10^{-6} \exp(-342 \pm 47 \text{ kJ mol}^{-1}/\text{RT}) \text{ m}^2 \text{sec}^{-1}$ Diffusivities for experiments buffered at NNO are similar to those run in air, and the presence
of hydrous species appears to have little effect on Ti diffusion. Ti diffusion also shows little
evidence of anisotropy. In plagioclase, there appears to be a dependence of Ti diffusion on An
content of the feldspar, with Ti diffusing more slowly in more calcic plagioclase. This trend is
similar to that observed for other cations in plagioclase, including Sr, Pb, Ba, REE, Si and Mg. In
the case of Ti, an increase of 30% in An content would result in an approximate decrease in
diffusivity of an order of magnitude.
These data indicate that feldspar should be moderately retentive of Ti chemical signatures,
depending on feldspar composition. Ti will be more resistant to diffusional alteration than Sr.
For example Ti zoning on a 50µm scale in oligoclase would be preserved at 600°C for durations
of ~ 1 million years, with Sr zoning preserved only for ~70,000 years at this temperature. These

- new data for a trace impurity that is relatively slow-diffusing and ubiquitous in feldspars (Hoff
- and Watson 2018) have the potential to extend the scope and applicability of t-T models for
- rustal rocks based on measurements of trace elements in feldspars.
- 74

75 Introduction

76	Feldspars are among the most abundant minerals in the earth's crust. Ti is an important trace
77	element in feldspar, likely substituting on tetrahedral sites (e.g., Parsons et al., 2008; Peters et al.,
78	1995). Tetrahedrally coordinated Ti in albitic alkali feldspars is an activator for
79	cathodolominescence (Parsons et al, 2008); fine-scale zoning in feldspars observable through CL
80	can provide information on crystal growth and geochemical histories. Ti gradients and other
81	small-scale compositional variations within plagioclase grains may provide insight into magma
82	chamber dynamics and processes influencing magma transport (e.g., Singer et al, 1995; Adams
83	et al, 2011; Salmonsen et al., 2011; Ginibre et al., 2004). Ti concentrations in feldspar may also
84	be affected by fluid mediated processes, for example the loss of Ti during albitization of potassic
85	feldspar (Norberg et al., 2014). Feldspars may also contain Ti-rich phases formed by exsolution
86	(e.g. Wenk et al., 2011; Ageeva et al, 2016). Further, recent work (Hoff and Watson, 2018) has
87	indicated that Ti concentrations in feldspar may have potential as a geothermobarometer.
88	Characterizing diffusion of Ti in feldspar provides critical constraints on these processes, and
89	may permit derivation of information about thermal and chemical histories from Ti distributions.
90	In this study, we measure Ti diffusion in K-feldspar and plagioclase, evaluating potential
91	effects of feldspar composition, orientation, and fO2 on Ti diffusion and consider these data with
92	respect to diffusivities of other cations in feldspar and Ti mobilities in other mineral phases.
93 94	Experimental Procedure and Materials
95	Diffusion experiments were conducted on specimens of natural K-feldspar and plagioclase.
96	The K-feldspar (Or_{93}) is from Madagascar, the albite (Or_1) is from Brazil (#135031 from the

- 97 collection at the National Museum of Natural History), the oligoclase (An₂₃) is from North
- 98 Carolina (kindly provided by D.S. Miller), the labradorite (An₆₇) is from Lake County, Oregon (#

99 135512-1 from the collection at the National Museum of Natural History), and the anorthitic 100 feldspar (An₉₃) is from Pacaya Volcano (kindly provided by D.R. Baker). Compositional 101 information on the feldspars is presented in Table 1. These feldspars have been used is some of 102 our previous studies of diffusion of other elements, including Sr (Cherniak and Watson, 1992; 103 1994; Cherniak, 1996), Pb (Cherniak, 1995), Ba (Cherniak, 2002), REE (Cherniak, 2003a), Si 104 (Cherniak, 2003b) and Mg (Van Orman et al., 2014). The feldspars were oriented, cut into slabs 105 about 0.5mm thick and a few mm on a side, and polished with SiC papers, then with 0.3 µm 106 alumina, with a final chemical polish using colloidal silica. 107 Ti diffusion experiments were conducted using powder sources containing TiO₂. The powder 108 sources consisted of either dried TiO₂ powder, or mixtures of TiO₂ and Al₂O₃ powders in 3:1 or 109 10:1 (by wt.) ratios, ground under ethanol, dried, and heated in a Pt crucible for one day at 110 1250°C. Sources of diffusant were selected for use in experiments because they did not react 111 with and degrade sample surfaces during diffusion anneals. Use of sources with differing Ti 112 concentrations also permitted some exploration of whether there might be concentration 113 dependence of diffusivities, albeit over a limited compositional range. Experiments were 114 prepared by surrounding feldspar crystals with the source powders in Pt capsules and crimping 115 capsules shut. For experiments run under buffered conditions, the Pt capsules were placed inside 116 a silica glass ampoule with another crimped Pt capsule containing the buffer material (mixtures 117 of Ni metal and nickel oxide powders to buffer at NNO); silica glass chips were used to 118 physically separate the sample and buffer capsules inside the silica glass ampoule. The sample-119 buffer assemblies were then sealed in the silica ampoule under vacuum. An experiment was also 120 conducted to assess the effects of the presence of hydrous species on Ti diffusion. For this 121 experiment, the capsule was prepared as above for the buffered experiments, but with the

122	addition of a few mg of glycine (C ₂ H ₅ NO ₂ , which decomposes at 233°C) placed in the bottom of
123	the silica glass ampoule before loading the buffer and sample capsules.
124	All experiments under 1100°C were run in one-atmosphere tube furnaces with Kanthal wire
125	windings; experiments above 1100°C were run in a one-atmosphere horizontal tube furnace with
126	MoSi ₂ heating elements. Sample temperatures monitored by type K or type S (Pt-Pt10%Rh)
127	thermocouples, for temperatures below and above 1100°C, respectively. Temperature
128	uncertainties were $\sim \pm 2^{\circ}$ C for both thermocouple types. Experiments were quenched by removing
129	them from the furnaces and permitting them to cool in air. The feldspar crystals were removed
130	from capsules and cleaned ultrasonically in distilled H ₂ O and ethyl alcohol. SEM imaging of
131	sample surfaces following diffusion anneals showed little evidence of residual source material
132	remaining following cleaning. Experimental conditions are presented in Tables 2 and 3.
133	We performed time-series studies for both oligoclase and K feldspar in order to verify that the
134	measured concentration profiles represent volume diffusion and are not a consequence of other
135	phenomena such as surface reaction that might otherwise result in enhanced concentrations of
136	the diffusing species in the near-surface region. For the time series, a set of diffusion
137	experiments were conducted at 900°C for both feldspars.
138	
139	RBS analysis
140	Samples from Ti diffusion experiments were analyzed with RBS, which has been used as a
141	primary analytical method in many of our diffusion studies, including those measuring Pb, Sr, Ba
142	and the REE diffusion in feldspars (Cherniak 2003; 2002; 1995; 1996; Cherniak and Watson,

- 143 1992; 1994), and is a well-established method for materials characterization (e.g., Jeynes and
- 144 Colaux, 2016). The analytical approach used here is similar to that used in earlier studies, with
- ¹⁴⁵ ⁴He⁺ incident beams at energies between 2 and 3 MeV used for analysis. In cases where different

146	incident beam energies were used, diffusivities obtained from depth profiles agreed within
147	uncertainties. While we did not employ other analytical methods in this study, in other
148	investigations of diffusion, good agreement has been found between measurements obtained by
149	RBS and those by NRA (Cherniak, 2008) and SIMS (e.g., Cherniak et al., 2004; Cherniak, 2010;
150	Dohmen et al., 2019; Beyer et al., 2019). In addition, we have found diffusivities measured using
151	RBS consistent with diffusivities measured by EMPA, although not at overlapping temperatures
152	given the differences in measureable lengthscales of diffusion profiles (e.g., Cherniak et al.,
153	1997; Cherniak and Watson, 2001).
154	Spectra were converted to Ti concentration profiles by employing procedures similar to those
155	outlined in Cherniak and Watson (1994). Depth profiles obtained from RBS analyses were fit
156	with a model to determine the diffusion coefficient (D) . Diffusion is modeled as simple one-
157	dimensional, concentration independent diffusion in a semi-infinite medium with a source
158	reservoir maintained at constant concentration (i.e., a complementary error function solution).
159	The rationale for the use of this model has been discussed in previous publications (e.g.,
160	Cherniak and Watson, 1992). Diffusivities are evaluated by plotting the inverse of the error
161	function (i.e., $erf^{-1}((C_o - C(x,t))/C_o))$ vs. depth (x) in the sample. A straight line of slope $(4Dt)^{-1/2}$
162	results if the data conform to a complementary error function solution. C_o , the surface
163	concentration of diffusant, is independently determined by iteratively varying its value until the
164	intercept of the line converges on zero. Ti surface concentrations in samples range from several
165	hundred to a few thousand ppm. This range of concentrations is generally consistent with the
166	solubility studies of Ti in feldspar of Hoff and Watson (2018) and Hoff (2019), and considering
167	the comparatively low silica activities in the source materials used in the present diffusion
168	experiments.

169	In Figure 1, typical diffusion profiles (1a,c) and their inversions through the error function
170	(1b,d) are shown. The uncertainties in concentration and depth from each data point (mainly
171	derived from counting statistics and backgrounds in the former and detector resolution in the
172	latter) were used to evaluate the uncertainties in the diffusivities determined from the fits to the
173	model.
174 175	Results
176	The results for Ti diffusion in oligoclase are plotted in figure 2 and presented in Table 2
177	There is little evidence of diffusional anisotropy, and Ti diffusion appears to be relatively
178	insensitive to oxygen fugacity, as diffusivities in samples annealed in air and with a NNO buffer
179	are similar. For diffusion normal to (001), we obtain an activation energy of 207 ± 31 kJ/mol.
180	and pre-exponential factor of $6.67 \times 10^{-12} \text{ m}^2/\text{s}$ (log D _o = -11.18 ± 1.41).
181	Ti diffusion data for labradorite, anorthite, and albite are also shown in figure 2 and table 2.
182	For diffusion normal to (001) in labradorite, we obtain an activation energy of 181 ± 57 kJ/mol.
183	and pre-exponential factor of $4.37 \times 10^{-14} \text{ m}^2/\text{s}$ (log $D_o = -13.36 \pm 2.32$). The activation energies
184	for Ti diffusion in plagioclase are relatively low compared with those for diffusion of many other
185	elements measured to date, but there is overlap within uncertainties with some measured in
186	plagioclase, including Sr and Ca (e.g., Cherniak, 2010).
187	We have one data point each for anorthite and albite, but there is a clear trend of increased
188	diffusivities for more sodic plagioclase, which has also been observed for other cations,
189	including Sr (Cherniak and Watson, 1992; 1994; Giletti and Casserly, 1994), Pb (Cherniak,
190	1995), the REE (Cherniak, 2003a), Si (Cherniak, 2003b), Ba (Cherniak, 2002), and Mg (Van
191	Orman et al., 2014).

192	Diffusion data for Ti in K-feldspar are plotted in Figure 3 and presented in Table 3. There is
193	little evidence of diffusional anisotropy when comparing diffusivities normal to (010) and (001).
194	Diffusivities are also similar for diffusion in air and under NNO-buffered conditions, as well as
195	for the experiment conducted with glycine in the capsule, indicating little effect on Ti diffusion
196	of fO_2 or the presence of hydrous species. For diffusion normal to (001), considering all data for
197	this orientation, an activation energy of 342 ± 47 kJ mol ⁻¹ and a pre-exponential factor 3.01×10^{-6}
198	$m^2s^{\text{-}1}$ (log D_o = -5.52 \pm 2.06) are obtained.
199	Time series at 900 C were conducted for Ti diffusion normal to (001) in both oligoclase and
200	K feldspar, with experiments run for times ranging from 17 hours to 141 hours for oligoclase,
201	and one day to one week for K-feldspar (figure 4). In both cases, diffusivities agree within
202	experimental uncertainty, suggesting that volume diffusion is the dominant contributor to the
203	observed diffusion profiles.
204	There are clear differences in Ti diffusion for different feldspar compositions (Figure 7).
205	Diffusion of Ti in K feldspar has a significantly higher activation energy for diffusion than in
206	plagioclase. Over the temperature range of our experiments, Ti diffusion in K-feldspar is
207	bracketed by diffusivities for oligoclase and labradorite. The greater activation energy for Ti
208	diffusion in K feldspar results in significant differences in diffusivities at lower temperatures; for
209	example, at 500°C, Ti diffusivities in K-feldspar and oligoclase would differ by two orders of
210	magnitude.
211	In plagioclase, diffusivities differ with An content, with more calcic plagioclase having lower
212	Ti diffusivities. Our data can be used to formulate an expression relating Ti diffusivity and An
213	content of plagioclase. To obtain this estimate, we plot the diffusion coefficients at 900°C for
214	oligoclase, labradorite, and albite, and extrapolate down-temperature to obtain a value for D at

215 that temperature for anorthite using an activation energy of 200 kJ/mol. The data approach a 216 linear dependence of log D on An content (in mol%), and can be described by the expression -217 19.48 - (0.031*An) (Figure 5). This can be extended to a generalized expression with $\log D_0 = (-1)^{-1}$ 218 10.49 - (0.031*An) for an activation energy of 200 kJ/mol. 219 220 Comparison with diffusivities of other elements in Feldspar 221 Diffusion data for other cations in feldspar are plotted along with Ti in Figure 6. In oligoclase. Ti diffuses about two orders of magnitude faster than Si. Ti diffusion is also faster 222 223 than Si diffusion in other plagioclase compositions, and has a lower activation energy for 224 diffusion. Given the differences between Si and Ti diffusion, it may be that Ti preferentially migrates on tetrahedral sites occupied by Al, as the ionic radius of Ti⁺⁴ more closely matches Al 225 226 (0.42 vs. 0.39 Å, for Ti and Al, respectively, Shannon, 1976). 227 Comparing to cations sited on M-sites, Ti diffuses faster than the trivalent REE. Because of 228 the relatively low activation energy for diffusion in for Ti in oligoclase, Ti will diffuse faster 229 than the large divalent cation Ba at low temperatures. Ti diffusion is more than 2 orders of 230 magnitude slower than Sr and Pb diffusion (normal to (001)), and about 4 orders of magnitude 231 slower than Mg diffusion. Univalent K also diffuses considerably faster (by about three orders of 232 magnitude) than Ti. In labradorite, similar trends exist, but rates of Ti diffusion are closer to Si. 233 Ti diffusion is considerably faster than CaAl-NaSi interdiffusion under dry conditions (Grove et 234 al., 1984; Yund, 1986). While CaAl-NaSi interdiffusion may be enhanced by the presence of 235 hydrous species (Yund, 1986; Yund and Snow, 1989; Liu and Yund, 1992) it is slower than Ti 236 diffusion except at relatively high temperatures.

In K-feldspar, Ti diffuses about 2 orders of magnitude slower than Sr and Pb, 4 orders of
magnitude slower than Rb, and 6 orders of magnitude slower than K. No data exist for Si or
trivalent cations.

240 Our data indicate that Ti will be relatively resistant to diffusional alteration in all of the 241 feldspar compositions. The implications of this will be discussed in later sections. It is important 242 to note, however, that Ti concentrations in these experiments are relatively high in comparison to 243 those often observed in natural plagioclase and K-feldspar, but diffusivities measured for specific 244 feldspar compositions are in agreement for experiments using sources with differing Ti 245 concentrations. Considering the detection limits for Ti in the analyses, and concentration ranges 246 of Ti in diffusion experiments in the present study, the occurrence of differing diffusion 247 mechanisms at lower concentrations of Ti cannot be precluded. Although the potential effects of 248 concentration on Ti diffusion cannot be fully resolved by this study, we apply our diffusion data 249 (with these caveats) in simple calculations examining retentivity of Ti chemical signatures, along 250 with modeling of trace element redistribution accompanying feldspar exsolution, in the sections that follow. 251

252

- 253 Ti diffusion other mineral phases and retentivity of Ti chemical signatures
- 254

Figure 7 presents a summary of extant data for diffusion of Ti in minerals employed in crystallization geothermometers, along with Ti diffusion in feldspar. The mineral-element pairs involving Ti increasingly used in geothermometery are Ti in zircon (Watson and Harrison, 2005; Watson et al., 2006; Ferry and Watson, 2007) and Ti in quartz (Wark and Watson, 2006; Thomas et al., 2010). The measurement of Ti diffusivities for these minerals (Cherniak and Watson, 2007; Cherniak et al., 2007) can be used to evaluate the relative robustness of these geothermometers when the relevant phases experience subsolidus thermal events followingcrystallization.

263 Diffusion of Ti in the feldspar is much faster than Ti diffusion in zircon, but slower than Ti 264 diffusion in quartz. For example, at 900°C, Ti diffusion in oligoclase will be more than 10 265 orders of magnitude faster than Ti diffusion in zircon, and an order of magnitude slower than Ti 266 diffusion in quartz. At this temperature, Ti diffusion in labradorite and orthoclase will be about 2 267 and 1.5 orders of magnitude slower, respectively, than Ti diffusion in quartz. 268 Also plotted are diffusion data for Ti in olivine and pyroxene from the studies of Cherniak 269 and Liang (2012; 2014). Ti diffusion in feldspar is faster than Ti diffusion in olivine and 270 pyroxene, with diffusivities higher by ~1-3 orders of magnitude, depending on feldspar 271 composition.

272 The relative abilities of these mineral phases to preserve Ti concentrations that reflect 273 conditions of crystallization can be illustrated with a few simple calculations of circumstances 274 under which resetting of Ti signatures may occur. We consider a simple model in which the 275 zircon, feldspar and quartz grains are spheres with radii a and initial uniform concentration of C_{l} , 276 and are exposed to a medium with concentration C_o . The solution to the diffusion equation at the 277 center of the spheres can then be derived (e.g., Crank, 1975) given these conditions. When the 278 dimensionless parameter Dt/a^2 (where D is the diffusion coefficient and t is the time) is less than 279 or equal to 0.03, the concentration at the center of the grain remains unchanged from its initial 280 value. Above 0.03, the concentration at the center of the grain is affected by the externally 281 imposed concentration C_{o} .

In Figure 8 we plot sets of curves for Dt/a^2 equal to the values of these dimensionless parameters, using effective diffusion radii differing with mineral type to reflect typical grain

284	sizes, using 0.5 mm for quartz and feldspar, and 50 μ m for zircon. These curves define the time-
285	temperature limits under which initial Ti compositional information will be retained in the grain
286	centers of each of these phases. For times and temperatures below the curves, concentrations at
287	crystal cores will remain unaffected, but will be influenced by the surrounding medium when
288	conditions above the curves apply. These curves suggest that Ti chemical signatures may be
289	preserved in feldspars under some geologic conditions. For example, this information will be
290	preserved at 700°C $$ in 0.5mm radius grains for ~5 Ma for oligoclase, ~70 Ma for labradorite, and
291	~170 Ma for K feldspar. In comparison, conditions for preservation of initial Ti concentrations in
292	quartz grain centers at this temperature would be 1.5 Ma.
293	It should be emphasized that in these simple calculations and those that follow in this section
294	assume that the feldspar grains are uniform in major-element composition, and that there are no
295	processes such as exsolution occurring during heating or cooling trajectories that would result in
296	compositional variations, and thus variations in Ti diffusivities.
297	The simple analysis above considers only isothermal conditions, so we can also explore the
298	case of linear cooling from a given peak temperature. Watson and Cherniak (1997) noted that for
299	linear cooling, a critical cooling rate that will preserve isotopic or chemical signatures in the
300	center of a grain (the "center retention" criterion outlined above) will have a log-linear
301	relationship with the inverse of the peak temperature. Their conclusion was based on numerical
302	simulations of cooling paths, and an analytical expression has been developed that approximates
303	this relationship (Watson and Cherniak, 2013; Cherniak and Watson, 2007):

$$304 \qquad \left(\frac{dT}{dt}\right)_{c} = \frac{RD_{o}T_{peak}^{2}}{E_{a}Ka^{2}}\exp\left(\frac{-E_{a}}{RT_{peak}}\right)$$
(1)

305	where K is a constant (in these calculations, the same value as for the "center retention" criteria
306	above will be used), R is the gas constant, a is the grain radius, E_a and D_o are the diffusion
307	parameters (activation energy and pre-exponential factor), $(dT/dt)_c$ is the cooling rate, and T_{peak} is
308	the peak temperature. In Figure 9, we plot critical cooling rates vs. peak temperature for K-
309	feldspar, labradorite, and oligoclase of 500µm radii. For a peak temperature of 700°C, oligoclase
310	of 500 μ m radius would require cooling rates above ~ 8°C/Ma to maintain Ti signatures in their
311	cores; labradorite and K feldspar would require cooling rates of above 1.5°C/Ma and 0.13°C/Ma,
312	respectively, for a peak T of 700°C. For an 500°C peak temperature, Ti signatures in cores of
313	feldspars would be retained even for very slow cooling, e.g., $7x10^{-3\circ}$ C/Ma for oligoclase.
314	
315	Preservation of Ti zoning
316	We can also consider conditions under which fine-scale chemical zoning in feldspar may be
317	retained or lost. For these estimates, we use a simple model, with zones modeled as plane sheets
318	of thickness l; adjacent planes have different concentrations of diffusant. Only diffusion normal
319	to the planar interface is considered. A (somewhat arbitrary) criterion for alteration of zones is
320	employed. Zones are considered to be "lost" if a compositional change of 10% is attained in the
321	zone's center. When this condition applies, the dimensionless parameter Dt/l^2 will be equal to
322	3.3×10^{-2} . Figure 10 shows curves constraining the time-temperature conditions under which Ti

zoning of 10 and 100μm width will be retained in labradorite, oligoclase and K-feldspar given

324 the above criteria. In oligoclase, for example, 100µm scale zones would resist being obliterated

at 700°C for about 200,000 years, with 10µm zones being preserved for up to 2,000 years. In

labradorite, these times would be 1 million years and 10,000 years for 100µm and 10µm zones,

327 respectively. More sodic plagioclase would lose Ti zoning more rapidly, and more calcic

plagioclase more slowly; for example, at 700°C, 100µm zones would be lost in albite in ~20,000
years, and ~10 million years in anorthite. For the case of K-feldspar, 10 and 100µm zones would
be preserved at 700°C for up to ~80,000 and 8 million years, respectively.

331 We can also use this approach to consider the relative retentivity of Ti zoning compared 332 with that of other trace and minor elements in feldspar. In oligoclase, for example (Figure 11) 333 $50\mu m$ zones would be preserved at $600^{\circ}C$ for durations of ~ 1 million years. Both Sr and Mg 334 zoning would be lost at this temperature over much shorter timescales -- about 70,000 years and 335 3,000 years for Sr and Mg, respectively. In contrast, Ba zoning would be better preserved, with 336 50µm zones preserved for times up to 20 million years at 600°C. Given the relative differences 337 in cation diffusivities in labradorite, there would be a similar pattern in relative retentivity of 338 zoning. It is clear from these simple calculations that Ti (as well as Ba) compositional zoning in 339 feldspars may be among the more robust geochemical indicators of magma evolution.

340

342

341 Trace element redistribution accompanying exsolution in alkali feldspars

343 Armed with a new diffusion law for a trace species (Ti⁴⁺) that diffuses more slowly than most 344 other impurities in alkali feldspar, it may be instructive to examine the redistribution of trace 345 elements that accompanies exsolution of sodic feldspar from a K-rich feldspar host. A similar 346 phenomenon has been explored in models of element redistribution during formation of the 347 Widmanstätten pattern in iron meteorites, which develops when lamellae of Ni-poor kamacite 348 exsolve from originally homogeneous taenite. Goldstein and co-workers pioneered the modeling 349 of Fe-Ni redistribution during cooling of iron meteorites (e.g., Moren and Goldstein 1979), and Watson and Watson (2003) extended the strategy to a variety of siderophile trace elements in the 350 351 same system. Just as the Fe-Ni system has constrained cooling rates of meteorite parent bodies, 352 the combined kinetics of feldspar lamellar growth and trace-element diffusion have the potential

to shed light on thermal histories of host rocks. Here we demonstrate this potential by
 characterizing elemental profiles across an albite lamella in K-feldspar and attempting to
 reproduce selected profiles in numerical models based on assumed t-T histories and lamellar
 growth rates.

357 The first step was to measure profiles of major elements and selected trace elements (Ti, Sr, 358 Ba, Rb) across the boundary between an exsolved albite lamella and host K-feldspar from a 359 pegmatite vein in Colorado (EchoHawk and Kackstaetter 2016) using laser-ablation ICP/MS 360 with a 193-nm excimer laser. This is not an ideal instrument for the purpose because of 361 inevitable analytical spreading caused by the laser footprint and wash-out time, but it was the 362 only analytical method available to us that enabled characterization of the full profiles of all the 363 elements of interest (the concentrations of most trace elements in the albite lamella are <5 ppm). 364 To obtain the necessary sensitivity, the sample was translated at 1 μ m/s under a ~180×10-micron 365 laser spot (rep rate = 10 Hz) with the long dimension parallel to the albite/K-feldspar interface. 366 Assuming the interface to be infinitely sharp with respect to Na and K (Figure 12a), the 367 analytical spreading at these conditions along a traverse across this boundary is 20-30 µm, as can 368 be seen in the Na profile in Figure 12b. The shapes of all analytical profiles must therefore be 369 assumed to be rounded and damped to some extent, but we believe they are adequate for a 370 preliminary proof-of-concept study. Elemental profiles for Na, Sr, Rb, Ba and Ti are shown in 371 Figures 12b-12f, respectively. 372 Attempts were made to reproduce some of the measured profiles using a moving boundary 373 finite-difference computer program similar to those described by Watson and Watson (2003) and

Watson and Müller (2009); details of the methods can be found in those papers. In a broad

375 sense, these programs capture the redistribution of trace elements, governed by diffusion and

376 local partitioning equilibrium at the two-feldspar interface, as one phase grows at the expense of 377 another. In the natural system, coarsening of the lamella is controlled by the rate of Na-K 378 interdiffusion, which is faster than all trace elements considered here (Yund and Davidson 1978). 379 In general, coarsening is expected to depend on the cube root of time (Owen and McConnell, 380 1974; Yund and Davidson 1978), but because the appropriate rate law for geological coarsening 381 is not known, we resorted for simplicity to exploring constant coarsening rates that seemed 382 geologically plausible given the \sim 60-micron width of the analyzed lamella (Figure 12a). Growth 383 rates were calculated by assuming geological "annealing" durations of 60, 6 and 0.6 MYr to 384 produce the observed lamellar half-width of ~30 microns at assumed temperatures of 550°, 600° 385 and 650°C. The ranking (fastest to slowest) of the diffusivities of the measured elements is Rb >386 Sr > Ba > Ti at assumed temperatures of 600±50°C, as can be deduced from Figure 5. To our 387 knowledge, Ba diffusion has not been characterized in K-feldspar specifically, but this element 388 diffuses more slowly than Sr in other feldspars where it has been measured (e.g., Cherniak, 389 2010). Most of the trace elements investigated here are partitioned strongly into K-feldspar 390 relative to albite, so migration of the albite/K-feldspar interface (i.e., growth of albite at the 391 expense of K-feldspar) produces a "snowplow" or pileup effect on elemental concentration in the 392 K-feldspar near the moving interface. This effect is particularly evident in the cases of Sr and Ba 393 (Figures 12c and 12e), where pronounced concentration spikes are present in the K-feldspar on 394 either side of the albite lamella [the right-hand side is less well developed due to the irregular 395 interface (see Figure 12a), so we focus here on the left side]. We attempted to reproduce the 396 spikes by running numerical simulations specifically for Sr because diffusion laws for both K-397 feldspar and albite are available for this element (see Cherniak 2010), and because the Sr pileup 398 feature is clearly evident. The albite/K-feldspar partition coefficient was estimated from the

399 laser traverse to be roughly 0.17 based on the ratio of the relatively flat concentration profile in 400 the albite to the maximum of the Sr spike in the adjacent K-feldspar. The rationale for this 401 choice is that equilibrium is maintained at the albite/K-feldspar interface. This approximate 402 partition coefficient was an input parameter for the numerical models.. The model results are 403 overlain as bold lines on the left side of the Sr profile in Figure 12c, revealing a similarity in 404 height and width of the model profiles and the actual one. Despite wide variation in the assumed 405 growth rates and durations (see inset on the figure), the three computed profiles are nearly the 406 same, which illustrates the non-uniqueness of forward models of this sort for a single element, as 407 well as the compensating effects of growth rate and duration (the product of the growth rate and 408 duration is the same for the three model outcomes shown, indicating that for Sr the magnitude of 409 the snowplow effect depends mainly on the extent of lamellar growth). It is important to note 410 that the concentrations of Sr, Rb and Ba across the albite lamella appear to be relatively flat. 411 This is because diffusion in albite (relative to K-feldspar) is fast, and also because these elements 412 are strongly partitioned into the K-feldspar at the interface during growth—so the concentrations 413 in the albite are very low. A slight climb in concentration approaching the K-feldspar would be 414 expected, but this tends to be leveled by diffusion and cannot be resolved anyway because of the 415 limited spatial resolution of the laser analyses.

416 Quantitative models for Rb, Ba and Ti are more difficult to produce due to the lack of 417 appropriate diffusion laws and/or indistinct features in the profiles. Some generalizations are 418 nevertheless possible. In the case of Rb, for example, relatively fast diffusion in K-feldspar 419 appears to have suppressed development of concentration spikes (pileup) near the interface 420 despite rejection of Rb from the growing albite—i.e., Rb concentration anomalies seem to have 421 been flattened by diffusion. Barium, whose diffusivity in K-feldspar is probably lower than that 422 of Sr, shows a somewhat narrower and higher concentration spike than Sr, as expected. The key 423 element targeted for diffusion measurements in this study (Ti) was also the most challenging to 424 analyze in the feldspar because of its low concentration. However, the general character of the 425 profile seems clear: no flat bottom in the albite and no concentration spikes in the K-feldspar. 426 At first glance, the absence of spikes seems to mimic the profile for fast-diffusing Rb, but in fact 427 the spikes might be missing for a different reason. Given the slow diffusion of Ti relative to the 428 other elements examined (especially Rb), the "snowplow" effect would be expected to produce 429 an extremely sharp concentration spike due to the near-absence of diffusive spreading into the K-430 feldspar. Such a feature might well be too narrow to detect because of the limited spatial 431 resolution of the laser. Alternatively, lamellar growth might be fast enough to "overrun" the 432 expected redistribution of Ti by diffusion, as observed by Koga et al. (1999) in the case of rare-433 earth element behavior during the conversion of clinopyroxene to orthopyroxene in 434 decompressing peridotite transitioning from the garnet to the spinel facies. Indeed, attempted 435 numerical simulations suggest that the growth rates needed for the models to capture the general 436 character of the Sr spikes (Figure 12c) are sufficiently fast compared with Ti diffusion that the 437 interface sweeps through the feldspar structure with no opportunity for Ti to diffuse away or to 438 establish local partitioning equilibrium at the interface between the two feldspars. This implies 439 that under some circumstances—a fast-moving interface combined with slow impurity 440 diffusion—a phase boundary might advance through a material with minimal redistribution of 441 impurities. The dip in Ti content in the albite is probably a consequence of partial Ti 442 redistribution during albite growth. In a limited sense, our failure to produce a convincing result 443 for the element targeted in this diffusion study is disappointing, but the apparent success with Sr 444 suggests that the general approach might be successful for Ti and other elements in other

445	samples. If coarsening rates of feldspar lamellae (controlled by $Na \leftrightarrow K$ interdiffusion) can be
446	better constrained for geological timescales, it may be possible to pursue strategies like those
447	developed by Goldstein and co-workers for estimating cooling rates of iron meteorite parent
448	bodies (see Moren and Goldstein 1979).
449	Due to limitations in the measured profiles and available diffusion laws, the model results in
450	this section have provided no quantitative insight into thermal histories, nor have they
451	definitively characterized Ti behavior during alkali feldspar exsolution. We hope, however, that
452	the potential of the general approach has come through, and that the advantages of having
453	available a variety of diffusion laws are evident. Improved spatial resolution of Ti analyses
454	(without loss of analytical sensitivity) may reveal features in Ti profiles across exsolution
455	boundaries that were not detectable in this study by LA-ICP/MS. The addition of new data for a
456	trace impurity (Ti) that is slow-diffusing and ubiquitous in feldspars (Hoff and Watson 2018)
457	should expand the scope and applicability of $t-T$ models for crustal rocks based on trace elements
458	in feldspars.
459 460 461 462	Implications These data indicate that feldspar should be moderately retentive of Ti chemical signatures,
463	depending on feldspar composition. Ti diffuses more slowly than most other impurities in
464	feldspar, including Sr. In the case of plagioclase, a dependence of Ti on feldspar An content is
465	evident, with an increase of 30% in An content resulting in a decrease in diffusivity of about an
466	order of magnitude.
467	This characterization of diffusivities for a trace impurity that is relatively slow-diffusing and
468	ubiquitous in feldspars (Hoff and Watson, 2018) has the potential to expand the scope and

470	elements in feldspars. These data could be applied, for example, in examining the redistribution
471	of trace elements that accompany exsolution of sodic feldspar from a K-rich feldspar host, by
472	modeling profiles obtained from major and trace element traverses across lamellar boundaries.
473 474 475 476 477 478 479 480	<i>Acknowledgements</i> – Thanks to Christopher Hoff for providing the feldspar sample with exsolved albite lamella and to him and Jared Singer for performing the LA-ICP/MS traverses on the sample. We thank two anonymous reviewers for their constructive comments. This work was supported by NSF grant no. 1551381 to EBW.
481 482	References
483	Adams, D.T., Nielsen, R.L., Kent, A.J.R., and Tepley III, F.J. (2011) Origin of minor and trace
484	element compositional diversity in anorthitic feldspar phenocrysts and melt inclusions from
485	the Juan de Fuca Ridge. G-cubed 12, 12. doi:10.1029/2011GC003778
486	Ageeva, O., Habler, G., Topa, D., Waitz, T., Li, C., Pertsev, A., Griffiths, T., Zhilicheva, O., and
487	Abart, R. (2016) Plagioclase hosted Fe-Ti oxide micro-inclusions in an oceanic gabbro
488	plagiogranite association from the Mid-Altlantic Ridge at 13°34' N. American Journal of
489	Science 316, 85-109.
490	Behrens, H., Johannes, W., and Schmalzried, H. (1990) On the mechanisms of cation diffusion
491	processes in ternary feldspars. Physics and Chemistry of Minerals 17, 62-78.
492	Beyer, C., Dohmen, R., Rogalla, D., Becker, HW., Marquardt, K., Vollmer, C., Hagemann, U.,
493	Hartmann, N., and Chakraborty, S. (2019) Lead diffusion in CaTiO3: A combined study
494	using Rutherford backscattering and TOF-SIMS for depth profiling to reveal the role of
495	lattice strain in diffusion processes. American Mineralogist 104, 557-568.

- 496 Cherniak, D.J. (1995) Diffusion of Pb in plagioclase and K-feldspar measured by Rutherford
- 497 Backscattering spectroscopy and resonant nuclear reaction analysis. Contributions to
- 498 Mineralogy and Petrology 120, 358-371.
- 499 Cherniak, D.J. (1996) Strontium diffusion in sanidine and albite, and general comments on Sr
- 500 diffusion in alkali feldspars. Geochimica et Cosmochimica Acta 60, 5037-5043.
- 501 Cherniak, D.J. (2002) Ba diffusion in feldspar. Geochimica et Cosmochimica Acta 66, 1641-
- 502 1650.
- 503 Cherniak, D.J. (2003a) REE diffusion in feldspar. Chemical Geology 193, 25-41.
- 504 Cherniak, D.J. (2003b) Silicon self-diffusion in single-crystal natural quartz and feldspar. Earth
- 505 and Planetary Science Letters 214, 655-668.
- 506 Cherniak, D.J. (2010) Cation diffusion in feldspars. In Y. Zhang and D. Cherniak, Eds.,
- 507 Diffusion in Minerals and Melts, 41, p. 691-733Reviews in Mineralogy and Geochemistry,
- 508 Mineralogical Society of America, Chantilly, Virginia.
- 509 Cherniak, D.J. (2008) Si diffusion in zircon. Physics and Chemistry of Minerals 35, 179-187.
- 510 Cherniak, D.J., and Liang, Y. (2014) Titanium diffusion in olivine. Geochimica et
- 511 Cosmochimica Acta 147, 43-57.
- 512 Cherniak, D.J., and Liang, Y. (2012) Ti diffusion in natural pyroxene. Geochimica et
- 513 Cosmochimica Acta 98, 31-47.
- 514 Cherniak, D.J., and Watson, E.B. (2007) Ti diffusion in zircon. Chemical Geology 242, 473-486.
- 515 Cherniak, D.J., and Watson, E.B. (2001) Pb Diffusion in zircon. Chemical Geology 172, 5-24.
- 516 Cherniak, D.J., and Watson, E.B. (1994) A study of strontium diffusion in plagioclase using
- 517 Rutherford Backscattering Spectroscopy. Geochimica et Cosmochimica Acta 58, 5179-5190.

- 518 Cherniak, D.J., and Watson, E.B. (1992) A study of strontium diffusion in K-feldspar, Na-K
- 519 feldspar and anorthite using Rutherford Backscattering Spectroscopy. Earth and Planetary
- 520 Science Letters 113.
- 521 Cherniak, D.J., Watson, E.B., and Wark, D.A. (2007) Ti diffusion in quartz. Chemical Geology
- 522 236, 65-74.
- 523 Cherniak, D.J., Watson, E.B., Grove, M., and Harrison, T.M (2004) Pb diffusion in monazite: a
 524 combined RBS/SIMS study. Geochimica et Cosmochimica Acta 68, 829-840.
- 525 Cherniak, D.J., Hanchar, J.M., and Watson, E.B. (1997) Rare earth diffusion in zircon. Chemical
- 526 Geology 134, 289-301.
- 527 Crank, J. (1975) The Mathematics of Diffusion (2nd ed.), Oxford, 414 pp.
- 528 Dohmen, R., Marschall, H.R., Ludwig, T., and Polednia, J. (2019) Diffusion of Zr, Hf, Nb and
- 529 Ta in rutile: effects of temperature, oxygen fugacity, and doping level, and relation to rutile

530 point defect chemistry Physics and Chemistry of Minerals 46, 311–332

- 531 EchoHawk, B., and Kackstaetter, U. (2016) Roadside faults, folds, fossils, crystals, and diamond
- pipes—sampling the geologic diversity of northern Colorado. Geological Society of America
 Field Guide 44, stop 3.
- 534 Ferry, J.M., and Watson, E.B. (2007) New thermodynamic models and revised calibrations for
- 535 the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology
- 536 154, 429-437.
- 537 Foland, K.A. (1974) Alkali diffusion in orthoclase. In A.W. Hofmann, B.J. Giletti, H.S. Yoder,
- Jr., and R.A. Yund, Eds., Geochemical Transport and Kinetics. Carnegie Institution of
- 539 Washington Publication, 634, p. 77-98. Carnegie Institution of Washington, Washington,
- 540 DC.

- 541 Giletti, B. J. (1991) Rb and Sr diffusion in alkali feldspars, with implications for cooling
- 542 histories of rocks. Geochimica et Cosmochimica Acta 55, 1331-1343.
- 543 Giletti, B. J., and Casserly, J.E.D. (1994) Sr diffusion kinetics in plagioclase feldspars.
- 544 Geochimica et Cosmochimica Acta 58, 3785-3793.
- 545 Giletti, B.J., and Shanahan, T.M. (1997) Alkali diffusion in plagioclase feldspar. Chemical
- 546 Geology 139, 3-20.
- 547 Ginibre, C., Wörner, G., and Kronz, A. (2004) Structure and dynamics of the Laacher see
- 548 magma chamber (Eifel, Germany) from major and trace element zoning in sanidine: A
- 549 cathodoluminescence and electron microprobe study. Journal of Petrology, 45, 2197–2223.
- 550 Grove, T.L., Baker, M.B., and Kinzler, R.J. (1984) Coupled CaAl-NaSi diffusion in plagioclase
- feldspar: experiments and applications to cooling rate speedometry. Geochimica et
- 552 Cosmochimica Acta 48, 2113-2121.
- 553 Hergemöller, F., Wegner, M., Deicher, M., Wolf, H., Brenner, F., Hutter, H., Abart, R., and
- 554 N.A., Stolwijk (2017) Potassium self-diffusion in a K-rich single-crystal alkali feldspar.
- 555 Physics and Chemistry of Minerals 44, 345–351.
- 556 Hoff, C. (2019) Defect thermometry using rutile and feldspar, 103p. Ph.D. thesis, Rensselaer
- 557 Polytechnic Institute.
- 558 Hoff, C., and Watson, E.B. (2018) TITANOR: A Titanium-in-potassium feldspar thermometer.
- 559 Geological Society of America Annual Meeting (abstract), paper 137-7.
- Jeynes, C. and Colaux, J.L. (2016) Thin film depth profiling by ion beam analysis. Analyst 141,
 561 5944-5985.
- 562 Kasper, R. B. (1975) Cation and oxygen diffusion in albite, 156 p. Ph.D. thesis, Brown
- 563 University.

- 564 Koga, K.T., Shimizu, N. and Grove, T.L. (1999) Disequilibrium trace element re-distribution
- 565 during garnet to spinel facies transformation. In Proc. 7th Intl. Kimberlite Conf. J. J. Gurney
- tal., eds., Red Roof design, Cape Town, p. 444 451.
- 567 LaTourette, T., and Wasserburg, G.J. (1998) Mg diffusion in anorthite: implications for the
- formation of early solar system planetisimals. Earth and Planetary Science Letters 158, 91108.
- Liu, M., and Yund, R.A. (1992) NaSi-CaAl interdiffusion in plagioclase. American Mineralogist
 77, 275-283.
- Moren, A.E., and Goldstein, J.I. (1979) Cooling rates of group-Iva iron-meteorites determined
 from a ternary Fe-Ni-P model. Earth and Planetary Science Letters 43, 182-196.
- 574 Norberg, N., Harlov, D., Neusser, G., Wirth, R., and Rheden, D. (2014) Element mobilization
- during feldspar metasomatism: an experimental study. European Journal of Mineralogy 26,
 71–82.
- 577 Owen, D.C., and McConnell, J.D.C. (1974) Spinodal unmixing in an alkali feldspar. In W.S.
- 578 MacKenzie and J. Zussman, Eds., The Feldspars, p. 424-439, Manchester University Press.
- 579 Parsons, I., Steele, D.A., Lee, M.R., and Magee, C.W. (2008) Titanium as a
- 580 cathodoluminescence activator in alkali feldspars. American Mineralogist 93, 875-879.
- 581 Peters, M.T., Shaffer, E.E., Burnett, D.S., and Kim, S.S. (1995) Magnesium and titanium
- 582 partitioning between anorthite and Type B CAI liquid: Dependence on oxygen fugacity and
- 583 liquid composition. Geochimica et Cosmochimica Acta 59, 2785-2796.
- 584 Salmonsen, L., Tegner, C., and Humphreys, M. (2011) Titanium in plagioclase as a monitor of
- 585 magma differentiation in the Skaergaard Intrusion. Abstract, AGU Fall Meeting

- 586 Schaffer, A.-K., Petrishcheva, E., Habler, G., Abart, R., Rhede, D., and Giester, G. (2014)
- 587 Sodium-potassium interdiffusion in potassium-rich alkali feldspar II: Composition and
- 588 temperature dependence obtained from cation exchange experiments. American Journal of
- 589 Science, 314, 1300–1318.
- 590 Singer, B.S., Dungan, M.A., and Layne, G.D. (1995) Textures and Sr, Ba, Mg, Fe, K, and Ti
- 591 compositional profiles in volcanic plagioclase: Clues to the dynamics of calc-alkaline magma
- chambers. American Mineralogist 80, 776-798.
- 593 Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic
- distances in halides and chalcogenides. Acta Crystallographica A32, 751-767.
- 595 Thomas, J.B., Watson, E.B., Spear. F.S., Shemella, P.T., Nayak, S.K., and Lanzirotti, A. (2010)
- 596 TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in
- 597 quartz. Contributions to Mineralogy and Petrology 160,743–759.
- 598 Van Orman, J.A. Cherniak, D.J., and Kita, K.T. (2014) Magnesium diffusion in plagioclase:
- 599 Implications for thermal resetting of the ²⁶Al-²⁶Mg early solar system chronometer. Earth and
- 600 Planetary Science Letters 385, 79-88.
- Wark, D.A., and Watson, E.B. (2006) TitaniQ: A Titanium-in-Quartz Geothermometer.
- 602 Contributions to Mineralogy and Petrology 152, 743-754.
- 603 Watson, E.B., and Cherniak, D.J. (1997) Oxygen diffusion in zircon. Earth and Planetary
- 604 Science Letters 148, 527-544.
- 605 Watson, E.B., and Cherniak, D.J. (2013) Simple equations for diffusion in response to heating.
- 606 Chemical Geology 335, 93-104.
- 607 Watson, E.B., and Harrison, T.M. (2005) Zircon thermometer reveals minimum melting
- 608 conditions on earliest Earth, Science 308, 841-844.

- 609 Watson, E.B., and Müller, T. (2009) Non-equilibrium isotopic and elemental fractionation during
- 610 diffusion-controlled crystal growth under static and dynamic conditions. Chemical Geology
- 611 267, 111-124.
- 612 Watson, E.B., Wark, D.A., and Thomas, J.B. (2006) Crystallization thermometers for zircon and
- rutile, Contributions to Mineralogy and Petrology 151,413-433.
- 614 Watson, H.C., and Watson, E.B. (2003) Siderophile trace element diffusion in Fe-Ni alloys.
- 615 Physics of the Earth and Planetary Interiors 139, 65-75.
- 616 Wenk, H.-R., Chen, K., and Smith, R. (2011) Morphology and microstructure of magnetite and
- 617 ilmenite inclusions in plagioclase from Adirondack anorthositic gneiss. American
- 618 Mineralogist 96, 1316-1324.
- 619 Wilangowski, F., Abart, R., Divinski, S.V., and Stolwijk, N.A. (2015) Radiotracer experiments
- and Monte Carlo simulations of sodium diffusion in alkali feldspar: Evidence against the
- 621 vacancy mechanism. Defect and Diffusion Forum 363,79-84.
- Yund, R.A. (1986) Interdiffusion of NaSi-CaAl in peristerite. Physics and Chemistry of Minerals
 13, 11-16.
- 624 Yund, R.A., and Davidson, P. (1978) Kinetics of lamellar coarsening in cryptoperthites.
- 625 American Mineralogist 63, 470-477.
- 626 Yund, R.A., and Snow, E. (1989) Effects of hydrogen fugacity and confining pressure on the
- 627 interdiffusion rate of NaSi-CaAl in plagioclase. Journal of Geophysical Research B 94,
- 628 10,662-10,668.
- 629

630 **Table 1. Compositional information for feldspars**

	K Feldspar	Albite	Oligoclase	Labradorite	Anorthite
SiO ₂	65.44	68.28	62.73	51.45	45.13
Al ₂ O ₃	17.66	19.23	22.89	29.59	35.46
FeO	0.75	0.01	0.05	0.40	0.54
CaO	0.01	0.03	4.48	13.62	18.85
K ₂ O	15.41	0.22	0.64	0.15	0.03
Na ₂ O	0.75	11.63	8.81	3.80	0.71
total	100.02	99.40	99.60	99.01	100.72

631 **used in this study**. (*wt% oxides*)

634

635 Table 2. Ti Diffusion in Plagioclase

Oligoclase (An_{23}) diffusion normal to (001): TiOlig-9 752 8.50x TiOlig-7 800 2.48x TiOlig-11 800 8.08x TiOlig-20 850 5.04x TiOlig-20 850 5.18x TiOlig-18 900 6.12x TiOlig-16 900 1.92x TiOlig-17 900 5.08x TiOlig-18 950 2.48x TiOlig-17 900 5.08x TiOlig-18 950 2.48x TiOlig-17 900 5.08x TiOlig-18 950 2.48x TiOlig-19 950 2.48x TiOlig-12 1000 3.60x TiOlig-13 1050 1.80x diffusion normal to (010): TiOlig-18b 950 2.48x TiOlig-18b 950 2.48x TiOlig-18b 950 2.48x TiOlig-23 1003 2.16x Labradorite (Ano7) diffusion normal to (001): TiLab-2 <th>Plagioclase</th> <th></th> <th></th> <th></th> <th></th>	Plagioclase				
diffusion normal to (001):TiOlig-9752 $8.50x$ TiOlig-7 800 $2.48x$ TiOlig-11 800 $8.08x$ TiOlig-6 850 $5.04x$ TiOlig-6 850 $5.04x$ TiOlig-7 900 $6.12x$ TiOlig-16 900 $1.92x$ TiOlig-16 900 $1.92x$ TiOlig-17 900 $5.08x$ TiOlig-18 950 $2.48x$ TiOlig-19 950 $2.48x$ TiOlig-12 1000 $3.60x$ TiOlig-13 1050 $1.80x$ diffusion normal to (010):TiOlig-23 1003 TiOlig-23 1003 $2.16x$ Labradorite (An67) $diffusion normal to (001)$:TiLab-4 900 $1.21x$ TiLab-5 999 $4.32x$ TiLab-1 1050 $2.48x$ TiLab-3 1150 $1.01x$ Anorthite (An93) $diffusion normal to (010)$:TiAnorth-1 1050 $5.90x$	(sec) $D(m^2 sec^{-1})$) log D	+/-	source†	buffer
TiOlig-97528.50xTiOlig-78002.48xTiOlig-118008.08xTiOlig-68505.04xTiOlig-208505.18xTiOlig-208505.18xTiOlig-169001.92xTiOlig-169001.92xTiOlig-179005.08xTiOlig-18c9502.48xTiOlig-199502.43xTiOlig-1210003.60xTiOlig-1310501.80x <i>diffusion normal to (010):</i> TiOlig-21TiOlig-2310032.16xLabradorite (An67)diffusion normal to (001):TiLab-49001.21xTiLab-59994.32xTiLab-110502.48xTiLab-311501.01xAnorthite (An93)diffusion normal to (010):TiAnorth-110505.90xAlbite (An1)10505.90x					
TiOlig-7800 $2.48x$ TiOlig-11800 $8.08x$ TiOlig-6850 $5.04x$ TiOlig-20850 $5.18x$ TiOlig-18900 $6.12x$ TiOlig-16900 $1.92x$ TiOlig-17900 $5.08x$ TiOlig-18950 $2.48x$ TiOlig-19950 $2.48x$ TiOlig-121000 $3.60x$ TiOlig-131050 $1.80x$ diffusion normal to (010):TiOlig-23 1003 TiOlig-231003 $2.16x$ Labradorite (An67)diffusion normal to (001):TiLab-4900 $1.21x$ TiLab-5999 $4.32x$ TiLab-11050 $2.48x$ TiLab-31150 $1.01x$ Anorthite (An93)diffusion normal to (010):TiAnorth-11050 $5.90x$					
TiOlig-118008.08xTiOlig-68505.04xTiOlig-208505.18xTiOlig-189006.12xTiOlig-169001.92xTiOlig-179005.08xTiOlig-149501.44xTiOlig-18c9502.48xTiOlig-199502.43xTiOlig-1210003.60xTiOlig-1310501.80xdiffusion normal to (010):TiOlig-21851TiOlig-2310032.16xLabradorite (An67)diffusion normal to (001):TiLab-49001.21xTiLab-59994.32xTiLab-110502.48xTiLab-311501.01xAnorthite (An93)diffusion normal to (010):TiAnorth-110505.90xAlbite (An1)10505.90x	1.74×10^5 1.74 $\times 10^{-22}$	² -21.76	0.36	TiO ₂	air
TiOlig-6 850 $5.04x$ TiOlig-20 850 $5.18x$ TiOlig-8 900 $6.12x$ TiOlig-16 900 $1.92x$ TiOlig-17 900 $5.08x$ TiOlig-17 900 $5.08x$ TiOlig-18 950 $1.44x$ TiOlig-18c 950 $2.48x$ TiOlig-19 950 $2.43x$ TiOlig-12 1000 $3.60x$ TiOlig-13 1050 $1.80x$ diffusion normal to (010):TiOlig-21 851 TiOlig-23 1003 $2.16x$ Labradorite (An67)diffusion normal to (001):TiLab-4 900 $1.21x$ TiLab-5 999 $4.32x$ TiLab-1 1050 $2.48x$ TiLab-3 1150 $1.01x$ Anorthite (An93) $diffusion normal to (010)$:TiAnorth-1 1050 $5.90x$ Albite (An1) 1050 $5.90x$	8.51×10^5 8.51×10^{-22}	² -21.07	0.37	TiAl-3	air
TiOlig-20 850 $5.18x$ TiOlig-8 900 $6.12x$ TiOlig-16 900 $1.92x$ TiOlig-17 900 $5.08x$ TiOlig-14 950 $1.44x$ TiOlig-18c 950 $2.48x$ TiOlig-19 950 $2.43x$ TiOlig-12 1000 $3.60x$ TiOlig-13 1050 $1.80x$ diffusion normal to (010):TiOlig-21 851 TiOlig-21 851 $6.05x$ TiOlig-23 1003 $2.16x$ Labradorite (An67)diffusion normal to (001):TiLab-4 900 $1.21x$ TiLab-5 999 $4.32x$ TiLab-1 1050 $2.48x$ TiLab-3 1150 $1.01x$ Anorthite (An93) $diffusion normal to (010)$:TiAnorth-1 1050 $5.90x$ Albite (An1) 1050 $5.90x$	6.17×10^5 6.17×10^{-22}	² -21.21	0.43	TiAl-3	air
TiOlig-8900 $6.12x$ TiOlig-16900 $1.92x$ TiOlig-17900 $5.08x$ TiOlig-17900 $5.08x$ TiOlig-18c950 $2.48x$ TiOlig-18c950 $2.43x$ TiOlig-19950 $2.43x$ TiOlig-121000 $3.60x$ TiOlig-121000 $3.60x$ TiOlig-131050 $1.80x$ <i>diffusion normal to (010):</i> TiOlig-21 851 TiOlig-231003 $2.16x$ Labradorite (An67) $diffusion normal to (001):$ TiLab-4900 $1.21x$ TiLab-5999 $4.32x$ TiLab-11050 $2.48x$ TiLab-31150 $1.01x$ Anorthite (An93) $diffusion normal to (010):$ TiAnorth-11050 $5.90x$ Albite (An1) $4nn$	2.24×10^5 2.24×10^{-2}	¹ -20.65	0.30	TiAl-3	air
TiOlig-16900 $1.92x$ TiOlig-17900 $5.08x$ TiOlig-14950 $1.44x$ TiOlig-18c950 $2.48x$ TiOlig-19950 $2.43x$ TiOlig-121000 $3.60x$ TiOlig-121000 $3.60x$ TiOlig-131050 $1.80x$ diffusion normal to (010):TiOlig-21TiOlig-231003 $2.16x$ Labradorite (An67)diffusion normal to (001):TiLab-4900 $1.21x$ TiLab-5999 $4.32x$ TiLab-5999 $4.32x$ TiLab-11050 $2.48x$ TiLab-31150 $1.01x$ Anorthite (An93)diffusion normal to (010):TiAnorth-11050 $5.90x$ Albite (An1) $1.01x$	1.36×10^{5} 1.36 $\times 10^{-2}$	¹ -20.87	0.46	TiAl-10	NNO
TiOlig-17900 $5.08x$ TiOlig-14950 $1.44x$ TiOlig-18c950 $2.48x$ TiOlig-19950 $2.43x$ TiOlig-121000 $3.60x$ TiOlig-221003 $2.88x$ TiOlig-131050 $1.80x$ diffusion normal to (010):TiOlig-21 851 TiOlig-21 851 $6.05x$ TiOlig-231003 $2.16x$ Labradorite (An ₆₇)diffusion normal to (001):TiLab-4900 $1.21x$ TiLab-5999 $4.32x$ TiLab-11050 $2.48x$ TiLab-31150 $1.01x$ Anorthite (An ₉₃)diffusion normal to (010):TiAnorth-11050 $5.90x$ Albite (An ₁) $4n_1$	4.72×10^4 4.72 $\times 10^{-23}$	¹ -20.33	0.38	TiO ₂	air
TiOlig-17900 $5.08x$ TiOlig-14950 $1.44x$ TiOlig-18c950 $2.48x$ TiOlig-19950 $2.43x$ TiOlig-121000 $3.60x$ TiOlig-221003 $2.88x$ TiOlig-131050 $1.80x$ diffusion normal to (010):TiOlig-21 851 TiOlig-21 851 $6.05x$ TiOlig-231003 $2.16x$ Labradorite (An ₆₇)diffusion normal to (001):TiLab-4900 $1.21x$ TiLab-5999 $4.32x$ TiLab-11050 $2.48x$ TiLab-31150 $1.01x$ Anorthite (An ₉₃)diffusion normal to (010):TiAnorth-11050 $5.90x$ Albite (An ₁) $4n_1$	2.16×10^5 2.16 $\times 10^{-2}$	¹ -20.66	0.30	TiAl-10	air
TiOlig-14950 $1.44x$ TiOlig-18c950 $2.48x$ TiOlig-19950 $2.43x$ TiOlig-121000 $3.60x$ TiOlig-221003 $2.88x$ TiOlig-221003 $2.88x$ TiOlig-131050 $1.80x$ diffusion normal to (010):TiOlig-21 851 TiOlig-21 851 $6.05x$ TiOlig-18b950 $2.48x$ TiOlig-231003 $2.16x$ Labradorite (An67)diffusion normal to (001):TiLab-4900 $1.21x$ TiLab-5999 $4.32x$ TiLab-5999 $4.32x$ TiLab-11050 $2.48x$ TiLab-31150 $1.01x$ Anorthite (An93)diffusion normal to (010):TiAnorth-11050 $5.90x$ Albite (An1) $4nn$	2.98×10^5 2.98 $\times 10^{-2}$	¹ -20.53	0.32	TiAl-10	air
TiOlig-19950 $2.43x$ TiOlig-121000 $3.60x$ TiOlig-221003 $2.88x$ TiOlig-211050 $1.80x$ diffusion normal to (010):TiOlig-13 050 TiOlig-18b950 $2.48x$ TiOlig-18b950 $2.48x$ TiOlig-231003 $2.16x$ Labradorite (An67)diffusion normal to (001):TiLab-4900 $1.21x$ TiLab-5999 $4.32x$ TiLab-11050 $2.48x$ TiLab-31150 $1.01x$ Anorthite (An93)diffusion normal to (010):TiAnorth-11050 $5.90x$ Albite (An1) $3.60x$	2.56×10^4 2.56 $\times 10^{-20}$	⁰ -19.59	0.45	TiO ₂	air
TiOlig-19950 $2.43x$ TiOlig-121000 $3.60x$ TiOlig-221003 $2.88x$ TiOlig-211050 $1.80x$ diffusion normal to (010):TiOlig-13 050 TiOlig-18b950 $2.48x$ TiOlig-18b950 $2.48x$ TiOlig-231003 $2.16x$ Labradorite (An67)diffusion normal to (001):TiLab-4900 $1.21x$ TiLab-5999 $4.32x$ TiLab-11050 $2.48x$ TiLab-31150 $1.01x$ Anorthite (An93)diffusion normal to (010):TiAnorth-11050 $5.90x$ Albite (An1) $3.60x$	8.20×10^5 8.20×10^{-2}	¹ -20.09	0.23	TiAl-10	air
TiOlig-2210032.88xTiOlig-1310501.80xdiffusion normal to (010):TiOlig-21851 $6.05x$ TiOlig-18b9502.48xTiOlig-18b9502.48xTiOlig-2310032.16xLabradorite (An67)diffusion normal to (001):TiLab-49001.21xTiLab-29506.95xTiLab-59994.32xTiLab-110502.48xTiLab-311501.01xAnorthite (An93)diffusion normal to (010):TiAnorth-110505.90xAlbite (An1)1050	8.34×10^5 8.34×10^{-2}	¹ -20.08	0.28	TiAl-10	NNO
TiOlig-2210032.88xTiOlig-1310501.80xdiffusion normal to (010):TiOlig-21851 $6.05x$ TiOlig-18b9502.48xTiOlig-18b9502.48xTiOlig-2310032.16xLabradorite (An67)diffusion normal to (001):TiLab-49001.21xTiLab-29506.95xTiLab-59994.32xTiLab-110502.48xTiLab-311501.01xAnorthite (An93)diffusion normal to (010):TiAnorth-110505.90xAlbite (An1)1050	3.35×10^3 3.35×10^{-20}	⁰ -19.48	0.45	TiO ₂	air
TiOlig-1310501.80xdiffusion normal to (010):TiOlig-21 851 $6.05x$ TiOlig-18b 950 $2.48x$ TiOlig-18b 950 $2.48x$ TiOlig-23 1003 $2.16x$ Labradorite (An67) $diffusion normal to (001)$:TiLab-4 900 $1.21x$ TiLab-2 950 $6.95x$ TiLab-5 999 $4.32x$ TiLab-1 1050 $2.48x$ TiLab-3 1150 $1.01x$ Anorthite (An93) $diffusion normal to (010)$:TiAnorth-1 1050 $5.90x$ Albite (An1) 1050 $100x$			0.38	TiAl-10	NNC
TiOlig-21 851 6.05x TiOlig-18b 950 2.48x TiOlig-23 1003 2.16x Labradorite (An ₆₇) diffusion normal to (001): 1.21x TiLab-4 900 1.21x TiLab-2 950 6.95x TiLab-5 999 4.32x TiLab-1 1050 2.48x TiLab-3 1150 1.01x Anorthite (An ₉₃) diffusion normal to (010): TiAnorth-1 1050 5.90x Albite (An ₁) 1050 5.90x	1.05×10^3 1.05 $\times 10^{-19}$	⁹ -18.98	0.44	TiO ₂	air
TiOlig-18b 950 2.48x TiOlig-23 1003 2.16x Labradorite (An67) 1000 1000 diffusion normal to (001): 1000 1000 TiLab-4 900 1.21x TiLab-2 950 6.95x TiLab-5 999 4.32x TiLab-1 1050 2.48x TiLab-3 1150 1.01x Anorthite (An93) 10101 diffusion normal to (010): 1050 TiAnorth-1 1050 5.90x Albite (An1) 1050 1000					
TiOlig-18b 950 2.48x TiOlig-23 1003 2.16x Labradorite (An67) 1000 1000 diffusion normal to (001): 1000 1000 TiLab-4 900 1.21x TiLab-2 950 6.95x TiLab-5 999 4.32x TiLab-1 1050 2.48x TiLab-3 1150 1.01x Anorthite (An93) 10101 diffusion normal to (010): 1050 TiAnorth-1 1050 5.90x Albite (An1) 1050 1000	1.50×10^{5}	¹ -20.82	0.45	TiAl-10	air
TiOlig-23 1003 2.16x Labradorite (An67) diffusion normal to (001): 1000			0.29	TiAl-10	air
diffusion normal to (001):TiLab-4900 $1.21x$ TiLab-2950 $6.95x$ TiLab-5999 $4.32x$ TiLab-1 1050 $2.48x$ TiLab-3 1150 $1.01x$ Anorthite (An ₉₃)diffusion normal to (010):TiAnorth-1 1050 $5.90x$ Albite (An ₁) 1000	2.40×10^4 2.40 $\times 10^{-20}$	⁰ -19.62	0.48	TiAl-10	air
TiLab-4 900 1.21x TiLab-2 950 6.95x TiLab-5 999 4.32x TiLab-1 1050 2.48x TiLab-3 1150 1.01x Anorthite (An93) 1.010 1.010 diffusion normal to (010): 1.010 1.010 TiLab-3 1.050 5.90x Albite (An1) 1.050 5.90x					
TiLab-2950 $6.95x$ TiLab-5999 $4.32x$ TiLab-11050 $2.48x$ TiLab-31150 $1.01x$ Anorthite (An ₉₃) $diffusion normal to (010)$:TiAnorth-11050 $5.90x$ Albite (An ₁) $anorthite (An_1)$					
TiLab-5 999 $4.32x$ TiLab-1 1050 $2.48x$ TiLab-3 1150 $1.01x$ Anorthite (An_{93}) $diffusion normal to (010)$: TiAnorth-1 1050 $5.90x$ Albite (An_1) $Anorthite (An_1)$	3.64×10^6 3.64 $\times 10^{-22}$	² -21.44	0.35	TiAl-10	air
TiLab-1 1050 2.48x TiLab-3 1150 1.01x Anorthite (An93) 1.01x diffusion normal to (010): 1.01x TiAnorth-1 1050 5.90x Albite (An1) 1.01x	10^5 9.15x10 ⁻²²	² -21.04	0.42	TiAl-10	air
TiLab-3 1150 $1.01x$ Anorthite (An93)diffusion normal to (010):TiAnorth-1 1050 $5.90x$ Albite (An1)	$10^5 9.25 \times 10^{-22}$	² -21.03	0.44	TiAl-10	air
Anorthite (An ₉₃) diffusion normal to (010): TiAnorth-1 1050 5.90x Albite (An ₁)	3.93×10^5 3.93×10^{-2}	¹ -20.41	0.30	TiAl-10	air
diffusion normal to (010): TiAnorth-1 1050 5.90x Albite (An ₁)	8.92×10^5 8.92×10^{-2}	¹ -20.05	0.33	TiAl-10	air
diffusion normal to (010): TiAnorth-1 1050 5.90x Albite (An ₁)					
Albite (An ₁)					
	5.23×10^5 5.23×10^{-22}	² -21.28	0.41	TiAl-10	air
diffusion normal to (001):					
TiAlb-1 900 8.64x	4.33×10^4	⁰ -19.36	0.27	TiAl-10	air
† TiAl-10: TiO2-Al2O3 (10:1					

647 Table 3. Ti Diffusion in K-Feldspar

		$T(^{o}C)$	time(sec)	$D(m^2 sec^{-1})$	log D	+/-	source†	buffer
648	diffusion nor	mal to (l	001):					
	TiMO-9	799	1.92×10^{6}	1.13x10 ⁻²²	-21.95	0.43	TiAl-10	air
	TiMO-4	852	5.90x10 ⁵	3.98x10 ⁻²²	-21.40	0.37	TiO ₂	air
	TiMO-14	851	6.01×10^5	9.23x10 ⁻²²	-21.03	0.37	TiAl-10	NNO
	TiMO-3	900	1.62×10^5	2.54x10 ⁻²¹	-20.60	0.33	TiO ₂	air
	TiMO-6	900	8.64×10^4	8.83x10 ⁻²²	-21.05	0.48	TiAl-10	air
	TiMO-7	900	6.05×10^5	7.72x10 ⁻²²	-21.11	0.29	TiAl-10	air
	TiMO-1	950	2.45×10^{5}	1.12×10^{-20}	-19.95	0.24	TiO ₂	air
	TiMO-10c	950	2.48×10^{5}	3.84x10 ⁻²¹	-20.42	0.45	TiAl-10	air
	TiMO-12	950	1.69×10^5	3.71x10 ⁻²¹	-20.43	0.24	TiAl-10	NNO
	TiMO-13	950	2.72×10^{5}	3.18x10 ⁻²¹	-20.50	0.44	TiAl-10	NNO- glycine
	TiMO-5	1000	5.76×10^4	7.15x10 ⁻²⁰	-19.15	0.27	TiO ₂	air
	TiMO-16	1003	2.88×10^4	3.50x10 ⁻²⁰	-19.45	0.42	TiAl-10	NNO
649	diffusion nor	mal to (l	010):					
	TiMO-15	851	6.05x10 ⁵	1.13x10 ⁻²¹	-20.95	0.41	TiAl-10	air
	TiMO-10b	950	2.48×10^{5}	4.13x10 ⁻²¹	-20.38	0.28	TiAl-10	air
	TiMO-17	1003	2.16x10 ⁴	4.73x10 ⁻²⁰	-19.33	0.36	TiAl-10	air
650	† TiAl-10: T	iO_2 -Al ₂ O	<i>P₃ (10:1)</i>					
651								

651

652

654 **Captions for figures**

Figure 1. Typical Ti diffusion profiles for oligoclase (a, b) and K-feldspar (c, d) for experiments

- run at 950°C for 69 hours and 68 hours, respectively. In (a) and (c), the measured diffusion
- 657 profiles are plotted with complementary error function curves. In (b) and (d), the data are
- 658 linearized by inversion through the error function. Slopes of the lines are equal to $(4Dt)^{-1/2}$.

659

- 660 Figure 2. Arrhenius plot of Ti diffusion in plagioclase. For diffusion normal to (001) in
- oligoclase, we obtain an activation energy of 207 ± 31 kJ/mol. and pre-exponential factor of
- 662 $6.67 \times 10^{-12} \text{ m}^2/\text{s}$ (log D_o = -11.18 ± 1.41). There appears to be little dependence of Ti diffusion on
- orientation, when comparing data for diffusion normal to (010) and (001) (black and white
- 664 circles, respectively), or fO₂, comparing experiments run in air and those under NNO-buffered
- 665 conditions (grey diamonds). In labradorite (dark grey squares), we obtain an activation energy of

666 181 ± 57 kJ/mol. and pre-exponential factor of 4.37×10^{-14} m²/s (log D_o = -13.36 ± 2.32) for

667 diffusion normal to (001). Data for anorthite (white triangle) and albite (black triangle) indicate

a clear trend of decreasing diffusivities in more calcic plagioclase.

669

```
670 Figure 3. Arrhenius plot for Ti diffusion in K-feldspar. For diffusion normal to (001), an
```

671 activation energy of 342 ± 47 kJ mol⁻¹ and a pre-exponential factor 3.01×10^{-6} m²s⁻¹ (log D_o = -

 5.52 ± 2.06) are obtained. There is little evidence of diffusional anisotropy when comparing

- 673 diffusivities normal to (010) and (001) (black and white circles, respectively). Diffusivities are
- also similar for diffusion in air and under NNO-buffered conditions (grey triangles), as well as
- 675 for the experiment conducted with glycine in the capsule (dark grey square), indicating little
- 676 effect on Ti diffusion of fO_2 or the presence of hydrous species.

678	Figure 4. Time series at 900°C for oligoclase (a) and K feldspar (b). In both cases, diffusivities
679	agree within experimental uncertainty over a range of experiment durations, suggesting that
680	volume diffusion is the dominant contributor to the observed diffusion profiles.
681	
682	Figure 5. Relationship between Ti diffusivity and An content of plagioclase. Diffusion
683	coefficients at 900°C for oligoclase, labradorite, and albite are plotted as a function of An
684	content, along with a down-temperature extrapolation for anorthite to obtain a value for D at that
685	temperature, using an activation energy of 200 kJ/mol. The data approach a linear dependence of
686	log D on An content (in mol%), and can be described by the expression -19.48 - (0.031*An).
687	
688	Figure 6. Diffusion data for Ti and other cations in albite (a), oligoclase (b), labradorite (c),
689	anorthite (d) and K-feldspar (e). Sources for data: Ti - this study; Sr - Cherniak and Watson,
690	1992; 1994; Cherniak, 1996; Giletti and Casserly, 1994; Pb - Cherniak, 1995; Ba - Cherniak,
691	2002; REE- Cherniak, 2003a; Si - Cherniak, 2003b; Li - Giletti and Shanahan, 1997; Fe -
692	Behrens et al., 1990; Mg - plagioclase - Van Orman et al., 2014; Ca, Mg - anorthite - La Tourette
693	and Wasserburg, 1998; Ca - labradorite - Behrens et al., 1990; Rb - albite - Giletti and Shanahan,
694	1997; Rb - K feldspar - Giletti, 1991; K - K feldspar - Foland, 1974; Hergemöller et al., 2017; K
695	- plagioclase - Giletti and Shanahan, 1997; Na - K feldspar - Wilangowski et al., 2015; Foland,
696	1974; Na- albite - Kasper, 1975; Na - labradorite - Behrens et al., 1990.
697 698	Figure 7. Ti diffusion in feldspar and other minerals. Sources for data: feldspar - this study;
699	zircon- Cherniak and Watson, 2007; quartz - Cherniak et al., 2007; olivine- Cherniak and Liang,
700	2014; pyroxene - Cherniak and Liang, 2012.

701

 center of grains will be lost. For times and temperatures below the curves, concentrations at crystal cores will remain unaffected, but will be influenced by the surrounding medium when conditions above the curves apply. In calculations, diffusivities from the Arrhenius relations plotted in Figure 7 are used, and effective diffusion radii differing with mineral type are selected, using 0.5 mm for quartz and feldspar, and 50 µm for zircon. These curves suggest that feldspars may be relatively retentive of Ti chemical signatures under some geologic conditions. For example, this information would be preserved at 700°C in 0.5mm radius grains over timescales of ~5 Ma for oligoclase, ~70 Ma for labradorite, and ~170 Ma for K feldspar. In comparison, conditions for preservation of initial Ti concentrations in quartz grain centers at this temperature would be 1.5 Ma. 	702	Figure 8. Curves representing time-temperature conditions under which Ti signatures at the
 conditions above the curves apply. In calculations, diffusivities from the Arrhenius relations plotted in Figure 7 are used, and effective diffusion radii differing with mineral type are selected, using 0.5 mm for quartz and feldspar, and 50 µm for zircon. These curves suggest that feldspars may be relatively retentive of Ti chemical signatures under some geologic conditions. For example, this information would be preserved at 700°C in 0.5mm radius grains over timescales of ~5 Ma for oligoclase, ~70 Ma for labradorite, and ~170 Ma for K feldspar. In comparison, conditions for preservation of initial Ti concentrations in quartz grain centers at this temperature would be 1.5 Ma. 	703	center of grains will be lost. For times and temperatures below the curves, concentrations at
 plotted in Figure 7 are used, and effective diffusion radii differing with mineral type are selected, using 0.5 mm for quartz and feldspar, and 50 µm for zircon. These curves suggest that feldspars may be relatively retentive of Ti chemical signatures under some geologic conditions. For example, this information would be preserved at 700°C in 0.5mm radius grains over timescales of ~5 Ma for oligoclase, ~70 Ma for labradorite, and ~170 Ma for K feldspar. In comparison, conditions for preservation of initial Ti concentrations in quartz grain centers at this temperature would be 1.5 Ma. 	704	crystal cores will remain unaffected, but will be influenced by the surrounding medium when
 using 0.5 mm for quartz and feldspar, and 50 µm for zircon. These curves suggest that feldspars may be relatively retentive of Ti chemical signatures under some geologic conditions. For example, this information would be preserved at 700°C in 0.5mm radius grains over timescales of ~5 Ma for oligoclase, ~70 Ma for labradorite, and ~170 Ma for K feldspar. In comparison, conditions for preservation of initial Ti concentrations in quartz grain centers at this temperature would be 1.5 Ma. 	705	conditions above the curves apply. In calculations, diffusivities from the Arrhenius relations
 may be relatively retentive of Ti chemical signatures under some geologic conditions. For example, this information would be preserved at 700°C in 0.5mm radius grains over timescales of ~5 Ma for oligoclase, ~70 Ma for labradorite, and ~170 Ma for K feldspar. In comparison, conditions for preservation of initial Ti concentrations in quartz grain centers at this temperature would be 1.5 Ma. 	706	plotted in Figure 7 are used, and effective diffusion radii differing with mineral type are selected,
 example, this information would be preserved at 700°C in 0.5mm radius grains over timescales of ~5 Ma for oligoclase, ~70 Ma for labradorite, and ~170 Ma for K feldspar. In comparison, conditions for preservation of initial Ti concentrations in quartz grain centers at this temperature would be 1.5 Ma. 	707	using 0.5 mm for quartz and feldspar, and 50 μ m for zircon. These curves suggest that feldspars
 of ~5 Ma for oligoclase, ~70 Ma for labradorite, and ~170 Ma for K feldspar. In comparison, conditions for preservation of initial Ti concentrations in quartz grain centers at this temperature would be 1.5 Ma. 	708	may be relatively retentive of Ti chemical signatures under some geologic conditions. For
 711 conditions for preservation of initial Ti concentrations in quartz grain centers at this temperature 712 would be 1.5 Ma. 	709	example, this information would be preserved at 700°C in 0.5mm radius grains over timescales
712 would be 1.5 Ma.	710	of ~5 Ma for oligoclase, ~70 Ma for labradorite, and ~170 Ma for K feldspar. In comparison,
	711	conditions for preservation of initial Ti concentrations in quartz grain centers at this temperature
	712	would be 1.5 Ma.
713	713	

Figure 9. Ti center-retention criteria for feldspars of 500 μ m radii cooling at a linear rate from a range of maximum temperatures T_{peak}. The critical cooling rate (dT/dt)_c, will depend on the maximum temperature, grain radius and diffusion parameters. When cooling rates are slower than this critical value, the peak-temperature Ti signature in the center of a feldspar grain will not be preserved over the cooling path. The lines are calculated using eq. 1.

719

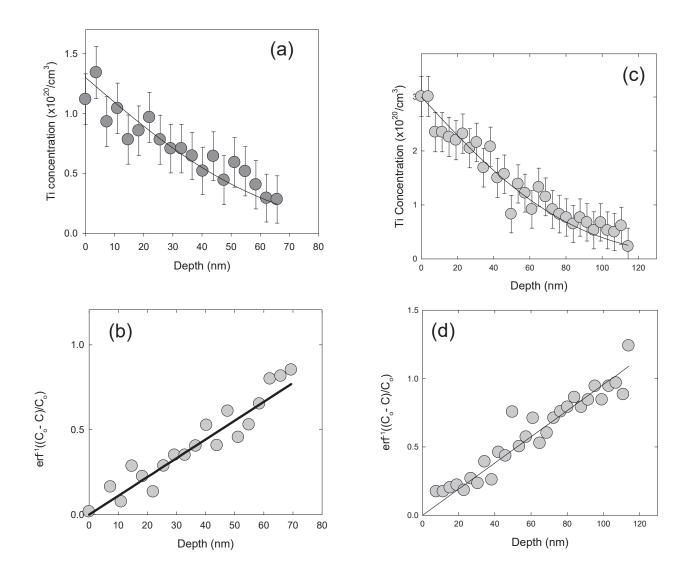
Figure 10. Conditions for preservation of fine-scale chemical zoning of Ti in feldspar may be

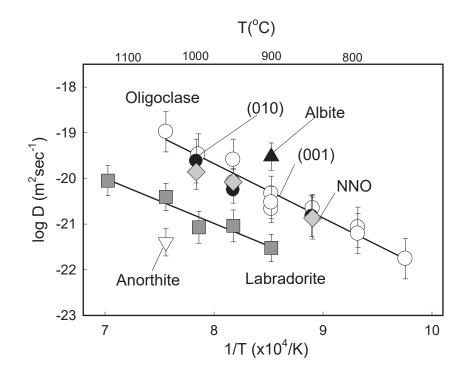
retained or lost. Zones are considered to be "lost" if a compositional change of 10% is attained in

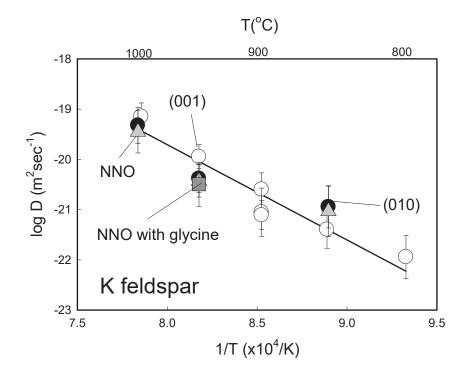
the zone's center. The curves constrain the time-temperature conditions under Ti zoning of 10

and 100µm width will be retained in labradorite, oligoclase and K-feldspar; for conditions below
the curves, zoning will be retained.

725


Figure 11. Conditions for preservation of Ti zoning in oligoclase compared with that for other


trace and minor elements in feldspar. Ti zoning would be better preserved than zoning of Mg and


728 Sr.

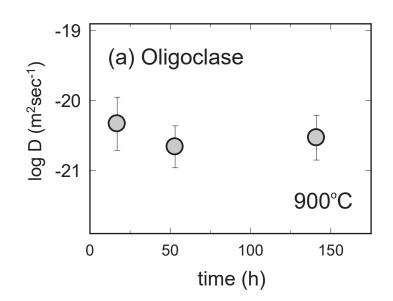

729

Figure 12. (a) Backscattered-electron image of a portion of a large K-feldspar crystal from a 730 731 pegmatitic vein transecting Paleoproterozoic metamorphic rocks in Colorado (N40°06.50910', 732 W105°22.34442'); exsolved albite in darker gray. The partially transparent white rectangle shows 733 the location of an LA-ICP/MS traverse across a single albite lamella ~60 microns across. (b-f) 734 Concentration profiles of Na, Sr, Rb, Ba and Ti along the indicated traverse. Included in (c) are 735 the input parameters (inset legend) and outcome (heavy lines) of moving-boundary numerical 736 models simulating albite growth and redistribution of Sr. Common to all these models are the 737 following: albite/K-feldspar partition coefficient = 0.17; initial Sr concentration in the pre-738 exsolved feldspar = 30 ppm; total growth = 30 μ m (half-width of final lamella). The uncertainty 739 in any given analysis is difficult to estimate because the data were obtained in dynamic mode as 740 the sample was translated under the laser beam in a direction perpendicular to the two-feldspar 741 interface, at a speed of 1 µm/s. We estimate the analytical uncertainty on each plotted data point 742 to be $\pm 50\%$ for Ti and $\pm 20-30\%$ for the other trace elements. The diffusivities used in the Sr 743 models are from Cherniak and Watson (1992) and Cherniak (1996), respectively. See text for 744 additional details and discussion.

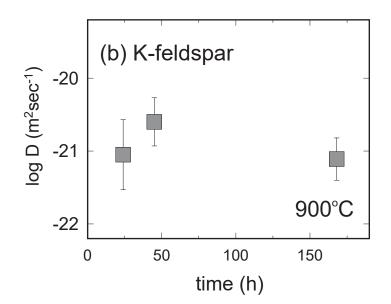


Figure 5

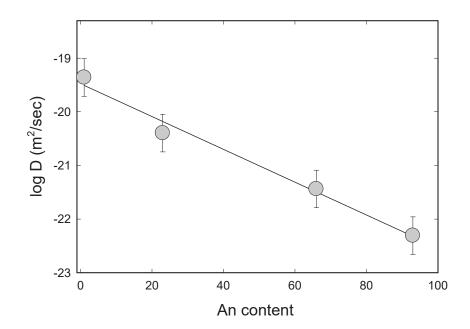
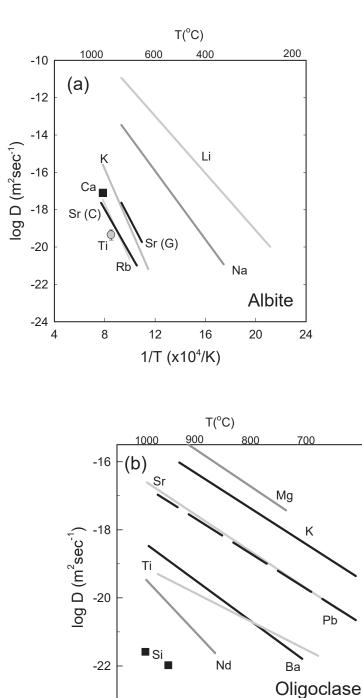
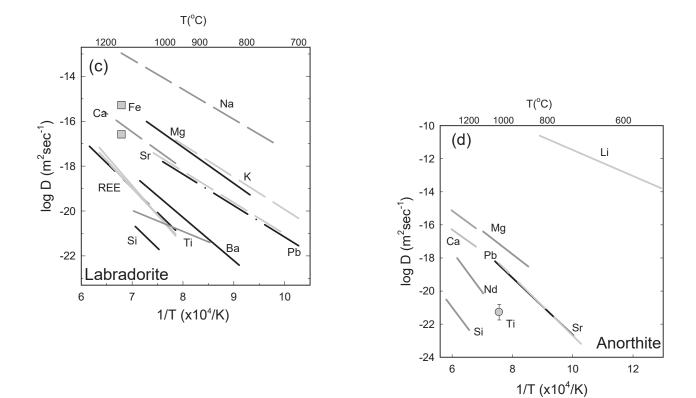



Figure 6

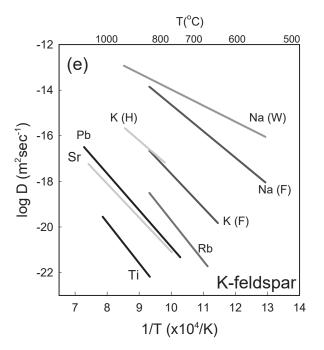
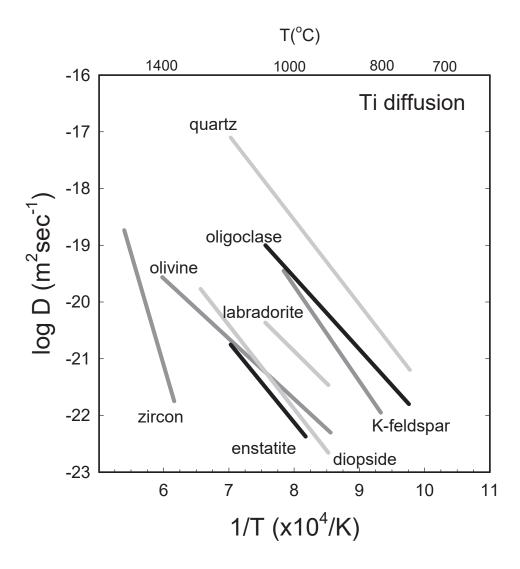
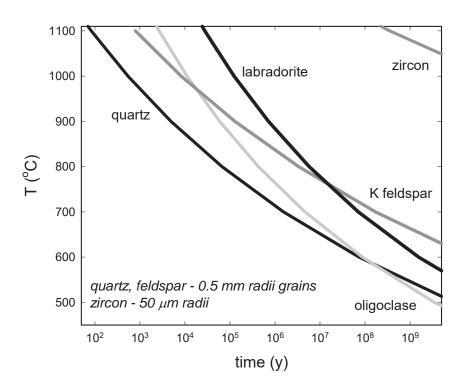
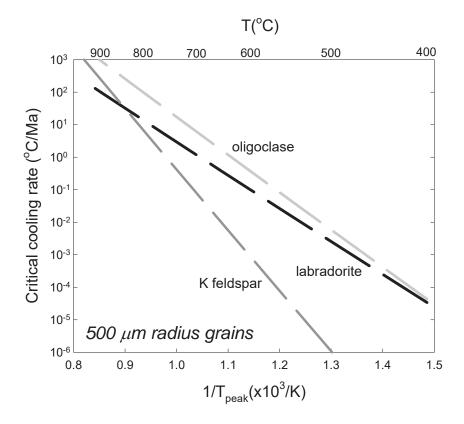
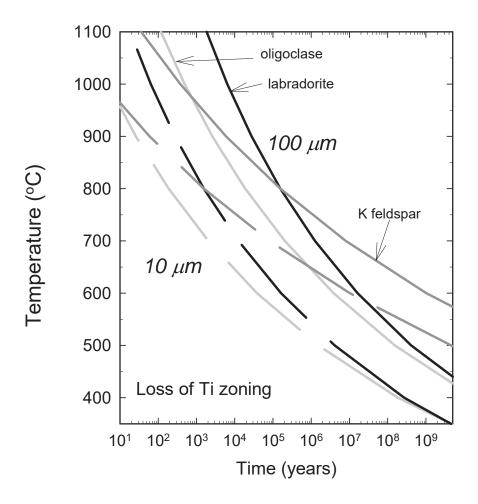


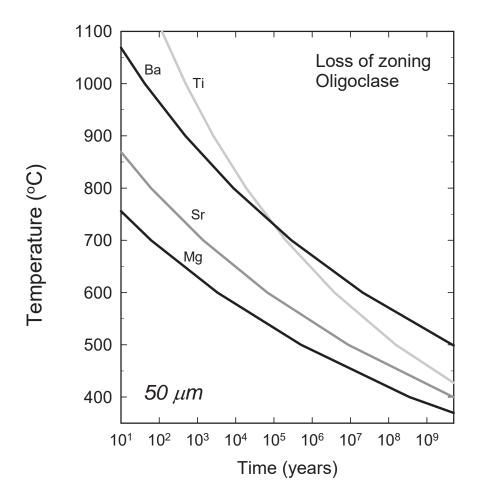
8

7

9

1/T(x10⁴/K)


Figure 7

