1	(Revision 1: MS 7148)
2	REE redistributions during granite weathering: Implications for Ce anomaly as a proxy
3	for paleoredox states
4	
5	Koji Ichimura ¹ , Kenzo Sanematsu ² , Yoshiaki Kon ² , Tetsuichi Takagi ² and Takashi
6	Murakami ^{1,*}
7	
8	¹ Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo,
9	Bunkyo-ku, Tokyo 113-0033, Japan
10	² Geological Survey of Japan, National Institute of Advanced Industrial Science and
11	Technology, Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
12	
13	
14	
15	
16	
17	*Contact person: Takashi Murakami (murakami@eps.s.u-tokyo.ac.jp)
18	

19	ABSTRACT
20	
21	Different response of Ce to redox state from those of the other light rare earth
22	elements (LREEs) can be used to understand paleoredox states. In order to establish the
23	possibility of using Ce anomaly as a proxy for paleo-environments, we examined the
24	mineralogical and chemical characteristics of bulk samples and REE-bearing minerals
25	of a modern weathering profile developed on granite, by X-ray fluorescence analysis,
26	laser-ablation inductively coupled plasma mass spectrometry, field emission electron
27	microprobe analysis, field emission scanning electron microscopy and X-ray
28	diffractometry. Bulk samples showed no significant Ce-anomalies except for the
29	topmost layer that had a positive Ce-anomaly reflecting significant loss of LREEs
30	except for Ce. Allanite-(Ce), primary REE-bearing mineral, contributed to ~100% of La,
31	Ce, Pr and Nd in the parent rock, and gradually decreased in amount toward the topmost
32	layer. Secondary cerianite-(Ce) (Ce(IV)O ₂) was observed in the weathering profile,
33	especially at shallower depths. Secondary rhabdophane-(La), -(Ce), -(Nd) and -(Y) were
34	also observed in the weathering profile but in less amounts in the topmost layer. The
35	occurrences of rhabdophane-(La) and -(Nd) in contact with halloysite, secondary clay
36	mineral, suggest probable adsorption of REEs onto halloysite prior to their formation.

37	Similar formation mechanisms are likely for rhabdophane-(Ce) that commonly occurred
38	in grain boundaries and was usually formed in contact with halloysite.
39	Rhabdophane-(Y) occurred in association with fluorapatite. The ratios of La, Pr and Nd
40	of rhabdophane-(La), -(Ce) and -(Nd) were similar to that of allanite-(Ce), suggesting
41	that these LREEs are inherited from allanite-(Ce) and behave similarly before the
42	formation of rhabdophane. Different negative Ce-anomaly values of rhabdophane (i.e.,
43	~0.03–0.34 for rhabdophane-(La), -(Nd) and -(Y), and ~0.6 for rhabdophane-(Ce)) can
44	result from a difference in intensity of the formation of cerianite-(Ce) prior to the
45	precipitation of rhabdophane. We have classified LREE redistributions in both
46	secondary minerals and bulk weathered samples during oxic weathering and suggested
47	that Ce anomaly can provide useful information on anoxic weathering and thus
48	atmospheric oxygen evolution in the Precambrian if Ce anomalies of both bulk samples
49	and secondary REE-bearing minerals are determined.
50	
51	Keywords: REE, weathering, Ce anomaly, paleoredox and phosphate

- 52
- 53

54	INTRODUCTION
55	
56	Because weathering is mineral-water-atmosphere interaction, geological records of
57	paleoweathering provide useful information on paleo-environments, especially
58	atmospheric oxygen and carbon dioxide concentrations (Holland et al. 1984; Rye and
59	Holland 1998; and references therein). Chemical analyses of rare earth elements (REEs)
60	have been applied to paleosols, ancient weathering soils, to understand
61	paleo-environments (e.g., Wiggering and Beukes 1990; Macfarlane et al. 1994; Pan and
62	Stauffer 2000; Panahi et al. 2000; Murakami et al. 2001; Yang et al. 2002; Yang and
63	Holland 2003; Utsunomiya et al. 2003; Ichimura and Murakami 2009), using Ce
64	anomaly $(Ce/Ce^* = Ce_N/(La_N \times Pr_N)^{1/2}$ where $Ce \equiv Ce_N$ and $Ce^* \equiv (La_N \times Pr_N)^{1/2}$, and
65	REE_N is the REE concentration normalized by CI chondrite (McDonough and Sun
66	1995)). Earlier studies (Sawka et al. 1986; Banfield and Eggleton 1989; Braun et al.
67	1990; Braun et al. 1993; Cotten et al. 1995) have reported that Ce fractionation occurs
68	in modern, oxic weathering as follows: cerianite-(Ce) (Ce(IV)O ₂) is formed through
69	Ce(III) oxidation and subsequently rhabdophane with negative Ce-anomalies is formed,
70	utilizing dissolved P and REEs from primary minerals such as apatite and allanite. Such
71	Ce fractionation has been considered to result from a difference in mobility between

72	Ce(IV) and other trivalent LREE including Ce(III) and to be evidence of the presence of
73	a significant amount of atmospheric oxygen. Then the absence or presence of Ce
74	anomaly has been applied to paleosols to determine whether the paleosols were formed
75	under oxic or anoxic conditions (e.g., Wiggering and Beukes 1990; Macfarlane et al.
76	1994).
77	On the other hand, the above Ce fractionation processes under oxic conditions may
78	be further complicated by i) Ce(III) oxidation by oxyhydroxide-assisted scavenging
79	(e.g., Janots et al. 2015) and by microbial mediation (Moffett 1990; 1994), ii)
80	suppression of Ce(III) oxidation by organic complexation (e.g., Davranche et al. 2004;
81	2005; Yu et al. 2018) and iii) enhancement of rhabdophane formation by biological
82	processes (e.g., Taunton et al. 2000). Furthermore, mere absence or presence of Ce
83	anomaly may not simply determine paleoredox conditions during weathering because of
84	various formations of Ce anomalies shown by more recent studies: (1) erosion of the
85	upper layer of a paleosol could result in the absence of Ce anomaly even if a Ce
86	anomaly could have been present in the upper layer that disappeared (Pan and Stauffer
87	2000); (2) a Ce anomaly could be obscured on a meter scale even if Ce could have been
88	separated from the other LREEs on a mm to cm scale (Lottermoser 1990); (3) a Ce
89	anomaly could not be necessarily related to the oxidation state of Ce if the

90	transportation of the other LREEs than Ce from the upper layer could have changed the
91	Ce anomaly sign from zero to negative in the deeper layer (e.g., Takahashi et al. 2000;
92	Janots et al. 2015); (4) the abundance ratios of LREEs could not change significantly if
93	primary REE-bearing minerals could have not been dissolved significantly (Takahashi
94	et al. 2000; Sanematsu et al. 2015); (5) later metasomatism and/or metamorphism could
95	alter the chemical compositions of some minerals, including that of rhabdophane,
96	having formed at the time of weathering (e.g., Fedo et al. 1997; Ichimura and Murakami
97	2009); and (6) rhabdophane with the absence of Ce anomaly could form under oxic
98	conditions (Nagy et al. 2002; Berger et al. 2014; Liu et al. 2016). These limitations
99	make it difficult to interpret Ce anomalies of Precambrian paleosols especially because
100	REE concentrations have been mostly measured for bulk samples but not for
101	REE-bearing minerals (e.g., Ichimura and Murakami 2009).
102	Despite the above limitations in the application of Ce anomaly to the determination
103	of redox states of paleo-environments, the present study has been undertaken to clarify
104	how REEs are redistributed in bulk samples and secondary REE-bearing minerals
105	depending on either oxic or anoxic conditions, which is useful to understand
106	atmospheric oxygen evolution in the Precambrian. To reach these goals we have
107	examined mineralogical and chemical aspects of a modern weathering profile and

108	primary and secondary REE-bearing minerals.
109	
110	SAMPLES AND METHODS
111	
112	Samples
113	A weathering profile of granite located in Inada, Ibaraki, central Japan (36°22'N
114	140°11'E) was studied. The radiogenic age of the Inada granite is 60-65 Ma (Arakawa
115	and Takahashi 1988 and references therein). The granite is coarse-grained, and
116	composed of quartz, plagioclase, orthoclase and biotite as major minerals, and allanite,
117	zircon, apatite and ilmenite as accessory minerals (Arakawa and Takahashi 1988). The
118	samples for the present study were exposed on the steep edge of a small table land; six
119	weathered samples (YMK1, at a depth of 5.0 m from the surface of the table land;
120	YMK2, 10.4 m; YMK3, 19.2 m; YMK4, 25.0 m; YMK5, 29.0 m; and YMK6, 31.0 m),
121	and one fresh granite sample (YMK7) were collected. The location of the samples in the
122	profile is given in Fig. 1. The subsurface soils were mixed with plant roots and therefore
123	not sampled.
124	

125 Analytical methods

126	Whole-rock chemical compositions of the bulk samples were determined by X-ray
127	fluorescence analysis (XRF, PANalytical, Axious) and laser-ablation inductively
128	coupled plasma mass spectrometry (LA-ICP-MS, Cyber Laser Inc., IFRIT and Agilent
129	Technologies, Agilent 7500cx). The major and clay mineral species were identified by
130	X-ray diffractometry (XRD, Rigaku, RINT 2100 and PANalytical, X'Pert Pro MPD).
131	The chemical compositions of individual minerals were determined by field emission
132	electron microprobe analysis (EMPA, JEOL, JXA-8530F). The species, occurrences,
133	textures and morphologies of minerals on a μm scale were examined by field emission
134	scanning electron microscopy (SEM, Hitachi, S4500) equipped with an energy
135	dispersive X-ray spectrometer (EDS, Kevex system) and an electron backscatter
136	diffraction analyzer (EBSD, ThermoNoran, Phase ID system). Modal compositions of
137	the bulk samples were determined using SEM and XRD.
138	X-ray fluorescence analysis. For whole-rock chemical analyses, bulk samples
139	>~200 g were dried at room temperature and the amount was reduced by the coning and
140	quartering method (McNaught and Wilkinson 1997). Note that sample YMK7 (fresh
141	granite) was crushed by an Fe-Mn alloy jaw crusher prior to the amount reduction. Each
142	sample of 40 g was pulverized by a vibration mill (TI-100, CMT) with an alumina
143	container and rod for 3 min. Each powder sample was heated at 1000 °C for 2 h to

144	measure loss on ignition (LOI). A glass bead sample for XRF measurement was
145	prepared by mixing 0.5 g of each powder sample with 5.0 g of di-lithium tetraborate
146	(Li ₂ B ₄ O ₇ , Spectromelt A10) flux. This mixture was heated to 1150 $^{\circ}$ C for 8 min in a
147	95% Pt-5% Au crucible of 30 mm of inner diameter, using an automatic high frequency
148	bead sampler (TK-4100, Tokyo-Kagaku Co., Ltd.). Major element compositions of the
149	bulk samples were determined by XRF. The operating voltage and current of the Rh
150	X-ray tube were 50 kV and 50 mA, respectively. Analytical error was estimated by
151	counting the statistical error of each element. Calibration lines of the major elements
152	were established using the Geological Survey of Japan (GSJ) geochemical reference
153	samples of igneous rock series (Imai et al. 1995, 1999; Terashima et al. 1998).
154	Laser-ablation inductively coupled plasma mass spectrometry. The XRF
155	glass-bead samples were used to measure the trace element compositions by
156	LA-ICP-MS (Kon et al. 2011). The carrier-gas flow rate and ion-lens setting of ICP-MS
157	were adjusted carefully to maximize the S/N ratio of La and to minimize the oxide
158	production rate (232 Th 16 O/ 232 Th). The laser system was operated with a 780 nm light
159	source, a ~20 μm diameter pit size, 100 $\mu J/cm^2$ pulse energy, a 1000 Hz pulse repetition
160	rate and 90 sec ablation. In order to minimize elemental fractionation during ablation
161	and to ablate the glass-bead samples effectively, the ablation spot was moved at 500

162	μ m/sec throughout the analysis. For all elements analyzed, Si-normalized signal
163	intensities were calibrated using three GSJ reference materials (JB-3, JG-3 and JR-3;
164	Imai et al. 1995, 1999). The uncertainties were $<\sim 10\%$ for each element. The chemical
165	compositions of the major and trace elements of the bulk samples are listed in Table 1.
166	X-ray diffractometry. The bulk samples were powdered by milling with tungsten
167	carbide and the constituent minerals were identified by XRD. The modal compositions
168	of the major minerals in the weathering profile were determined by XRD based on the
169	modal compositions of respective minerals in the parent rock (see the section of
170	scanning electron microscopy). We made another set of powder samples for the modal
171	composition determination because biotite is much less resistant to mechanical milling
172	than quartz, which can affect the XRD intensities. Quantitative modal compositions
173	were determined by the following procedures (cf., Nelson and Cochrane 1970): 2 g of
174	each sample was powdered by milling with tungsten carbide for 30 sec, mixed with 20
175	wt% of α -Al ₂ O ₃ particles of 1 μ m in diameter as a quantitative standard, and subjected
176	to XRD. The modal compositions of quartz, plagioclase, orthoclase and biotite in the
177	weathered samples (samples YMK1-6) were determined according to the ratios of the
178	intensities at 100, $20\overline{1}$, $20\overline{1}$ and 001 reflections, respectively, to those of the parent
179	rock (sample YMK7). The residue was assumed to be ascribed to the fraction of clays

for each weathered sample while the clay (including amorphous phase) content of theparent rock was assumed to be zero.

182	The bulk samples were gently crushed by hand in water (for samples YMK1-4) or
183	by mechanical milling (for samples YMK5–7) for identification of clay minerals. A < 2
184	μm fraction was separated from each powder sample by elutriation, and then, its
185	oriented specimen was subjected to XRD. Halloysite was distinguished from kaolinite
186	by treating the $< 2 \ \mu m$ fraction with hydrazine, water and glycerol (e.g., Range et al.
187	1969). Chlorite, smectite and vermiculite (peaks at around 1.4 nm) were distinguished
188	from one another by the treatment of the < 2 μm fraction with ethylene glycol and
189	heating (500 °C). The qualitative amounts of clay minerals were obtained from their
190	peak intensities.
190 191	peak intensities. Electron microprobe analysis. Polished thin sections of the bulk samples were
190 191 192	peak intensities. Electron microprobe analysis. Polished thin sections of the bulk samples were made for chemical analyses by EMPA; the operating voltage was 25 kV and the beam
190 191 192 193	peak intensities. Electron microprobe analysis. Polished thin sections of the bulk samples were made for chemical analyses by EMPA; the operating voltage was 25 kV and the beam current 50 nA, which resulted in ~3 μm in size for the analyzed area of a specimen. The
190 191 192 193 194	peak intensities. Electron microprobe analysis . Polished thin sections of the bulk samples were made for chemical analyses by EMPA; the operating voltage was 25 kV and the beam current 50 nA, which resulted in ~3 μm in size for the analyzed area of a specimen. The standards used were: LaB ₆ for B; CaF ₂ , F; albite, Na; MgO, Mg; Al ₂ O ₃ , Al; CaSiO ₃ , Si
190 191 192 193 194 195	peak intensities. Electron microprobe analysis . Polished thin sections of the bulk samples were made for chemical analyses by EMPA; the operating voltage was 25 kV and the beam current 50 nA, which resulted in ~3 μm in size for the analyzed area of a specimen. The standards used were: LaB ₆ for B; CaF ₂ , F; albite, Na; MgO, Mg; Al ₂ O ₃ , Al; CaSiO ₃ , Si and Ca; sodalite, Cl; adularia, K; TiO ₂ , Ti; VO ₂ , V; chromite, Cr; Mn ₂ SiO ₄ , Mn;
190 191 192 193 194 195 196	peak intensities. Electron microprobe analysis . Polished thin sections of the bulk samples were made for chemical analyses by EMPA; the operating voltage was 25 kV and the beam current 50 nA, which resulted in ~3 μm in size for the analyzed area of a specimen. The standards used were: LaB ₆ for B; CaF ₂ , F; albite, Na; MgO, Mg; Al ₂ O ₃ , Al; CaSiO ₃ , Si and Ca; sodalite, Cl; adularia, K; TiO ₂ , Ti; VO ₂ , V; chromite, Cr; Mn ₂ SiO ₄ , Mn; hematite, Fe; NiO, Ni; SrSO ₄ , S and Sr; Y ₃ Al ₅ O ₁₂ , Y; ZrO ₂ , Zr; REE phosphate

198	The standards indicated by chemical formulas are those synthesized. Thorianite and
199	uraninite whose compositions were measured by SEM-EDS (JEOL, JSM-5310 for SEM
200	and Oxford, Link ISIS for EDS) prior to the EMPA measurements were used for the
201	standards for Th and U, respectively. The backgrounds were corrected according to
202	Williams (1996) for Cr, Mn, Fe, Ni, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu,
203	and for the other elements, corrected using the backgrounds near the corresponding
204	peaks. We also corrected for peak overlaps (e.g., at Eu(L α)-La(L γ_1), Pr(L β_2), Nd(L β_2)).
205	After the corrections, the peak intensities were corrected for ZAF. Note that secondary
206	REE-bearing minerals were fine (see below), and therefore, their aggregates of >~5 μm
207	in size were analyzed by EMPA. The concentrations of individual REEs contained in
208	the standard REE phosphate were $0.1-1$ wt% as REE ₂ O ₃ and the relative measurement
209	uncertainties and detection limits were 0.01–0.05wt% and 0.05–0.15wt% as REE_2O_3 ,
210	respectively. The REE-bearing minerals contained in the samples are listed in Table 2
211	with their ideal formulas, and their chemical compositions are summarized in Tables 3
212	and 4 for the parent and weathered rocks, respectively.
213	Scanning electron microscopy. SEM, including secondary and backscattered
214	electron imaging, of < 2 μ m fractions, polished thin sections and fracture surfaces of the
215	samples was used to examine the occurrences, textures and morphologies of minerals.

216	SEM-EBSD was used for mineral identification with software developed by Kogure
217	(2003).

218	Backscattered electron micrographs of five polished thin sections with an area of
219	\sim 30 cm ² in total were used to measure the areas (in pixels) of the major minerals (i.e.,
220	quartz, plagioclase, orthoclase and biotite) in the parent rock (sample YMK7) and to
221	determine their modal compositions. The areas of REE-bearing mineral particles were
222	measured in the same way as above for the modal compositions of primary
223	REE-bearing minerals except for zircon and fluorapatite in the parent rock, and for the
224	average chemical compositions of both primary and secondary REE-bearing minerals
225	(see below). The modal compositions of zircon and fluorapatite were calculated from
226	the whole-rock concentrations of Zr and P, respectively, in the parent rock (Table1)
227	because we could reasonably assume that all Zr and P were only contained in zircon and
228	fluorapatite, respectively.
229	
230	RESULTS
231	
232	Weathering and mineralogy in the profile

233 Changes in LOI and chemical index of alteration (CIA $\equiv {Al_2O_3/(Al_2O_3 + CaO + CaO)}$

234	$Na_2O + K_2O$ }x100 (in moles); Nesbitt and Young 1982) indicated that weathering was
235	generally stronger at shallower depths toward the top of the profile, which was
236	confirmed by decreases in Na and Ca with depth (Fig. 2). In contrast, large changes
237	were not found in the compositions of major elements except for Na and Ca or trace
238	elements through the weathering profile (Table 1).
239	The modal composition of major minerals in the parent rock was: $32.3(\pm 1.8)$ wt%
240	quartz, 39.7(±1.5)wt% plagioclase, 22.7(±1.0)wt% orthoclase and 5.1(±0.4)wt% biotite.
241	Quartz and orthoclase persisted without a decrease in content even at the top of the
242	profile while plagioclase decreased its content with depth and biotite almost disappeared
243	at depths of < 20 m (Fig. 1). The decrease in plagioclase with depth is consistent with
244	similar decreases in Na ₂ O and CaO (Figs. 1 and 2). Clay minerals observed in the
245	weathering profile were halloysite, kaolinite, smectite and vermiculite. Halloysite and
246	kaolinite were observed at depths of < 25 m and smectite/vermiculite at depths of < 29
247	m (Fig. 1). Figure 3 demonstrates the presence of halloysite and that of kaolinite, though
248	less in amount, in sample YMK2; the 1.03 and 0.72 nm peaks (Fig. 3a) converged to a
249	1.04 nm peak (with a faint peak at 0.72 nm) after hydrazine treatment (Fig. 3b), the 1.04
250	nm peak showed higher intensity after the hydrazine-treated specimen was washed by
251	water (Fig. 3c), a 1.11 nm peak, indicating the presence of halloysite, appeared by

252	glycerol treatment of the hydrazine/water-treated specimen (Fig. 3d), and finally a 1.00
253	nm peak (biotite) remained after heat treatment (Fig. 3e). Tubular morphology,
254	characteristic of halloysite, was observed by SEM. The clay fraction increased with
255	depth (Fig. 1).
256	
257	REEs in the bulk samples
258	The concentrations of total REEs and LREEs (Σ REE and Σ LREE, respectively)
259	were similar throughout the weathering profile or faintly increased with depth except for
260	those in the uppermost sample (YMK1) where they were slightly lower than and similar
261	to, respectively, those in the parent rock (Fig. 2). Ce anomalies were almost absent at
262	depths of >10 m while sample YMK1 at a depth of 5.0 m showed a positive
263	Ce-anomaly (Fig. 2). The concentration of total HREEs (Σ HREE) was generally smaller
264	in the weathered samples than that in the parent rock (Fig. 2), which is usually observed
265	for granite weathering (e.g., Nesbitt 1979).
266	The REE patterns of the weathered samples except for sample YMK1 were
267	characterized by slightly higher LREE and lower HREE concentrations than those of the
268	parent rock (Fig. 4a), which is commonly observed for weathering of granite (e.g.,
269	Nesbitt 1979; Braun et al. 1990; Aubert et al. 2001). The REE pattern of sample YMK1

270	showed lower REE concentrations than those in the parent rock except for Ce with a
271	positive anomaly (Fig. 4a). This trend is emphasized when the REE concentrations are
272	normalized by those of the parent rock (Fig. 4b). All REE patterns were accompanied
273	by negative Eu-anomalies (Fig. 4a). The Ce anomaly was significant only in sample
274	YMK1 but not for the other samples (Figs. 2 and 4a). The characteristics shown in the
275	REE patterns generally coincide with the depth variations shown in Fig. 2 (e.g., the
276	depth variation of ΣREE).
277	
278	Occurrences of REE-bearing minerals
279	Allanite-(Ce) was apparently major and other LREE-bearing minerals such as
280	xenotime-(Y) and fluorapatite were minor for contributions to LREEs of the parent rock
281	(Table 3). The qualitative abundances of primary REE-bearing minerals in the
282	weathering profile are given in Table 5. Allanite-(Ce) started to be dissolved at a depth
283	of 25.0 m and was low in amount at depths of 10.4 m and shallower. The qualitative
284	depth-profile of the allanite-(Ce) abundance in Table 5 is apparently a mirror image of
285	those of LOI and CIA in Fig. 2, suggesting that allanite-(Ce) was weathered in a similar
286	trend to that of the whole weathering profile. Fluorapatite, a source of phosphorous for
287	secondary REE phosphates, was a common REE-bearing mineral in the parent rock and

- also present in the weathering profile but just as trace abundance at depths of <25 m.
- 289 Xenotime-(Y) was occasionally observed.
- 290 The qualitative abundances of secondary REE-bearing minerals in the weathering
- 291 profile are given in Table 5. Cerianite-(Ce) was observed throughout the whole
- weathering profile, even at depths of 31 and 29 m, and most abundant at a depth of 5.0
- 293 m (sample YMK1). The cerianite-(Ce) abundance at 5.0 m is reflected in the REE
- pattern where only Ce is apparently enriched compared to the other LREEs (Fig. 4b).
- 295 Cerianite-(Ce) occurred in small veins or grain boundaries usually with Mn
- 296 (oxyhydr)oxide (Figs. 5a and 5b). Rhabdophane was similarly observed at depths of
- 297 25–10 m but of trace at a depth of 5.0 m (Table 5). Rhabdophane occurred as aggregates
- of fine crystals with widths of several tens to several hundreds of nm and lengths of
- several tens of nm to 5 μ m (Fig. 5c). Rhabdophane was classified into
- 300 rhabdophane-(La), rhabdophane-(Ce), rhabdophane-(Nd) and rhabdophane-(Y).
- 301 Rhabdophane-(La) mainly occurred in veins in weathered plagioclase, in contact with
- halloysite (Fig. 5d; "Kl" is probably halloysite). Rhabdophane-(Ce) mainly occurred in
- 303 grain boundaries, usually associated with halloysite (Fig. 5e; "Kl" is probably
- halloysite). Rhabdophane-(Nd) was observed in veins in weathered plagioclase,
- associated with halloysite (Fig. 5f), and also observed occasionally accompanied by

306	smectite and associated with fluorapatite (Fig. 5g). Rhabdophane-(Y) was found only in
307	sample YMK6, occurring similarly to the latter type of the occurrence of
308	rhabdophane-(Nd) (Fig. 5h). Rhabdophane commonly had elongated shapes, identified
309	by comparing the EBSD patterns (e.g., Fig. 5i) to the calculated ones (e.g., Fig. 5j). The
310	kaolin minerals shown in Fig. 5 were probably halloysite since there were relatively
311	larger amounts of halloysite than kaolinite in samples YMK2 and YMK4 (at depths of
312	10.4 and 25.0 m, respectively; Fig. 1) and they appeared rod shaped under SEM (data
313	not shown). Halloysite domains isolated from rhabdophane ones were analyzed by
314	EMPA to measure REE concentrations adsorbed onto halloysite, but the concentrations
315	of individual REEs on halloysite were under the detection limits (i.e., <0.05–0.15wt%).
316	
317	Chemical compositions of REE-bearing minerals
318	We could not give a complete set of quantitative REE compositions of either
319	primary or secondary REE-bearing minerals because the concentrations of some REEs
320	were low and sometimes below detection limits (Tables 3 and 4). Despite incomplete
321	chemical information, the REE compositions of both primary and secondary
322	REE-bearing minerals provide important information on the REE transport as discussed
323	below. The average compositions shown in Tables 3 and 4 were calculated by the

324 equation below:

341

325
$$C_{n,Z} = \sum_{ni} (A_{ni} C_{ni,Z}) / \sum_{ni} A_{ni}$$
(1)

where C_{nZ} is the average concentration of element Z in mineral species n (wt%), A_{ni} the 326 327 area of an individual particle *ni* of mineral species *n* (pixel number, dimensionless), and $C_{ni,Z}$ the concentration of element Z in an individual particle *ni* of mineral species *n* 328 329 (wt%). See Section "Analytical methods" for the measurements of A_{ni} . The chemical compositions of REE-bearing minerals in the parent rock show how 330 331 REEs were individually distributed in the minerals (Fig. 6a). Being apparently the major 332LREE-bearing mineral, LREEs were mostly contained in allanite-(Ce) which, however, 333 did not have significant amounts of HREEs (compare the REE pattern of allanite-(Ce) to that of the bulk parent rock in Fig. 6a). HREEs were instead contained in allanite-(Y), 334335fluorapatite, zircon, xenotime-(Y), Ca- and Y-rich unidentified phase, titanite and epidote (Fig. 6a). All primary REE-bearing minerals had large negative Eu-anomalies 336 337 (Table 3 and Fig. 6a). The chemical compositions of the secondary REE-bearing minerals are given in 338 Table 4, and the REE patterns of rhabdophane are shown in Fig. 6b compared to those 339340 of allanite-(Ce) of the parent rock and bulk sample YMK2. The REE pattern of only

sample YMK2 is given as an example of those of the weathered samples except for

342	sample YMK1. Figure 6b shows that the slopes of the LREE patterns of
343	rhabdophane-(La), -(Ce) and -(Nd) were similar to that of allanite-(Ce) if we exclude
344	the Ce anomalies from the slopes. Rhabdophane-(Y) had a different slope from those of
345	rhabdophane-(La), -(Ce) and -(Nd). Rhabdophane-(La), -(Ce) and -(Nd) shared similar
346	slopes of HREE patterns. The rhabdophanes had different values of Ce anomaly from
347	one another despite the absence of Ce anomaly in allanite-(Ce) (Fig. 6b).
348	The slopes of LREE patterns (LREEs except for Ce) of rhabdophane-(La), -(Ce)
349	and -(Nd) were similar to that of bulk weathered sample YMK2 (Fig. 6b), which
350	suggests a significant contribution of rhabdophane to the LREE redistribution during
351	weathering. The values of Ce anomaly of rhabdophane were less than one (Table 4)
352	although those of the bulk samples were nearly one or more (Table 1), suggesting
353	significant fractionation of Ce between cerianite-(Ce) and rhabdophane. The values of
354	Eu anomaly of rhabdophane were much smaller than those of the bulk samples (Tables
355	1 and 4).
356	
357	DISCUSSION
358	
359	Before we discuss the role of rhabdophane in REE redistribution, we briefly

360	summarize our results of the mineralogy and chemistry of the weathering profile of the
361	Inada granite. The intensity of weathering is slightly greater at shallower depths as
362	indicated by the parameters such as the abundances of plagioclase and biotite, the values
363	of CIA and the concentrations of Na_2O and CaO (Figs. 1 and 2). The concentrations of
364	Σ REE and Σ LREE are similar throughout the weathering profile or faintly increase
365	toward the top of the profile but decrease at the uppermost layer, sample YMK1; Ce
366	anomalies are absent throughout the profile except for the uppermost layer (Fig. 2). The
367	characteristics of the uppermost layer are distinct from those of samples YMK2 to
368	YMK6 as shown in Fig. 4b by the similar abundances of Ce and the lower abundances
369	of the other LREEs, suggesting vertical transport of LREEs except for Ce.
370	The high abundances of rhabdophane at depths of 10.4 and 25.0 m are in accordance
371	with those of halloysite at the same depths (Fig. 1 and Table 5). Indeed,
372	rhabdophane-(La), -(Ce) and -(Nd) usually occur in association with halloysite (Figs. 5d,
373	5e and 5f). Among the rhabdophanes, rhabdophane-(Y) is found only in smectite of
374	sample YMK6, usually accompanied by fluorapatite (Fig. 5h). The primary
375	LREE-bearing mineral, allanite-(Ce), shows no Ce-anomaly (Table 3) while secondary
376	rhabdophane-(La) and -(Nd) have large negative Ce-anomalies (~0.20 and 0.06,
377	respectively, Table 4) and rhabdophane-(Ce) has small negative Ce-anomalies (~0.62,

378	Table 4). Although we failed to obtain evidence of LREE adsorption on halloysite,
379	LREE adsorption on kaolin minerals and association of rhabdophane with kaolin
380	minerals have been reported (e.g., Seredin and Dai 2012). It is likely that LREE
381	adsorption on halloysite and subsequent rhabdophane formation occur in the weathering
382	profile. Cerianite-(Ce) is precipitated with little relation to the halloysite occurrences
383	(Figs. 5a and 5b). Therefore, LREEs in solution are fractionated after cerianite-(Ce) is
384	formed, and LREEs adsorbed on halloysite are probably deficient in Ce compared to
385	other LREEs especially La and Nd.
386	We here consider the transport pathways of REEs from the primary REE-bearing
387	minerals to the secondary REE-bearing minerals. Firstly, we examine REE fractional
388	contributions of the primary REE-bearing minerals to respective REE concentrations in
389	the parent rock. The fractional contribution of element Z in mineral species n to element
390	<i>Z</i> in the whole parent rock, $f_{n,Z}$ (%), can be calculated by the following equation:
391	$f_{n,Z} = C_{n,Z} \delta_n / C_{rock,Z} \tag{2}$
392	where $C_{rock,Z}$ is the concentration of element Z in the parent rock (wt%), and δ_n the
393	modal composition of mineral species n (wt%). δ_n is obtained from
204	$S = 100 \circ V / \Sigma (\circ V) \approx 100 \circ A / \Sigma (\circ A) $

394
$$\delta_n = 100 \,\rho_n V_n / \sum_n (\rho_n V_n) \cong 100 \rho_n A_n / \sum_n (\rho_n A_n) \tag{3}$$

395 where ρ_n is the density of mineral species n (g·m⁻³), V_n the volume (m³) of mineral

396	species n and A_n the total area of mineral species n (pixel number, dimensionless;
397	$A_n = \sum_{ni} A_{ni}$). The δ_n values or modal compositions of the primary REE-bearing
398	minerals are given in Table 3.
399	Figure 7 shows the REE fractional contributions of the primary REE-bearing
400	minerals to their respective REE concentrations in the parent rock. Allanite-(Ce)
401	contributes to ~100% of La, Ce, Pr and Nd, ~90% of Sm and ~40% of Gd in the parent
402	rock, which should be compared to, for instance, \sim 50% Σ LREE contribution of allanite
403	to the Σ LREE concentration of the whole-rock of parent gneiss (Braun et al. 2018). The
404	domination of allanite-(Ce) for La, Ce, Pr, Nd and Sm is, therefore, of advantage to
405	estimate their fates in the weathering profile. We can reasonably assume that almost all
406	La, Ce, Pr and Nd and most of Sm in the secondary REE-bearing minerals and in the
407	weathering profile originate from allanite-(Ce). Allanite-(Y) contributes to ~20-50% of
408	Y and HREEs, and fluorapatite \sim 30–40% of Y and HREEs at maximum. Some of the
409	remaining HREEs and/or Y are ascribed to zircon, titanite and Ca- and Y-rich
410	unidentified phase. Although we successfully attributed ~100% of La, Ce, Pr and Nd
411	and ~90% of Sm to allanite-(Ce), we attributed nearly less than 50% for most of the rest
412	of REEs to individual, primary REE-bearing minerals (Fig. 7).
413	We next examine the ratios of individual REEs of rhabdophane to respective ones

414	of allanite-(Ce). Because rhabdophane is a phosphate and allanite is a silicate, we
415	compare their REE concentration ratios by normalizing the REE concentration ratios by
416	the ΣREE ratio of the two minerals (see the caption of Fig. 8 for the detail of the
417	calculation). Figure 8a shows that the proportions of La, Pr and Nd of rhabdophane are
418	similar to that of allanite-(Ce) but Ce is deficient in rhabdophane compared to
419	allanite-(Ce) (also see Tables 3 and 4). Because La, Ce, Pr and Nd of the parent rock,
420	sample YMK7, are almost all ascribed to allanite-(Ce), the similar proportions of La, Pr
421	and Nd strongly suggest that La, Pr and Nd are transported and precipitated by similar
422	mechanisms during weathering. The deficiency of Ce in rhabdophane is caused by Ce
423	fractionation through Ce(IV) precipitation as cerianite-(Ce) in other areas of the same
424	layer because no Ce-anomaly is observed in the bulk samples except for sample YMK1
425	which shows an apparent Ce enrichment resulting from the leaching of the other LREEs
426	(Fig. 4b). The four rhabdophanes have different values of Ce anomaly (Table 4). Further,
427	rhabdophane particles have a variety of Ce-anomaly values (Fig. 8b). The variety of
428	Ce-anomaly values in rhabdophane particles in the same layer can be possibly caused
429	by different amounts of dissolved Ce among localities due to different amounts of
430	cerianite-(Ce) precipitates, which is consistent with similar Nd/La concentration ratios
431	in the rhabdophane particles (Fig. 8c). Thus, even if there is no Ce-anomaly in bulk

432	samples, rhabdophane particles can have a variety of Ce anomalies under oxic
433	weathering by Ce fractionation. The formation mechanisms of rhabdophane-(Y) are
434	probably different from those of the other types of rhabdophane, suggested by the
435	differences in occurrence (found only in sample YMK6, Table 5) and in REE pattern
436	(Fig. 6b).
437	
438	IMPLICATIONS
439	
440	Previous studies have reported that negative Ce-anomaly of a weathering profile
441	does not necessarily reflect oxic weathering (e.g., Takahashi et al. 2000), the absence of
442	Ce anomaly in secondary REE-bearing minerals such as rhabdophane does not
443	necessarily reflect anoxic weathering (e.g., Janots et al. 2015), and Ce(III) oxidation can
444	be suppressed under oxic conditions in organic-rich environments (e.g., Yu et al. 2018).
445	However, the present study has revealed that we can observe records of oxidations in
446	secondary REE-bearing minerals with Ce fractionation if we examine both
447	primary/secondary REE-bearing minerals and bulk rocks. We show below whether a
448	certain weathering profile has occurred under oxic or anoxic conditions using Ce
449	anomaly.

450	Nearly 100% of La, Ce, Pr and Nd in the parent rock are contained in allanite-(Ce)
451	(Fig. 7), and therefore, the release rates of these four elements to solution should be
452	almost the same. Accordingly, we only need to consider differences in reaction
453	pathways between these elements prior to the precipitation of rhabdophane to explain
454	the behaviors of these elements during oxic weathering. The reaction pathways among
455	La, Pr and Nd are probably similar (Fig. 8c) while Ce behaviors prior to the
456	precipitation of rhabdophane are different as indicated by the variable negative
457	Ce-anomalies in rhabdophane (Fig. 8b). Sample YMK1, the topmost layer, has a
458	positive Ce-anomaly but the other bulk samples have no Ce-anomaly (Fig. 4a). This Ce
459	fractionation occurs by the preferential removal of trivalent LREEs compared to Ce(IV),
460	which is consistent with the fact that the abundance of cerianite-(Ce) is common but
461	those of rhabdophane-(La), -(Ce) and -(Nd) are at trace levels in the topmost layer
462	(Table 5).
463	Our discussion and previous studies (given below) indicate that we can classify the
464	LREE redistributions between minerals during oxic weathering as follows (Fig. 9): i)
465	presence of rhabdophane with a negative Ce-anomaly and the presence of cerianite-(Ce)
466	in the same bulk layer that has no Ce-anomaly (e.g., Lottermoser et al. 1990), ii)
467	presence of rhabdophane with a negative Ce-anomaly in one layer and the presence of

468	cerianite-(Ce) in another layer that has a positive Ce-anomaly (e.g., Braun et al. 1998),
469	and iii) presence of rhabdophane with almost no Ce-anomaly in one layer and the
470	presence of cerianite-(Ce) in another layer that has a positive or negative Ce-anomaly
471	(e.g., Janots et al. 2015). In cases ii and iii, rhabdophane and cerianite-(Ce) can coexist
472	in one layer where their relative abundances vary significantly (Fig. 9). In any cases,
473	cerianite-(Ce) must form during oxic weathering. Then, the above LREE redistributions
474	during oxic weathering can imply redistributions of LREEs, especially Ce behavior,
475	during anoxic weathering in the Precambrian as follows: cerianite-(Ce) is not formed
476	because its formation must be accompanied by oxidation of Ce(III) through atmospheric
477	oxygen when the effects of biota on weathering are insignificant (Berner 1992; Algeo
478	and Scheckler 1998). Because Mn-oxide formation itself is evidence of oxic weathering
479	(e.g., Hem 1963; Yang and Holland 2003; Murakami et al. 2011), Ce(III) oxidation and
480	cerianite-(Ce) formation on the surface of Mn oxides (e.g., Taylor and McLennan 1988;
481	Takahashi et al. 2007; Nakada et al. 2013) also occur under oxic conditions. Because Ce
482	is transported as Ce(III) in solution in a similar pathway to that of the other LREEs
483	without oxidation, either rhabdophane or bulk layers have no Ce-anomaly in any
484	horizons of a weathering profile.

485

Nonetheless, the above criteria of LREE redistribution in anoxic weathering have

486	rarely been applied to paleosols for the examination of paleoredox conditions
487	(Murakami et al. 2001; Ichimura and Murakami 2009), mainly because paleosols have
488	been subjected to later metasomatism and/or metamorphism which have altered some
489	minerals probably including rhabdophane. Rhabdophane is easily altered to monazite
490	even under low-temperature metasomatism or metamorphism (e.g., Jonasson and Vance
491	1986), and therefore, rhabdophane formed in Precambrian weathering has been altered
492	and exists as monazite in paleosols as suggested by Ichimura and Murakami (2009). If
493	original rhabdophane with no Ce-anomaly is formed under anoxic conditions, the
494	secondary monazite is expected to inherit the absence of Ce anomaly. Not only
495	monazite but also bulk layers have no Ce-anomaly if weathering occurred under anoxic
496	conditions. We suggest that such examination can shed light on atmospheric oxygen
497	evolution in the Precambrian.
498	
499	ACKNOWLEDGMENTS
500	
501	We are grateful to K. Putirka, Editor, JJ. Braun and one anonymous reviewer for
502	the earlier version and A. Fernandez-Martinez, Editor, and three anonymous reviewers
503	for the present version. Their useful comments have greatly improved the quality of the

504	manuscript. This work was partly supported by Grant-in-Aids of the Ministry of
505	Education, Culture, Sports, Science and Technology – Japan to TM (#24340132 and
506	#15K05338).
507	
508	REFERENCES CITED
509	
-10	
510	Algeo, T. and Scheckler, S. (1998) Terrestrial-marine teleconnections in the Devonian: Links
511	between the evolution of land plants, weathering processes, and marine anoxic events.
512	Philosophical Transactions of the Royal Society B-Biological Sciences, 353, 113-128.
513	Arakawa, Y. and Takahashi, Y. (1988) Rb-Sr ages of granitic rocks from the Tsukuba district,
514	Japan. Journal of Mineralogy, Petrology and Economic Geology, 83, 232-240.
515	Aubert, D., Stille, P. and Probst, A. (2001) REE fractionation during granite weathering and
516	removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochimica et
517	Cosmochimica Acta, 65, 387-406.
518	Banfield, J.F. and Eggleton, R.A. (1989) Apatite replacement and rare-earth mobilization,
519	fractionation, and fixation during weathering. Clays and Clay Minerals, 37, 113-127.

- 520 Berger, A., Janots, E., Gnos, E., Frei, R. and Bernier, F. (2014) Rare earth element mineralogy
- 521 and geochemistry in a laterite profile from Madagascar. Applied Geochemistry, 41, 218-228.
- 522 Berner, R. (1992) Weathering, plants, and the long-term carbon-cycle. Geochimica et
- 523 Cosmochimica Acta, 56, 3225-3231.
- 524 Braun, J.-J., Pagel, M., Muller, J.P., Bilong, P., Michard, A. and Guillet, B. (1990) Cerium
- 525 anomalies in lateritic profiles. Geochimica et Cosmochimica Acta, 54, 781-795.
- 526 Braun, J.-J., Pagel, M., Herbillon, A. and Rosin, C. (1993) Mobilization and redistribution of REEs
- 527 and thorium in a syenitic lateritic profile a mass-balance study. Geochimica et Cosmochimica
- 528 Acta, 57, 4419-4434.
- 529 Braun, J.-J., Viers, J., Dupré, B., Polve, M., Ndam, J. and Muller, J.P. (1998) Solid/liquid REE
- 530 fractionation in the lateritic system of Goyoum, east Cameroon: The implication for the present
- 531 dynamics of the soil covers of the humid tropical regions. Geochimica et Cosmochimica Acta, 62,

532 273-299.

- 533 Braun, J.-J., Riotte, J., Battacharya, S., Violette, A., Oliva, P., Prunier, J., Marechal, J., Ruiz, L.,
- 534 Audry, S. and Subramanian, S. (2018) REY-Th-U dynamics in the Critical Zone: Combined

- 535 influence of reactive bedrock accessory minerals, authigenic phases, and hydrological sorting
- 536 (Mule Hole Watershed, South India). Geochemistry Geophysics Geosystems, 19, 1611-1635.
- 537 Cherniak, D.J., Pyle, J. and Rakovan, J. (2004) Synthesis of REE and Y phosphates by Pb-free
- 538 flux methods and their utilization as standards for electron microprobe analysis and in design of
- 539 monazite chemical U-Th-Pb dating protocol. American Mineralogist, 89, 1533-1539.
- 540 Cotten, J., Ledez, A., Bau, M., Caroff, M., Maury, R.C., Dulski, P., Fourcade, S., Bohn, M. and
- 541 Brousse, R. (1995) Origin of anomalous rare-earth element and yttrium enrichments in
- 542 subaerially exposed basalts: Evidence from French-Polynesia. Chemical Geology, 119,
- 543 **115-138**.
- 544 Davranche, M., Pourret, O., Gruau, G. and Dia, A. (2004) Impact of humate complexation on
- the adsorption of REE onto Fe oxyhydroxide. Journal of Colloid and Interface Science, 277,
 271-279.
- 547 Davranche, M., Pourret, O., Gruau, G., Dia, A. and Le Coz-Bouhnik, M. (2005) Adsorption of
- 548 REE(III)-humate complexes onto MnO₂: experimental evidence for cerium anomaly and
- 549 Ianthanide tetrad effect suppression. Geochimica et Cosmochimica Acta, 69, 4825-4835.

- 550 Fedo, C., Grant, G. and Nesbitt, H. (1997) Paleoclimatic control on the composition of the
- 551 Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada: a greenhouse to icehouse
- transition. Precambrian Research, 86, 201-223.
- 553 Hem, J.D. (1963) Chemical equilibria and rates of manganese oxidation, 71 p. United States
- 554 Government Printing Office, Washington.
- 555 Holland, H.D. (1984) The Chemical Evolution of the Atmosphere and Oceans, 598 p. Princeton
- 556 University Press, Princeton, N.J.
- 557 Ichimura, K. and Murakami, T. (2009) Formation of rare earth phosphate minerals in 2.45-Ga
- 558 paleosol. Journal of Mineralogical and Petrological Sciences, 104, 86-91.
- 559 Imai, N., Terashima, S., Itoh, S. and Ando, A. (1995) 1994 compilation of analytical data for
- 560 minor and trace elements in 17 GSJ geochemical reference samples: "Igneous Rock Series".
- 561 Geostandards Newsletter, 23, 135-213.
- 562 Imai, N., Terashima, S., Itoh, S. and Ando, A. (1999) 1998 compilation of analytical data for
- 563 five GSJ geochemical reference samples: The "Instrumental analysis series". Geostandards
- 564 Newsletter, 19, 223-250.

- Janots, E., Bernier, F., Brunet, F., Munoz, M., Trcera, N., Berger, A. and Lanson, M. (2015)
- 566 Ce(III) and Ce(IV) (re)distribution and fractionation in a laterite profile from Madagascar:
- 567 Insights from in situ XANES spectroscopy at the Ce L-III-edge. Geochimica et Cosmochimica
- 568 Acta, 153, 134-148.
- 569 Jonasson, R.G. and Vance, E.R. (1986) DTA study of the rhabdophane to monazite
- 570 transformation in rare earth (La-Dy) phosphates. Thermochimica Acta, 108, 65-72.
- 571 Kogure, T. (2003) A program to assist Kikuchi pattern analyses. Journal of the Crystallographic
- 572 Society of Japan, 45, 391-395 (in Japanese).
- 573 Kon, Y., Murakami, H., Takagi, T. and Watanabe, Y. (2011) The development of whole rock
- analysis of major and trace elements in XRF glass beads by fsLA-ICPMS in GSJ geochemical
- 575 reference samples. Geochemical Journal, 45, 387-416.
- 576 Liu, X., Wang, Q., Zhang, Q., Zhang, Y. and Li, Y. (2016) Genesis of REE minerals in the karstic
- 577 bauxite in western Guangxi, China, and its constraints on the deposit formation conditions. Ore
- 578 Geology Reviews, 75, 100-115.
- 579 Lottermoser, B.G. (1990) Rare-earth element mineralization within the Mt-Weld carbonatite
- 580 laterite, Western-Australia. Lithos, 24, 151-167.

- 581 Macfarlane, A.W., Danielson, A. and Holland, H.D. (1994) Geology and major and trace element
- 582 chemistry of late Archean weathering profiles in the Fortescue Group, Western Australia:
- 583 implications for atmospheric P_{02} . Precambrian Research, 65, 297-317.
- 584 McDonough, W. and Sun, S. (1995) The composition of the Earth. Chemical Geology, 120,
- 585 223-253.
- 586 McNaught, A.D. and Wilkinson, A.D. (1997) Compendium of Chemical Terminology, 2nd ed.
- 587 (the "Gold Book") Blackwell Scientific Publications, Oxford.
- 588 Moffett, J.W. (1990) Microbially mediated Cerium oxidaiton in seawater. Nature, 345, 421-423.
- 589 Moffett, J.W. (1994) A radiotracer study of cerium and manganese uptake onto suspended
- 590 particles in Chesapeake Bay. Geochimica et Cosmochimica Acta, 58, 695-703.
- 591 Murakami, T., Utsunomiya, S., Imazu, Y. and Prasad, N. (2001) Direct evidence of late Archean
- 592 to early Proterozoic anoxic atmosphere from a product of 2.5 Ga old weathering. Earth and
- 593 Planetary Science Letters, 184, 523-528.
- 594 Murakami, T., Sreenivas, B., Das Sharma, S. and Sugimori, H. (2011) Quantification of
- 595 atmospheric oxygen levels during the Paleoproterozoic using paleosol compositions and iron
- 596 oxidation kinetics. Geochimica et Cosmochimica Acta, 75, 3982-4004.

34

- 597 Nagy, G., Draganits, E., Demeny, A., Panto, G. and Arkai, P. (2002) Genesis and
- 598 transformations of monazite, florencite and rhabdophane during medium grade
- 599 metamorphism: examples from the Sopron Hills, Eastern Alps. Chemical Geology, 191, 25-46.
- 600 Nakada, R., Takahashi, Y. and Tanimizu, M. (2013) Isotopic and speciation study on cerium
- 601 during its solid-water distribution with implication for Ce stable isotope as a paleo-redox proxy.
- 602 Geochimica et Cosmochimica Acta, 103, 49-62.
- 603 Nelson, C.S. and Cochrane, R.H. (1970) A rapid X-ray method for the quantitative
- 604 determination of selected minerals in fine-grained and altered rocks. Tane, 16, 151-162.
- 605 Nesbitt, H.W. (1979) Mobility and fractionation of rare-earth elements during weathering of a
- 606 granodiorite. Nature, 279, 206-210.
- 607 Nesbitt, H.W. and Young, G.M. (1982) Early Proterozoic climates and plate motions inferred
- from major element chemistry of lutites. Nature, 299, 715-717.
- Pan, Y.M. and Stauffer, M.R. (2000) Cerium anomaly and Th/U fractionation in the 1.85 Ga Flin
- 610 Flon Paleosol: Clues from REE- and U-rich accessory minerals and implications for
- 611 paleoatmospheric reconstruction. American Mineralogist, 85, 898-911.

- 612 Panahi, A., Young, G.M. and Rainbird, R.H. (2000) Behavior of major and trace elements
- 613 (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean
- granite near Ville Marie, Québec, Canada. Geochimica et Cosmochimica Acta, 64, 2199-2220.
- Range, K.J. and Range, A.W.A. (1969) Fire-clay type kaolinite or fire clay mineral?
- 616 Experimental classification of kaolinite-halloysite minerals. In L. Heller, Ed., Proceedings of the
- 617 International Clay Conference, Tokyo, 1969, ed. 1, p. 3-13. Israel Universities Press,

618 Jerusalem.

- Rye, R. and Holland, H.D. (1998) Paleosols and the evolution of atmospheric oxygen: A critical
- 620 review. American Journal of Science, 298, 621-672.
- 621 Sanematsu, K., Kon, Y. and Imai, A. (2015) Influence of phosphate on mobility and adsorption
- of REEs during weathering of granites in Thailand. Journal of Asian Earth Sciences, 111, 14-30.
- 623 Sawka, W.N., Banfield, J.F. and Chappell, B.W. (1986) A Weathering-Related Origin of
- 624 Widespread Monazite in S-Type Granites. Geochimica et Cosmochimica Acta, 50, 171-175.
- 625 Seredin, V.V. and Dai, S. (2012) Coal deposits as potential alternative sources for lanthanides
- and yttrium. International Journal of Coal Geology, 94, 67-93.

- 627 Takahashi, Y., Shimizu, H., Kagi, H., Yoshida, H., Usui, A. and Nomura, M. (2000) A new
- 628 method for the determination of Ce^{III}/Ce^{IV} ratios in geological materials; application for
- 629 weathering, sedimentary and diagenetic processes. Earth and Planetary Science Letters, 182,

630 201-207.

- Takahashi, Y., Manceau, A., Geoffroy, N., Marcus, M.A. and Usui, A. (2007) Chemical and
- 632 structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides.
- 633 Geochimica et Cosmochimica Acta, 71, 984-1008.
- Taunton, A. E., Welch, S.A. and Banfield, J. F. (2000) Microbial controls on phosphate and
- lanthanide distributions during granite weathering and soil formation. Chemical Geology, 169,
- 636 371-382
- Taylor, S.R. and McLennan, S.M. (1988) The signifiance of the rare earth in geochemistry and
- 638 cosmochemistry. In K.A. Gschneidner and L. Eyring, Eds., Handbook of Physics and Chemistry
- 639 of Rare Earths, vol. 11, p. 485-578. Elsevier, Amsterdam.
- 640 Terashima, S., Taniguchi, M., Mikoshiba, M. and Imai, N. (1998) Preparation of two new GSJ
- 641 geochemical reference materials: Basalt JB-1b and coal fly ash JCFA-1. Geostandards
- 642 Newsletter-the Journal of Geostandards and Geoanalysis, 22, 113-117.

- 643 Utsunomiya, S., Murakami, T., Nakada, M. and Kasama, T. (2003) Iron oxidation state of a
- 644 2.45-Byr-old paleosol developed on mafic volcanics. Geochimica et Cosmochimica Acta, 67,

645 **213-221**.

- 646 Wiggering, H. and Beukes, N. (1990) Petrography and geochemistry of a 2000-2200-Ma-old
- 647 hematitic paleoalteration profile on Ongeluk basalt of the Transvaal Supergroup, Griqualand
- 648 West, South-Africa. Precambrian Research, 46, 241-258.
- 649 Williams, C.T. (1996) Analysis of rare earth minerals. In A.P. Jones, A.P. Wall and C.T. Williams,
- 650 Eds., Rare Earth Minerals, p. 327-348. Chapman and Hall, London.
- 451 Yang, W. and Holland, H. (2003) The Hekpoort paleosol profile in Strata 1 at Gaborone,
- Botswana: Soil formation during the great oxidation event. American Journal of Science, 303,
- 653 **187-220**.
- 454 Yang, W., Holland, H. and Rye, R. (2002) Evidence for low or no oxygen in the late Archean
- atmosphere from the similar to 2.76 Ga Mt. Roe #2 paleosol, Western Australia: Part 3.
- 656 Geochimica et Cosmochimica Acta, 66, 3707-3718.

- 457 Yu, C., Boily, J.-F., Shchukarev, A., Drake, H., Song, Z., Hogmalm, K.J., and Åström, M.E.
- 658 (2018) A cryogenic XPS study of Ce fixation on nanosized manganite and vernadite: Interfacial
- reactions and effects of fulvic acid complexation. Chemical Geology, 483, 304-311.

660

661 Figure captions

662

- Fig. 1. Modal composition and clay-mineral abundance changes with depth. The
- locations of the samples are shown by arrows and sample names (an approximate depth
- 665 for sample YMK7). The upper soil was not sampled because it was mixed with plant
- 666 roots.

667

668	Fig. 2. Chemical changes with depth: chemical index of alteration (CIA: {Al ₂ C	$O_3/(Al_2O_3)$

 $669 + CaO + Na_2O + K_2O$ (in moles)) (Nesbitt and Young 1982), loss on ignition

670 (LOI), concentrations of Na₂O and CaO, total concentrations of REEs, LREEs and

671 HREEs (ΣREE , $\Sigma LREE$ and $\Sigma HREE$, respectively) and Ce anomaly (Ce/Ce^{*} =

- $Ce_N/(La_N \times Pr_N)^{1/2}$; REE_N: REE concentration normalized by CI chondrite (McDonough
- and Sun 1995)). Because expanded uncertainties at a coverage factor of 1 are smaller
- than or similar to the symbol size, they are not given for simplicity.

675

676	Fig. 3. X-ray diffraction patterns of oriented $< 2 \mu m$ fraction of sample YMK2 after (a)
677	air-drying, (b) hydrazine treatment, (c) washing the hydrazine-treated specimen by
678	water, (d) glycerol treatment of the hydrazine/water-treated specimen, and (e) heating at
679	500°C for 1 h. See text for the details.
680	
681	Fig. 4. Rare earth patterns of the bulk samples normalized by (a) CI chondrite
682	(McDonough and Sun 1995) and (b) parent rock (sample YMK7). In Fig. 4a, because
683	expanded uncertainties at a coverage factor of 1 are smaller than or similar to the
684	symbol size, they are not given for simplicity; in Fig. 4b, uncertainty bars represent
685	expanded uncertainties at a coverage factor of 1.
686	
687	Fig. 5. Backscattered electron images showing occurrences of cerianite-(Ce) and the
688	four species of rhabdophanes. (a) Rhabdophane-(La) and -(Ce) and cerianite-(Ce) in
689	sample YMK4. (b) and (c) Magnified images, in Fig. 5a, of cerianite-(Ce) in veins
690	accompanied by Mn (oxyhydr)oxide and rhabdophane-(La) and -(Ce) occurring as
691	aggregates of fine crystals, respectively. (d) Rhabdophane-(La) in veins, usually in
692	contact with kaolin, in sample YMK2. (e) Rhabdophane-(Ce) in a grain boundary

693	between orthoclase grains in sample YMK4. (f) Rhabdophane-(La) and -(Nd) in veins in
694	plagioclase mostly filled with kaolin in sample YMK2. (g) Rhabdophane-(Nd) in
695	smectite and associated with fluorapatite in sample YMK6. (h) Rhabdophane-(Y) in
696	smectite and accompanied by fluorapatite in sample YMK6. (i) Electron backscatter
697	diffraction pattern of rhabdophane-(Ce) in Fig. 5e, and (j) a corresponding calculated
698	pattern. Rhb-Y, rhabdophane-(Y), Rhb-La, rhabdophane-(La); Rhb-Ce,
699	rhabdophane-(Ce), Rhb-Nd, rhabdophane-(Nd); Cer, cerianite-(Ce); Mn-ox, Mn
700	(oxyhydr)oxide; Pl, plagioclase; Or, orthoclase; Bt, biotite; Kl, kaolin; Sme, smectite;
701	Ap, fluorapatite. The kaolin minerals in Fig. 5 are probably halloysite.
702	
703	Fig. 6. Rare earth patterns of average chemical compositions of (a) primary
704	REE-bearing minerals normalized by CI chondrite (McDonough and Sun 1995) and (b)
705	secondary rhabdophane normalized by CI chondrite and further normalized by La (scale
706	of the left vertical axis). The REE pattern of the parent rock (sample YMK7; scale of the
707	right vertical axis) and those of allanite-(Ce) of the parent rock and bulk sample YMK2
708	are added to Figs. 6a and 6b, respectively, for comparison. See text for the calculation of
709	the average chemical compositions. Because the LREE patterns of samples YMK2 to
710	YMK 6 are similar (Fig. 4a), the REE pattern of only sample YMK2 is given in Fig. 6b

711	to avoid complicated drawing. Some of the lines are unconnected because the
712	concentrations of the related REEs are under detection limits. Uncertainty bars represent
713	expanded uncertainties at a coverage factor of 1 in Fig. 6a and for allanite-(Ce) in Fig.
714	6b, and concentration dispersions of one standard deviation for secondary rhabdophane
715	in Fig. 6b.
716	
717	Fig. 7. REEs fractional contributions of primary REE-bearing minerals to corresponding
718	REEs of the parent rock. Data points not shown in the figure are data not detected or
719	under quantitative detection limits. See text for the calculation of the REE fractional
720	contributions of primary REE-bearing minerals. Uncertainty bars represent expanded
721	uncertainties at a coverage factor of 1.
722	
723	Fig. 8. (a) Ratios of individual REEs between rhabdophane and allanite-(Ce), and
724	variations of (b) Ce/Ce* values of rhabdophane-(La), -(Ce), -(Nd) and -(Y) particles and
725	(c) Nd/La ratios of rhabdophane-(La), -(Ce) and -(Nd) particles. A data point in Fig. 8a
726	is obtained as follows: A ratio of Σ REE of allanite-(Ce) to that of rhabdophane (i.e.,
727	ratio of $\Sigma C_{n,REE}$ between the two minerals) is calculated first, a $C_{n,REE}$ value of the
728	rhabdophane is multiplied by the ratio of ΣREE , and then the obtained value is divided

729	by a $C_{n,REE}$ value of allanite-(Ce), and log(the final value) is plotted in the figure. See
730	equation (1) to calculate a $C_{n,Z}$ value; $C_{n,REE}$ is $C_{n,Z}$ where Z is an REE. See the caption
731	of Fig. 1 for Ce/Ce [*] . Nd and La in Fig. 8c are the concentrations (wt%) of respective
732	elements. The data from weathered rocks, i.e., samples YMK2 and YMK4 (Fig. 1 and
733	Table 5) were used for the data points in Fig. 8c. The Nd/La ratios of rhabdophane-(Y)
734	are not given in Fig. 8c because its formation mechanisms are likely to be different from
735	those of the other types of rhabdophane (see the Discussion section). In Fig. 8a, bars
736	represent uncertainties of concentration dispersions of one standard deviation of
737	rhabdophane and if not given, the uncertainties are smaller than the symbol size; and in
738	Figs. 8b and 8c, they are not given for simplicity because the uncertainties are smaller
739	than or similar to the symbol size.
740	
741	Fig. 9. Schematic drawing of LREE redistributions between secondary minerals and Ce
742	anomalies in bulk weathered layers during oxic weathering (see text for the three cases).
743	We only show one or two weathered layers of one weathering profile for simplicity. +,
744	positive anomaly; –, negative anomaly; 0, no anomaly.
745	

746

747

Sample	YMK1	YMK2	YMK3	YMK4	YMK5	YMK6	YMK7
Depth	5.0 m	10.4 m	19.2 m	25.0 m	29.0 m	31.0 m	Parent rock
SiO ₂ (wt%)	73.59 ±0.03	73.60 ±0.03	74.72 ±0.03	74.21 ±0.03	74.69 ±0.03	74.64 ±0.03	72.73 ±0.03
TiO ₂	0.16 ± 0.00	0.17 ± 0.00	0.14 ± 0.00	0.15 ± 0.00	0.12 ± 0.00	0.12 ± 0.00	0.19 ± 0.00
Al ₂ O ₃	14.45 ±0.03	14.62 ±0.03	$13.90 \hspace{0.1 cm} \pm 0.03$	$13.40 \hspace{0.2cm} \pm 0.02$	$13.26 \hspace{0.1 cm} \pm 0.02$	13.29 ± 0.02	13.96 ± 0.03
Fe ₂ O ₃ ^b	1.65 ± 0.00	1.88 ± 0.00	1.55 ± 0.00	1.73 ±0.00	1.46 ±0.00	1.50 ± 0.00	1.97 ± 0.00
MnO	0.02 ±0.00	0.03 ±0.00	0.02 ±0.00	0.03 ±0.00	0.03 ±0.00	0.03 ±0.00	0.03 ±0.00
MgO	0.16 ±0.00	0.16 ±0.00	0.13 ±0.00	0.16 ±0.00	0.12 ±0.00	0.13 ±0.00	0.24 ±0.00
CaO	0.67 ± 0.00	0.97 ± 0.01	1.47 ± 0.01	1.19 ± 0.01	1.54 ±0.01	1.48 ± 0.01	2.16 ±0.01
Na ₂ O	1.63 ± 0.01	2.25 ± 0.01	$3.05 \hspace{0.2cm} \pm 0.01$	$2.57 \hspace{0.2cm} \pm 0.01$	$3.05 \hspace{0.2cm} \pm 0.01$	$3.09 \hspace{0.2cm} \pm \hspace{-0.05cm} 0.01$	3.27 ±0.01
K ₂ O	4.50 ±0.01	4.64 ±0.01	$4.46 \hspace{0.2cm} \pm 0.01$	$4.58 \hspace{0.2cm} \pm 0.01$	$4.66 \hspace{0.1in} \pm 0.01$	4.71 ± 0.01	4.14 ±0.01
P_2O_5	0.013 ± 0.001	0.016 ± 0.001	0.017 ± 0.001	0.019 ± 0.001	0.025 ± 0.001	0.021 ± 0.001	0.038 ± 0.002
LOI°	2.91 +0.29	2.25 +0.23	0.96 +0.10	1.33 +0.13	0.36 +0.04	0.38 +0.04	0.41 ± 0.04
Total	99.75 ±0.05	100.60 ±0.05	100.43 ±0.05	99.36 ±0.05	99.31 ±0.05	99.38 ±0.05	99.14 ±0.05
$CIA(\%)^d$	62.2 ±0.0	58.2 ±0.0	52.6 ±0.0	54.2 ±0.0	50.8 ±0.0	50.8 ±0.0	50.3 ±0.0
Sc (mg/kg)	3.5 ±0.1	3.7 ±0.1	2.8 ±0.1	3.3 ± 0.0	2.4 ± 0.0	1.9 ± 0.0	5.8 ±0.1
Ga	24.5 ±0.7	26.8 ±0.4	25.6 ±0.5	25.0 ± 0.8	25.4 ±0.8	23.5 ±0.3	29.6 ±0.7
Rb	139 ±9	147 ±9	134 ±8	141 ±5	133 ±5	134 ±8	129 ±5
Sr	121 ±3	151 ±6	176 ±4	171 ±5	193 ±6	187 ±7	220 ± 5
Y	12.6 ± 0.6	17.8 ± 0.6	$14.9\ \pm 0.5$	18.5 ± 0.9	14.2 ± 0.7	15.5 ± 1.0	$20.9\ \pm 0.7$
Zr	127 ±5	154 ±7	138 ± 7	124 ±3	114 ±5	138 ± 7	163 ± 6
Nb	5.9 ± 0.2	6.8 ± 0.4	5.3 ± 0.2	6.3 ± 0.2	5.0 ± 0.2	4.8 ± 0.2	6.8 ± 0.3
Cs	2.7 ± 0.2	3.5 ± 0.1	3.1 ± 0.2	3.0 ± 0.1	2.4 ± 0.1	2.5 ± 0.1	2.8 ± 0.2
Ba	1,156 ±27	1,253 ±48	1,316 ±74	1,248 ±51	1,388 ±48	1,262 ±60	1,472 ±31
La	28.4 ± 1.5	42.0 ± 2.4	45.3 ±2.3	38.0 ± 2.1	42.6 ± 1.5	39.9 ± 2.4	37.3 ± 1.9
Ce	98.6 ±2.9	94.2 ±5.5	89.8 ± 6.5	88.8 ± 4.3	89.5 ±4.3	86.0 ± 5.6	77.0 ± 2.9
Pr	6.7 ± 0.3	9.5 ±0.5	10.2 ± 0.7	9.1 ±0.5	9.5 ±0.5	9.2 ±0.5	8.3 ± 0.3
Nd	24.8 ± 1.1	33.8 ±1.8	37.5 ± 1.8	31.9 ± 1.6	33.8 ± 0.8	33.1 ±1.7	30.1 ± 1.8
Sm	4.0 ±0.4	5.3 ±0.4	5.3 ±0.5	5.1 ±0.3	5.1 ±0.1	5.3 ±0.3	4.9 ±0.4
Eu	0.78 ± 0.05	0.84 ± 0.04	0.90 ± 0.0^{7}	0.87 ± 0.05	0.88 ± 0.03	0.85 ± 0.06	1.02 ± 0.04
Gd	3.2 ± 0.3	4.3 ± 0.1	4.0 ± 0.2	4.2 ± 0.2	3.8 ± 0.2	4.0 ± 0.2	4.1 ± 0.1
1b D	0.41 ± 0.04	0.55 ± 0.05	0.51 ± 0.05	0.60 ± 0.03	0.53 ± 0.02	0.52 ± 0.02	0.62 ± 0.04
Dy	2.5 ± 0.1	3.4 ± 0.2	3.0 ± 0.2	3.4 ± 0.2	3.0 ± 0.2	3.0 ± 0.2	3.8 ± 0.2
П0 Е.	$0.30 \ 0.02$	1.08 0.04	$0.38 \ 0.02$	$0.70 \ 0.04$	$0.38 \ 0.03$	1.8 ± 0.2	$0.77 \ 0.04$
LI Tm	1.5 ± 0.1	1.0 ± 0.1	1.7 ± 0.1	2.0 ± 0.0	1.7 ± 0.1	1.0 ± 0.2	2.5 ± 0.1
Vh	1.5 ± 0.12	0.29 ± 0.03 2 1 ± 0.1	18 ± 0.01	2.0 ± 0.32	18 ± 0.02	1.25 ± 0.03	0.31 ± 0.02 2 3 ± 0.1
Iu	0.22 ± 0.01	0.30 ± 0.03	0.27 ± 0.02	0.31 ± 0.03	0.27 ± 0.02	0.27 ± 0.02	0.33 ± 0.02
Hf	39 ± 0.01	45 ± 0.05	41 ± 0.32	40+03	38 ± 0.2	42 ± 0.02	45 ± 0.02
Та	0.45 ± 0.02	0.57 ± 0.06	0.49 ± 0.05	0.51 ± 0.04	0.42 ± 0.01	0.43 ± 0.03	0.56 ± 0.05
Th	12.2 ± 0.8	16.4 ± 1.5	13.2 ± 1.2	11.8 ± 1.1	14.1 ± 1.0	13.9 ± 1.3	11.3 ± 0.7
U	1.3 ± 0.1	1.8 ±0.2	1.1 ± 0.1	1.7 ±0.2	1.5 ± 0.1	1.6 ± 0.1	1.5 ± 0.1
ΣREE^{e}	189.1 ±3.5	220.5 ± 6.3	218.7 ±7.2	209.0 ±5.1	209.9 ±4.7	203.9 ±6.4	199.9 ±4.0
ΣLREE ^e	163.2 ±3.5	185.7 ±6.3	189.0 ±7.2	173.8 ±5.0	181.4 +4.7	174.3 ±6.3	158.7 ±3.9
ΣHREE ^e	9.8 ±0.3	13.3 ± 0.3	12.1 ± 0.3	13.5 ± 0.4	11.9 ± 0.3	12.3 ± 0.4	14.5 ± 0.2
Ce/Ce ^{* f}	1 73 +0.08	1.14 ± 0.08	1.01 +0.08	1.16 ± 0.07	1.08 +0.06	1.08 ±0.08	1.06 ± 0.05
Eu/Eu ^{* f}	0.68 ± 0.07	0.54 ± 0.03	0.59 ± 0.06	0.57 ± 0.04	0.60 ± 0.03	0.56 ± 0.04	0.69 ± 0.04

Table 1. Chemical compositions and informations of the bulk samples (wt% for major elements and mg/kg for trace elements).^a

^aExpanded uncertainties at a coverage factor of 1.

^bTotal iron as Fe₂O_{3.}

^cLOI: loss on ignition. We assumed an uncertainty of 10 % (e.g., Braun et al. 1998).

 d CIA: chemical index of alteration $\{Al_{2}O_{3}/(Al_{2}O_{3} + CaO + Na_{2}O + K_{2}O)\}x100$ (in moles) (Nesbitt and Young 1982).

^e Σ REE: total rare earth elements; Σ LREE: total light rare earth elements; and Σ HREE: total heavy rare earth elements. ^fCe/Ce^{*} = Ce_N/(La_NxPr_N)^{1/2} and Eu/Eu^{*} = Eu_N/(Sm_NxGd_N)^{1/2} (REE_N: REE concentration normalized by CI chondrite (McDonough and Sun 1995)).

Table 2. List of REE-bearing minerals.

	Mineral	Ideal formula		
Primary minerals	Allanite-(Ce)	$(Ca,Ce)_2(Al_2Fe^{2+})[Si_2O_7][SiO_4]O(OH)$		
	Allanite-(Y)	$(Ca,Y)_2(Al_2Fe^{2+})[Si_2O_7][SiO_4]O(OH)$		
	Epidote	$Ca_2(Al_2Fe^{2+})[Si_2O_7][SiO_4]O(OH)$		
	Fluorapatite	Ca ₅ (PO ₄) ₃ F		
	Ca- and Y-rich unidentified phase	Unknown		
	Hornblende	Ca ₂ (Fe,Mg,Al) ₅ (Al,Si) ₈ O ₂₂ (OH) ₂		
	Titanite	CaTiSiO ₅		
	Xenotime-(Y)	YPO ₄		
	Zircon	ZrSiO ₄		
Secondary minerals	Cerianite-(Ce)	CeO ₂		
	Rhabdophane-(La)	$La(PO_4) \cdot H_2O$		
	Rhabdophane-(Ce)	$Ce(PO_4) \cdot H_2O$		
	Rhabdophane-(Nd)	$Nd(PO_4) \cdot H_2O$		
	Rhabdophane-(Y)	$Y(PO_4) \cdot H_2O$		
	Y-rich unidentified phase	Unknown		

Table 3. Average compositions (wt%) and chemical informations of primary REE-bearing minerals.^a

	Allanite-(Ce)	Allanite-(Y)	Epidote	Xenotime-(Y)	Fluorapatite	Zircon	Ca- and Y-rich unidentified phase	Titanite	Hornblende
No. of samples	35	6	5	3	10	11	3	3	3
B_2O_3	N.A. ^b	N.A.	N.A.	N.A.	N.A.	N.A.	15.0 ± 4.3	N.A.	N.A.
Na ₂ O	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	1.65 ± 0.03
MgO	0.47 ± 0.09	< 0.02	< 0.02	0.04 ± 0.07	< 0.02	< 0.02	< 0.02	0.17 ± 0.08	3.63 ± 0.11
Al ₂ O ₃	15.72 ± 0.10	21.29 ± 0.27	25.53 ± 0.37	0.29 ± 0.49	0.04 ± 0.02	< 0.02	4.48 ± 0.34	5.97 ± 0.73	8.83 ± 0.12
SiO2	32.61 ± 0.14	34.38 ± 0.17	37.17 ± 0.20	6.75 ± 5.46	0.68 ± 0.08	34.19 ± 0.13	23.13 ± 1.21	30.61 ± 0.19	42.31 ± 0.08
P_2O_5	< 0.06	< 0.06	< 0.06	26.29 ±4.79	39.76 ±0.28	0.09 ± 0.03	< 0.06	< 0.06	< 0.06
SO ₃	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
K ₂ O	< 0.02	< 0.02	< 0.02	0.08 ± 0.07	0.09 ± 0.02	< 0.02	0.15 ± 0.06	0.14 ± 0.07	0.65 ± 0.01
CaO	10.42 ± 0.06	13.89 ± 0.11	21.93 ± 0.74	0.53 ± 0.85	54.08 ± 0.17	< 0.02	16.12 ± 0.49	26.05 ± 0.70	10.44 ± 0.10
TiO ₂	1.42 ± 0.08	0.17 ± 0.06	< 0.11	< 0.11	< 0.11	< 0.11	$< 0.14 \pm 0.05$	26.97 ±1.38	0.98 ± 0.04
V_2O_3	0.04 ± 0.01	$< 0.02 \pm 0.01$	$< 0.02 \pm 0.01$	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.03 ± 0.00
Cr ₂ O ₃	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
MnO	0.27 ± 0.01	0.64 ± 0.02	0.29 ± 0.04	< 0.02	0.08 ± 0.00	< 0.02	0.91 ± 0.19	0.11 ± 0.01	0.95 ± 0.03
FeO	14.28 ±0.06	11.62 ±0.23	8.18 ±0.35	1.61 ±1.57	0.45 ±0.02	0.37 ±0.02	0.93 ±0.21	1.21 ±0.12	27.74 ± 0.10
NiO	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
SrO	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08
Y ₂ O ₃	0.34 ±0.04	8.32 ±0.50	1.23 ±0.46	41.06 ±5.78	0.6/ ±0.08	< 0.06	24.87 ±2.68	2.8/±0.82	0.21 ±0.04
ZIO ₂	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	62.51	< 0.13	< 0.13	< 0.13
La ₂ O ₃	5.4/ ±0.13	0.23 ±0.09	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14
Ce ₂ O ₃	10.94 ±0.15	0.87 ±0.24	0.22 ±0.11	0.33 ±0.57	0.15 ±0.05	< 0.15	< 0.15	< 0.15	< 0.15
Pr ₂ O ₃	1.16 ±0.04	0.19 ±0.05	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Nd ₂ O ₃	4.16 ±0.08	1.01 ±0.23	0.24 ± 0.11	0.34 ± 0.34	0.1/ ±0.02	< 0.12	< 0.12	< 0.12	< 0.12
Sm ₂ O ₃	0.55 ±0.02	0.55 ±0.08	0.13 ±0.06	0.84 ±0.15	< 0.08	< 0.08	0.31 ±0.08	0.09 ±0.03	< 0.08
Eu ₂ O ₃	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
	0.28 ±0.07	1.08 ±0.06	0.24 ±0.10	1.69 ±0.46	0.12 ±0.05	< 0.08	0.72 ± 0.22	0.23 ±0.08	< 0.08
1b ₂ O ₃	< 0.08	< 0.08	< 0.08	0.36 ±0.10	< 0.08	< 0.08	< 0.18 ±0.04	< 0.08	< 0.08
Dy ₂ O ₃	0.11 ±0.01	1.32 ±0.05	0.23 ±0.09	4.23 ±0.73	0.11 ±0.01	0.04 ±0.01	2.99 ±0.09	0.41 ±0.13	< 0.04
Ho ₂ O ₃	< 0.09	0.20 ±0.02	< 0.09	1.26 ±0.13	< 0.09	< 0.09	0.93 ±0.07	< 0.09	< 0.09
Er ₂ O ₃	< 0.05	0.85 ±0.06	0.11 ±0.04	3.61 ±0.47	0.06 ±0.01	< 0.05	2.60 ±0.34	0.30 ±0.09	< 0.05
Im2O3	< 0.05	0.13 ± 0.01	< 0.05	0.55 ±0.13	< 0.05	< 0.05	0.41 ± 0.08	< 0.07	< 0.05
10 ₂ O ₃	< 0.05	0.64 ±0.05	0.07 ±0.03	4.32 ±1.37	< 0.05	0.07 ±0.02	3.13 ±0.62	0.29 ±0.07	< 0.05
Lu ₂ O ₃	< 0.11	< 0.11	< 0.11	0.57 ± 0.22	< 0.11	< 0.11	0.45 ±0.11	< 0.11	< 0.11
niO ₂	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
ThO	< 0.05	0.66 ±0.10	0.10 ±0.08	0.72 ±0.22	< 0.03	< 0.05	< 0.05	< 0.03	< 0.03
UO.	1.22 ±0.00	< 0.06	< 0.06	0.85 ± 1.13 2.10 ± 0.01	< 0.00	0.22 ±0.06	< 0.06	< 0.00	< 0.06
5002 F	< 0.00	< 0.00	< 0.00	2.10 ±0.91	< 0.00 3 10 ±0 33	0.22 ±0.00 < 0.7	< 0.00	< 0.00 1.64 ±0.36	< 0.00
-O(=F-)	~ 0.7	< 0.7	< 0.7	< 0.7	1 31	< 0.7	< 0.7	0.69 ±0.15	< 0.7
Cl	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.02 ± 0.00
-O(=Cl ₂)	- 0.02	4 0.02	\$ 0.02	4 0.0 <u>2</u>	× 0.02	\$ 0.02	4 0.02	- 0.02	0.00 ±0.00
Total ^c	99.4 ±0.4	98.1 ±0.3	95.8 ±0.4	98.4 ±0.4	98.3 ±0.4	97.5 ±0.4	97.5 ±0.3	96.5 ±0.3	97.4 ±0.3
ΣREE	19.6 ±0.2	12.7 ±0.5	2.0 ± 0.4	47.3 ±4.8	1.0 ±0.1	0.1 ±0.0	29.3 ±2.2	3.3 ±0.7	0.2 ±0.0
(Ce/Ce [*]) _{CN}	1.05 ±0.03	1.00 ±0.38	N.A.	N.A.	N.D.	N.D.	N.D.	N.D.	N.D.
(Eu/Eu [*]) _{cu}	< 0.31	< 0.16	< 0.71	< 0.10	N.D.	N.D.	N.D.	N.D.	N.D.
Mod. com. $(x10^4)^d$	809 ±215	108 ±29	6 ±5	Trace	896 ±47	328 ±24	2 ±2	27 ±14	1114 ±965

⁴Compositions by EMPA. Expanded uncertainties at a coverage factor of 1. Values of allanite-(Ce), allanite-(Y), epidote, fluorapatite, and zircon are weighed by the analyzed areas to correct systematic errors induced by the compositional heterogeneity.

^bN.A.: not analyzed.

^cTotal adjusted for F and Cl in place of O.

^dMod. com.: modal composition of a mineral in the parent rock (wt%; see text for the details).

Table 4. Average Compositions (wt%) and chemical informations of secondary REE-bearing minerals.^a

Table 4. A	Rhabd	lophane-(La)	Rhab	dophane-(Ce)	Rhab	dophane-(Nd)	Rhab	dophane-(Y)	Ceri	anite-(Ce)	Y-rich	unidentified phase
No. of sampl	es 10	1 ()	6	1 ()	12	1 ()	4	1 ()	3		8	•
Na ₂ O	< 0.03		< 0.03		0.41	(0.0 - 3.0)	< 0.03		< 0.06		< 0.45	
MgO	< 0.03		< 0.02		< 0.04	(< 0.01 - 0.06)	< 0.02		< 0.04		< 0.02	
Al_2O_3	0.56	(0.1 - 1.0)	0.77	(< 0.1 - 3.4)	2.27	(0.1-4.4)	1.75	(0.7 - 2.9)	4.07	(2.9 - 5.3)	4.40	(1.1 - 7.7)
SiO ₂	0.74	(0.3 - 1.2)	1.05	(< 0.07 - 3.4)	4.54	(0.7 - 8.4)	5.52	(0.3 - 10.8)	4.95	(2.4 - 7.5)	15.27	(7.0 - 23.6)
P_2O_5	29.01	(28.2 - 29.9)	30.47	(28.2 - 32.7)	25.79	(23.7 - 27.9)	24.28	(23.5 - 25.0)	4.88	(4.2 - 5.5)	15.91	(11.5 - 20.3)
SO3	< 0.2		< 0.2		< 0.2		< 0.2	· · · ·	< 0.2		< 0.2	
K ₂ O	0.04	(< 0.02 - 0.07) 0.08	(0.06 - 0.10)	0.19	(< 0.02 - 0.7)	< 0.03		< 0.07		0.04	(0.02 - 0.06)
CaO	3.05	(2.5 - 3.6)	3.48	(2.9 - 4.1)	4.85	(< 0.02 - 12.2)	7.43	(4.2 - 10.7)	1.46	(0.8 - 2.1)	1.69	(0.4 - 3.0)
TiO2	< 0.11	. ,	< 0.11		< 0.11	· · · · · · · · · · · · · · · · · · ·	0.12	(< 0.08 - 0.15)	N.A. ^b	· · · ·	< 0.11	. ,
V_2O_3	0.03	(0.02 - 0.04)	< 0.02		0.04	(< 0.02 - 0.07)	0.02	(0.02 - 0.03)	N.A.		0.69	(0.2 - 1.2)
Cr_2O_3	< 0.02		< 0.02		< 0.02	, í	< 0.02	· · · ·	N.A.		< 0.02	
MnO	0.08	(0.0 - 0.5)	0.10	(0.1 - 0.1)	< 0.04		< 0.05		2.80	(2.1 - 3.5)	0.15	(0.0 - 0.4)
FeO	0.27	(0.0 - 0.7)	0.24	(0.2 - 0.3)	1.47	(0.0 - 4.1)	4.40	(3.3 - 5.5)	0.82	(0.5 - 1.2)	2.04	(0.0 - 5.0)
NiO	< 0.03		< 0.03		< 0.03		< 0.03		N.A.		< 0.03	
SrO	< 0.08		< 0.08		< 0.08		< 0.08		N.A.		< 0.08	
Y_2O_3	3.95	(3.2 - 4.7)	3.36	(2.6 - 4.2)	5.07	(3.4 - 6.8)	9.52	(6.1 - 13.0)	< 0.28		24.82	(18.3 - 31.4)
ZrO ₂	< 0.13		< 0.13		< 0.13		< 0.13		< 0.13		0.16	(< 0.13 - 0.3)
La ₂ O ₃	18.61	(16.2 - 21.0)	14.24	(12.2 - 16.3)	13.63	(7.8 - 19.5)	5.30	(4.2 - 6.5)	0.29	(0.3 - 0.3)	0.23	(0.2 - 0.3)
Ce ₂ O ₃	7.26	(2.6 - 11.9)	18.14	(10.6 - 25.7)	1.87	(0.6 - 3.1)	0.65	(0.4 - 0.9)	64.22	(52.1 - 76.4)	5.56	(< 0.1 - 11.3)
Pr ₂ O ₃	5.09	(4.4 - 5.8)	3.62	(2.9 - 4.4)	4.06	(2.6 - 5.5)	2.23	(1.8 - 2.7)	< 0.25		0.21	(0.2 - 0.3)
Nd_2O_3	18.14	(16.0 - 20.2)	13.24	(10.3 - 16.2)	15.96	(11.0 - 20.9)	9.86	(7.7 - 12.1)	0.36	(0.2 - 0.5)	1.46	(1.0 - 1.9)
Sm_2O_3	3.15	(2.7 - 3.6)	2.22	(1.5 - 2.9)	3.22	(2.3 - 4.1)	3.03	(2.5 - 3.6)	< 0.14		1.01	(0.8 - 1.2)
Eu_2O_3	0.11	(0.06 - 0.16)	< 0.04		0.14	(0.1 - 0.2)	0.15	(0.1 - 0.2)	< 0.04		0.06	(0.04 - 0.08)
Gd_2O_3	1.81	(1.6 - 2.1)	1.34	(0.9 - 1.8)	2.10	(1.5 - 2.8)	2.74	(2.5 - 3.0)	< 0.14		2.21	(1.8 - 2.6)
Tb_2O_3	< 0.08		< 0.08		< 0.08		N.A.		< 0.08		0.29	(0.2 - 0.3)
Dy ₂ O ₃	1.07	(0.9 - 1.3)	0.79	(0.6 - 1.0)	1.27	(0.85 - 1.69)	2.08	(1.7 - 2.5)	< 0.14		3.28	(2.5 - 4.1)
Ho ₂ O ₃	< 0.09		< 0.09		0.09	(0.02 - 0.16)	N.A.		< 0.09		0.57	(0.4 - 0.7)
Er ₂ O ₃	0.39	(0.32 - 0.46)	0.31	(0.2 - 0.4)	0.88	(0.0 - 2.3)	0.87	(0.5 - 1.2)	< 0.03		2.17	(1.6 - 2.8)
Tm ₂ O ₃	< 0.05		< 0.05		< 0.05		< 0.15		< 0.05		0.26	(0.2 - 0.4)
Yb ₂ O ₃	0.22	(0.2 - 0.3)	0.21	(0.2 - 0.3)	0.25	(0.2 - 0.3)	0.58	(0.2 - 1.0)	< 0.03		1.84	(1.1 - 2.6)
Lu ₂ O ₃	< 0.11	· · · ·	< 0.11		< 0.11		< 0.11		< 0.11		0.18	(0.1 - 0.2)
PbO	< 0.03		< 0.03		< 0.03		< 0.14		< 0.04		< 0.03	. ,
ThO ₂	< 0.06		< 0.06		2.94	(< 0.1 - 7.9)	13.78	(9.2 - 18.4)	< 0.06		10.71	(< 0.1 - 23.8)
UO ₂	< 0.06		0.25	(0.2 - 0.3)	0.64	(< 0.1 - 1.4)	< 0.23		< 0.04		0.29	(< 0.0 - 0.5)
Total	94.1	(92.0 - 96.3)	94.2	(90.0 - 98.4)	92.1	(86.2 - 98.1)	95.2	(89.7 - 100.7)	83.8	(76.0 - 91.5)	96.1	(91.8 - 100.4)
ΣREE	50.9	(46.0 - 55.8)	48.9	(41.6 - 56.2)	41.2	(34.0 - 48.3)	31.4	(27.8 - 35.0)	55.4	(45.0 - 65.8)	36.1	(28.9 - 43.3)
(Ce/Ce [*]) _{CN}	0.20	(0.05 - 0.34)	0.62	(0.50 - 0.73)	0.06	(0.03 - 0.09)	0.04	(0.03 - 0.06)	> 57.4		< 18	
(Eu/Eu [*]) _{CN}	0.13	(0.08 - 0.18)	< 0.17		0.18	(0.11 - 0.25)	0.16	(0.11 - 0.20)	N.A.		< 0.33	

^aCompositions by EMPA. Concentration dispersions of one standard deviation are given in parentheses.

^bN.A.: not analyzed.

Table 5. REE-bearing mineral abundances.^a

Sample (depth)	Aln-Ce Aln-Y	Ep	FAp	Hbl	Ttn	Xen	Zrn	CaY-u	Cer	Rhb-La	Rhb-Ce	Rhb-Nd Rhb-Y	Y-u
YMK1 (5.0 m)	-		-			-	++		++	-	-	-	
YMK2 (10.4 m)	-		-				++		++	++	++	++	
YMK3 (19.2 m)	++		-			-	++		$^+$	+	+	+	
YMK4 (25.0 m)	+		-	-			++		++	++	++	++	
YMK5 (29.0 m)	++		+	+	-	-	++		-				-
YMK6 (31.0 m)	++		+	+	-		++	-	-				
YMK7 (PR ^b)	++ +	-	++	++	-	-	++	-					

^a The abundances of REE-bearing minerals were qualitatively estimated by their areas on backscattered electron micrographs.

++, common; +, minor; -, trace; blank, not found.

Aln-Ce, allanite-(Ce); Aln-Y, allanite-(Y); Ep, Epidote; FAp, Fluorapatite; Hbl, hornblende; Ttn, titanite; Xen, xenotime-(Y); Zrn, zircon; CaYu, Ca- and Y-rich unidentified phase; Cer, cerianite-(Ce); Rhb-La, rhabdophane-(La); Rhb-Ce, rhabdophane-(Ce); Rhb-Nd, rhabdphane-(Nd); Rhb-Y, rhabdophane-(Y). ; Y-u, Y-rich unidentified phase

^b PR, parent rock.

Fig. 3.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7148

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
DOI: https://doi.org/10.2138/am-2020-7148

	Mineral in weathered layer	Ce anomaly in bulk layer
Case (i)	Cerianite-(Ce) Rhabdophane (–)	0
	Rhabdophane (–)	
Case (ii)	Cerianite-(Ce), relatively richer	+
	Rhabdophane (–), relatively richer Cerianite-(Ce)	_
	Rhabdophane (~0) Cerianite-(Ce), almost none	0
	Rhabdophane (–)	+ or –