1	Revision 2
2	Stability of fcc phase FeH to 137 GPa
3	
4	CHIE KATO ^{1,2,*} , KOICHIRO UMEMOTO ² , KENJI OHTA ¹ , SHOH TAGAWA ³ ,
5	KEI HIROSE ^{2,3} , and YASUO OHISHI ⁴
6	¹ Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1
7	Ookayama, Meguro, Tokyo, 152-8550, Japan
8	² Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro,
9	Tokyo, 152-8550, Japan
10	³ Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo,
11	Bunkyo, Tokyo, 113-0033, Japan
12	⁴ Japan Synchrotron Radiation Research Institute, 1-1-1 Koto, Sayo, Hyogo, 679-5198,
13	Japan
14	*E-mail: chiekato15@gmail.com
15	

ABSTRACT

17	We examined the stable crystal structure of FeH_X (X~1) (FeH hereafter) at high
18	pressure and temperature by X-ray diffraction up to 137 GPa. Results show that FeH
19	adopts a face-centered cubic (fcc) structure at pressures of 43 to 137 GPa and
20	temperatures of approximately 1000 to 2000 K. Our study revises a phase diagram of
21	stoichiometric FeH in which fcc has a wider-than-expected stability field at high
22	pressure and temperature. Based on our findings, the FeH endmember of the Fe-FeH
23	system is expected to be stable in the fcc structure at the P - T conditions of the Earth's
24	core, rather than in the double-hexagonal close packed (dhcp) structure as previously
25	reported. We compared experimentally determined FeH lattice volumes with those from
26	<i>ab initio</i> calculations. Additionally, we observed a change in compressibility at ~60 GPa,
27	which could be attributed to a magnetic transition - an interpretation supported by our
28	ab initio computations.
29	Keywords: FeH, fcc structure, Earth's core, X-ray diffraction, ab initio calculation

- 30
- 31

INTRODUCTION

33	Hydrogen is a possible constituent light element within the Earth's predominantly
34	iron-nickel core (e.g., Poirier, 1994). Therefore, evaluation of the Fe-FeH system under
35	the high pressure (P) and high temperature (T) conditions of the Earth's deep interior is
36	important in the discussion of chemical and physical properties of the core. An
37	endmember of this system, stoichiometric FeH with double-hexagonal close packed
38	(dhcp) structure, has been observed in iron loaded in a hydrogen pressure medium at
39	pressures exceeding 3.5 GPa at room temperature (e.g., Badding et al. 1991). The
40	temperature-induced phase transition from dhcp to face centered cubic (fcc) was
41	observed up to 20 GPa in a multi-anvil apparatus (Ikuta et al. 2019; Saitoh et al. 2017;
42	Sakamaki et al. 2009). Locations of the melting curve and the dhcp/fcc phase boundary
43	predict the triple point of dhcp, fcc, and liquid phases FeH at about 60 GPa and 2000 K,
44	and the disappearance of the fcc stability field at higher pressures. Room-temperature
45	compression experiments observed no structural change in dhcp FeH up to 136 GPa, but
46	they did not involve thermal annealing during compression, and so lack concrete
47	evidence for the stability of dhcp at such a pressure range (Badding et al. 1991; Hirao et

48	al. 2004; Pépin et al. 2014; Shibazaki et al. 2012). On the other hand, there are
49	experimental and theoretical reports that suggest fcc FeH is stable above 80 GPa and up
50	to 1800 K (Isaev et al. 2007; Thompson et al. 2018). Free-energy calculations suggested
51	that, at room temperature, FeH undergoes a structural transition from dhcp to hexagonal
52	close packed (hcp) at 37 GPa, and a second transition from hcp to fcc occurs at 83 GPa
53	(Isaev et al. 2007). They also found that a ferromagnetic-paramagnetic transition takes
54	place at ~60 GPa in metastable fcc FeH, which leads to the change in compressibility
55	and stabilizes the fcc structure (Isaev et al. 2007).
56	In addition to endmember FeH, non-stoichiometric FeH_X (X<1) has been identified
57	in both the fcc structure (Thompson et al. 2018) and the hcp structure (Antonov et al.
58	1998; Yuan et al. 2018; Machida et al. 2019). Additionally, Fe polyhydrides with FeH ₂ ,
59	FeH ₃ , and FeH ₅ composition have been reported (Pépin et al. 2014; 2017), and FeH ₄
60	and FeH ₆ have also been suggested as potential Fe-H compounds at high pressure
61	(Bazhanova et al. 2012; Kvashnin et al. 2018).
62	In this study, we performed synchrotron X-ray diffraction experiments in-situ at
63	high <i>P</i> - <i>T</i> in a laser-heated diamond anvil cell (LHDAC) to pursue the stability field of

64	stoichiometric fcc FeH. These experiments confirmed that fcc FeH is stable up to 137
65	GPa and about 1000 K. We also collected lattice volume data of fcc FeH with changing
66	pressure and found anomalous compression behavior at around 60 GPa. Based on our
67	ab initio calculations, the magnetic transition in fcc FeH reasonably explains the
68	observed change in compressibility.
69	

METHODS

71 We employed the LHDAC technique to generate high P-T conditions. Diamond 72 anvils with 300 or 120 µm diameter culets were used, and gaskets were pre-indented 73 rhenium plate. We used two different methods to supply hydrogen to the iron foil 74 starting material (99.99% purity). In runs #1-3, iron hydride was formed by loading an 75 iron foil with a paraffin (C_nH_{2n+2} , n>5) pressure medium into the LHDAC with ruby or 76 KCl pressure markers (Narygina et al. 2011; Ohta et al. 2019; Thompson et al. 2018; 77 Hirose et al., 2019). In runs #4-8, liquid H₂ was introduced into the LHDAC and 78 compressed with an iron foil and a NaCl inner gasket at ~20 K in a helium refrigerator 79 (Chi et al. 2011; Ohta et al. 2015; Tagawa et al. 2016). The NaCl inner gasket prevents

80	hydrogen embrittlement of the Re gasket and the escape of hydrogen from a sample
81	chamber. The surface of the diamond anvils was coated with a thin Ti film to prevent
82	the hydrogen from escaping into the anvils. Supplemental Fig. S1 shows the sample
83	chamber after the liquid H ₂ injection.
84	In-situ angle-dispersive X-ray diffraction (XRD) measurements were performed at
85	BL10XU, SPring-8. XRD patterns were collected on a flat panel detector. The
86	wavelength of the monochromatic X-ray was determined using a CeO ₂ standard.
87	Two-dimensional XRD images were integrated over the Debye-Scherrer rings to
88	convert one-dimensional diffraction patterns as a function of 2-theta angle, and the
89	obtained peak profiles were fit to pseudo-Voigt peak shapes. These procedures were
90	performed on the programs of IPAnalyzer and PDindexer (Seto et al. 2010). The lattice
91	parameters were obtained by a least-squares fit of XRD peak positions. Sample pressure
92	was determined from ruby fluorescence spectrum (Dorogokupets and Oganov 2007) for
93	run #1 and from the lattice volumes of KCl (Dewaele et al. 2012) and NaCl (Ueda et al.
94	2008) for runs #2-3 and #4-8, respectively. Dewaele et al. (2012) used the Ruby
95	pressure scale by Dorogokupets and Oganov (2007) to obtain their equation of state of

96	KCl. To correct the systematic pressure difference between the equations of state of KCl
97	and NaCl, simultaneous lattice volume measurements of KCl and NaCl were also
98	performed (Table S1). The simultaneous lattice volume measurements of NaCl and KCl
99	demonstrated that the difference in pressure calculated from these two standards was 0.3
100	GPa at 52 GPa and 13.4 GPa at 133 GPa. We fitted such a pressure difference to the
101	following equation; $P_{\text{KCl}} - P_{\text{NaCl}} = a \times \exp(P_{\text{KCl}} / b)$, and obtained $a = 0.058(17)$ GPa and
102	b = 26.9(15) GPa. Heating was performed from both sides of the sample by employing
103	a pair of 100 W single-mode Yb fiber lasers. Temperatures were measured by
104	spectroradiometric method (Ohishi et al. 2008).
105	The hydrogen content of FeH_X was estimated based on the volume expansion by
106	hydrogen incorporation at each pressure:
107	$X = [V(\text{fcc FeH}_X) - V(\text{fcc Fe})] / V_H. $ (1)
108	Here we adopted the equation of state (EOS) of fcc Fe at 298 K (Boehler 1990). Note
109	that spin transition in fcc Fe has not been observed in previous experiments (Tsujino et

- al. 2013), but is expected to occur within the studied pressure range. Volume expansion
- 111 per H atom, V_H , is calculated for each pressure by the Vinet equation of state using $K_0 =$

112	99.2 GPa and $K'_0 = 3.98$ from Fukai (1992). For V_{H0} , we employed the value of 2.22 Å ³
113	based on neutron diffraction measurements of \mbox{FeH}_X up to 12 GPa and 1200 K (Ikuta et
114	al. 2019), assuming that the pressure and temperature terms are compensated and the
115	volume is close to that at 0 GPa and 300 K.
116	Our ab initio calculations produced lattice volumes of ferromagnetic (FM),
117	antiferromagnetic (AFM), and nonmagnetic (NM) fcc FeH at high pressures. We used
118	the Perdew-Burke-Ernzerhof (PBE) form (Perdew et al. 1996) of generalized-gradient
119	approximation (GGA) for the exchange-correlation functional. Vanderbilt's type
120	pseudopotentials were used (Vanderbilt 1990). The fcc unit cell contained 1 FeH. The
121	cutoff radii for Fe and H were 0.956 and 0.265 Å, respectively. The plane-wave basis
122	set with a cutoff energy of 40 Ry was used. The k-point mesh was $12 \times 12 \times 12$. A
123	smearing technique (Methfessel and Paxton 1989) was used for integration up to the
124	Fermi surface with a smearing parameter of 0.01 Ry. We used the quasi-harmonic
125	approximation to take phonon effects into account (Wallace 1972). Dynamical matrices
126	were computed at the $4 \times 4 \times 4$ q-point mesh using the density-functional-perturbation
127	theory (Baroni et al. 2001; Giannozzi et al. 1991). Vibrational densities of states were

128	obtained by interpolation of phonon frequencies on the $24 \times 24 \times 24$ q-point mesh. We
129	evaluated FM, AFM, and NM states. For AFM FeH, we considered two spin
130	configurations: one designed to mimic AFM FeO with iron atoms on the (111) plane in
131	the same spin and opposite spins on adjacent planes (Fig. S2a), and a second
132	configuration with iron atoms on the (100) plane in the same spin state and opposite
133	spins on adjacent planes (Fig. S2b). As the AFM spin configuration that mimics FeO
134	has lower enthalpy in the pressure interval in which it was evaluated (-5 to 20 GPa), it is
135	assumed to be more stable and is the only AFM structure discussed further in this text.
136	All calculations were performed using the Quantum-ESPRESSO package (Giannozzi et
137	al. 2009).
138	
139	RESULTS AND DISCUSSION
140	We performed eight separate XRD experiments to examine the stable phase of FeH
141	to 137 GPa (Fig. 1 and Table S2). At each <i>P</i> - <i>T</i> condition, we evaluated the stable phase
142	of FeH_X from appearance/disappearance and growth/weakening of XRD peaks by
143	increasing temperature with the fiber lasers. The hydrogen content (X) of each of the

144	synthesized fcc FeH	x samples after la	aser heating was	almost unity (Fig. 2a).
		I permit appress entress in		

145	In runs #1–3, the iron sample and paraffin reacted to form iron carbide soon after
146	the beginning of laser heating at around 1600 K and 60 GPa. After ~1-hour heating, iron
147	carbide disappeared, and fcc FeH_X and diamond formed as previously reported
148	(Narygina et al. 2011; Ohta et al. 2019; Thompson et al. 2018).
149	In the other five runs, we loaded H ₂ cryogenically into the sample chamber with
150	iron foil and then observed the chemical reaction between iron and H_2 at high pressures
151	and temperatures. The occurrence of hydrogenation of the iron sample during the
152	cryogenic H ₂ loading depends on the <i>P</i> - <i>T</i> pathway. After H ₂ was cryogenically loaded,
153	but prior to heating, XRD from pure iron and the Raman peak of the H ₂ vibration mode
154	could be confirmed in 2 of the 5 samples prepared using this method, while in the other
155	runs, we observed hcp or dhcp FeH_X after recovery from the helium refrigerator (Table
156	S2). To facilitate the reaction, we annealed the sample at around 1000 K by laser
157	heating. In four runs, FeH ₂ or FeH ₃ were observed occasionally, but weakened during
158	continuous heating (Table S2).

160	respectively, when measured at room temperature subsequent to cryogenic H ₂ loading.
161	We observed XRD peaks from pure hcp Fe and Raman peak from H_2 vibration mode
162	before heating. During laser heating, hcp Fe diffraction peaks weakened, and a diffused
163	XRD signal appeared, and further heating ended up with the sudden emergence of XRD
164	peaks from fcc FeH _X (Figs. 1a and S3). In run #5, after formation of fcc FeH _X , the
165	sample was further compressed and pressure-volume data was obtained. At 137 GPa,
166	the sample was heated again at around 1000 K. Growth of the peaks of fcc FeH_X was
167	observed during heating, and we therefore interpreted this as meaning that fcc \mbox{FeH}_X is
168	in a stable phase at this pressure and temperature.
169	In runs #6 and #7, hcp and dhcp FeH_X was already confirmed before heating at 85
170	and 70 GPa, respectively. The XRD peaks from dhcp FeH_X were replaced by those from
171	fcc FeH _X during heating, indicating the dhcp to fcc transition (Fig. 1b). In run #6, after
172	formation of fcc FeH_X , the sample was compressed and heated at 99 and 105 GPa, and
173	then decompressed and heated at 72, 66, 55 and 25 GPa. As with run #5, the growth of
174	peaks indicates that fcc FeH_X is stable at each pressure except 25 GPa. When the sample
175	was heated at 25 GPa, the fcc peaks were drastically weakened and new peaks, possibly

176	from dhcp FeH_X (X<1), appeared. Therefore, fcc FeH_X should no longer be stable at 25
177	GPa. The mean value of X for fcc FeH _X in runs $\#1\sim7$ was 1.01(6) (Fig. 2a).
178	In run #8, we first observed dhcp FeH_X just after H ₂ loading. The consequent
179	reaction by laser annealing at 53 GPa was dhep to hep transition (Fig. S4). Hydrogen
180	content in the hcp FeH_X sample was about 0.3, which indicates hcp phase is stable when
181	hydrogen content is less than ~ 0.3 as reported by the literature (Antonov et al. 1998;
182	Gomi et al. 2018; Machida et al. 2019; Yuan et al. 2018).
183	Based on the present and previous results, we confirmed that fcc FeH has a wider
184	stability field than previously thought (Fig. 3). This suggests that prior studies observed
185	metastable dhcp phase to 136 GPa because of an absence of thermal annealing (Badding
186	et al. 1991; Hirao et al. 2004; Pépin et al. 2014; Shibazaki et al. 2012). A large energetic
187	barrier for dhcp-fcc transition in FeH would exist. One can consider that there is no
188	triple point of dhcp, fcc and liquid FeH, and that the dhcp phase has a closed stability
189	region similar to the hcp phase of cobalt (Yoo et al. 2000) (Fig. 3). While previous
190	theoretical studies have predicted the stability of hcp FeH at 300 K between about 40
191	and 80 GPa (Isaev et al. 2007), hcp FeH_X with X~1 was not stable in this study.

192	The volumes of synthesized nearly stoichiometric fcc FeH_X were collected with
193	changing pressure, which is plotted in Figure 2b and summarized in Table S3. Our
194	experimental $P-V$ data exhibits a discontinuous change in compressibility at ~60 GPa.
195	Note that the change in X at similar pressure can be attributed to this change in
196	compressibility and is not truly compositional. We fitted the third-order
197	Birch-Murnaghan EOS to the <i>P-V</i> data separately for the 15-57 GPa and 72-137 GPa
198	pressure intervals (Table 1). The bulk modulus K_0 and its pressure derivative K_0 ' of the
199	high- <i>P</i> EOS were larger and smaller than those of the low- <i>P</i> EOS, respectively.
200	The observed anomaly in compression behavior without structural change is
201	possibly due to magnetic transition in fcc FeH. Thus, we calculated the volume of fcc
202	FeH at high P considering its magnetism. In the static ab initio calculations for
203	stoichiometric FeH, we obtained the FM state up to \sim 50 GPa, which is always stable
204	with respect to the NM state. The AFM state is energetically never stable with respect to
205	both the FM and NM states at all pressures investigated. Under compression, the
206	magnetic moment (<i>M</i>) calculated for the FM state decreased gradually from 2.2 μ_B /FeH
207	at 13.5 Å ³ /FeH (i.e., 0 GPa) to 1.8 μ_B/FeH at ~11 Å ³ /FeH corresponding to ~50 GPa

208	(Fig. 4). By further compression, however, M in the FM state abruptly vanished and the
209	system became NM with an abrupt decrease in volume, a result qualitatively consistent
210	with Isaev et al. (2007) and Elsässer et al. (1998). For comparison, we also calculated M
211	in the dhcp and hcp phases under compression as shown in Figure 4. At low pressures
212	(i.e., $V > 11$ Å ³ /FeH), M in all three phases are similar to each other; that in fcc is
213	marginally higher than those in the other two phases. In the dhcp phase, the
214	magnetization abruptly vanished at ~10.3 Å ³ /FeH, slightly smaller than that in fcc. In
215	the hcp phase, on the other hand, magnetization behavior is rather different: the FM
216	state survives down to ~8.5 Å ³ /FeH (~210 GPa) with a continuous decrease in <i>M</i> . These
217	magnetization behaviors are generally consistent with previous calculations (Isaev et al.
218	2007; Tsumuraya et al. 2012).
219	Calculated parameters of static and 300 K third-order Birch-Murnaghan EOS of the
220	fcc phase are summarized in Table 1. As usual, the calculated 300 K volume is larger
221	than the static one, which is mainly due to the effect of zero-point motion. The static
222	FM and NM EOS are approximately consistent with earlier calculations (Bazhanova et
223	al. 2012; Isaev et al. 2007). The values of V_0 and K_0 in the FM state are larger and

224	smaller than those of NM, respectively. The 300 K <i>P-V</i> curve of FM and NM states are
225	shown in Figure 2b. Comparison of the present experimental and computational P-V
226	curves suggest that the change in compressibility can be attributed to a change in the
227	elastic properties due to the FM-NM transition predicted by <i>ab initio</i> calculations.
228	Another possibility is the change of site occupancy of H for the octahedral and
229	tetrahedral interstitial sites in FeH _X . However, such an argument is beyond the scope of
230	the present study because the site occupancy cannot be determined from XRD.
231	From the present experimental and computational results, the FM-NM transition
232	pressure in fcc FeH is 50-60 GPa. On the other hand, Narygina et al. (2011) argued that
233	fcc FeH was in the NM or AFM state at 26-47 GPa based on Mössbauer spectroscopy
234	measurements. We point out that their Mössbauer spectra may not have captured the
235	signal of fcc FeH alone, but was affected by the surrounding hcp Fe - which was not
236	heated and hydrogenated - because the spot size of their Mossbauer spectrometer was
237	$\sim 10^3$ times as large as the laser-heated spot, and $\sim 10^4$ times as large as the size of the
238	X-ray beam used in their XRD experiments. Recently, Thompson et al. (2018)
239	performed synchrotron Mössbauer spectroscopy on fcc FeH_X and found that spin

transition is unlikely to occur at 64-82 GPa, suggesting fcc FeH_X is not ferromagnetic at these pressures.

242

243

IMPLICATIONS

244	In this study, we demonstrated that near-stoichiometric fcc FeH (rather than dhcp
245	structure) with a nonmagnetic state was stable above \sim 70 GPa to 137 GPa (Fig. 3).
246	Experimental and theoretical studies of FeH_X suggested that it is able to satisfy the
247	density and sound velocity of the Earth's core, and is hence a strong candidate for a
248	light element in the core (Hirose et al. 2019; Sakamaki et al. 2016; Tagawa et al. 2016;
249	Umemoto and Hirose 2015). A precise <i>P</i> - <i>T</i> - <i>X</i> phase diagram of Fe-H at core pressures is
250	key to constraining the temperature of the core and density contrast at the inner
251	core-outer core boundary, but it has not been determined well because of the
252	experimental difficulties even at very low pressure (e.g., Shibazaki et al. 2014). Fukai
253	(1992) speculated a P - T - X phase diagram of the Fe–H alloy at about 100 GPa on the
254	basis of the well-known phase diagrams of metal-hydrogen systems and thermodynamic
255	functions. Fukai (1992) assumed that there was a continuous, subsolidus solid solution

256	between hcp Fe and dhcp FeH at ~100 GPa. Our results rule out dhcp FeH as an
257	endmember phase in the diagram because of the weakening of its XRD peaks in our
258	laser heating experiments (Fig. 1b). Our finding suggests that the subsolidus phases in
259	the Fe-FeH system at about 100 GPa change with hydrogen content. At least three
260	subsolidus phases would exit in the Fe-FeH binary region at the core conditions, since
261	hcp FeH _X (0.13 <x<0.32) and="" dhcp="" feh<sub="">X (0.41<x<0.90) 113="" gpa<="" observed="" td="" to="" up="" were=""></x<0.90)></x<0.32)>
262	and 2060 K as consequences of decomposition of hydrous mineral, and Fe and water
263	reaction (Nishi et al. 2017; Yuan et al., 2018) in addition to the present study. Melting
264	experiments on \mbox{FeH}_X by means of LHDAC demonstrated that $\mbox{FeH}_{1.02}$ melted at 108
265	GPa and 2260 K, and a more hydrogen-rich Fe melt (FeH _{2.33}) was made at 127 GPa and
266	T less than 2120 K (Hirose et al. 2019) (Fig. 3). Some Fe polyhydrides could be stable
267	as subsolidus phases in a Fe-H system at Mbar pressure range (Bazhanova et al. 2012;
268	Kvashnin et al. 2018; Pépin et al. 2014, 2017). The melting T of hydrogen at 100 GPa
269	was determined to be 800~1000 K (Caillabet et al. 2011; Zha et al. 2017), while it was
270	assumed to be 2500 K in Fukai (1992). Therefore, the <i>P</i> - <i>T</i> - <i>X</i> phase diagram of the Fe-H
271	system at the core pressures range should be more complicated than we have ever

272	thought. Subsolidus phases of FeH_X with various hydrogen contents and their melting
273	temperatures at the core conditions are required to determine this in the future.
274	
275	ACKNOWLEDGMENTS
276	We thank two anonymous reviewers for their constructive comments which
277	improved the quality of the manuscript. In-situ XRD measurements were performed at
278	BL10XU, SPring-8 (proposal no. 2014A0080, 2014B0080, 2015A0080, 2015B0080,
279	and 2016B0080). Calculations were performed at ELSI and supported by JSPS Kakenhi
280	(Grant number: 17K05627).
281	
282	REFERENCES CITED
283	Antonov, V., Cornell, K., Fedotov, V., Kolesnikov, A., Ponyatovsky, E., Shiryaev, V.,
284	and Wipf, H. (1998) Neutron diffraction investigation of the dhcp and hcp iron
285	hydrides and deuterides. Journal of Alloys and Compounds, 264, 214-222.
286	Badding, J.V., Hemley, R.J., and Mao, H.K. (1991) High-pressure chemistry of
287	hydrogen in metals: in situ study of iron hydride. Science, 253, 421-424.

288	Baroni, S, Gironcoli, D.S., and of Physics, D.A. (2001) Phonons and related crystal
289	properties from density-functional perturbation theory. Reviews of Modern Physics,
290	73, 516–558.
291	Bazhanova, Z., Oganov, A., and Gianola, O. (2012) Fe-C and Fe-H systems at
292	pressures of the Earth's inner core. Physics-Uspekhi, 55, 489-497.
293	Boehler, R., von Bargen, N., and Chopelas, A. (1990) Melting, thermal expansion, and
294	phase transitions of iron at high pressures. Journal of Geophysical Research, 95,
295	21731–21736.
296	Caillabet, L., Mazevet, S., and Loubeyre, P. (2011) Multiphase equation of state of
297	hydrogen from <i>ab initio</i> calculations in the range 0.2 to 5 g/cc up to 10 eV. Physical
298	Review B, 83, 094101.
299	Chi, Z., Nguyen, H., Matsuoka, T., Kagayama, T., Hirao, N., Ohishi, Y., and Shimizu,
300	K. (2011) Cryogenic implementation of charging diamond anvil cells with H_2 and

 D_2 . The Review of scientific instruments, 82, 105109.

302	Dewaele, A., Belonoshko, A., Garbarino, G., Occelli, F., Bouvier, P., Hanfland, M., and
303	Mezouar, M. (2012) High-pressure-high-temperature equation of state of KCl and
304	KBr. Physical Review B, 85, 214105.
305	Dorogokupets, P.I., and Oganov, A.R. (2007) Ruby, metals, and MgO as alternative
306	pressure scales: A semiempirical description of shock-wave, ultrasonic, X-ray, and
307	thermochemical data at high temperatures. Physical Review B, 75, 024115.
308	Elsässer, C., Zhu, J., Louie, S.G., and Meyer, B. (1998) Ab initio study of iron and iron
309	hydride: II. Structural and magnetic properties of close-packed Fe and FeH. Journal
310	of Physics: Condensed Matter, 10, 5113–5129.
311	Fukai, Y. (1992) Some properties of the Fe-H system at high pressures and
312	temperatures, and their implications for the Earth's core. In Y . Syono and M.H.
313	Manghnani, Eds., High Pressure Research: Application to Earth and Planetary
314	Sciences, p. 373-385. TERRAPUB, Washington, D.C.
315	Giannozzi, P., Gironcoli, S., Pavone, P., and Baroni, S. (1990) Ab initio calculation of

phonon dispersions in semiconductors. Physical Review B, 43, 7231-7242. 316

J'' = O(u) O(U) O(U) O(U) O(U) O(U) O(U) O(U) O(U	317	Giannozzi, P.	., Baroni, S	., Bonini,	N., Calandra.	M., Ca	r. R.	Cavazzoni.	C	Ceresoli.	. D
---	-----	---------------	--------------	------------	---------------	--------	-------	------------	---	-----------	-----

- 318 Chiarotti, G., Cococcioni, M., Dabo, I., and others (2009) QUANTUM
- 319 ESPRESSO: a modular and open-source software project for quantum simulations
- 320 of materials. Journal of Physics: Condensed Matter, 21, 395502.
- 321 Gomi, H., Fei, Y., and Yoshino, T. (2018) The effects of ferromagnetism and interstitial
- 322 hydrogen on the equation of states of hcp and dhcp FeH_X: Implications for the
- 323 Earth's inner core age. American Mineralogist, 103, 1271–1281.
- 324 Hirao, N., Kondo, T., Ohtani, E., Takemura, K., and Kikegawa, T. (2004) Compression
- 325 of iron hydride to 80 GPa and hydrogen in the Earth's inner core. Geophysical
- 326 Research Letters, 31, L06616.
- 327 Hirose, K., Tagawa, S., Kuwayama, Y., Sinmyo, R., Morard, G., Ohishi, Y., and Genda,
- 328 Y. (2019) Hydrogen limits carbon in liquid iron. Geophysical Research Letters, 46,
- 329 https://doi.org/10.1029/2019GL082591.
- 330 Ikuta, D., Ohtani, E., Sano-Furukawa, A., Shibazaki, Y., Terasaki, H., Yuan, L., and
- Hattori, T. (2019) Interstitial hydrogen atoms in face-centered cubic iron in the
- Earth's core. Scientific Reports, 9, 7108.

333	Isaev, E., Skorodumova, N., Ahuja, R., Vekilov, Y., and Johansson, B. (2007)
334	Dynamical stability of Fe-H in the Earth's mantle and core regions. Proceedings of
335	the National Academy of Sciences, 104, 9168–9171.
336	Kvashnin, A., Kruglov, I., Semenok, D., and Oganov, A. (2018) Iron superhydrides
337	FeH ₅ and FeH ₆ : Stability, electronic properties and superconductivity. The Journal
338	of Physical Chemistry C, 122, 4731–4736.
339	Machida, A., Saitoh, H., Hattori, T., Sano-Furukawa, A., Funakoshi, K., Sato, T., Orimo,
340	S., and Aoki, K. (2019) Hexagonal close-packed iron hydride behind the
341	conventional phase diagram. Scientific Reports, 9, 12290.
342	Methfessel, M., and Paxton, A. (1989) High-precision sampling for Brillouin-zone
343	integration in metals. Physical Review B, 40, 3616–3621.
344	Narygina, O., Dubrovinsky, L., McCammon, C., Kurnosov, A., Kantor, I., Prakapenka,
345	V., and Dubrovinskaia, N. (2011) X-ray diffraction and Mössbauer spectroscopy
346	study of fcc iron hydride FeH at high pressures and implications for the
347	composition of the Earth's core. Earth and Planetary Science Letters, 307, 409–414.

- 348 Nishi, M., Kuwayama, Y., Tsuchiya, J., and Tsuchiya, T. (2017) The pyrite-type
- high-pressure form of FeOOH. Nature, 547, 205–208.
- 350 Ohishi, Y., Hirao, N., Sata, N., Hirose, K., and Takata, M. (2008) Highly intense
- 351 monochromatic X-ray diffraction facility for high-pressure research at SPring-8.
- High Pressure Research, 28, 163–173.
- 353 Ohta, K., Ichimaru, K., Einaga, M., Kawaguchi, S., Shimizu, K., Matsuoka, T., Hirao,
- N., and Ohishi, Y. (2015) Phase boundary of hot dense fluid hydrogen. Scientific
- 355 Reports, 5, 16560.
- 356 Ohta, K., Suehiro, S., Hirose, K., and Ohishi, Y. (2019) Electrical resistivity of fcc
- 357 phase iron hydrides at high pressures and temperatures. Comptes Rendus
- 358 Geoscience, 351, 147–153.
- 359 Pépin, C., Dewaele, A., Geneste, G., Loubeyre, P., and Mezouar, M. (2014) New iron
- 360 hydrides under high pressure. Physical Review Letters, 113, 265504.
- 361 Pépin, C.M., Geneste, G., Dewaele, A., and Mezouar, M. (2017) Synthesis of FeH₅: A
- 362 layered structure with atomic hydrogen slabs. Science, 357, 382–385.

- 363 Perdew, J., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation
- 364 made simple. Physical Review Letters, 78, 1396–1396.
- 365 Poirier, JP (1994) Light elements in the Earth's outer core: a critical review. Physics of
- the earth and planetary interiors, 85, 319–337.
- 367 Saitoh, H., Machida, A., Sugimoto, H., Yagi, T., and Aoki, K. (2017) P-V-T relation of
- 368 the Fe–H system under hydrogen pressure of several gigapascals. Journal of Alloys
- 369 and Compounds, 706, 520–525.
- 370 Sakamaki, K., Takahashi, E., Nakajima, Y., Nishihara, Y., Funakoshi, K., Suzuki, T.,
- and Fukai Y. (2009) Melting phase relation of FeH_X up to 20 GPa: Implication for
- 372 the temperature of the Earth's core. Physics of the Earth and Planetary Interiors,
- 373 174, 192–201.
- 374 Sakamaki, T., Ohtani, E., Fukui, H., Kamada, S., Takahashi, S., Sakairi, T., Takahata,
- A., Sakai, T., Tsutsui, S., Ishikawa, D., and others (2016) Constraints on Earth's
- inner core composition inferred from measurements of the sound velocity of
- hcp-iron in extreme conditions. Science Advances, 2, e1500802.

378	Seto, Y., Nishio-Hamane, D., Nagai, T., and Sata, N. (2010) Development of a software
379	suite on X-ray diffraction experiments. The Review of High Pressure Science and
380	Technology, 20, 269–276.
381	Shibazaki, Y., Ohtani, E., Fukui, H., Sakai, T., Kamada, S., Ishikawa, D., Tsutsui, S.,
382	Baron, A., Nishitani, N., Hirao, N., and others (2012) Sound velocity measurements
383	in dhcp-FeH up to 70 GPa with inelastic X-ray scattering: Implications for the
384	composition of the Earth's core. Earth and Planetary Science Letters, 313-314, 79-
385	85.
386	Shibazaki, Y., Terasaki, H., Ohtani, E., Tateyama, R., Nishida, K., Funakoshi, K., and
387	Higo, Y. (2014) High-pressure and high-temperature phase diagram for $Fe_{0.9}Ni_{0.1}$ -
388	H alloy. Physics of the Earth and Planetary Interiors, 228, 192–201.
389	Tagawa, S., Ohta, K., Hirose, K., Kato, C., and Ohishi, Y. (2016) Compression of Fe-
390	Si-H alloys to core pressures. Geophysical Research Letters, 43, 3686-3692.
391	Thompson, E.C., Davis, A.H., Bi, W., Zhao, J., Alp, E.E., Zhang, D., Greenberg, E.,
392	Prakapenka, V.B., and Campbell A.J. (2018) High - pressure geophysical

393	properties of fcc phase FeH	X. Geochemistry	, Geophysics,	Geosystems,	19,	305-
394	314.					

- 395 Tsujino, N., Nishihara, Y., Nakajima, Y., Takahashi, E., Funakoshi, K., and Higo, Y.
- 396 (2013) Equation of state of γ -Fe: Reference density for planetary cores. Earth and
- 397 Planetary Science Letters, 375, 244–253.
- 398 Tsumuraya, T., Matsuura, Y., Shishidou, T., and Oguchi, T. (2012) First-principles
- 399 study on the structural and magnetic properties of iron hydride. Journal of the
- 400 Physical Society of Japan, 81, 064707.
- 401 Ueda, Y., Matsui, M., Yokoyama, A., Tange, Y., and Funakoshi, K. (2008)
- 402 Temperature-pressure-volume equation of state of the *B*2 phase of sodium chloride.
- 403 Journal of Applied Physics, 103, 113513.
- 404 Umemoto, K., and Hirose, K. (2015) Liquid iron hydrogen alloys at outer core
- 405 conditions by first principles calculations. Geophysical Research Letters, 42,
- 406 7513–7520.
- 407 Vanderbilt, D. (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue
- 408 formalism. Physical Review B, 41, 7892–7895.

- 409 Wallace, D.C. Thermodynamics of Crystals (Wiley, Hoboken, 1972).
- 410 Yoo, C., Cynn, H., Söderlind, P., and Iota, V. (2000) New β (fcc)-cobalt to 210 GPa.
- 411 Physical Review Letters, 84, 4132–4135.
- 412 Yuan, L., Ohtani, E., Ikuta, D., Kamada, S., Tsuchiya, J., Naohisa, H., Ohishi, Y., and
- 413 Suzuki, A. (2018) Chemical reactions between Fe and H₂O up to megabar pressures
- 414 and implications for water storage in the Earth's mantle and core. Geophysical
- 415 Research Letters, 45, 1330–1338.
- 416 Zha, C., Liu, H., Tse, J., and Hemley, R. (2017) Melting and high P-T transitions of
- 417 hydrogen up to 300 GPa. Physical Review Letters, 119, 075302.
- 418

419 FIGURE CAPTIONS

420

- 421 **FIGURE 1.** Representative XRD patterns taken in runs #5 and #7. (a) Lower pattern, at
- 422 106 GPa before laser heating; middle, at 103 GPa after heating; upper, at 99 GPa after
- 423 further heating. (b) Lower pattern, at 70 GPa before heating; upper, at 68 GPa after
- 424 heating. Unknown peaks are marked as ?.

425

426 **FIGURE 2.** (a) Hydrogen content of FeH_X as a function of pressure calculated using Eq.

427 (1). Closed and open symbols represent fcc and hcp FeH_{X} , respectively. Circles show

428 FeH_X synthesized from iron and paraffin (runs #1-3) and squares show FeH_X

- 429 synthesized from iron and H_2 (runs #4–8). (b) Volume per iron atom as a function of
- 430 pressure for fcc FeH_X (X \sim 1.0) and Fe. Symbols show experimental data for fcc FeH_X.
- 431 Open circles, synthesized from iron and paraffin (runs #1–3, this study); open squares,
- 432 from iron and H₂ (runs #4–7, this study); gray circles, from iron and paraffin (Narygina
- 433 et al. 2011). Black lines correspond to the fit of the present experimental data with a
- 434 third-order Birch-Murnaghan EOS for <60 GPa and >70 GPa. Light and dark gray lines

- 435 are the results of *ab initio* calculations for FM and NM fcc FeH. Dotted lines indicate 436 extrapolation. Black dashed line represents the compression curve of iron (Boehler 437 1990). 438 439 **FIGURE 3.** Proposed pressure-temperature phase diagram of stoichiometric FeH_X 440 (X~1). Closed and open symbols indicate the stability of fcc and dhcp structures, 441 respectively, from this study (circles) and earlier experimental results (squares, 442 Sakamaki et al. (2009); diamond, Narygina et al. (2011); triangles, Thompson et al. 443 (2018)). We recalculated the hydrogen content X for the data of Thompson et al. (2018) 444 by using the method we employed, and plot them with X~1.0. Asterisks indicate liquids 445 (Sakamaki et al. 2009). Melting curve of FeH_X (X~1.0) is from Hirose et al. (2019). 446 447 FIGURE 4. Magnetic moments calculated for fcc, dhcp, and hcp phases of
- 448 stoichiometric FeH as a function of lattice volume. Dashed lines are guides for the eyes.

TABLE and FIGURES

fcc Fe	Reference				fcc FeH NM			fcc FeH FM	ab initio			fcc FeH _{x~1}	experimental		
11.3		12.7	12.2	12.6	12.3	13.9	13.9	13.5		13.5(1)	13.1(11)	13.8(7)		V ₀ (Å ³ /Fe)	
165		248	271	242	262	155	146	168		99(5)	227(8)	100(11)		K ₀ (GPa)	STOCK PROFILE FILMER
5.5		4.3	4.3	4.3	4.2	3.7	4.8	4.5		11.7(5)	3.4(2)	9.3(16)		Ko'	
0-16.8							<50 GPa	<50 GPa		12-68	72-137	15-57		Pressure range (GPa)	
300-1969		0	0	300	0	0	300	0		300	300	300		Temperature (K	
Boehler et al. (1990)		Elsässer et al. (1998)	Bazhanova et al. (2012)	This study	This study	Elsässer et al. (1998)	This study	This study		Narygina et al. (2011)	This study	This study			

452

456 **FIGURE 1.**

459 **FIGURE 2.**

461 **FIGURE 3.**

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7153

	V ₀ (Å ³ /Fe)	K ₀ (GPa)	K _o '	Pressure range (GPa)
experimental				
fcc FeH _{x~1}	13.8(7)	100(11)	9.3(16)	15-57
	13.1(11)	227(8)	3.4(2)	72-137
	13.5(1)	99(5)	11.7(5)	12-68
ab initio				
fcc FeH FM	13.5	168	4.5	<50 GPa
	13.9	146	4.8	<50 GPa
	13.9	155	3.7	
fcc FeH NM	12.3	262	4.2	
	12.6	242	4.3	
	12.2	271	4.3	
	12.7	248	4.3	
Reference				
fcc Fe	11.3	165	5.5	0-16.8

TABLE 1. Parameters for fcc FeH third-order Birch-Murnaghan equation of states from expen

rimental and ab initio calculations compared with previous studies.

Temperature (K	()
300	This study
300	This study
300	Narygina et al. (2011)
0	This study
300	This study
0	Elsässer et al. (1998)
0	This study
300	This study
0	Bazhanova et al. (2012)
0	Elsässer et al. (1998)
300-1969	Boehler et al. (1990)