1 Revision 3: Phase Transformation of Hydrous Ringwoodite to the Lower-Mantle

2 Phases and the Formation of Dense Hydrous Silica

- 3 Huawei Chen¹, Kurt Leinenweber², Vitali Prakapenka³, Martin Kunz⁴, Hans A. Bechtel⁴,
- 4 Zhenxian Liu⁵ and Sang-Heon Shim¹

¹School of Earth and Space Exploration, Arizona State University, Tempe, Arizona.

²Eyring Materials Center, Arizona State University, Tempe, Arizona.

³GeoSoilEnviroCars, University of Chicago, Chicago, Illinois.

⁴Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, California.

⁵Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC.

5

- 6 Keywords: stishovite, ringwoodite, bridgmanite, periclase, water, mantle
- 7

8 Abstract

- 9 In order to understand the effects of H_2O on the mineral phases forming under the
- 10 pressure-temperature conditions of the lower mantle, we have conducted laser-heated
- 11 diamond-anvil cell experiments on hydrous ringwoodite (Mg₂SiO₄ with 1.1wt% H₂O) at

12	pressures between 29 and 59 GPa and temperatures between 1200 and 2400 K. Our
13	experimental results show that hydrous ringwoodite (hRw) converts to crystalline dense
14	hydrous silica, stishovite (Stv) or CaCl ₂ -type SiO ₂ (mStv), containing 1 wt% H_2O
15	together with Brd and MgO at the pressure-temperature conditions expected for shallow
16	lower-mantle depths between approximately 660 to 1600 km. Considering lack of sign
17	for melting in our experiments, our preferred interpretation of the observation is that Brd
18	partially breaks down to dense hydrous silica and periclase (Pc), forming Brd + Pc + Stv
19	mineralogy. Our experiments may provide an explanation for the enigmatic coexistence
20	of Sty and Fp inclusions in lower-mantle diamonds.

21 Introduction

22 Lines of evidence support that the lower mantle has a similar chemical composition to the 23 upper mantle (Kurnosov et al., 2017; Shim et al., 2001a, 2017) that is likely peridotitic or 24 pyrolitic (McDonough and Sun, 1995). In a pyrolitic lower mantle, (Mg,Fe)(Al,Si)O₃ 25 bridgmanite (Brd) and (Mg,Fe)O ferropericlase (Fp) are the dominant minerals (Kesson 26 et al., 1998; Lee et al., 2004). The high Mg/Si ratio of pyrolite stabilizes (Mg,Fe)O as a 27 mineral phase (Fp) in the lower mantle. Fp would react with a free silica phase and forms 28 Brd: $(Mg,Fe)O(Fp) + SiO_2 = (Mg,Fe)SiO_3$ (Brd). Therefore, it is believed that dense 29 silica phases, such as stishovite (Stv), are not thermodynamically stable in the anhydrous 30 lower mantle (Shim et al., 2001a).

31 In contrast, numerous studies have documented Stv coexisting with (Mg,Fe)O and Brd

32 (pyroxene with a Brd-like composition) as inclusions in diamonds from the lower mantle

33 (Kaminsky, 2012; Litvin et al., 2014; Stachel et al., 2005). Because the pyrolite model

34	cannot explain the co-existence of Stv and (Mg,Fe)O, the diamond inclusions raise an
35	important question about the mineralogy and composition of the lower mantle
36	(Kaminsky, 2012). Alternatively, the inclusions may originate from non-pyrolitic
37	sources. For example, Stv can exist with (Mg,Fe)O in a system with a much higher Fe
38	content than pyrolite (Fei et al., 1996). However, many of the (Mg,Fe)O inclusions do not
39	have sufficient Fe for this scenario, and so Brd should be observed instead of Stv in those
40	cases. Experiments have shown that subducted basalt contains Stv together with Brd but
41	not with Fp at the lower-mantle pressure-temperature $(P-T)$ conditions (Hirose et al.,
42	2005). Therefore, this cannot explain diamond inclusion observations.
43	An important factor to consider is the possible presence of H ₂ O. Studies have shown that
44	minerals in the mantle transition zone can store H_2O up to a few wt% (Smyth 1994;
45	Hirschmann 2006; Pearson et al. 2014). Indeed, some diamond inclusions indicated the
46	premise that the mantle transition zone is hydrated at least locally (Pearson et al., 2014;
47	Tschauner et al., 2018). However, recent high-pressure experiments have shown very low
48	H_2O storage capacities for Brd and Fp in the lower mantle (Bolfan-Casanova et al. 2003;
49	Panero et al. 2015). Therefore, H ₂ O transport via mantle convection across such a
50	dramatic change in the H ₂ O storage capacity at 660-km depth can induce some important
51	changes in the mineralogy of the lower mantle (Schmandt et al., 2014; Tschauner et al.,
52	2018). To understand the effect of H_2O on lower-mantle mineralogy, we have conducted
53	laser-heated diamond-anvil cell (LHDAC) experiments on a synthetic hydrous
54	ringwoodite (Mg ₂ SiO ₄ with 1.1 wt% H ₂ O; hRw) starting material at pressures between 29
55	and 59 GPa and temperatures between 1200 and 2400 K, which is expected for the lower
56	mantle.

57

58 Experimental Methods

59	Starting material: We synthesized Mg ₂ SiO ₄ ringwoodite (Rw) from a molar mixture
60	$(0.613Mg_2SiO_4 + 0.084SiO_2 + 0.167Mg(OH)_2)$ from forsterite, SiO ₂ (glass), and brucite
61	for synthesis of a Mg_2SiO_4 with 3 wt% H_2O in a 6-8 multi-anvil press combined with a
62	10/5 assemblies at Arizona State University (ASU) (Leinenweber et al., 2012). The
63	starting mixture was loaded into a platinum capsule. Then, we sealed the capsule. We
64	compressed the mixture to 20 GPa and subsequently heated to 1573 K for 30 minutes.
65	After the synthesis, pure ringwoodite was confirmed by X-ray diffraction (XRD) pattern
66	(Fig. S1), which we will describe later. From analysis of infrared (IR) spectra, we
67	obtained 1.1 \pm 0.5 wt% H ₂ O for the amount of H ₂ O in Rw from integrated intensity of the
68	O-H vibration mode from infrared at the wavenumber 2600-3600 cm ⁻¹ range, following
69	the methods in Smyth et al. (2003) (Fig. S2).
70	Laser-heated diamond-anvil cell: We pre-compressed the powder of the hydrous Rw
71	sample into a 10-µm thick foil into a symmetric diamond anvil cell (DAC). We used
72	diamond anvils with 200 μm (flat) and 150 μm (single beveled) cullets for experiments at
73	pressures below and above 50 GPa, respectively. The sample chamber was made by
74	drilling a 90 or 120 μ m diameter hole in a rhenium gasket indented by diamond anvils.
75	Two different types of heating were performed using either Ar or Ne as an insulating
76	medium. The first was CO_2 laser heating on the hydrous Rw samples, and the second
77	near infrared (NIR) laser heating (Fig. S3) on hydrous Rw + Pt mixtures (Tab. 1). For the
78	CO ₂ laser heating experiments, we cryogenically loaded an Ar medium in a DAC. A ruby

79 chip was loaded at the edge of the sample chamber for pressure measurements, but away 80 from the sample foil in order to avoid any chemical reaction. We compressed the samples 81 with nitrogen-free type-II diamond anvils and focused a CO_2 laser beam on the sample 82 foil in the DAC. Single-sided heating was conducted at 1200 to 2420 K using a laser 83 heating system at ASU. Note that we did not mix the ringwoodite powder with any 84 metals in the CO_2 heating experiments, because silicate samples couple directly with the 85 CO_2 laser beam. The size of the laser heating spot was 50 µm. Temperatures were 86 calculated by fitting the measured thermal radiation spectra to the Planck equation from 87 one side of the sample after subtracting the backgrounds from the optics in the system 88 similar to the method described in (Prakapenka et al., 2008). Pressure was measured 89 using the ruby fluorescence line shift or the first-order Raman mode from the tips of the 90 diamond anvils (Mao et al., 1978). For the NIR measurements, we mixed the Rw starting 91 material with 10 wt% Pt, the latter being used as a laser coupler and internal pressure 92 standard when using XRD (Ye et al. 2017). We loaded Ne as a pressure medium using 93 the gas-loading system at the GESCARS, APS. The NIR laser heating was conducted at 94 GSECARS (Prakapenka et al., 2008). Two near-infrared laser beams (~1 micron 95 wavelength) were focused on the sample through two opposite sides of DAC with a hot 96 spot size of $20-25 \,\mu\text{m}$ in diameter. The laser beams were aligned co-axially with the X-97 ray beam. Temperatures were calculated by fitting thermal radiation spectra to the Planck 98 equation from both sides of the sample after background subtraction. 99 Synchrotron X-ray diffraction: We conducted synchrotron X-ray diffraction (XRD)

100 experiments at beamlines 13IDD at APS and 12.2.2 at ALS (Kunz et al., 2005;

101 Prakapenka et al., 2008). For the samples heated with a CO₂ laser beam at ASU, we

\$5\$ Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

102	conducted the measurements at high pressure and 300 K. In the case of the NIR heating,
103	we conducted XRD measurements during laser heating at the beamline (see
104	supplementary information). Pressure was calculated from the equations state of Ar and
105	Pt for the CO ₂ and NIR laser heated samples, respectively (Ross et al., 1986; Ye et al.,
106	2017). The heating durations were 15–30 minutes. We collected diffraction patterns from
107	a monochromatic X-ray beam with a wavelength of either 0.3344, 0.4133, or 0.4959 Å.
108	The sizes of the X-ray focus at the sample were 3×4 and $10 \times 10 \ \mu m^2$ at beamlines 13IDD
109	and 12.2.2, respectively. Diffraction patterns were measured with MarCCD and Pilatus
110	detectors at beamlines 12.2.2 and 13IDD, respectively, with a detector distance of
111	approximately 250 mm. We integrated the diffraction images to 1D patterns in the
112	Dioptas package shown in Fig. S4 (Prescher and Prakapenka, 2015). We performed phase
113	identification and peak fitting in the PeakPo package (Shim 2017). The data obtained
114	from the GSECARS and the 12.2.2 beamlines agreed well with each other. Rietveld
115	refinements were performed using the GSAS-II package (Toby and Von Dreele, 2013)
116	(Table 2 and Fig. S5). We refined phase fractions first, then atomic positions, lattice
117	parameters and spherical harmonic terms for the preferred orientation. After reaching a
118	good visual fit, we refined all the parameters together to further reduce residuals after
119	background subtraction, $R_{wp-bknd}$. From the unit-cell volume, we calculated the water
120	content using the relationship presented in Nisr et al. (2017a) (Table 1).
121	Infrared spectroscopy: We conducted IR measurements on polycrystalline hydrous Rw
122	starting material and the recovered samples at beamlines 1.4 of ALS and U2A of NSLS.
123	We loaded the sample of ringwoodite in the sample chamber of the rhenium gasket in the
124	diamond anvil cell. The infrared beam was focused on the sample to the minimum

125	beamsize of $10 \times 10 \ \mu\text{m}$. We measure the infrared spectra of the sample at 1 bar. For
126	hydrous stishovite, we measure the IR after laser heating of the hydrous ringwoodite
127	sample. At ALS, the system consists of a Nicolet Magna 760 FTIR spectrometer and
128	custom IR microscope with a HgCdTe detector and KBr beamsplitter. At U2A, we used a
129	Bruker Vertex 80v FTIR spectrometer and Hyperion 2000 microscope with HgCdTe
130	detectors. Spectral resolution was 4 cm ⁻¹ . Spectra were recorded for 256 scans. The
131	beam-size was 10×10 μ m ² in diameter at the sample. We conducted spectral fitting for
132	the IR data using the LMFIT package (Newville et al. 2014).

134 **Results**

- 135 Ringwoodite has a Mg/Si ratio of ~2. Thus, heating converts Rw to Brd (MgSiO₃) and
- 136 MgO (periclase, Pc) without silica at the *P*–*T* conditions expected for the lower mantle
- 137 (Shim et al., 2001a). All the diffraction patterns we measured after CO_2 laser heating
- between 35 and 55 GPa, however, showed the peaks of silica (either Stv or its
- 139 orthorhombic modification in CaCl₂-type structure, mStv, together with those of Brd and
- 140 MgO (Fig. 1). The most intense diffraction line of Stv (and mStv) exists at 2.8–2.9 Å.
- 141 Because Brd and MgO do not have diffraction lines in this range, the appearance of the
- 142 intense silica line allows us to unambiguously identify Stv (or mStv). In addition, some
- high-angle lines of Stv or mStv were identified, such as 101, 211, and 220. However,
- those features are less unambiguously as diagnostic features because of possible overlaps
- 145 with the Brd and MgO lines. We also found Stv (or mStv) together with Brd and MgO in
- the NIR heating experiments (Fig. S3). CO₂ laser heating provides much larger heating

- spot and therefore low thermal gradients. Most importantly, hydrous Rw couples directly
- 148 with a CO_2 laser beam. Because of these reasons, we discuss the CO_2 heating results in
- this paper (note that the NIR heating results are provided in supplementary information).

Fig. 1. X-ray diffraction patterns of lower-mantle minerals transformed from hydrous ringwoodite. a, 1 bar after recovery (X-ray wavelength of 0.3344 Å). b, 50 GPa after heating at 1200 K. The colored ticks below the patterns indicate the expected peak positions (Brd: bridgmanite, Pc: periclase (MgO), Stv: stishovite, Ct-SiO₂: CaCl₂-type silica (or mStv), Ar: argon, *: hcp-Ar). The blue arrows highlight the peaks from Stv (or converted from mStv). The Miller indices are provided for the lines with significant intensities (10%).

158	We have successfully quenched most of the samples synthesized at 35–55 GPa and
159	measured their diffraction patterns at 1 bar (Fig. 1). All three phases observed at high
160	pressure, Stv, Brd, and MgO, remained present after the pressure quench. The diffraction
161	lines of silica were indexed well with the tetragonal rutile type, that is Stv. The unit-cell
162	volumes of Brd and MgO at 1 bar were in agreement with their anhydrous counterparts
163	within 1.0%. However, for Stv, we found much larger unit-cell volumes than the value
164	reported for anhydrous Stv by 1.7–5.2% in Table 2.
165	Incorporation of H_2O increases the unit-cell volume of Stv and the relationship between
166	the H ₂ O content and the volume expansion was measured quantitatively (Spektor et al.
167	2011, 2016; Nisr et al. 2017a). From the volume and H_2O content relationship found in
168	other studies (Nisr et al., 2017; Spektor et al., 2016), we obtained 0.4–1.3 wt% H_2O for
169	the recovered Stv. In Nisr et al. (2017a), the relationship between the H_2O content and
170	unit-cell volume of stishovite was fit to a line using the samples from Spektor et al.
171	(2016): water content (wt%) = $4.64 \pm 0.57 \times (V - 46.515)$, where V is the unit-cell
172	volume. The H ₂ O contents of all the samples used for the calibration were directly
173	measured from thermogravimetric analysis (TGA). Some of these samples were also
174	characterized with IR measurements.
175	Stishovite has a tetragonal unit cell with two independent lattice parameters, a and c .

176 When Stv is hydrated, the *a*-axis expands while the *c*-axis remains essentially unchanged.

- 177 Such changes could be related to the bonding of hydrogen to the underbonded oxygen in
- the silicon defects in the crystal structure (Nisr et al., 2017; Spektor et al., 2011). We
- found a strong linear correlation between the c/a ratio and the unit-cell volume of the

180	recovered Stv (Fig. 3a and Table 2). The trend in our dataset is in agreement with that
181	found in previous studies on hydrous Stv (Spektor et al., 2016, 2011).

182	Infrared (IR) spectroscopy is sensitive to even a trace amount of hydroxyl incorporated in
183	the crystal structures of mineral phases (Rossman, 1996). We measured the IR spectra of
184	the samples recovered from the CO_2 lasers where we found complete conversion to the
185	lower-mantle mineral phases, and did not find any Rw diffraction peaks after heating. We
186	found multiples of OH vibrational modes from the recovered samples (Fig. 2b). The
187	detected modes are significantly different from those of hRw (our starting material),
188	MgO, and Brd in both wavenumber and intensity distribution (Bolfan-Casanova et al.
189	2002, 2003; Pearson et al. 2014; Panero et al. 2015). H_2O can significantly reduce the
190	transition pressure of Stv to its orthorhombic modification (the CaCl ₂ type, mStv), for
191	example from 55 GPa to 25 GPa by 3 wt% H_2O (Lakshtanov et al. 2007; Nisr et al.
192	2017b). However, the differences in diffraction pattern between the phases are subtle,
193	particularly if the incorporated H ₂ O contents are low. In some diffraction patterns, we
194	were able to identify some diagnostic features of the orthorhombic distortion related to
195	the broadening of stishovite 101 peak as suggested in Fig. 1. However, the severe peak
196	overlaps of the Stv or mStv diffraction lines with Brd, MgO, and Ar at <i>d</i> -spacings smaller
197	than 2.5 Å, made the unambiguous detection challenging. Therefore, we cannot rule out
198	the possibility of a CaCl ₂ -type distortion in the silica phase (mStv) in our pressure range.

201 Fig. 2. The solubility of H₂O in Stv (or mStv) and its effects on the lower-mantle 202 mineralogy. a, The c/a ratio and the unit-cell volume of the recovered Stv co-existing 203 with Brd and MgO. For comparison, we plot the data for hydrous Stv (Spektor et al., 204 2016). b, The IR spectra of the samples recovered from the CO₂ heating experiments 205 (dots) with spectral fitting results (black curves). We also present the IR spectra of the 206 starting material (hydrous Rw) and hydrous Stv (Spektor et al., 2011). The gap at 2800-207 3000 cm⁻¹ is a region for C-H modes from CH contaminants on diamond anvils. After 208 opening the diamond-anvil cell, we measured IR through one diamond anvil to prevent 209 accidental loss of the sample.

212

Fig. 3, The MgO–SiO₂–H₂O ternary system and the formation of the lower-mantle
minerals from anhydrous and hydrous Rw (left, Eq. 1, and right, Eq. 2). The H₂O
contents in the top two ternary diagrams are exaggerated for the visibility of the expected
phase assemblages. We present the properly scaled compositions of our starting material
and recovered sample in the bottom diagram.

218

219 Previous studies have reported IR spectra of hydrous Stv (Spektor et al., 2016, 2011).

However, these samples were synthesized at pressures lower than 10 GPa and therefore

within the stability of Stv without a CaCl₂ type distortion. In contrast, our samples, all of

222	which are synthesized above 35 GPa, may have experienced a transition from $CaCl_2$ type
223	(mStv) to Stv during the decompression for the recovery. Therefore, comparison of our
224	IR spectra to those of hydrous Stv from low-P experiments should be made with caution.
225	Nevertheless, three modes at approximately 2550, 2870, and 3250 cm ⁻¹ from our samples
226	show good agreement in frequency with those reported for a hydrous Stv sample (Spektor
227	et al., 2011), although the intensity distribution is different (Fig. 2b). Our IR spectra are
228	measured on a much smaller area, and therefore significantly fewer grains in the samples,
229	recovered from the LHDAC experiments, whereas the former study (Spektor et al., 2011)
230	was conducted for much larger sample synthesized in a multi-anvil press. In fact, as
231	shown in Fig. 2b, the intensity distribution varies among different samples in our
232	experiments, while mode frequencies are consistent with each other within 50 cm ⁻¹ ,
233	indicating the OH mode intensities of our samples are sensitive to crystallographic
234	orientations and therefore preferred orientation. Different synthesis pressure and the
235	sample history, discussed above, may explain the small but noticeable shift of the trend in
236	the c/a and unit-cell volume relationship and the small but systematically lower
237	frequencies (by 30–100 cm ⁻¹) of the major IR-active OH modes of our samples compared
238	with hStv from low-P synthesis (Fig. 2a,b). We note that our IR spectra is different from
239	Schmandt et al. (2014) in that they observed a broad IR O-H band related to melting
240	product while our IR band shows three distinct peaks of hydrous stishovite similar to
241	Spektor et al. (2016).

242

243 **Discussions**

244	It is of interest why free silica phase forms even under the MgO saturated system we
245	studied (our starting material was hydrous Mg ₂ SiO ₄ ringwoodite). First, we can consider
246	solid-state reaction. From the Gibbs phase rule, $F = C - \Phi + 2$ (<i>F</i> is degrees of freedom,
247	<i>C</i> is chemical components, and Φ is number of phases in a system), for an MgO–SiO ₂
248	system with two independent components (MgO and SiO ₂ ; $C = 2$) at a range of P and T
249	($F = 2$), the maximum number of phases should be two ($\Phi = 2$). This is the case for
250	anhydrous Rw in MgO–SiO ₂ and thus explains the following phase change in the lower
251	mantle:

$$Mg_2SiO_4 (Rw) = MgSiO_3 (Brd) + MgO (Pc)$$
 (1)

252 In our experiments, Rw contained H₂O and therefore we should consider a ternary 253 system, MgO–SiO₂–H₂O (C = 3). In this case, the Gibbs rule predicts a ternary phase 254 assemblage ($\Phi = 3$) at a range of P and T. We indeed observed the stability of the Brd + 255 Pc + Stv (or mStv) ternary phase assemblage at pressures between 35 and 59 GPa. Some 256 phases in our final products should contain H₂O and as shown above Stv (or mStv) plays 257 such a role. As shown in Fig. 3, hydrous Stv (or mStv), together with Pc and Brd, can 258 form a triangle in the ternary phase diagram for a stable phase assemblage. Because Brd 259 is the phase with Si, in order to form hydrous Stv (or mStv), a partial breakdown is 260 needed:

261 $(Mg_{1-x}H_{2x})_2SiO_4$ $(hRw) = (1 - x - y)MgSiO_3$ (Brd) + (1 - x + y)MgO (Pc) + (1 - x +

262 ySiO₂2xH₂O (hStv) (2)

263	where $2x$ is the amount of H ₂ O originally in Rw and y is the molar fraction of the Brd
264	breakdown to Pc + Stv (or mStv). Hydrogen would mainly substitute Mg in ringwoodite
265	(Smyth et al. 2004) while stishovite would store hydrogen through direct substitution
266	(Spektor et al., 2011).

267 In Fig. 3, our starting composition is slightly above the triangle formed by the three 268 lower-mantle phases after the transition. We note that the distance between the Rw 269 composition and the phase assemblage triangle of Brd + Pc + Stv is within the estimated 270 uncertainty of the H₂O content. The H₂O contents were estimated using different methods 271 for Rw and Sty (IR and XRD, respectively) and therefore the systematic differences in 272 these two methods may have contributed more than the estimated error presented in Fig. 273 3. The ternary phase diagram we presented here assumes that the system was closed with 274 no interaction between Rw and the surrounding medium, either Ar or Ne. However, some 275 amounts of H₂O could have been released to the pressure medium during heating. The 276 noble gas medium escaped from the sample chamber during recovery, therefore we could 277 not measure the amount of H₂O in the medium. If our hydrous Rw lost H₂O to the 278 medium during the initial stage of laser heating, the composition point would shift toward 279 the MgO–SiO₂ line, and possibly lied within the Brd–Pc–Stv triangle.

The hypothesis presented here can be further examined if the fractions of the phases can
be reliably determined. We attempted Rietveld refinements (Fig. S5) to obtain phase
fractions. However, we found that the intensities of the phases vary strongly at different
spots in the sample, likely because of strong recrystallization during laser heating. Our
2D diffraction image in Fig. S4 shows that we only have a few single-crystal-like grains

285	for the phases instead of randomly oriented powder which is required for successful
286	Rietveld refinements. The observation explains the strong variation in the intensity.
287	Because of the limitation, we could not reliably constrain the phase fractions through
288	Rietveld refinements.

289 Second, we consider possibility of melt-involved process. A recent high-pressure

290 experiment (Walter et al., 2015) observed Stv at lower-mantle related pressures in MgO-

291 Al_2O_3 -SiO₂-H₂O even when Mg/Si > 1, which is similar to our study. The study

documented that Stv appeared at temperature above 1300 K and remained stable to at

least 1900 K at 30 to 50 GPa together with Brd and MgO. They related the appearance of

294 Stv to hydrous melting.

295 Although the H₂O content in Stv was not reported, the observation of Stv in the Mg-rich

system in Walter et al. (2015) is consistent with our study and supports the important role

297 of H₂O for the lower-mantle mineralogy. At lower temperatures, phase D and phase H

were observed in the former study (Walter et al., 2015), which was not the case in our

299 experiments. However, their samples contained a factor of 3-5 greater amounts of H_2O

300 than our samples, which could change the phase behavior. The amount of H₂O in our

301 experiments is more consistent with recent estimations for H₂O content in the mantle

302 transition zone (Fei et al., 2017).

303 An experimental study of a $(Mg_{0.9}Fe_{0.1})_2SiO_4$ Rw sample with 1.1(1) wt% H₂O reported

the observation of Brd, (Mg,Fe)O, and brucite after laser heating to 1873 K at 30 GPa

305 (Schmandt et al., 2014). They identified small amorphous regions in the TEM analysis of

the quenched samples and attributed them to hydrous melting.

307	If these former observations are applicable for our experiments, it can be hypothesized
308	that generation of silica-rich hydrous melt and its subsequent cooling below melting
309	temperature may crystallize dense silica in our experiment. However, in our in-situ
310	experiments shown in Fig. S3, we did not find any sign of melting. For example,
311	coupling behavior change is common across melting (Walter et al., 2015), which was not
312	found in our study. In addition, our in-situ experiments show immediate appearance of
313	silica from the hydrous ringwoodite starting material together with Brd and Pc. Such an
314	observation is inconsistent with the melting-related precipitate possibility.
315	In Schmandt et al. (2014), the XRD pattern does not show any silica peaks and their
316	reported IR spectra for OH are different from Stv. The melting temperature of silicates
317	generally increases with pressure. Their pressure was lower than our experiments (Fig.
318	4). In addition, Fe in their Rw sample could reduce the melting temperature. Therefore, it
319	is difficult to relate their results to our experimental observations.

322 Fig. 4. Pressure and temperature conditions for the experimental runs with the observed 323 phase assemblages. We plot the expected temperature ranges at different depths between 324 the cold subducting slabs and the mantle geotherm (Brown and Shankland, 1981; 325 Syracuse et al., 2010). We also show dry liquidus and solidus of the pyrolitic 326 composition, wet liquidus and solidus of pyrolitic composition with 2 wt% water from 327 Litasov and Ohtani (2002). The stability fields of phase D and phase H are from previous 328 studies (Litasov and Ohtani, 2002; Nishi et al., 2014). CO₂: CO₂ laser-heating 329 experiments, and NIR: NIR laser-heating experiments. We also plotted melting 330 experiment performed by other studies (Bolfan-Casanova et al., 2000; Schmandt et al., 331 2014).

332

333	For a pyrolitic CaO–MgO–Al ₂ O ₃ –SiO ₂ , a multi-anvil press study showed that 2 wt% of
334	$\mathrm{H}_{2}\mathrm{O}$, which is twice more than we have, reduces the melting temperature to 2400 K at 25
335	GPa (Litasov and Ohtani, 2002). Because it increases with pressure, the melting
336	temperature should be higher than 2400 K at the pressure range of our experiments
337	(Litasov and Ohtani, 2002). All of our experiments were conducted at temperatures
338	below 2400 K, and we observed the formation of dense silica polymorph at temperatures
339	as low as 1200–1630 K (Fig. S3). We also did not find any IR modes of brucite, which
340	has been often related to melting in high-pressure samples (Schmandt et al., 2014).
341	Therefore, the melting-involving possibility is less likely.
342	If stishovite observed in our experiments is related to partial melting, because we
343	observed stishovite during in-situ heating, we can hypothesize that Brd undergoes
344	incongruent melting and stishovite appears as a solidus phase, existing together with
345	partial melt. However, such an observation has not been documented yet to our
346	knowledge at the pressure range we studied.
347	Panero et al. (2003) documented that aluminous stishovite has an elevated amount of H ₂ O
348	after partial melting in MORB composition However in this case stishovite is already
240	etable eren in enhadrere MORD beleve melting terrenentere hererere af much hicker
349	stable even in annydrous MORB below melting temperature because of much higher
350	concentration of SiO_2 in the composition. Therefore, unlike our case where stishovite
351	cannot exist in anhydrous case because of the high Mg/Si ratio, the observation by Panero
352	et al. (2003) is likely because of H_2O partitioning between partial melt and solid residue.
353	Saxena et al. (1996) reported breakdown of MgSiO ₃ Brd to MgO and SiO ₂ stishovite at
354	pressures between 58 and 85 GPa. However, the later experiments have shown instead

355	that MgSiO ₃ Brd remains stable throughout the lower mantle (Serghiou et al., 1998; Shim
356	et al., 2001b). The source of the earlier breakdown observation has been unclear. While it
357	is intriguing to consider the effect of H_2O for the earlier experiments of breakdown from
358	our new observations reported here, we also note that (Saxena et al., 1996) observed the
359	stability of Brd at the pressure range we studied in this report.
360	From these considerations, our preferred interpretation of the silica formation in our
361	experiments is the solid-solid reaction and stabilization of silica through H ₂ O storage in
361 362	experiments is the solid-solid reaction and stabilization of silica through H_2O storage in the phase. However, we believe future study is required for more firm conclusions
361 362 363	experiments is the solid-solid reaction and stabilization of silica through H ₂ O storage in the phase. However, we believe future study is required for more firm conclusions particularly related to the possible partial melting origin of stishovite. For example,
361 362 363 364	experiments is the solid-solid reaction and stabilization of silica through H ₂ O storage in the phase. However, we believe future study is required for more firm conclusions particularly related to the possible partial melting origin of stishovite. For example, transmission electron microscopy (TEM) analysis would be helpful to further address the

365 limitations in this study. Although we attempted, we found it difficult to recover the

366 samples undergone extensive phase changes and recrystallization in a noble gas medium

367 for TEM analysis. Therefore, technical development would be important to achieve the

368 measurements. It is also of particular interest to explore the transition in mineralogy after

the stability field of phase D at temperatures higher than the stability of phase H.

370

371 Implications

372 Numerous studies have documented Stv coexisting with (Mg,Fe)O and Brd (pyroxene

373 with Brd-like composition) as inclusions in diamonds from the lower mantle (Kaminsky,

2012; Litvin et al., 2014; Stachel et al., 2005). As shown in Eq. 1, the coexistence of Stv

is very difficult to explain in the anhydrous pyrolitic lower mantle. Diamond inclusions

376	have been often related to fluids or H_2O (Kaminsky, 2012; Kohn et al., 2016; Tschauner
377	et al., 2018). Here we showed that Stv (or mStv) could form a phase assemblage with Fp
378	and Brd in an Mg-rich system if H ₂ O is present. Our observation, therefore, provides a
379	new possible explanation for the coexistence of Stv with Fp and Brd in the lower-mantle
380	diamonds. If so, those diamonds should originate from hydrous regions in the mid-
381	mantle. We proposed that future studies measure the H ₂ O content of the Stv inclusions in
382	lower-mantle diamonds. If future studies indeed support our interpretation for the
383	stabilization of silica through H_2O storage in the lower mantle, such a change in
384	mineralogy would impact our understanding on the H2O cycle in Earth and other Earth-
385	like planets in our solar system and extra-solar system.

Run	Pressure	Temperature	Synthesized	H ₂ O content
number	(GPa)	(K)	phases	in silica (wt%)
		CO_2 las	ser heating	
517	35(1)	1870(100)	Stv, Brd, Pc	0.36(13)
203	37(1)	1930(100)	Stv, Brd, Pc	0.77(14)
604	43(1)	2116(100)	Stv, Brd, Pc	1.26(18)
717	44(1)	1630(100)	Stv, Brd, Pc	1.09(16)
331	50(2)	1200(100)	mStv, Brd, Pc	0.60(15)
302	55(2)	2080(100)	mStv, Brd, Pc	1.19(19)
		NIR las	ser heating	
111a	29(1)	1552(100)	Stv, Brd, Pc (Rw)	
111b	33(1)	1770(100)	Stv, Brd, Pc (Rw)	
111c	35(1)	2028(100)	Stv, Brd, Pc (Rw)	
312a	37(1)	1700(100)	Stv, Brd, Pc (Rw)	
312b	38(2)	1840(100)	Stv, Brd, Pc (Rw)	
312c	40(2)	1700(100)	Stv, Brd, Pc (Rw)	
433a	53(3)	1700(100)	mStv, Brd, Pc (Rw)	
433b	58(3)	1990(100)	mStv, Brd, Pc (Rw)	
433c	59(3)	2300(100)	mStv, Brd, Pc (Rw)	

388	Tab. 1. Conditions and run products of the high-pressure experiments. The numbers
389	in parentheses are the 1σ uncertainties. As discussed in the main text, it is difficult to
390	resolve peaks from the orthorhombic modification (CaCl ₂ type) of Stv (therefore
391	mStv) because of the peak overlaps with Brd and Fp. For the case we have clear
392	evidence for the orthorhombic modification at high pressure, we noted them as
393	"mStv" in this table. Even in this case, mStv converts to Stv (tetragonal) during
394	decompression. For the case we note as "Stv", although the diffraction patterns can be
395	well indexed with Stv, we do not rule out the possibility of mStv, because of subtle
396	differences in diffraction patterns between Stv and mStv.

398

Run	P (GPa)	T (K)	Brd	$\Delta V/V$ (%c)	Pc	$\Delta V/V$ (‰)	Stv	$\Delta V/V$ (%0)	c/a
302	55	2080	162.47(7)	0.7(3)	74.75(4)	-0.2(3)	46.74(1)	5.2(1)	0.6374(2)
203	37	1930	162.31(6)	-0.2(1)	74.83(1)	0.7(1)	46.66(3)	3.4(7)	0.6377(3)
331	50	1200	162.35(6)	0.0(2)	74.82(3)	0.7(2)	46.63(3)	2.7(7)	0.6381(3)
517	35	1870	162.48(9)	0.8(5)	74.76(6)	-0.2(6)	46.58(3)	1.7(6)	0.6382(6)
604	43	2116	162.40(6)	0.3(1)	74.73(1)	-0.6(1)	46.74(2)	5.2(3)	0.6365(2)
717	44	1630	162.36(8)	0.0(3)	74.86(2)	1.0(2)	46.72(2)	4.7(4)	0.6371(4)

399

400 Tab. 2. The unit cell volumes of bridgmanite (Brd), periclase (MgO) and stishovite (Stv) 401 measured at 1 bar after pressure and temperature quench. The values were obtained 402 through Rietveld refinements (see an example in Fig. S5). The unit-cell parameters 403 of Brd, Pc, and Stv are compared with those reported for pure MgSiO₃ (162.349Å³) 404 (Ross et al. 1990), MgO (74.778Å³) (Dorogokupets et al. 2007), and anhydrous Stv 405 (46.502Å³) (Andrault et al. 2003), respectively, at 1 bar. The *c/a* ratio for stishovite were 406 also included in the table.

407

408 Acknowledgments

- 409 This work was supported by NSF grants (EAR1321976 and EAR1401270) and NASA
- 410 grant (80NSSC18K0353) to S.H.S. H.C. has been supported by the Keck foundation (PI:
- 411 P. Buseck). The results reported herein benefit from collaborations and/or information
- 412 exchange within NASA's Nexus for Exoplanet System Science (NExSS) research
- 413 coordination network sponsored by NASA's Science Mission Directorate. We
- 414 acknowledge the use of facilities within the Eyring Materials Center at Arizona State
- 415 University. The synchrotron experiments were conducted at GSECARS, Advanced
- 416 Photon Source (APS), Advanced Light Source (ALS), and National Synchrotron Light

- 417 Source (NSLS). GSECARS is supported by NSF-Earth Science (EAR-1128799) and
- 418 DOE-GeoScience (DE-FG02-94ER14466). The Multi-Anvil Cell Assembly Project,
- 419 DAC gas loading, and the U2A beamline at the NSLS are supported by COMPRES under
- 420 NSF EAR 11-43050. APS, ALS, and NSLS are supported by DOE, under contracts DE-
- 421 AC02-06CH11357, DE-AC02-05CH11231, and DE-SC0012704, respectively. The
- 422 experimental data for this paper are available by contacting SHDShim@asu.edu or
- 423 hchen156@asu.edu.
- 424

425 **References cited**

426	Andrault, D., Angel, R. J., Mosenfelder, J. L. & Bihan, T. L. (2003) Equation of state of
427	stishovite to lower mantle pressures. American Mineralogist 88, 301–307.
428	Bolfan-Casanova, N., Keppler, H., and Rubie, D.C. (2000) Water partitioning between
429	nominally anhydrous minerals in the MgO–SiO2–H2O system up to 24 GPa:
430	implications for the distribution of water in the Earth's mantle. Earth and
431	Planetary Science Letters, 182, 209–221.
432	Bolfan - Casanova, N., Mackwell, S., Keppler, H., McCammon, C., and Rubie, D.C.
433	(2002) Pressure dependence of H solubility in magnesiowüstite up to 25 GPa:
434	Implications for the storage of water in the Earth's lower mantle. Geophysical
435	Research Letters, 29, 89-1-89–4.
436	Bolfan - Casanova, N., Keppler, H., and Rubie, D.C. (2003) Water partitioning at 660
437	km depth and evidence for very low water solubility in magnesium silicate
438	perovskite. Geophysical Research Letters, 30.
439	Brown, J.M., and Shankland, T.J. (1981) Thermodynamic parameters in the Earth as
440	determined from seismic profiles. Geophysical Journal International, 66, 579-596.
441	Dorogokupets, P. & Dewaele, A.(2007) Equations of state of MgO, Au, Pt, NaCl-B1, and
442	NaCl- B2: Internally consistent high-temperature pressure scales. High Pressure
443	Research 27, 431–446.
444	
445	Fei, H., Yamazaki, D., Sakurai, M., Miyajima, N., Ohfuji, H., Katsura, T., and
446	Yamamoto, T. (2017) A nearly water-saturated mantle transition zone inferred
447	from mineral viscosity. Science Advances, 3, e1603024.
448	Fei, Y., Wang, Y., and Finger, L.W. (1996) Maximum solubility of FeO in (Mg, Fe)SiO ₃
449	-perovskite as a function of temperature at 26 GPa: Implication for FeO content in

450 451	the lower mantle. Journal of Geophysical Research: Solid Earth, 101, 11525– 11530
451 452	Hirose K. Takafuji N. Sata N. and Ohishi V. (2005) Phase transition and density of
453	subducted MORB crust in the lower mantle. Earth and Planetary Science Letters,
454	237, 239–251.
455	Hirschmann, M.M. (2006) Water, Melting, and the Deep Earth H2o Cycle. Annual
456	Review of Earth and Planetary Sciences, 34, 629–653.
457	Kaminsky, F. (2012) Mineralogy of the lower mantle: A review of 'super-deep' mineral
458	inclusions in diamond. Earth-Science Reviews, 110, 127-147.
459	Kesson, S.E., Fitz Gerald, J.D., and Shelley, J.M. (1998) Mineralogy and dynamics of a
460	pyrolite lower mantle. Nature, 393, 252–255.
461	Kohn, S.C., Speich, L., Smith, C.B., and Bulanova, G.P. (2016) FTIR
462	thermochronometry of natural diamonds: A closer look. Lithos, 265, 148–158.
463	Kunz, M., MacDowell, A.A., Caldwell, W.A., Cambie, D., Celestre, R.S., Domning, E.E.,
464	Duarte, R.M., Gleason, A.E., Glossinger, J.M., Kelez, N., and others (2005) A
465	beamline for high-pressure studies at the Advanced Light Source with a
466	superconducting bending magnet as the source. Journal of Synchrotron Radiation,
467	12, 650–658.
468	Kurnosov, A., Marquardt, H., Frost, D.J., Ballaran, T.B., and Ziberna, L. (2017) Evidence
469	for a Fe3+-rich pyrolitic lower mantle from (Al,Fe)-bearing bridgmanite elasticity
470	data. Nature, 543, 543–546.
471	Lakshtanov, D.L., Sinogeikin, S.V., Litasov, K.D., Prakapenka, V.B., Hellwig, H., Wang,
472	J., Sanches-Valle, C., Perrillat, JP., Chen, B., Somayazulu, M., and others (2007)
473	The post-stishovite phase transition in hydrous alumina-bearing SiO2 in the lower
474	mantle of the earth. Proceedings of the National Academy of Sciences, 104,
475	13588–13590.
476	Lee, K.K.M., O'Neill, B., Panero, W.R., Shim, SH., Benedetti, L.R., and Jeanloz, R.
477	(2004) Equations of state of the high-pressure phases of a natural peridotite and
478	implications for the Earth's lower mantle. Earth and Planetary Science Letters,
479	223, 381–393.
480	Leinenweber, K.D., Tyburczy, J.A., Sharp, T.G., Soignard, E., Diedrich, T., Petuskey,
481	W.B., Wang, Y., and Mosenfelder, J.L. (2012) Cell assemblies for reproducible
482	multi-anvil experiments (the COMPRES assemblies). American Mineralogist, 97,
483	353–368.
484	Litasov, K., and Ohtani, E. (2002) Phase relations and melt compositions in CMAS-
485	pyrolite–H2O system up to 25 GPa. Physics of the Earth and Planetary Interiors,
486	134, 105–127.
487	Litvin, Y., Spivak, A., Solopova, N., and Dubrovinsky, L. (2014) On origin of lower-
488	mantle diamonds and their primary inclusions. Physics of the Earth and Planetary
489	Interiors, 228, 176–185.
490	Mao, H.K., Bell, P.M., Shaner, J.W., and Steinberg, D.J. (1978) Specific volume
491	measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence
492	pressure gauge from 0.06 to 1 Mbar. Journal of Applied Physics, 49, 3276–3283.
493	McDonough, W.F., and Sun, Ss. (1995) The composition of the Earth. Chemical
494	Geology, 120, 223–253.

495 496 497	Newville, M., Stensitzki, Till., Allen, D. B., and Ingargiola, A. (2014) LMFIT: Non- Linear Least-Square Minimization and Curve-Fitting for Python. Zenodo, 10.5281/zenodo.11813
498 499 500	Nishi, M., Irifune, T., Tsuchiya, J., Tange, Y., Nishihara, Y., Fujino, K., and Higo, Y. (2014) Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nature Geoscience, 7, 224–227.
501 502	Nisr, C., Shim, SH., Leinenweber, K., and Chizmeshya, A. (2017a) Raman spectroscopy of water-rich stishovite and dense high-pressure silica up to 55 GPa.
503	American Mineralogist, 102, 2180–2189.
504	(2017b) Phase transition and equation of state of danse hydrous silies up to 63
505	(20170) Flase transition and equation of state of dense hydrous since up to 05 CDa. Journal of Coophysical Passarab. 122 2017 IP014055
500	OFa. Journal of Geophysical Research, 122,201/JB014055.
508	Panero W.R. Pigott I.S. Reaman D.M. Kabbes I.F. and Liu Z (2015) Dry
500	$(M_{\alpha} \text{ Fe})$ SiO3 perovskite in the Farth's lower mantle. Journal of Geophysical
510	Research: Solid Earth 120 2014JB011397
511	Pearson D.G. Brenker F.E. Nestola F. McNeill J. Nasdala L. Hutchison M.T.
512	Matyeev S Mather K Silversmit G Schmitz S and others (2014) Hydrous
513	mantle transition zone indicated by ringwoodite included within diamond. Nature.
514	507. 221–224.
515	Prakapenka, V.B., Kubo, A., Kuznetsov, A., Laskin, A., Shkurikhin, O., Dera, P., Rivers,
516	M.L., and Sutton, S.R. (2008) Advanced flat top laser heating system for high
517	pressure research at GSECARS: application to the melting behavior of
518	germanium. High Pressure Research, 28, 225–235.
519	Prescher, C., and Prakapenka, V.B. (2015) DIOPTAS: a program for reduction of two-
520	dimensional X-ray diffraction data and data exploration. High Pressure Research,
521	35, 223–230.
522	Rivers, M., Prakapenka, V.B., Kubo, A., Pullins, C., Holl, C.M., and Jacobsen, S.D.
523 524	(2008) The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source High Pressure Research 28 273–292
525	Ross M Mao H K Bell P M and Xu J A (1986) The equation of state of dense
526	argon: A comparison of shock and static studies. The Journal of Chemical Physics.
527	85. 1028–1033.
528	Ross, N. L. & Hazen, R. M.(1990) High-pressure crystal chemistry of MgSiO3
529	perovskite. Physics and Chemistry of Minerals 17, 228–237.
530	Rossman, G.R. (1996) Studies of OH in nominally anhydrous minerals. Physics and
531	Chemistry of Minerals, 23, 299–304.
532	Saxena, S.K., Dubrovinsky, L.S., Lazor, P., Cerenius, Y., Häggkvist, P., Hanfland, M.,
533	and Hu, J. (1996) Stability of Perovskite (MgSiO3) in the Earth's Mantle. Science,
534	274, 1357–1359.
535	Schmandt, B., Jacobsen, S.D., Becker, T.W., Liu, Z., and Dueker, K.G. (2014)
536	Dehydration melting at the top of the lower mantle. Science, 344, 1265–1268.
537	Serghiou, G., Zerr, A., and Boehler, R. (1998) (Mg,Fe)SiO3-Perovskite Stability Under
538	Lower Mantle Conditions. Science, 280, 2093–2095.
539	Shim, SH., Duffy, T.S., and Shen, G. (2001a) Stability and Structure of MgSiO3
540	Perovskite to 2300-Kilometer Depth in Earth's Mantle. Science, 293, 2437–2440.

541	(2001b) The post-spinel transformation in Mg2SiO4 and its relation to the 660-
542	km seismic discontinuity. Nature, 411, 571–574.
543	Shim, SH., Grocholski, B., Ye, Y., Alp, E.E., Xu, S., Morgan, D., Meng, Y., and
544	Prakapenka, V.B. (2017) Stability of ferrous-iron-rich bridgmanite under reducing
545	midmantle conditions. Proceedings of the National Academy of Sciences, 114,
546	6468–6473.
547	Smyth, J.R. (1994) A crystallographic model for hydrous wadsleyite (β-Mg2SiO4): An
548	ocean in the Earth's interior? American Mineralogist, 79, 1021–1024.
549	Smyth, J.R., Holl, C.M., Frost, D.J., Jacobsen, S.D. Langenhorst, F and Mccammon
550	CA(2003) Structural systematics of hydrous ringwoodite and water in Earth's
551	interior. American Mineralogist, 88, 1402–1407.
552	Smyth, J.R., Holl, C.M., Frost, D.J., and Jacobsen, S.D. (2004) High pressure crystal
553	chemistry of hydrous ringwoodite and water in the Earth's interior. Physics of the
554	Earth and Planetary Interiors, 143, 271–278.
555	Spektor, K., Nylen, J., Stovanov, E., Navrotsky, A., Hervig, R.L., Leinenweber, K.,
556	Holland, G.P., and Häussermann, U. (2011) Ultrahydrous stishovite from high-
557	pressure hydrothermal treatment of SiO2. Proceedings of the National Academy
558	of Sciences 108 20918–20922
559	Spektor K Nylen I Mathew R Edén M Stovanov E Navrotsky A Leinenweber
560	K and Häussermann U (2016) Formation of hydrous stishovite from coesite in
561	high-pressure hydrothermal environments. American Mineralogist 101 2514–
562	2524
563	Stachel T Brey G P and Harris I W (2005) Inclusions in Sublithospheric Diamonds:
564	Glimnses of Deen Farth Flements 1 73–78
565	Surgeuse E M van Keken P E and Abers $G \wedge (2010)$ The global range of subduction
566	zone thermal models. Physics of the Earth and Planetary Interiors, 183, 73-00
567	Toby BH and Von Dreele R B (2013) GSAS-II: the genesis of a modern open-source
568	all nurnose crystallography software nackage. Journal of Applied Crystallography
560	A6 544 540
509	40, 544-547. Tachaunar O. Huang S. Graanharg E. Drakananka V.P. Ma C. Dasaman G.P.
570	Schauffel, O., Huang, S., Oleenberg, E., Flakapelika, V.D., Ma, C., Kossinali, O.K.,
571	Sheh, A.H., Zhang, D., Newvine, M., Lanzhout, A., and others (2010) ice-vin
572	Seizers 250, 112(, 1120)
5/3	Science, 359, 1130–1139.
5/4	Walter, M.J., Thomson, A.R., Wang, W., Lord, O.T., Ross, J., McMahon, S.C., Baron,
575	M.A., Melekhova, E., Kleppe, A.K., and Kohn, S.C. (2015) The stability of
576	hydrous silicates in Earth's lower mantle: Experimental constraints from the
577	systems MgO–SiO2–H2O and MgO–Al2O3–SiO2–H2O. Chemical Geology, 418,
578	16–29.
579	Ye, Y., Prakapenka, V., Meng, Y., and Shim, SH. (2017) Inter-comparison of the Gold,
580	Platinum, and MgO Pressure Scales up to 140 GPa and 2,500 K. Journal of
581	Geophysical Research: Solid Earth, 2016JB013811.
582	

584 Figure captions

585	Fig. 1. X-ray diffraction patterns of lower-mantle minerals transformed from hydrous
586	ringwoodite. a, 50 GPa after heating at 1200 K. b, 1 bar after recovery (X-ray wavelength
587	of 0.3344 Å). The colored ticks below the patterns indicate the expected peak positions
588	(Brd: bridgmanite, Pc: periclase (MgO), Stv: stishovite, Ct-SiO ₂ : CaCl ₂ -type silica (or
589	mStv), Ar: argon, : hcp-Ar). The blue arrows highlight the peaks from Stv (or converted
590	from mStv). The Miller indices are provided for the lines with significant intensities
591	(10%).
592	Fig. 2. The solubility of H_2O in Stv (or mStv) and its effects on the lower-mantle
593	mineralogy. a, The c/a ratio and the unit-cell volume of the recovered Stv co-existing
594	with Brd and MgO. For comparison, we plot the data for hydrous Stv (Spektor et al.,
595	2016). b, The IR spectra of the samples recovered from the CO_2 heating experiments
596	(dots) with spectral fitting results (black curves). We also present the IR spectra of the
597	starting material (hydrous Rw) and hydrous Stv (Spektor et al., 2011). The gap at 2800-
598	3000 cm ⁻¹ is a region for C-H modes from CH contaminants on diamond anvils. After

opening the diamond-anvil cell, we measured IR through one diamond anvil to prevent

600 accidental loss of the sample.

Fig. 3, The MgO–SiO₂–H₂O ternary system and the formation of the lower-mantle

602 minerals from anhydrous and hydrous Rw (left, Eq. 1, and right, Eq. 2). The H_2O

603 contents in the top two ternary diagrams are exaggerated for the visibility of the expected

604 phase assemblages. We present the properly scaled compositions of our starting material

and recovered sample in the bottom diagram.

Fig. 4. Pressure and temperature conditions for the experimental runs with the obs	6 Fig. 4. Pressure and	emperature conditions	for the experimental	runs with the observed
--	------------------------	-----------------------	----------------------	------------------------

- 607 phase assemblages. We plot the expected temperature ranges at different depths between
- the cold subducting slabs and the mantle geotherm (Brown and Shankland, 1981;
- 609 Syracuse et al., 2010). We also show dry liquidus and solidus of the pyrolitic
- 610 composition, wet liquidus and solidus of pyrolitic composition with 2 wt% water from
- 611 Litasov and Ohtani (2002). The stability fields of phase D and phase H are from previous
- 612 studies (Litasov and Ohtani, 2002; Nishi et al., 2014). CO₂: CO₂ laser-heating
- 613 experiments, and NIR: NIR laser-heating experiments. We also plotted melting
- 614 experiment performed by other studies (Bolfan-Casanova et al., 2000; Schmandt et al.,
- 615 2014).