Revision 1

Reaction between Cu-bearing minerals and hydrothermal fluids at 800°C and 200 MPa: constraints from synthetic fluid inclusions

Dongmei Qi^{1*}, Harald Behrens¹, Roman Botcharnikov^{1,2}, Insa Derrey¹,

Francois Holtz¹, Chao Zhang¹, Xiaoyan Li¹, Ingo Horn¹

¹Institut für Mineralogie, Leibniz Universität Hannover, Callinstraße 3, Hannover,

D-30167, Germany

²Institut für Geowissenschaften, Johannes Gutenberg Universität Mainz,

J.-J.-Becher-Weg 21, Mainz, D-55128, Germany

(*corresponding author: dongmei.qi@xju.edu.cn)

1 Abstract

2 Transport and deposition of copper in the Earth's crust are mainly controlled by the 3 solubility of Cu-bearing phases and the speciation of Cu in magmatic-hydrothermal fluids. To improve our understanding of copper mobilization by hydrothermal fluids, we 4 conducted an experimental study on the interaction between Cu-bearing phases (metallic 5 6 copper, Cu₂O, CuCl) and aqueous chloride solutions (H₂O \pm NaCl \pm HCl; with Cl 7 concentration of 0 to 4.3 mol kg⁻¹). The experiments were run in rapid heat/rapid quench 8 cold seal pressure vessels at 800°C, 200 MPa and $\log fO_2 \sim NNO + 2.3$. Either Cu capsules 9 or Au capsules were used as containers. The reaction products were sampled *in situ* by the entrapment of synthetic fluid inclusions in quartz. Fluid composition was subsequently 10 determined by analyzing individual fluid inclusions using a freezing cell and laser ablation 11 inductively coupled plasma mass spectrometry. Our results show that large isolated and 12 13 isometric inclusions, free of late stage modifications, can be preserved after experiment even when using a high cooling rate of 25 K s⁻¹. 14

The obtained results demonstrate that: (i) reaction between native Cu, NaCl solution and quartz (+/- silica gel) leads to the coexistence of fluid inclusions and Na-bearing silicate melt inclusions. Micrometer- to submicrometer-sized cuprite (Cu₂O) crystals have been observed in both types of the inclusions and they are formed most probably due to the dissociation of CuOH. (ii) When Cu⁰ reacts with HCl and CuCl solutions, or Cu⁺ reacts with NaCl solution, nantokite (CuCl) has been found in the fluid inclusions which was

21	formed due to oversaturation. Copper concentration in the fluid shows a strong positive
22	dependence on the initial chlorine content, with Cu/Cl molal ratio varying from 1:9 to 1:1
23	in case (i) and (ii), respectively. When Cl is fixed to 1.5 m, initial fluid acidity has a major
24	control on the Cu content, i.e., 0.17±0.09 m and 1.29±0.57 m Cu were measured in fluids
25	of case (i) and (ii), respectively. Cu solubility in pure water and in 1.5 m NaCl solutions
26	are 0.004±0.002 m and 0.16±0.07 m, respectively. The main responsible Cu-bearing
27	complexes are $CuOH(H_2O)_x$ in water, $NaCuCl_2$ in NaCl solutions and $HCuCl_2$ in alkali-
28	free solutions. These results provide quantitative constraints on the mobility of Cu in
29	hydrothermal solutions and confirm that Cl is a very important ligand responsible for Cu
30	transport. The first observation that silicate melt can be generated in the fluid-dominated
31	and native-copper-bearing system implies that transitional thermosilicate liquids can
32	coexist with metal-rich fluids and may enhance Cu mobility in magmatic-hydrothermal
33	systems. This may have important implications for the formation of Cu deposits in the
34	systems with low S activity.

35 Keywords

36 Synthetic fluid inclusions, silicate melt inclusions, native copper, cuprite, nantokite,

37 quench rate, proper sealing

38 **1. Introduction**

39 Formation of hydrothermal ore deposits requires a fluid with the ability to transport 40 and deposit metals. Sources as well as physical and chemical characteristics of these hydrothermal fluids may vary widely (Bodnar et al., 2014). Fluid inclusions (FIs) trapped 41 42 in minerals provide the most direct constraints on the composition of hydrothermal fluids responsible for mineralization and deposition of metals. However, an interpretation of 43 natural observations requires calibration in the laboratory using synthetic fluid inclusions 44 45 produced at controlled experimental conditions (Nash, 1976). The valence state of copper is widely accepted as monovalent Cu⁺ in silicate melts 46 (e.g., Candela and Holland, 1984; Ripley and Brophy, 1995; Holzheid and Lodders, 2001; 47 Zajacz et al., 2012), as well as in magmatic hydrothermal fluids (e.g., Fulton et al., 2000; 48 Brugger et al., 2007; Schmidt et al., 2018). Both experimental and thermodynamic data 49 50 show that magmatic hydrothermal fluids containing ligands like Cl⁻ and HS⁻ are the most important transport agents for Cu (e.g. Seward and Barnes, 1997; Liu and McPhail, 2005). 51 Cuprous bisulfide complexes are stable under reduced conditions in near neutral to alkaline 52 fluids with high total S concentrations (Crerar and Barnes, 1976; Thompson and Helz, 1994; 53 54 Mountain and Seward, 1999, 2003). At high temperatures (>300°C), chlorine is the dominant Cu ligand in fluids (Mountain and Seward, 2003). Experimental investigations 55 of Cu speciation in fluids at temperatures below 500°C (Crerar and Barnes, 1976; Var'yash, 56 1992; Xiao et al., 1998; Fulton et al., 2000; Archibald et al., 2001; Brugger et al., 2001; 57

58	Liu et al., 2001, 2002; Berry et al., 2006; Sherman, 2007; Rempel et al., 2012) indicate
59	that [CuCl] ⁰ and [CuCl ₂] ⁻ complexes dominate in a wide range of Cl concentrations. Higher
60	order complexes with the stoichiometry of $CuCl_n^{1-n}$ (where n>2) and $Cu_3Cl_3 \cdot (H_2O)_n$ are
61	also considered to be possible complexes in vapor as well as in highly saline fluids (Xiao
62	et al., 1998; Archibald et al., 2002; Williams-Jones et al., 2002; Liu et al., 2002, 2008).

63	The available synthetic FI studies on Cu solubility in hydrothermal brines in the single
64	fluid phase region are generally focused on cuprous (e.g., Cu ₂ O) and/or cupric (e.g., CuCl ₂)
65	phases (e.g., Berry et al., 2006; Hack and Mavrogenes, 2006). Based on the analysis of
66	synthetic FIs, Hack and Mavrogenes (2006) studied the influence of Cl concentration,
67	temperature, and pressure on copper solubility at buffered oxygen fugacity and pH. The
68	authors analyzed FIs with laser ablation inductively coupled plasma mass spectrometry
69	(LA-ICP-MS) and measured up to 15 wt% Cu at 630°C and 340 MPa. Hack and
70	Mavrogenes (2006) inferred high order complexes with general stoichiometry CuCl(HCl) _n -
71	$_1^0$ (where n is up to 4), preferring $n \le 2$ at geological conditions. Berry et al. (2006) used
72	XANES spectroscopy to extend the synthetic FI study of Hack and Mavrogenes (2006) by
73	including native copper as a starting material. Their LA-ICP-MS and PIXE analyses
74	indicated that ~10 wt% Cu was dissolved in the fluid (700°C and 341 MPa; 4-8 m KCl)
75	which was equilibrated with native copper and mineral buffers. Berry et al. (2006)
76	concluded that Cu^+ occurs as a linear species $[CuCl_2]^-$ in the presence of K^+ and as $[CuCl_4]^{3-1}$
77	in the absence of K ⁺ . Zajacz et al. (2011) conducted experiments in Au ₉₇ Cu ₃ alloy capsules

 $(a_{Cu}=0.01)$ with various chemical components at 1000°C and 150 MPa. A maximum Cu content of 0.025 wt% was reached in 0.75 m NaCl solution. Zajacz et al. (2011) proposed the presence of NaCuCl₂ and KCuCl₂ complexes. There is a general agreement that Cu(I) remains stable at high temperatures, however, the change in redox state of Cu during reaction between native Cu and cuprous Cu at magmatic-hydrothermal conditions is not well understood.

84 Occurrence of native copper has been observed in several localities, such as in ancient oceanic pillow basalts (Nagle et al., 1973), in continental flood basalts (e.g., Stoiber and 85 Davidson, 1959; Pinto et al., 2011; Zhang et al., 2013; Ikehata et al., 2016), and in mantle 86 87 derived peridotites (Zhang et al., 2006; Ikehata and Hirata, 2012). In hydrothermal systems native copper can be concentrated to economic levels, such as in the world's largest and 88 89 most significant Keweenaw Peninsula native copper ore district in USA, to a lesser extent 90 in the Emeishan large igneous province in China, (e.g. Butler and Burbank, 1929; Zhu et 91 al., 2003; Wang et al., 2006; Bornhorst and Mathur, 2017). However, the reaction mechanism of native copper with hydrothermal fluids has not been systematically studied 92 93 at elevated temperatures and pressures. Thus, we conducted a detailed study of the behavior 94 of copper in water and chlorine-bearing fluids at magmatic-hydrothermal conditions. Experiments were performed at 800°C and 200 MPa to equilibrate Cu-bearing minerals 95 (Cu, Cu₂O and CuCl) containing different Cu species with aqueous hydrothermal fluids 96 97 containing 0 to 4 mol Cl⁻ per kg H₂O, adjusted by addition of NaCl-, HCl- and CuCl-

- 98 bearing solutions. The equilibrated fluids were trapped *in situ* as FIs in quartz seed crystals.
- 99 FIs were analyzed by laser ablation ICP-MS using freezing cell and femtosecond laser.
- 100 **2. Experimental and analytical procedure**

101 2.1 Experimental strategy

102	Three sets of experiments were performed at 800°C and 200 MPa (Table 1). Set 1
103	(System: \pm Cu \pm Cu ₂ O + NaCl): NaCl was added to evaluate the role of ligands which are
104	charge-compensated by alkali; copper source was either metallic copper or cuprite. Set 2
105	(System: $Cu \pm Cu_2O \pm CuCl \pm HCl$): Ligands for complex formation were added either as
106	HCl or as CuCl. When using Cu tubes both components are equivalent since CuCl is
107	present at run conditions (more details are given below). Using these two starting
108	components (Cu and HCl) the role of hydrogen permeation through the capsule wall can
109	be evaluated. Set 3: Experiments were designed for methodological reasons. The solubility
110	of Cu in H ₂ O is probed in the absence of chloride in runs DQ-37A, B, C. The difference
111	among these runs are that DQ-37A was loaded with Qz, and quench fluid was not extracted.
112	DQ-37B, C were not loaded with Qz and quench fluids were extracted after 19 and 26 h,
113	respectively. DQ-99, 100, 101 were performed to test whether measured composition of
114	fluids in inclusions is consistent with the starting composition of the aqueous solution. DQ-
115	124 was a test to check whether fluid components can leak into/out of inclusions during
116	D ₂ O-H ₂ O exchange process. A pre-run was required (DQ-121), and FIs were first
117	synthesized using a 1.5 m NaCl solution in a Cu capsule for 6 d. The retrieved quartz 7

cylinders were then transferred into a new Au capsule which was only loaded with pure D₂O prior to the run (DQ-124). Subsequently, the capsule was heated at the same condition for an hour. After this run, synthetic FIs were analyzed with Raman spectrometry and Fourier transform infrared spectroscopy to characterize the abundance of H_2O and D_2O qualitatively.

123 **2.2 Starting materials and fluid inclusion synthesis**

Quartz cylinders with a diameter of 2.0 mm, ca. 3 mm in length, and a weight of ca. 0.025 g, were drilled out parallel to the c-axis of a large, inclusion-free synthetic single crystal. After drilling, these cylinders were cleaned with acetone and distilled water in an ultrasonic bath.

Two techniques of FI entrapment were used in this study: 1) entrapment in pre-128 fractured quartz (hereafter denoted as pref. Qz); and 2) entrapment in the originally intact 129 130 quartz which was cracked in situ during the experiment (denoted as in situ fractured quartz 131 or i.s. Qz). The cracks are needed to provide space for FIs within the quartz crystal. The pref. Qz was prepared by heating at 350°C for 10 min in an atmospheric oven and 132 quenching in distilled water. After drying, these quartz cylinders were immersed in 40% 133 hydrofluoric acid for 10 min to leach quartz along the cracks, which helps to produce large 134 and more abundant FIs, as suggested by Derrey et al. (2017). After leaching, the pre-135 136 fractured quartz cylinders were cleaned in acetone and distilled water to remove acid and

137	other possible contamination. Both pref. Qz and intact quartz cylinders were placed in an
138	oven at 110°C overnight to remove all residual water from the surface and cracks.
139	Copper tubing was purchased from Sürth Stahl-Metalle und Schrauben, with a purity
140	of 99.97 wt% Cu. Copper(I) oxide powder (purity of 97%, purchased from Sigma Aldrich)
141	was directly used as a starting material or it was transformed into pellets by sintering. In
142	doing so, cuprite (Cu ₂ O) powder (~1g) was pressed into pellet of 13 mm in diameter and 2
143	mm in thickness using the uniaxial pressing method at 140 MPa. Afterwards, these pellets
144	were sintered at 1030°C for 30 h at atmospheric conditions, i.e. in the stability field of
145	cuprite (Neumann et al., 1984).
146	NaCl solutions were prepared using distilled water and NaCl powder (purity of
147	99.99%, purchased from Alfa Aesar). HCl solutions were diluted from a 6 mol 1 ⁻¹ HCl
148	stock solution. All solutions were doped with 400 - 600 μ g g ⁻¹ RbCl and CsCl for internal
149	standardization of LA-ICP-MS measurements (Duc-Tin et al., 2007; Derrey et al., 2017).
150	Silica gel (purity of 99.99%) and Cu(I)Cl powder (purity of 99.999%) were purchased from
151	Alfa Aesar. It must be noted that silica gel is generally added to the starting material unless
152	otherwise mentioned. Further details about each proportion of the starting materials are
153	provided in supplementary Table A1.
154	A schematic drawing of the assemblage in the capsule is shown in Fig.1a, and
155	experimental details are listed in Table 1. Two types of capsules were used in this study,

Cu capsules (2.45 mm I.D., 2.55 mm O.D. and 30 mm length) and Au capsules (2.80 mm 9

157	I.D., 3.20 mm O.D. and 30 mm length). Solutions (H ₂ O \pm NaCl \pm HCl; doped with internal
158	standards) and solid reactants (fine silica gel / quartz powder / CuCl powder / Cu ₂ O powder
159	/ sintered Cu ₂ O pellet) were placed at the bottom of the capsule which was welded shut on
160	one end prior to loading. The total volume of liquid in the capsule was calculated to be
161	lower than the free volume in the capsule under experimental P, T conditions using the
162	equation from Pitzer and Sterner (1994) for pure H ₂ O. The capsules were crimped at the
163	center, and then two quartz cylinders were loaded in the upper part of the capsule. The
164	intact quartz cylinder was always placed beneath the pre-fractured quartz cylinder (Fig. 1a).
165	Capsules were squeezed on top, weighed, cut and then welded shut under Ar flow. During
166	welding, the capsule was cooled with a wrapped tissue soaked with distilled water and then
167	frozen by liquid nitrogen to avoid loss of volatile components during welding. The capsule
168	was weighed again to check for volatile loss during welding, stored in an oven at 110°C
169	overnight, and weighed a third time to test for possible leakage.
170	A rapid heat/rapid quench argon cold seal pressure vessel (RH/RQ Ar-CSPV, similar
171	to those described by Matthews et al. (2003)) was used for the experiments. All
172	experiments were conducted at 800°C and 200 MPa. Based on calibration, the uncertainties
173	of temperature and pressure measurements are $\leq \pm 5$ °C and $\leq \pm 5$ MPa, respectively. Inside
174	a capsule filled with pure water (water activity equals to1), the oxygen fugacity imposed

176 (2001)). Loaded capsules were firstly pressurized to 200 MPa at room temperature and

175

10

by the vessel was ca. NNO + 2.3 (2.3 log units above the Ni-NiO buffer; Berndt et al.

177	then rapidly moved to the preheated hot zone of the vessel by an externally mobile magnet.
178	The heating of the capsules to 800°C occurred within few minutes at isobaric conditions.
179	Almost all experiments included an "intermediate quench" step (after 2-4 days, Table
180	1) by descending the sample to the water-cooled region to initiate cracks within the intact
181	quartz cylinder as a result of thermal stress (e.g., Li and Audétat, 2009). After intermediate
182	quench (< 20 s) the capsules were rapidly placed back in their previous position in the hot
183	zone (see Fig. 1b). In general, the technique to trap fluid at run conditions in synthetic FIs
184	in quartz follows the procedure of Bodnar and Sterner (1987) and Derrey et al. (2017) but
185	in this study five types of quench techniques were tested to optimize number and quality
186	of trapped FIs (Fig.1b):

[1] <u>Slow quench (SQ)</u> was used to avoid cracking of the quartz cylinders after the experiment due to thermal shock. The autoclave was pulled out of the hot furnace and cooled slowly to ambient conditions. The initial cooling rate of SQ is about 0.5 K s⁻¹ (heavy dashed line in Fig.1b) as estimated by the temperature evolution from target temperature down to 300°C measured with the calibration unit and the outer thermocouple. The SQ quench was applied in most of the synthetic FI studies.

[2] <u>Slow quench + rapid quench (SQ+RQ)</u> were conducted to avoid any entrapment of FIs
at low temperature in the late stages of the experiment. This technique was conducted in
two steps: firstly, the autoclave was removed out of the hot furnace, and the samples
remained in the hot part of the autoclave (as in case [1]); secondly, when the autoclave

197	temperatures reached 600°C, the sample was rapidly cooled by pulling it into the water-
198	cooled part of the autoclave. The cooling rates for these two stages were estimated to be 2
199	K s ⁻¹ (800-600°C) and ~25 K s ⁻¹ (600-300°C; light gray dashed line in Fig.1b), respectively.
200	[3] <u>Very slow quench + rapid quench (VSQ+RQ)</u> were only performed in HCl-bearing
201	system to test whether the number of inclusions could be increased. The sample was cooled
202	slowly from 800°C to 600°C at constant pressure by adjusting the cooling rate of the
203	furnace to 0.07 K s ⁻¹ (thin gray line in Fig.1b). After cooling to 600°C the sample was
204	quenched rapidly (RQ, see below). In this case the rapid quench was within the stability
205	field of α -quartz (< 630°C at 200 MPa; Swamy et al. (1994)).
206	[4] Compressed air quench (CAQ) was applied to adjust an intermediate cooling rate of
207	about 3 K s ⁻¹ (gray line in Fig.1b). The autoclave was pulled out of the furnace and
208	immediately cooled down by compressed air at the hot end.
209	[5] <u>Rapid quench (RQ)</u> revealed the highest cooling rate (thick black line in Fig.1b),
210	initiated by dropping the external magnet rapidly to place the sample at water-cooled zone.
211	Cooling rate for this procedure was determined to be \sim 25 K/s using the geospeedometer of
212	Zhang et al. (2000) based on water speciation in rhyolitic melts. In doing so, a \sim 30 mg
213	fragment of synthetic rhyolitic glass containing $\sim 5~wt\%~H_2O$ was loaded in an Au capsule,
214	pre-equilibrated for a few minutes at 800°C and 200 MPa and then quenched rapidly. Water
215	speciation was measured by near-infrared spectroscopy.

216	After the experiment, the capsules were cleaned and weighed to verify that they had no
217	leaks. Most capsules were squeezed, and the acidity of the fluid was tested with pH paper.
218	Only two capsules (DQ-165 and DQ-169) were inflated but the weight was the same as
219	before experiment. Inflation may have been caused by contamination with organic material
220	during loading and formation of CO2 at high temperature or by entrapment of Ar through
221	small microcracks in the capsule wall, which were sealed by alloying during heating.
222	Quench fluid extraction from the inflated capsules includes the following steps: (i) capsules
223	were wrapped with a tissue soaked with distilled water and were frozen by liquid nitrogen;
224	(ii) a small hole was pierced at the top, the tissue was removed and the capsule was allowed
225	warming to room temperature before the quench fluid was extracted by a metal syringe;
226	(iii) after transfer of the quenched fluid (~30 mg) into a Teflon vial, the capsule was rinsed
227	with 1 ml deionized water. Half of the aliquots (~0.5 ml) was transferred to a new tube for
228	pH determination (using an Inlab microelectrode). The residuals were weighed again and
229	evaporated to dryness on a 90°C hotplate. The evaporated dryness was processed by
230	following the procedure of Roebbert et al. (2018) for ICP-OES analyses. (iv) The final pH
231	and elements concentration are calculated based on the dilution factor.
232	Quartz cylinders were removed from the capsules, mounted in epoxy resin and polished

from both sides to a thickness of ca. 300 µm. The polishing allowed for easy identification
of FIs under the microscope, and for the microthermometry measurements and analyses by
LA-ICP-MS.

236 **2.3** *Microthermometry and chemical analyses*

237	Microthermometry was carried out on a <i>Linkam THMSG 600</i> heating (T < 600°C) and
238	freezing stage. The in-house synthesized standard FIs (pure water-bearing and CO ₂ -bearing
239	inclusions) were used to calibrate the stage, and the stage is accurate to ± 0.1 °C in the range
240	of -56.6°C to 0.0°C, and \pm 1°C up to 347°C. Typically five FIs were analyzed in each
241	quartz chip. Final ice melting temperatures (T _m) were determined to obtain bulk salinity
242	(i.e. $NaCl_{eq.}$) of the fluids. Homogenization temperatures (T _h) were acquired by heating up
243	the inclusions until a uniform phase was observed. Heating and cooling were repeated to
244	check for reproducibility. The computer program BULK (Bakker, 2003) was used to
245	estimate the bulk salinity of the FI.

The inclusions were analyzed for their major and minor element contents by LA-ICP-246 MS. An in-house built laser ablation system based on a UV-femtosecond-laser (Spectra 247 Physics) was combined with a heating-freezing cell and a fast scanning sector field 248 inductively coupled plasma mass spectrometer (Element XR, Thermo Scientific) (for more 249 details see Albrecht et al. (2014)). The laser system operated in the deep UV at 194 nm and 250 spot size was set to ca. 25 µm. The ablation cell was a modified INSTECTM heating-251 freezing stage with an adjusted volume of 3 cm³. Helium mixed with 2 vol% hydrogen (to 252 adjust the hydrogen flow rate to ca. 5-6 ml min⁻¹, as suggested by Guillong and Heinrich 253 (2007)), was used as sample-chamber gas. After leaving the sample chamber, the gas was 254 255 mixed with argon used as a carrier gas. Analyses were performed at a temperature of -40°C,

guaranteeing completely frozen FIs prior to the ablation, which resulted in an excellent
control on the opening of the inclusions and considerably longer signal analysis time
compared to the analysis of liquid FIs. Representative examples of FI analyses are shown
in Fig. 2.

The analytical uncertainty of the method is estimated to be 10-30% for most studied 260 elements as discussed in Albrecht et al. (2014). NIST SRM 610 glass was used as external 261 262 standard (using reference values of the GeoReM database; Jochum et al., 2005), measured 263 with a repetition rate of 10 Hz. The usual size of ablated inclusions was $<25 \,\mu m$, and laser 264 repetition rates have been adjusted between 5 and 10 Hz, with higher rates for deeper (down 265 to 40 μ m) and lower rates for shallower (down to 20 μ m) FIs. In some cases (DQ36-1 and 266 DQ43-2), inclusions larger than 25 µm were ablated with the help of a Linux controlled 267 ablation system. Here, inclusions were ablated spirally at repetition rates higher than 100 268 Hz. Both spot and spiral laser ablation signals have been compared in Fig.2. It is evident 269 that the signal intensity is not affected by inclusion size (Fig.2-a, 2-b), and small FIs (e.g., $9 \,\mu\text{m}$) can yield high signal intensities and good quality data. It has to be mentioned that 270 271 the selected spot size on the sample surface was always bigger than the analyzed FI in order 272 to guarantee that the whole FI is ablated and subsequently transported to the ICP-MS.

To evaluate the acquired data, the SILLS data reduction software designed by Guillong et al. (2008) was applied. The known initial Rb content was used for internal standardization of Cu±CuCl±Cu₂O±HCl and Cu₂O+NaCl systems, and the 276 microthermometrically determined Na content was used for the Cu+NaCl system (Table 2;
277 more details are given below).

The element contents of quench fluids were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) on a Varian Vista Pro system (Varian GmbH, Germany).

Raman spectroscopy was used to identify trapped minerals and fractions of H₂O and D₂O in inclusions. The measurements were performed using a confocal Bruker Senterra micro-Raman spectrometer equipped with an Olympus BX 51 microscope and an Andor DU420-OE CCD camera. Unpolarized spectra were collected under ambient conditions, using the 532 nm laser excitation line with 20 mW power, and a long distance Olympus 50× magnification objective. Spectra were recorded for 10 s with 2 times acquisition repetitions. Instrumental precision was within ± 3 cm⁻¹.

IR spectra were collected with a Bruker IFS88 FTIR spectrometer equipped with a Bruker IRscope II microscope and a MCT detector. Absorption spectra were collected in the mid-infrared region (MIR) for quantification of H₂O and D₂O in synthetic FIs using a globar light source and a KBr beamsplitter. Near-infrared (NIR) spectroscopy was applied for measurement of water species in glasses using a tungsten light source and a CaF₂ beamsplitter. The spectral resolution was 2 cm⁻¹ and 50 cans were accumulated in the MIR region, 100 scans were measured with 4 cm⁻¹ resolution in the NIR region.

295	The composition of silicate melt and cuprite pellets was determined on polished
296	sections using an electron probe micro-analyzer (EMPA) CAMECA SX100. The reference
297	materials for calibration included jadeite (Na), kyanite (Al), wollastonite (Si, Ca),
298	orthoclase (K), NaCl (Cl) and Cu (Cu). Raw analytical data were corrected using the
299	standard PAP procedure (Pouchou and Pichoir, 1991). Acceleration voltage was set as 15
300	kV. A focused beam and 15 nA beam current were used for cuprite analysis, and a slightly
301	defocused beam (2 $\mu m)$ and 5 nA beam current were used for Na-bearing silicate glass
302	determination.

303 **3. Results**

304 3.1 Observations of quenched fluids

Precipitates were found in Cu capsules with \pm Cu₂O \pm CuCl+HCl except for Cu +NaCl, 305 and Cu+CuCl (DQ-47) (Table 1). In the case of DQ-42 and DQ-43 the precipitates were 306 identified as CuCl by EDX analyses in a scanning electron microscopy. Both visual 307 308 inspection of the capsule and the ICP-OES analyses of DQ-169 indicate that the added 309 Cu₂O powder was fully consumed by the reaction with HCl, resulting in less acidic fluids (pH=4.06) than the initial solution (pH=~0). Quench fluids of runs containing initial HCl 310 311 but no Cu₂O were still mild to very acidic after the run, suggesting that HCl has not completely reacted. For all NaCl-bearing experiments pH determination on quenched 312 fluids indicate neutral to basic condition (Table 2). Solutions are also mild acidic when 313

only H₂O was loaded into Cu capsules (DQ-37A, B, C), probably because of formation of Cu(OH)₂⁻ complexes via a reaction Cu + 2 H₂O = Cu(OH)₂⁻ + H⁺ + $\frac{1}{2}$ H₂.

316 3.2 Fluid inclusion microscopy

Results of microscopic investigation on sections of quartz cylinders are separately discussed for the systems \pm Cu \pm Cu₂O+NaCl and Cu \pm CuCl \pm Cu₂O \pm HCl in the order of increasing quench rate, corresponding information is also tabulated in Table 1. Petrographic examination of quartz sections showed that the i.s. Qz had fewer and narrower cracks than the pref. Qz.

322 $3.2.1 \pm Cu \pm Cu_2O + NaCl system$

323 Different observations were achieved depending on the copper source in these experiments. Only one type of inclusions was formed when Cu₂O was used, but two 324 different types of inclusions were found in runs with metallic Cu. In experiments with Cu₂O 325 326 (DQ-187, 188) typical FIs are visible containing a liquid phase, a vapor shrinkage bubble and daughter crystals (CuCl; Fig. 3a). The peculiarity of the experiments with Cu (DQ-21, 327 22, 23, 36, 121, 145, 146, 154, 165, 183) is the observation of silicate melt inclusions (SMIs) 328 in addition to FIs. SMIs usually consisted of a vapor bubble, a liquid phase, sodium-bearing 329 330 silicate glass and one or several reddish to dark opaque minerals. A carefully inspection of 331 the capsule after Cu+NaCl runs indicated that there was not any silicate melt on the walls of the capsule. Thus, silicate melt was only formed in fractures of quartz and subsequent 332

333	healing of quartz produces the SMIs. Possible reason for this observation is lower surface
334	tension for the melt/quartz interface compared to melt/metal or fluid/melt interfaces.
335	Microthermometric determination demonstrates that the measured $NaCl_{eq.}$ values of
336	FIs of the Cu+NaCl system yield NaCleq. values similar to the initial NaCl contents,
337	whereas this value was lower than the initial one in the Cu ₂ O+NaCl system (i.e., 6.8 ± 0.1
338	wt% compared to the initial 8 wt% NaCl; Table 1). In the Cu+NaCl system we observe
339	that the homogenization temperature of FIs is 440-480°C, and the SMIs were not subject
340	to any visible change upon heating (up to 600°C) and freezing (down to -100°C). The
341	detailed inclusion petrography of the Cu+NaCl system is as follows.
342	[1] <u>SQ (DQ-21,22, 23)</u> : The size of most FIs varied from 20 to 30 µm. The relative
343	abundance of the SMIs is dependent on the initial NaCl content in the system. The SMIs
344	accounted for <5%, 10-15% and 30-40% of inclusions in 0.17, 1.49 and 4.28 m NaCl-
345	bearing runs, respectively. Note that percentage was estimated based on ca. 50 inclusions.
346	The shape of these inclusions changed from small isolated inclusion to large connected
347	channels with increasing salinity. In SQ experiment without $\mathrm{SiO}_{2(gel)}$ inclusions tend to be
348	less abundant and smaller than those in runs with $SiO_{2(gel)}$. Nevertheless, both FIs and SMIs
349	were always found in both quartz chips. The sizes of inclusions were up to 20 μm (FI) and
350	up to 30 μ m (SMI) in pref. Qz, whereas the i.s. Qz cylinder contained very few and tiny
351	inclusions, which made the interpretation of LA-ICP-MS data difficult.

352	[2] <u>SQ+RQ (DQ-145)</u> : Inclusions in pref. Qz were less abundant than in the SQ runs. The
353	size of FIs and SMIs was below 20 μm and 25 $\mu m,$ respectively. SMIs usually contained
354	more cuprite crystals than FIs. Cuprite crystals were especially enriched in necking down
355	channels in SMIs. In contrast, few tiny inclusions were preserved in i.s. Qz.
356	[4] CAQ (DQ-146): In pref. Qz, the number of preserved FIs was least in NaCl-bearing
357	systems, and these inclusions were smaller than 25 $\mu m.$ Isolated SMIs were smaller than
358	10 μ m and connected channels containing submicrometer-sized cuprite crystals were
359	common. Very few inclusions could be found in i.s. Qz.
360	[5] <u>RQ (DQ-183, 154, 165)</u> : Three runs with the same starting materials and cooling rate
361	but different run durations (2-14 d) were conducted. The number and size (15-30 μ m) of
362	inclusions in pref. Qz of DQ-183 is comparable to the long runs (DQ-154 and DQ-165) but
363	only few inclusions (<10 μ m) were found in the i.s. Qz of DQ-183, since no intermediate
364	quench was performed. Most FIs retrieved from these runs contained cuprite (Fig.3e),
365	while SMIs contained no discernible minerals and appeared to be rather homogeneous
366	(Fig.3f).

367 3.2.2 $Cu \pm CuCl \pm Cu_2O \pm HCl$ system

Only one type of FIs was observed in this system, consisting of a liquid, a vapor
bubble and/or a colorless to dark tetrahedral crystal, probably nantokite (CuCl; Fig.3b).
The suspected nantokite crystal tended to decompose with exposure to an incident Raman
beam. Berry et al. (2006) undertook experiments with similar starting materials (native Cu

372	and KCl solution) as in our study and used XANES spectroscopy to identify a similar
373	tetrahedral mineral as nantokite (CuCl). They noted that this mineral is not stable at room
374	temperature as well as under laser beam.

- [1] <u>SO (DQ-42, 43, 47)</u>: FIs were generally smaller than 25 µm, with an elongated oval to
- 376 irregular shape. In SQ experiment without SiO_{2(gel)} FIs were less abundant than in the runs
- in the presence of $SiO_{2(gel)}$ and were often smaller than 10 μ m in size.
- 378 [3] <u>VSQ+RQ (DQ-123)</u>: It is worth noting that more inclusions were observed in this
- 379 system when compared with the SQ and RQ runs (DQ-42, 43, 47, 102,169), however, the
- total amount is far less than that produced in NaCl-bearing systems. The size of these
- 381 inclusions was smaller than 20 μ m.
- 382 [5] <u>RO (DQ-102, 169)</u>: This run contained the smallest amount of inclusions, which were
- 383 generally smaller than 20 μm. Nantokite could only be observed in the largest inclusions.

384 The inclusions retrieved from i.s. Qz were too small to be measured with LA-ICP-MS.

385 **3.3** Chemical and spectroscopic analyses

A polished quartz sections of DQ-21 was studied by EMPA and Raman spectroscopy. Figure 4 shows a typical backscattered electron (BSE) image of a SMI. The EMPA total of glasses in SMIs varies from 71 wt% to 91wt% (details are given in Table A2). These low totals may originate from unmeasured H₂O but also from the small beam size needed for measurements within the inclusions. Na₂O and Cu₂O contents of the glasses show high

391	variability but are generally low while SiO_2 is the predominant component in all analyses.
392	Atomic ratios up to 0.13 for Na/Si and up to 0.10 for Cu/Si are estimated from the data in
393	Table A2. Chlorine content was always very low (≤ 0.35 wt%). Analyses of the tiny
394	minerals include contributions of the glasses. Nevertheless, it is evident that these are
395	copper-rich minerals.

Raman spectra were recorded on the opaque minerals trapped in FIs and SMIs from 396 397 both SQ (DQ-21) and RQ (DQ-183) runs in the \pm Cu \pm Cu₂O+NaCl systems. In addition to bands of the host quartz, the Raman spectra of this opaque mineral exhibit five complex 398 bands, centered at 146, 218, 308, 412 and 625 cm⁻¹ (Fig.5a), consistent with spectra of 399 natural cuprite (Database of Raman spectroscopy, X-ray diffraction and chemistry of 400 401 minerals (RRUFF), http://rruff.info/cuprite/ display=default/R050374). Cuprite (i.e. Cu₂O) can be found in both types of inclusions while its abundance highly depends on the cooling 402 403 rate, i.e., it becomes more abundant in SMIs with decreasing rate, and in FIs with increasing 404 rate (see discussions).

Fig. 5b shows the Raman spectra of the silicate melt phase from these two runs. The broad band system at 950-1100 cm⁻¹ is attributed to Si-O stretching vibrations. Band features resembles those of silicate glasses; the high wavenumbers indicate high degree of polymerization (Colomban and Schreiber, 2005). Raman spectra of SMIs recorded over a large wavenumber range of 50-4000 cm⁻¹ give clear evidence for a pronounced peak at 3500 cm⁻¹ (not shown here, but similar to the IR spectra in Fig.11a), indicating the presence

411 of H₂O in these SMIs. High water content is consistent with the low totals in the EMP412 analysis.

413 3.4 LA-ICP-MS data standardization

414	In this study we analyzed the content of five isotopes with masses of ²³ Na, ²⁸ Si, ⁶⁵ Cu,
415	⁸⁵ Rb and ¹³³ Cs in FIs with LA-ICP-MS (a typical example is shown in Fig. 2), and the
416	results are tabulated in Table 2. Using Rb and Cs, initially doped in solution as internal
417	standards to normalize LA-ICP-MS data, is widely accepted technique in synthetic FI
418	studies (e.g., Duc-Tin et al., 2007; Lerchbaumer and Audétat, 2012; Derrey et al., 2017).
419	When using Rb as internal standard, the obtained Na content is in good agreement with the
420	microthermometrically determined NaCleq.value in the Cu-free experiments with NaCl
421	solutions (DQ-99, 100, 101). On the other hand, the obtained Na content is slightly lower
422	than the NaCl _{eq} value in the Cu ₂ O+NaCl system, which may be due to formation of CuCl ₂ -
423	complexes which reduce the number of species in the fluid (Hack and Marvogenes, 2006).
424	But in the Cu+NaCl system, the evaluated Na content in FIs is not consistent with the
425	NaCleq. value. An explanation is that Rb strongly partitions into the melt phase, and the Rb
426	content of the fluid is decreased (Fig.6). Therefore, the NaCleq. value (as suggested by
427	Günther et al., 1998) is used for determination of element content in FIs of the Cu+NaCl
428	system whereas the initial Rb content is used to evaluate data of the Cu ₂ O+NaCl and Cu \pm
429	CuCl \pm Cu ₂ O \pm HCl systems, i.e. systems without SMIs.

430 3.5 Effect of run duration and intermediate quench on FIs

431	To understand the mechanism of FI formation, three experiments with the same
432	starting materials (Cu+1.5 m NaCl) but different run durations were performed using the
433	rapid quench technique (Table 1). As shown in Fig.1b, there are two stages during FI
434	synthesis: (i) prior to intermediate quench (DQ-183) and (ii) after intermediate quench (i.s.
435	Oz cylinders of DO-154 and DO-165).

436 Figure 7 depicts the variations of Cu, Rb and Cs as a function of run duration. It is evident that the short run (2 d; DQ-183) shows larger variation of element content than the 437 long runs (8 and 14 d for DQ-154 and DQ-165, respectively). This may indicate that the 438 439 reaction process is more complex than simple metallic Cu dissolution in fluid, and fluidmetal equilibration may need a long time. The Rb and Cs contents were not only much 440 lower than their initial values but also had been decreasing with run durations, whereas the 441 442 average Cu content increased with time. These trends imply that Rb and Cs is preferentially partitioned into the melt phase compared to Cu. Additionally, variations of Rb, Cs, and Cu 443 content in i.s. Qz were smaller than those in pref. Qz indicating that fluid composition 444 needs time for equilibration (a similar observation has been made by Derrey et al. (2017)). 445

446 **3.6 Effect of silica gel on FIs**

Figure 8 describes Cu variations relative to the Cs content of FIs in presence or absence
of silica gel for Na⁺ bearing and Na⁺ free systems. It is apparent that the average Cu content

in DQ-43 (Cu+1.5 m HCl) is almost 8 times higher than that of DQ-21 (Cu+1.5 m NaCl).
In the presence of silica gel, rather constant Cs and Cu concentrations are achieved for both
pref. Qz and i.s. Qz cylinders in both systems. In the absence of silica gel, the variation of
Cs content is several times larger than in runs with addition of silica gel. These observations
clearly demonstrate the positive role of silica gel in healing of fractures and closing of
inclusions in quartz.

455 3.7 Cu content in fluid inclusions and quenched fluids

In the experiments using Cu capsules filled with pure water (DQ-37A, B, C), the Cu content of FIs (DQ-37A) is an order of magnitude lower than that of quenched fluid extracted from DQ-37B, 37C (Table 2) although the run duration was much shorter for the latter two experiments. This points to difficulties in using quenched fluids for solubility determination. We suggest that this discrepancy can originate from contamination of the fluid by Cu particles or clusters released from the capsule.

Large difference in Cu content of FIs and quenched fluids were also observed for runs DQ-165 (1.5 m NaCl) and DQ-169 (1.5 m HCl). Here, the low Cu content in the quenched fluid is due to precipitation of Cu-bearing species. Due to difficulties to completely extract the precipitates from the capsule, we did not proceed with analyses on quenched fluids.

Fig.9 depicts that Cu content in the fluid is strongly enhanced by the availability of chloride. (i) A nearly 1:1 ratio of Cu/Cl in FIs was derived from the measured Cu content

and initial chloride content for experiments in which HCl was added. And this ratio can be
lowered by the addition of different monovalent Cu species. (ii) A Cu/Cl ratio of 1:9 was
found in the fluid of Cu+NaCl system.

471 **4. Discussion**

472 4.1 Attainment of equilibrium between fluids and metals

Slow quench rates (~ 0.5 - ~ 0.8 K s⁻¹) were favored by most researchers to avoid 473 474 inclusion decrepitation and to preserve more inclusions (Zhang et al., 2012; Derrey et al., 2017; Hack and Mavrogenes, 2006). In addition to slow quench, we applied various 475 cooling rates to investigate their effects on Cu content of fluids trapped in inclusions (Table 476 1 and Fig. 10). A key observation is that the appearance of cuprite in both FI and SMI 477 depends on the cooling rate (Fig. 10). In FIs, the presence of cuprite is mainly observed at 478 fast cooling rate (Fig.10 d, f), but cuprite could not be discerned at slow cooling rates 479 (Fig.10b). This may be due to the nucleation behavior of cuprite. During rapid cooling, 480 481 cuprite is likely formed by homogeneous nucleation within the fluid (Fig.10f) while at intermediate quench cuprite is preferentially deposited on the inclusion wall by 482 heterogeneous nucleation (Fig. 10d). In SMIs, the presence of cuprite is mainly observed at 483 484 slow-intermediate cooling rates (Fig. 10a, b), but not observed at fast cooling rates (Fig. 10e). This observation is consistent with findings of Lowenstern (1995) that the degree 485 of crystallization in melt inclusions positively correlates with cooling rate. The different 486

formation of cuprite in SMIs and FIs might be due to the higher viscosity of silicate meltcompared to the fluid phase.

The observation of quench phases (cuprite, nantokite) in the inclusions makes it clear 489 490 that the entire inclusions must be analyzed to draw conclusions about the Cu contents in fluids and melts. In the series of experiments with native and 1.5 m NaCl solution, the bulk 491 492 copper content in FIs remains constant independent of cooling rates as well as presence of 493 cuprite, averaging at ~0.16 m (Table 2). The standard error $\leq \pm 0.12$ m for the series is even lower than the typical standard error for FI analyses in a single quartz crystal (e.g., DQ-494 183, 43). The similarity of data of pref. and i.s. Qz imply that dissolution reaction of Cu is 495 496 much faster than healing of quartz. However, the variation of Cu content in the SQ run (0.5 497 K s⁻¹) is about three times larger than that in the RQ run (25 K s⁻¹) (Fig. 10), which indicates that slowly cooled samples may be more affected by entrapment of FIs in the late state of 498 499 cooling. Thus, rapid quench is a more effective technique to preserve information on the 500 fluid at high T-P conditions at least in NaCl bearing systems. On the other hand, a clear disadvantage of RQ is the much smaller number of suitable FIs. 501

A crucial assumption in FI studies is that nothing is added to or removed from the inclusion following trapping (Roedder, 1984). However, several studies demonstrate that elements in inclusions can be mobilized in relatively short time at elevated temperatures and pressures (Mavrogenes and Bodnar, 1994; Audétat and Günther, 1999; Li et al., 2009; Audétat et al., 2018). The H₂O/D₂O exchange experiment (DQ-124) and Raman

507	spectroscopy show that single and isometric inclusions are well protected against exchange
508	of fluid components, while large, irregularly shaped FIs remain open to the fluid and can
509	easily exchange components (Fig. 11a, b). The duration of DQ-124 was one hour, i.e. much
510	longer than the cooling time in most of our experiments. We therefore conclude that
511	carefully selected FIs still reflect the state of the high-temperature fluids. A critical point
512	in particular for studies on Cu solubility using the FI technique is that large amounts of Cu
513	in inclusions can be gained or lost through diffusion in quartz, if Cu sources or sinks are
514	available not too far away from the inclusion (e.g., Li et al., 2009; Lerchbaumer and
515	Audétat, 2012; Rottier et al., 2017). The insensitivity of our data to quench rate is a strong
516	argument that Cu diffusion in quartz did not significantly affect our experimental results.
517	Therefore, the measured Cu content in FIs corresponds to at least near-equilibrium
518	conditions of the system with respect to Cu solubility.

519 4.2 Cu solubility and Cu speciation in the fluid

520 The major focus of our study is on the interaction of precious copper with aqueous 521 fluids. If the fluid consists of pure water, copper can be dissolved via the reaction

522
$$Cu_{(s)} + H_2O_{(fl)} = CuOH_{(fl)} + \frac{1}{2}H_{2(fl)}$$
 (1)

where subscripts (fl) and (s) refer to the fluid phase and to the solid phases, respectively.
As pointed out by Zajacz et al. (2011) charged species are likely to be rather unstable in
hydrothermal fluids at high temperature due to the low density and low dielectric constant

of the water. Thus, the dissolved copper species is probably $CuOH(H_2O)_x$, where x signifies the number of H₂O molecules bond in a complex. The weak acidic behavior of the quenched solution (pH=4) is consistent with such interpretation. Most likely, dissociation of the copper complex according to the reaction

530
$$[CuOH(H_2O)_x]_{(l)} = [Cu(OH)_2(H_2O)_{x-1}]_{(l)} + H^+_{(l)}$$
(2)

531 occurs in the liquid at low temperature, as signified here by the subscript (1). The average Cu content of FIs of 0.004 ± 0.002 m measured in run DQ-37A can be interpreted as Cu 532 533 solubility in pure water at 800°C, 200 MPa. The value is roughly consistent with the results of Zajacz et al. (2011) who used gold capsules alloyed with 3% Cu to adjust a copper 534 535 activity of 0.01 and found the Cu content in the fluid to be <0.0001 m at 1050°C, 150 MPa. 536 However, direct comparison of the data is not possible because of different P, T conditions. Furthermore, hydrogen fugacity (f_{H2}) was much higher in their experiments (initial $f_{H2} \approx 19$ 537 bar) than in our experiments ($f_{H2} \approx 0.8$ bar, Berndt et al. 2001). According to Eqn. (1) an 538 539 inverse square root dependence of Cu solubility on hydrogen fugacity is expected.

540 Copper solubility in hydrous fluids is strongly enhanced by complexation with 541 chlorine, e.g. by a factor of 40 when the solution contains 1.5 mol NaCl per kg. Concerning 542 the supply of chlorine, we need to distinguish two systems: (i) Chlorine is charge 543 compensated by alkali and (ii) alkalis are absent and chlorine is added as HCl or CuCl. 544 Both scenarios are discussed in following.

545 4.2.1. Copper solubility in NaCl-bearing solutions

546 The first step of copper dissolution is the same as in Eqn. (1). Subsequently, OH⁻ is 547 substituted by Cl⁻ via the exchange reaction

548
$$CuOH_{(fl)} + NaCl_{(fl)} = CuCl_{(fl)} + NaOH_{(fl)}$$
(3)

Driving force is the much higher stability of copper chlorine complexes compared to copper-hydroxide complexes. The high Cl/Cu ratio in the fluid observed in our study and in previous studies (9:1 at a_{Cu} of 1, this study; 6:1 at a_{Cu} of 1, Berry et al. (2006); 200:1 at a_{Cu} of 0.01, Zajacz et al. (2011)) supports formation of copper complexes with more than 1 Cl⁻ as ligand. Quantum chemical calculations of Zajacz et al (2011) also demonstrated the high stability of species like NaCuCl₂ in the fluid. This can be described by the reaction

555
$$CuCl_{(fl)} + NaCl_{(fl)} = NaCuCl_{2(fl)}$$
(4)

556 NaOH can react with dissolved silica according to Anderson and Burham (1967) via

557
$$NaOH_{(fl)} + H_4SiO_{4(fl)} = NaH_3SiO_{4(fl)} + H_2O_{(fl)}$$
 (5)

558 The overall reaction can be described by (Zajacz et al (2011)

559
$$Cu_{(s)} + SiO_{2(s)} + 2 NaCl_{(fl)} + 2 H_2O(fl) = NaCuCl_{2(fl)} + NaH_3SiO_{4(fl)} + \frac{1}{2} H_{2(fl)}$$
 (6)

In our experiments the Cu activity was much higher than in the study of Zajacz et al.
(2011) and, hence, the concentration of dissolved Cu as well as dissolved silica was much
higher. The higher degree of reaction explains the formation of SMIs in our study. The 30

563	co-appearance of FIs and SMIs in quartz implies that the system is at least close to liquid
564	immiscibility. However, based on our experiments it cannot be approved that silica-rich
565	melt and H ₂ O-rich fluid represent equilibrium conditions of the system. The fact that
566	silicate melts are found only within (former) cracks and that the composition of SMIs
567	within a single quartz chip show large variability suggest that reaction kinetics and
568	transport within fractures play an important role. Furthermore, one needs to be aware that
569	inclusions may have been trapped at different stages during the experiment.
570	4.2.1. Copper mobility in alkali-free Cl-bearing systems
571	If HCl is added to metallic copper, high amount of hydrogen is produced insight the
572	capsule through the reaction
573	$Cu_{(s)} + HCl_{(fl)} = CuCl_{(fl)} + H_{2(fl)}$ (7)
574	but permeation of hydrogen through capsule is fast enough to equilibrate hydrogen fugacity
575	in the capsule interior with the pressure medium within an hour (Reiter et al. 1993). Thus,
576	the state recorded in the FIs corresponds to a hydrogen fugacity of ~ 0.8 bar. The 1:1 ratio
577	of Cl/Cu measured in experiments with various initial concentrations of HCl implies that
578	reaction (7) completely proceeds to the right side. However, the post-experimental
579	solutions are moderate to very acidic, suggesting that some unreacted HCl is still present.
580	It is noteworthy that the low acidity of aqueous solutions at room temperature is supported
581	by high density of the solvent and dissociation of HCl. In high temperature fluid, HCl is

582	most likely present as a neutral molecule (Zajacz et al. 2011). The high acidity of the
583	solution after the experiment with Cu + CuCl (pH=1, DQ-47) indicates some back reaction
584	of (7) with formation of HCl and metallic copper. At our run conditions excess HCl is most
585	likely bonded to a copper complex via

586
$$CuCl_{(fl)} + HCl_{(fl)} = HCuCl_{2(fl)}$$
(8)

Quantum chemical calculations of Zajacz et al. (2011) confirm the stability of HCuCl₂
 complexes in high temperature fluids.

A key question is whether the whole amount of CuCl produced by reaction (7) can be 589 re-dissolved in the fluid or not? Massive nantokite was observed in the quenched fluid even 590 at the lowest HCl content (0.5 m HCl; DQ-123), and the copper content detected in FIs is 591 much higher than that in any experiments with NaCl. On the other hand, the stability of 592 593 NaCuCl₂ complexes in aqueous fluids is much higher than for HCuCl₂ complexes (Zajacz et al. 2011). Thus, it is very likely that the solubility of CuCl has been exceeded in the 594 experiments with HCl, and nantokite which was observed in FIs is a stable phase at the 595 experimental conditions. The analyses of FIs do not represent solubility of copper, but are 596 597 highly affected by contributions of the coexisting mineral nantokite.

598 **5. Implications**

599 Among the Cu-bearing deposits, porphyry copper deposits are of great importance as 600 they supply 75% of the world's copper (Sillitoe, 2010). These deposits are spatially linked

601	to magmatic systems, and exsolution of metal-bearing fluids from silicate melt without
602	sulfide saturation is believed to be efficient to form large porphyry Cu deposits (e.g., Cline
603	and Bodnar, 1991; Hedenquist and Richards, 1998; Audétat and Simon, 2012). Furthermore,
604	coexistence of fluids and silicate melts (co-trapping of FIs and SMIs) can play a vital role
605	in Cu mobility. For instance, fluid inclusions containing weight percent of Cu (~10 wt%)
606	have been found to coexist with SMI in Bajo de la Alumbrera porphyry Cu-Au deposit
607	(Harris et al., 2003). Likewise, coeval SMIs and FIs have also been documented elsewhere,
608	such as in the Río Blanco Cu-Mo deposit (Davidson and Kamenetsky, 2007), Elatsite
609	porphyry Cu-Au deposit (Stefanova et al., 2014), Cerro de Pasco porphyry-type deposit
610	(Rottier et al., 2016), and the Grasberg porphyry Cu-Au deposit (Mernagh and Mavrogenes,
611	2018). However, our experiments have demonstrated that silicate-rich liquids can be also
612	formed in initially water-dominated quartz bearing hydrothermal systems. It seems that
613	melt generation requires basic solutions and formation of hydroxide- and Si-bearing
614	complexes. This finding may have important implications for the transport of fluids, liquids
615	and metals in the magmatic-hydrothermal systems, although additional studies are required
616	to better understand the nature of such thermosilicate liquids, in particular, the kinetics and
617	mechanism(s) of their formation.

The stability of cuprite (Cu_2O), nantokite (CuCl) and occurrence of metallic Cu in some of our experiments indicate that these Cu species can play a significant role in the formation of Cu deposits in the systems with low S activity. One of the unique examples

621	is the ore deposits of the Keweenaw Peninsula, where native copper accounts for more than
622	99% of the district's production (ca. 5 billion kg of refined copper) in the period of 1845-
623	1968 (Weege and Pollack, 1971). Bornhorst and Mathur (2017) proposed that the sulfur-
624	poor Keweenaw basalt was enriched in Cu (e.g., native copper) and underwent later burial
625	metamorphism; the progressive batches of metamorphogenic ore-forming fluids with
626	similar copper isotopic compositions of the source rock transported Cu as Cu^+ (e.g. $CuCl_2^-$).
627	The final reductive precipitation of native copper from metamorphogenic ore-forming
628	fluids was facilitated by mixing with meteoric waters. The data obtained in this study
629	indicate that the precipitation of native Cu may happen also at high temperature and high
630	pressure. The precipitation of native Cu from Cu ⁺ -bearing hydrothermal fluids may occur
631	when the fluid is less acidic (i.e., H^+ is absent) and the process can be initiated under
632	reduced conditions.

633 Acknowledgments

This research was supported by the German Academic Exchange Service (DAAD-57076462) and Graduate School GeoFluxes. We thank Moritz Albrecht, Martin Oeser-Rabe, Ulrich Kroll and Julian Feige for their technical supports. We would also like to thank Hongwu Xu and Kyle Ashley for editorial handling as well as two reviewers (Adam Simon and Ryan Mathur) for their constructive and thorough comments on this manuscript.

639 **References:**

667

- Albrecht, M., Derrey, I.T., Horn, I., Schuth, S. and Weyer, S. (2014). Quantification of trace element contents in frozen fluid inclusions by UV-fs-LA-ICP-MS analysis. Journal of Analytical Atomic Spectrometry, 29(6): 1034-1041.
 DOI: 10.1039/c4ja00015c.
- Anderson, G. and Burham, C. (1967). Reactions of quartz and corundum with aqueous chloride and hydroxide solutions
 at high temperatures and pressures. Am. J. Sci.;(United States), 265(1): 12-27. DOI: 10.2475/ajs.265.1.12.
- Archibald, S., Migdisov, A.A. and Williams-Jones, A. (2001). The stability of Au-chloride complexes in water vapor
 at elevated temperatures and pressures. Geochimica et cosmochimica acta, 65(23): 4413-4423. DOI:
 10.1016/S0016-7037(01)00730-X.
- Archibald, S., Migdisov, A.A. and Williams-Jones, A. (2002). An experimental study of the stability of copper chloride
 complexes in water vapor at elevated temperatures and pressures. Geochimica et cosmochimica acta, 66(9): 1611 1619. DOI: 10.1016/S0016-7037(01)00867-5.
- Audétat, A. and Günther, D. (1999). Mobility and H₂O loss from fluid inclusions in natural quartz crystals. Contributions to Mineralogy and Petrology, 137(1-2): 1-14. DOI: 10.1007/s004100050578.
- Audétat A, Simon AC (2012) Magmatic Controls on Porphyry Copper Genesis. SEG Spec Publ 16:553–572
- Audétat, A., Zhang, L. and Ni, H. (2018). Copper and Li diffusion in plagioclase, pyroxenes, olivine and apatite, and
 consequences for the composition of melt inclusions. Geochimica et Cosmochimica Acta DOI: 10.1016/j.gca.2018.09.016.
- Bakker, R.J. (2003). Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk
 fluid properties. Chemical Geology, 194(1): 3-23. DOI: 10.1016/S0009-2541(02)00268-1.
- Berndt, J., Holtz, F. and Koepke, J. (2001). Experimental constraints on storage conditions in the chemically zoned
 phonolitic magma chamber of the Laacher See volcano. Contributions to Mineralogy and Petrology, 140(4): 469 486. DOI: 10.1007/Pl00007674.
- Berry, A.J., Hack, A.C., Mavrogenes, J.A., Newville, M. and Sutton, S.R. (2006). AXANES study of Cu speciation in high-temperature brines using synthetic fluid inclusions. American Mineralogist, 91(11-12): 1773-1782. DOI: 10.2138/am.2006.1940.
- Bodnar, R., Lecumberi-Sanches, P., Moncada, D. and Steele-MacInnis, M. (2014). Fluid inclusions in hydrothermal ore deposits, Treatise on Geochemistry 2nd Edition, pp. 119-142.
 - Bodnar, R. and Sterner, S. (1987). Synthetic Fluid Inclusions, in"Hydrothermal Experimental Techniques", Barnes, HL, Ulmer, GC, cds. Wiley and Sons, New York.
- Bornhorst, T.J. and Mathur, R. (2017). Copper Isotope Constraints on the Genesis of the Keweenaw Peninsula Native
 Copper District, Michigan, USA. Minerals, 7(10): 185. DOI: 10.3390/min7100185.
- Brugger, J., Etschmann, B., Liu, W., Testemale, D., Hazemann, J.L., Emerich, H., van Beek, W. and Proux, O. (2007).
 An XAS study of the structure and thermodynamics of Cu (I) chloride complexes in brines up to high temperature (400°C, 600 bar). Geochimica et cosmochimica acta, 71(20): 4920-4941. DOI: 10.1016/j.gca.2007.08.003.
- Brugger, J., McPhail, D., Black, J. and Spiccia, L. (2001). Complexation of metal ions in brines: application of electronic
 spectroscopy in the study of the Cu (II)-LiCl-H₂O system between 25 and 90°C. Geochimica et Cosmochimica Acta,
 65(16): 2691-2708. DOI: 10.1016/S0016-7037(01)00614-7.
- 677 Butler, B.S. and Burbank, W.S. (1929). The copper deposits of Michigan. US Government Printing Office.
- Candela, P.A., Holland, H.D. (1984). The partitioning of copper and molybdenum between silicate melts and aqueous
 fluids. Geochim Cosmochim Acta 48:373–380. doi: 10.1016/0016-7037(84)90257-6
- Cline, J.S., Bodnar, R.J. (1991). Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? J. Geophys. Res. 96, 8113–8126. https://doi.org/10.1029/91JB00053
- Colomban, P. and Schreiber, D.H. (2005). Rman signature modification induced by copper nanoparticles in silicate
 glass. Journal of Raman Spectroscopy, 36: 884-890. DOI: 10.1002/jrs.1379
- 684 Crerar, D.A. and Barnes, H. (1976). Ore solution chemistry; V, Solubilities of chalcopyrite and chalcocite assemblages
 685 in hydrothermal solution at 200 degrees to 350 degrees C. Economic Geology, 71(4): 772-794. DOI: 10.2113/gsecongeo.71.4.772.
- Davidson, P., Kamenetsky, V.S., 2007. Primary aqueous fluids in rhyolitic magmas: Melt inclusion evidence for pre and post-trapping exsolution. Chem. Geol. 237, 372–383. https://doi.org/10.1016/j.chemgeo.2006.07.009
- Derrey, I.T. Albrecht, M., Dupliy, E., Botcharnikov, R. E., Horn, I., Junge, M., Weyer, S. and Holtz, F. (2017).
 Experimental tests on achieving equilibrium in synthetic fluid inclusions: Results for scheelite, molybdenite, and gold solubility at 800 C and 200 MPa. American Mineralogist, 102(2): 275-283. DOI: 10.2138/am-2017-5869.
- Duc-Tin, Q., Audétat, A. and Keppler, H. (2007). Solubility of tin in (Cl, F)-bearing aqueous fluids at 700 degrees C,
 140 MPa: A LA-ICP-MS study on synthetic fluid inclusions. Geochimica Et Cosmochimica Acta, 71(13): 33233335. DOI: 10.1016/j.gca.2007.04.022.
- Fulton, J.L., Hoffmann, M.M. and Darab, J.G. (2000). An X-ray absorption fine structure study of copper (I) chloride
 coordination structure in water up to 325°C. Chemical Physics Letters, 330(3): 300-308. DOI: 10.1016/S0009 2614(00)01110-6.

698 Guillong, M. and Heinrich, C.A. (2007). Sensitivity enhancement in laser ablation ICP-MS using small amounts of 699 hydrogen in the carrier gas. Journal of Analytical Atomic Spectrometry, 22(12): 1488-1494. DOI: 700 10.1039/b709489b. 701 Guillong, M., Meier, D.L., Allan, M.M., Heinrich, C.A. and Yardley, B.W. (2008). Appendix A6: SILLS: A MATLAB-702 based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. 703 Mineralogical Association of Canada Short Course Series, 40: 328-333. 704 Günther, D., Audétat, A., Frischknecht, R. and Heinrich, C.A. (1998). Quantitative analysis of major, minor and trace 705 elements in fluid inclusions using laser ablation-inductively coupled plasmamass spectrometry. Journal of 706 Analytical Atomic Spectrometry, 13(4): 263-270. DOI: 10.1039/A707372K. 707 Hack, A.C.and Mavrogenes, J.A. (2006). A synthetic fluid inclusion study of copper solubility in hydrothermal brines 708 from 525 to 725°C and 0.3 to 1.7 GPa. Geochimica et cosmochimica acta, 70(15): 3970-3985. DOI: 709 10.1016/j.gca.2006.04.035. 710 Harris, A.C., Kamenetsky, V.S., White, N.C., et al. (2003) Melt Inclusions in Veins: Linking Magmas and Porphyry Cu 711 Deposits. Science (80-) 302:2109-2111. doi: 10.1126/science.1089927 712 Hedenquist, J. and Richards, J. (1998). The influence of geochemical techniques on the development of genetic models 713 for porphyry copper deposits. Reviews in Economic Geology, 10(10): 235-256. DOI: 10.5382/Rev.10.10. 714 Holzheid, A. and Lodders, K. (2001). Solubility of copper in silicate melts as function of oxygen and sulfur fugacities, 715 temperature, and silicate composition. Geochimica et cosmochimica acta, 65(12): 1933-1951. DOI: 10.1016/S0016-716 7037(01)00545-2. 717 Ikehata, K., Chida, K., Tsunogae, T. and Bornhorst, T.J. (2016). Hydrothermal Native copper in ocean island alkali 718 basalt from the Mineoka Belt, Boso Peninsula, Central Japan. Economic Geology, 111(3): 783-794. DOI: 719 10.2113/econgeo.111.3.783. 720 Ikehata, K. and Hirata, T. (2012). Copper isotope characteristics of copper-rich minerals from the Horoman peridotite 721 complex, Hokkaido, northern Japan. Economic Geology, 107(7): 1489-1497. DOI: 10.2113/econgeo.107.7.1489. 722 Jochum, K.P. Nohl, L., Herwig, K., Lammel, E., Toll, B. and Hofmann, A. W. (2005). GeoReM: a new geochemical 723 database for reference materials and isotopic standards. Geostandards and Geoanalytical Research, 29(3): 333-338. 724 DOI: 10.1111/j.1751-908X.2005.tb00904.x. 725 Lerchbaumer, L. and Audétat, A. (2012). High Cu concentrations in vapor-type fluid inclusions: An artifact? 726 Geochimica Et Cosmochimica Acta, 88: 255-274. DOI: 10.1016/j.gca.2012.04.033. 727 Li, Y. and Audétat, A. (2009). A method to synthesize large fluid inclusions in quartz at controlled times and under 728 unfavorable growth conditions. American Mineralogist, 94(2-3): 367-371. DOI: 10.2138/am.2009.3054. 729 Li, Y., Audétat, A., Lerchbaumer, L. and Xiong, X. (2009). Rapid Na, Cu exchange between synthetic fluid inclusions 730 and external aqueous solutions: evidence from LA-ICP-MS analysis. Geofluids, 9(4): 321-329. DOI: 731 10.1111/j.1468-8123.2009.00255.x. 732 Liu, W., Brugger, J., Etschmann, B., Testemale, D. and Hazemann, J.-L. (2008). The solubility of nantokite (CuCl (s)) 733 and Cu speciation in low-density fluids near the critical isochore: An in-situ XAS study. Geochimica et 734 Cosmochimica Acta, 72(16): 4094-4106. DOI: 10.1016/j.gca.2008.05.056. 735 Liu, W., Brugger, J., McPhail, D. and Spiccia, L. (2002). A spectrophotometric study of aqueous copper (I)-chloride 736 complexes in LiCl solutions between 100 C and 250°C. Geochimica et Cosmochimica Acta, 66(20): 3615-3633. 737 DOI: 10.1016/S0016-7037(02)00942-0. 738 Liu, W. and McPhail, D. (2005). Thermodynamic properties of copper chloride complexes and copper transport in 739 magmatic-hydrothermal solutions. Chemical Geology, 221(1): 21-39. DOI: 10.1016/j.chemgeo.2005.04.00. 740 Liu, W., McPhail, D. and Brugger, J. (2001). An experimental study of copper (I)-chloride and copper (I)-acetate 741 complexing in hydrothermal solutions between 50 C and 250°C and vapor-saturated pressure. Geochimica et 742 Cosmochimica Acta, 65(17): 2937-2948. DOI: 10.1016/S0016-7037(01)00631-7. 743 Lowenstern, J.B. (1995). Applications of silicate-melt inclusions to the study of magmatic volatiles. Magmas, Fluids 744 Ore Depos. Mineral. Assoc. Canada Short Course 23, 71-99. 745 Matthews, W., Linnen, R.L. and Guo, Q. (2003). A filler-rod technique for controlling redox conditions in cold-seal 746 pressure vessels. American Mineralogist, 88(4): 701-707. DOI: 10.2138/am-2003-0424. 747 Mavrogenes, J. and Bodnar, R. (1994). Hydrogen movement into and out of fluid inclusions in quartz: experimental 748 evidence and geologic implications. Geochimica et Cosmochimica Acta, 58(1): 141-148. DOI: 10.1016/0016-749 7037(94)90452-9. 750 Mernagh, T.P. and Mavrogenes, J. (2018). Significance of high temperature fluids and melts in the Grasberg porphyry 751 copper-gold deposit. Chemical Geology. DOI: 10.1016/j.chemgeo.2018.09.040. 752 Mountain, B. and Seward, T. (1999). The hydrosulphide/sulphide complexes of copper (I): Experimental determination 753 of stoichiometry and stability at 22°C and reassessment of high temperature data. Geochimica et Cosmochimica 754 Acta, 63(1): 11-29. DOI: 10.1016/S0016-7037(98)00288-9. 755 Mountain, B. and Seward, T. (2003). Hydrosulfide/sulfide complexes of copper (I): experimental confirmation of the 756 stoichiometry and stability of $Cu (HS)_2^-$ to elevated temperatures. Geochimica et cosmochimica acta, 67(16): 3005-757 3014. DOI: 10.1016/S0016-7037(03)00303-X. 758 Nagle, F., Fink, L., Boström, K. and Stipp, J. (1973). Copper in pillow basalts from La Désirade, Lesser Antilles island 759 arc. Earth and Planetary Science Letters, 19(2): 193-197. DOI: 10.1016/0012-821X(73)90114-3.

- Nash, J.T. (1976). Fluid-inclusion petrology--data from porphyry copper deposits and applications to exploration: a
 summary of new and published descriptions of fluid inclusions from 36 porphyry copper deposits and discussion of
 possible applications to exploration for copper deposits. US Govt. Print. Off.
- Neumann, J., Zhong, T. and Chang, Y. (1984). The Cu–O (Copper-Oxygen) system. Journal of Phase Equilibria, 5(2):
 136-140. DOI: 10.1007/BF02868948.
- Pinto, V.M., Hartmann, L.A. and Wildner, W. (2011). Epigenetic hydrothermal origin of native copper and supergene
 enrichment in the Vista Alegre district, Paraná basaltic province, southernmost Brazil. International Geology
 Review, 53(10): 1163-1179. DOI: 10.1080/00206810903464547.
- Pitzer, K.S. and Sterner, S.M. (1994). Equations of state valid continuously from zero to extreme pressures for H₂O and CO₂. The Journal of chemical physics, 101(4): 3111-3116. DOI: 10.1063/1.467624.
- Pouchou, J. L. and Pichoir, F. (1991). Quantitative analysis of homogeneous or stratified microvolumes applying the
 model "PAP", Electron probe quantitation. Springer, pp. 31-75.
- Reiter, F., Forcey, K. and Gervasini, G. (1993). A compilation of tritium-material interaction parameters in fusion
 reactor materials. Commission of the European Communities.
- Rempel, K.U., Liebscher, A., Meixner, A., Romer, R.L. and Heinrich, W. (2012). An experimental study of the elemental and isotopic fractionation of copper between aqueous vapour and liquid to 450° C and 400 bar in the CuCl–NaCl–H₂O and CuCl–NaHS–NaCl–H₂O systems. Geochimica et Cosmochimica Acta, 94: 199-216. DOI: 10.1016/j.gca.2012.06.028.
- Ripley, E.M. and Brophy, J.G. (1995). Solubility of copper in a sulfur-free mafic melt. Geochimica et cosmochimica acta, 59(23): 5027-5030. DOI: 10.1016/0016-7037(95)00387-8.
- 780 Roedder, E. (1984). Fluid Inclusions. Fluid Inclusions.
- Rottier, B., Kouzmanov, K., Bouvier, A.S., Baumgartner, L.P., Wälle, M., Rezeau, H., Bendezú, R., Fontboté, L. (2016).
 Heterogeneous melt and hypersaline liquid inclusions in shallow porphyry type mineralization as markers of the
 magmatic-hydrothermal transition (Cerro de Pasco district, Peru). Chem. Geol. 447, 93–116.
 https://doi.org/10.1016/j.chemgeo.2016.10.032
- Rottier, B. Rezeau, H., Casanova, V., Kouzmanov, K., Moritz, R., Schlöglova, K., Wälle, M. and Fontboté, L. (2017).
 Trace element diffusion and incorporation in quartz during heating experiments. Contributions to Mineralogy and Petrology, 172(4): 23. DOI: 10.1007/s00410-017-1350-4.
- Schmidt, C., Watenphul, A., Jahn, S., Schäpan, I., Scholten, L., Newville, M, G. and Lanzirotti, A. (2018). Copper
 complexation and solubility in high-temperature hydrothermal fluids: A combined study by Raman, X-ray
 fluorescence, and X-ray absorption spectroscopies and ab initio molecular dynamics simulations. Chemical Geology,
 494: 69-79. DOI: 10.1016/j.chemgeo.2018.07.018.
- Seward, T. and Barnes, H. (1997). Metal transport by hydrothermal ore fluids. Geochemistry of hydrothermal ore deposits: 435-486.
- Sherman, D.M. (2007). Complexation of Cu+ in hydrothermal NaCl brines: ab initio molecular dynamics and energetics.
 Geochimica et Cosmochimica Acta, 71(3): 714-722. DOI: 10.1016/j.gca.2006.09.015.
- Sillitoe, R.H. (2010) Porphyry copper systems. Economic Geology 105, 3-41.
- Stefanova, E., Driesner, T., Zajacz, Z., Heinrich, C.A., Petrov, P., Vasilev, Z. (2014). Melt and fluid inclusions in hydrothermal veins: The magmatic to hydrothermal evolution of the elatsite porphyry Cu-Au deposit, Bulgaria. Econ. Geol. 109, 1359–1381. https://doi.org/10.2113/econgeo.109.5.1359
- Stoiber, R.E. and Davidson, E.S. (1959). Amygdule mineral zoning in the Portage Lake lava series, Michigan copper
 district; Part II. Economic Geology, 54(8): 1444-1460. DOI: 10.2113/gsecongeo.54.7.1250.

802 Swamy, V., Saxena, S.K., Sundman, B. and Zhang, J. (1994). A thermodynamic assessment of silica phase diagram.

- Journal of Geophysical research-all series, 99: 11,787-11,787. DOI: 10.1029/93JB02968.
- Thompson, R.A. and Helz, G.R. (1994). Copper speciation in sulfidic solutions at low sulfur activity: Further evidence
 for cluster complexes? Geochimica et Cosmochimica Acta, 58(14): 2971-2983. DOI: 10.1016/0016 7037(94)90172-4.
- 807 Var'yash, L. (1992). Cu (I) complexing in NaCl solutions at 300 and 350 C. Geochem. Int, 29(3): 84-92.
- Wang, C.Y.,Zhou, M.F., Qi, L., Hou, S., Gao, H., Zhang Z., Malpas J., 2006. The Zhaotong native copper deposit associated with the Permian Emeishan flood basalts, Yunnan, Southwest China. International Geology Review, 48(8): 742-753. DOI: 10.2747/0020-6814.48.8.742.
- Weege, R. and Pollack, J. (1971). Recent developments in the native-copper district of Michigan, Society of Economic
 Geologists Guidebook for Field Conference, Michigan Copper District, pp. 18-43.
- Williams-Jones, A.E., Migdisov, A.A., Archibald, S.M. and Xiao, Z. (2002). Vapor-transport of ore metals. Water–
 Rock Interaction, Ore Deposits, and Environmental Geochemistry: A Tribute to David A. Crear: 279-306.
- Xiao, Z., Gammons, C. and Williams-Jones, A. (1998). Experimental study of copper (I) chloride complexing in hydrothermal solutions at 40 to 300 C and saturated water vapor pressure. Geochimica et cosmochimica acta, 62(17): 2949-2964. DOI: 10.1016/S0016-7037(98)00228-2.
- Zajacz, Z., Candela, P.A., Piccoli, P.M., Wälle, M. and Sanchez-Valle, C. (2012). Gold and copper in volatile saturated
 mafic to intermediate magmas: Solubilities, partitioning, and implications for ore deposit formation. Geochim.
 Cosmochim. Acta 91, 140–159. https://doi.org/10.1016/j.gca.2012.05.033

- Zajacz, Z., Seo, J.H., Candela, P.A., Piccoli, P.M. and Tossell, J.A. (2011). The solubility of copper in high-temperature
 magmatic vapors: a quest for the significance of various chloride and sulfide complexes. Geochimica et
 cosmochimica acta, 75(10): 2811-2827. DOI: 10.1016/j.gca.2011.02.029.
- Zhang, D., Zhou, T., Yuan, F., Fiorentini, M.L., Said, N., Lu, Y. and Pirajno, F. (2013). Geochemical and isotopic
 constraints on the genesis of the Jueluotage native copper mineralized basalt, Eastern Tianshan, Northwest China.
 Journal of Asian Earth Sciences, 73: 317-333. DOI: 10.1016/j.jseaes.2013.04.043.
- Zhang, L., Audétat, A. and Dolejš, D. (2012). Solubility of molybdenite (MoS2) in aqueous fluids at 600–800°C,
 200MPa: A synthetic fluid inclusion study. Geochimica et cosmochimica acta, 77: 175-185. DOI:
 10.1016/j.gca.2011.11.015.
- Zhang, Y., Xu, Z. and Behrens, H. (2000). Hydrous species geospeedometer in rhyolite: improved calibration and
 application. Geochimica et Cosmochimica Acta, 64(19): 3347-3355. DOI: 10.1016/S0016-7037(00)00424-5.
- Zhang, Z., Mao, J., Wang, F. and Pirajno, F. (2006). Native gold and native copper grains enclosed by olivine
 phenocrysts in a picrite lava of the Emeishan large igneous province, SW China. American Mineralogist, 91(7):
 1178-1183. DOI: 10.2138/am.2006.1888.
- Zhu, B., Hu, Y., Zhang, Z., Chang, X. (2003). Discovery of the copper deposits with features of the Keweenawan type
 in the border area of Yunnan and Guizhou provinces. Science in China Series D: Earth Sciences, 46(1): 60-72.

837

838 List of table captions

- 839 Table 1 Experimental design of fluid inclusion synthesis
- Table 2 The composition of the fluid phase in the conducted experiments
- 841 Table A1 Initial loading of all runs
- Table A2 EMP analyses of quartz and SMIs in run DQ-21 (in wt%)
- 843 List of figure captions
- 844 Figure 1 Schematic drawing of the experiment conducted in RH/RQ Ar-CSPV. (a) The

design of capsule, which is modified after Derrey et al. (2017); (b) Thermal history of the

experiment. The cooling rates were calculated based on the total time needed for the

temperature dropping from 800°C to 300°C at the external thermocouple.

- 848 Fig.2 Typical LA-ICP-MS signals of small (a) and large (b) frozen FIs using a UV-fs-laser,
- heating-freezing cell and *Element XR* ICP-MS. (a) Small FI has been ablated by spot
- ablation pattern. DQ21: Cu+SiO_{2(gel)}+1.49 m NaClaq. (b) Large FI has been ablated by
- spiral ablation pattern. DQ36: Cu+1.49 m NaClaq.

Figure 3 Photomicrographs of typical quartz-hosted inclusions at 25°C. (a) Nantokite was
observed in FIs of the run with cuprite (Cu₂O) and NaCl solution (DQ-187); (b) Potential
nantokite was precipitated in FIs of the run with native Cu and HCl solution (DQ-43). (c,
d) Photos are taken from different area of the pref. Qz of DQ-21 in which FI (marked in
(c)) coexists with SMI (marked in (d)). Discernible cuprite crystals are observed in SMI in

quench was adopted. FI often contains cuprite aggregates.

859

860 Figure 4 A BSE image of a SMI in pref. Qz of DQ-21. The rounded bright dots were

- identified as cuprite using Raman spectroscopy (see Fig. 5a).
- 862 Figure 5 Raman spectra of different phases in inclusions after SQ (DQ-21) and RQ (DQ-
- 183) runs. (a) Raman analyses of crystals trapped in FIs (DQ-183) and SMIs (DQ-21) in
- 864 comparison with natural cuprite and quartz host. The vertical dashed lines are assigned to
- typical cuprite Raman bands (for more details in text). (b) Raman analyses of silicate melt
- ⁸⁶⁶ phase in comparison to quartz and FI. Broad bands at 550-600 cm⁻¹ and 1000-1100 cm⁻¹
- 867 may be assigned to amorphous silica (see text). SQ and RQ refer to runs and, respectively.
- ⁸⁶⁸ Figure 6 Examples of Na contents in FIs based on the internal standard Rb (400 μg g⁻¹).
- 869 The gray bar represents Na_{eq.} which is evaluated Na content from microthermometry
- 870 measurement; Na_{initial} denotes the initial Na content estimated from the starting solution.

Figure 7 Average Cu, Rb and Cs concentrations of FIs (error bar is given by the standard
deviation of the data). All runs were conducted with same material and same condition
using rapid quench technique. Intermediate quench was performed after 0 (DQ-183), 2
(DQ-154) and 4 (DQ-165) d.

Figure 8 Cu content versus Cs content in Na⁺ bearing and Na⁺ free runs using SQ technique.

despite of FI. (e, f) Both FI and SMI occur in the pref. Qz of DQ-183, no intermediate

876	Figure 9 Cu concentrations as a function of initial chloride concentration in
877	Cu±Cu2O±CuCl±NaCl±HCl systems. All runs were performed in Cu capsules with cooling
878	rate of 0.5 K s ⁻¹ , except for the run with Cu ₂ O+NaCl (Au capsule). Red symbols represent
879	the runs with NaCl solution, whereas other symbols stand for the runs with Na-free solution
880	Solid line is a regression relation between the average Cu concentration derived from
881	Cu+NaCl system and initial chloride concentration. Dashed line represents Cu/Cl ratio of
882	1:1.

Figure 10 Cu content of FIs as a function of cooling rate, and the presence of cuprite in FIs and SMIs with respect to cooling rate. All runs were conducted in Cu+1.49 m NaCl system. (a, b) DQ-21 was cooled with a rate of 0.5 K s⁻¹; (c, d) DQ-145 and 146 were adopted with moderate cooling rates (2-3 K s⁻¹); (e, f) DQ-154 was quenched rapidly (25 K s⁻¹).

Figure 11 Spectra are shown to discuss possible hydrogen-deuterium isotope exchange between external fluid and inclusions. The Raman spectra (a) clearly show no contamination of the inclusion by D₂O. The FTIR spectra (b) in most cases show bands of H₂O as well as of D₂O due to possible incorporation of poor quality inclusions, e.g., necking-down inclusions (more details are given in text). Bands at 2800 - 3000 cm⁻¹ are due to hydrocarbon species formed along sample preparation.

894

895 Appendix

- 896 Table A1 Initial loading of all runs
- Table A2 EMP analyses of SMIs in run DQ-21 (% *m/m*)

899 Tables

900

Table 1 Experimental design of fluid inclusion synthesis

SNO	Capsule material	Initial loading (+ Qz cylinders)	NaCl _{eq.} (wt%)	t ₁ (d)	t ₂ (d)	Quench Technique	Cooling rate (K/s)	Inclusion type; Daughter mineral	Precipitates in capsule
$\pm Cu \pm Cu_2O + NaCl (Set 1)$									
DQ-22	Cu	1 wt% NaCl +SiO _{2(gel)}	1.1	2	3	SQ	0.5	FI+SMI; Cu ₂ O	-
DQ-36	Cu	8 wt% NaCl	8.9	3	2	SQ	0.5	FI+SMI; Cu ₂ O	-
DQ-21	Cu	8 wt% NaCl +SiO _{2(gel)}	8.7	2	3	SQ	0.5	FI+SMI; Cu ₂ O	-
DQ-145	Cu	8 wt% NaCl+SiO _{2(gel)}	8.5	3	3	SQ+RQ	0.5; 25	FI+SMI; Cu ₂ O	-
DQ-146	Cu	8 wt% NaCl +SiO _{2(gel)}	8.3	3	3	CAQ	3	FI+SMI; Cu ₂ O	-
DQ-154	Cu	8 wt% NaCl+SiO _{2(gel)}	8.7	4	4	RQ	25	FI+SMI; Cu ₂ O	-
DQ-183	Cu	8 wt% NaCl+SiO _{2(gel)}	8.5	-	2	RQ	25	FI+SMI; Cu ₂ O	-
DQ-165	Cu	8 wt% NaCl+SiO _{2(gel)}	8.5	2	10	RQ	25	FI+SMI; Cu ₂ O	-
DQ-23	Cu	20 wt% NaCl +SiO _{2(gel)}	20.2	2	3	SQ	0.5	FI+SMI; Cu ₂ O	-
DQ-121	Cu	8 wt% NaCl +SiO _{2(gel)}	n.m.	2	7	SQ	0.5	FI+SMI; Cu ₂ O	-
DQ-187	Au	$8 \text{ wt\% NaCl+ } Cu_2O_{(s)} + SiO_{2(gel)}$	6.8	2	5	SQ	0.5	FI; CuCl	Little CuCl
DQ-188	Au	8 wt% NaCl+ $Cu_2O_{(s)}$ + SiO _{2(gel)}	6.8	-	10	SQ	0.5	FI; CuCl	Little CuCl
DQ-99	Au	8 wt% NaCl	8.0	3	3	SQ	0.5	FI	-
DQ-100	Au	8 wt% NaCl+SiO _{2(gel)}	8.1	3	3	SQ	0.5	FI	-
DQ-101	Au	8 wt% NaCl +Qz powder	8.0	2	4	SQ	0.5	FI	-
$Cu \pm CuC$	$Cl\pm Cu_2O\pm I$	HCl (Set 2)							
DQ-123	Cu	0.5 m HCl +SiO _{2(gel)}	-	2	4	VSQ+RQ	0.07;25	FI; CuCl	Massive CuCl
DQ-42	Cu	1.5 m HCl	-	3	3	SQ	0.5	FI; CuCl	Massive CuCl
DQ-43	Cu	1.5 m HCl+SiO _{2(gel)}	-	3	3	SQ	0.5	FI; CuCl	Massive CuCl
DQ-169	Cu	1.5 m HCl + Cu ₂ O _(powder) + SiO _{2(gel)}	-	3	3	RQ	25	FI; CuCl	Little CuCl
DQ-102	Cu	$1.5 \text{ m HCl} + H_2O + CuCl_{(s)} + SiO_{2(gel)}$	-	3	3	RQ	25	FI; CuCl	Massive CuCl

DQ-47	Cu	$H_2O+CuCl_{(s)} + SiO_{2(gel)}$	-	3	3	SQ	0.5	FI; CuCl	Little CuCl
Additional experiments (Set 3)									
DQ-37A	Cu	H ₂ O	-	3	2	SQ	0.5	FI	-
DQ-37B	Cu	H ₂ O (No Qz)	-	-	0.79	RQ	25	-	-
DQ-37C	Cu	H ₂ O (No Qz)	-	-	1.08	RQ	25	-	-
DQ-124	Au	D ₂ O (Qz from DQ121)	-	-	0.04	SQ	0.5	FI+SMI; Cu ₂ O	-

901 Notes:

All experiments were conducted at 800°C, 200 MPa. Two types of quartz cylinders were generally loaded unless otherwise mentioned

903 (DQ-188 with only a pref. Qz, DQ-37B and 37C without Qz).

904 *m* denotes the molality of the solution, mol kg⁻¹.

905 $Cu_2O_{(powder)}$ and $Cu_2O_{(s)}$ refers to cuprite powder and sintered cuprite pellet, respectively.

906 In order to compare the bulk salinity from microthermometry measurements (NaCleq.) with the initial solution, we used wt% instead of

molality of NaCl solutions. The conversion between wt% and molality is: $1 wt\% = 0.17 m NaCl_{aq}$, $8 wt\% = 1.49 m NaCl_{aq}$, $20 wt\% = 1.49 m NaCl_{aq}$, 20

908 4.30 m NaClaq.

909 t_1 denotes experiment duration before intermediate quench, t_2 refers to the run duration after intermediate quench. The runs DQ-183 and

910 DQ-188 were not conducted with intermediate quench.

911 Quench techniques: CAQ - compressed air quench; RQ - rapid quench; SQ - slow quench; VSQ+RQ - very slow quench and rapid quench

912 (for more details see *Experimental and analytical procedure*).

913 FI represents fluid inclusion, SMI represents silicate melt inclusion.

Table 2 The composition of the fluid phase in the conducted experiments

		Cl _{tot.}	Quench	Cu	FIs	Cu	FIs	
SNO	pН		fluid	(pref. Qz)		(i.s. Qz)		Note
		m	m	m		m		
$\pm Cu \pm Cu_2$	eO + Na	Cl (Set	1)					
DQ-22	7	0.17	n.m.	0.03 ± 0.01	16	0.04±0.02	14	Na std.
DQ-36	13	1.49	n.m.	0.16±0.12	12	0.11±0.11	3	Na std.
DQ-21	7	1.49	n.m.	$0.16{\pm}0.07$	15	0.17±0.10	16	Na std.
DQ-145	n.m.	1.49	n.m.	$0.14{\pm}0.06$	15	‡		Na std.
DQ-146	13	1.49	n.m.	$0.14{\pm}0.05$	15	‡		Na std.
DQ-154	n.m.	1.49	n.m.	$0.16{\pm}0.07$	16	0.17±0.03	15	Na std.
DQ-183	8	1.49	n.m.	0.15±0.12	15	‡		Na std.
DQ-165	5.61 ^b	1.49	1.56(Na)/0.002(Cu)	$0.20{\pm}0.04$	9	$0.20{\pm}0.04$	12	Na std.
DQ-23	8	4.28	n.m.	0.46 ± 0.20	16	0.42 ± 0.18	15	Na std.
DQ-187	7	1.49	n.m.	$0.54{\pm}0.14$	15	0.53±0.12	14	Rb std.
DQ-188	7	1.49	n.m.	0.43±0.17	15	*		Rb std.
$Cu \pm CuCl$	$\pm Cu_2O$	$\pm HCl$ ((Set 2)					
DQ-123	3	0.5	n.m.	0.44±0.21	15	0.62±0.21	9	Rb std.
DQ-42	1	1.5	n.m.	$0.82{\pm}0.36$	12	1.23±0.37	16	Rb std.
DQ-43	1	1.5	n.m.	1.28 ± 0.56	16	1.29±0.58	13	Rb std.
DQ-169	4.06 ^b	1.5	0.09(Cu)	1.01 ± 0.38	12	‡		Rb std.
DQ-102	3	1.88	n.m.	1.63 ± 0.30	11	‡		Rb std.
DQ-47	1	1.45	n.m.	0.54±0.19	13	0.57±0.21	15	Rb std.
Additional experiments (Set 3)								
DQ-37A	4	0	n.m.	0.004 ± 0.003	15	0.003 ± 0.002	10	Rb std.
DQ-37B*	4.01 ^b	0	0.02 (Cu)					
DQ-37C*	4.26 ^b	0	0.04(Cu)					

915 Notes:

916	^b pH of quench fluids	is measured by an Inlab	microelectrode, data	presented are corrected
-----	----------------------------------	-------------------------	----------------------	-------------------------

917 based on their dilution factors; other data are based on pH papers; n.m. denotes pH of the

- 918 quench fluids was not measured.
- 919 $Cl_{tot.}$ represents the initial Cl content (mol kg⁻¹).

- 920 Na and Cu in brackets represent concentrations determined by ICP-OES which yields a
- 921 precision less than 10% (2SD).
- 922 Cu content of FI is the mean value from *n* individual fluid inclusion measurements by LA-
- 923 ICP-MS analyses. Uncertainties represent 95% confidence intervals.
- 924 *Na std.* is based on NaCleq. of microthermometric data; *Rb std.* is calculated using the initial
- 925 RbCl content in starting solution.
- 926 ‡ Inclusions are too small to be analyzed or no i.s. Qz was loaded (DQ-188).

927 Supplementary tables

928

Table A1 Initial loading of all runs

SNO	Qz	SiO _{2 (gel)}	Cu ₂ O _(s)	CuCl _(s)	NaCl _(aq)	HCl(l)	H ₂ O _(l)	Cu ⁺ / Cl ⁻
	102	102	102	102	102	103	102	Min
	10 ⁻³ g	10-3 g	10-3 g	10-3 g	10-3 g	10-3 g	10-3 g	initial ratio
$\pm Cu \pm Cu_2O + NaCl (Set 1)$								
DQ-22	48.79	2.41			25.07			
DQ-36	46.17				26.52			
DQ-21	47.50	1.73			24.49			
DQ-145	46.42	3.70			30.72			
DQ-146	38.85	2.38			30.16			
DQ-154	37.08	1.63			29.96			
DQ-183	33.56	2.34			31.21			
DQ-165	39.53	2.05			30.96			
DQ-23	46.91	2.22			27.56			
DQ-187	54.59	2.13	22.89		22.89			10.2
DQ-188	28.55	2.36	22.29		35.18			6.5
$Cu \pm CuCl$	$\pm Cu_2O \pm L$	HCl (Set 2)						
DQ-123	41.61	3.91				9.94	20.15	
DQ-42	58.93					24.10		
DQ-43	63.94	3.41				24.25		
DQ-169	62.50	3.25	3.67			28.51		1.2
DQ-102	34.82	2.20		3.13		15.50	14.59	0.6
DQ-47	52.44	2.58		4.37			30.43	1.0
Additional experiments (Set 3)								
DQ-37A	46.32						25.92	
DQ-37B							61.71	
DQ-37C							62.32	
DQ-99	16.07				30.69			
DQ-100	42.92	2.73			31.45			
DQ-101	41.87	2.44			26.24			

929 Note:

930 Stock solutions, such as NaCl_(aq), HCl_(l), are prepared prior to loading. Unless otherwise

931 mentioned, H₂O has not been added in each capsule.

932 The ratio of Cu^+/Cl^- denotes a minimum mole ratio between the initial Cu(I) minerals (CuCl,

933 Cu₂O) and chloride content.

Sample	Na ₂ O	SiO ₂	Cl	Cu ₂ O	Total
Cuprite	4.77	24.04	0.17	65.28	94.67
Cuprite	0.72	12.75	0.01	88.76	102.6
SMI-1	1.98	78.48	0.32	8.94	90.51
SMI-2	4.54	61.74	0.31	2.79	71.1
SMI-2*	1.95	68.86	0.32	0.06	74.04
SMI-2*	5.09	75.4	0.92	0.25	84.15
SMI-2*	2.04	70.59	0.23	0.95	76.67
SMI-3	3.9	81.11	0.04	-0.45	88.4
SMI-3*	-0.02	81.79	0.01	0.13	82.09
SMI-4	2.07	65.4	0.35	-0.16	71.47
SMI-5	4.12	63.95	0.05	-0.03	75.5
SMI-5*	1.88	60.35	0.04	0	71.81
SMI-5*	4.19	70.16	0.02	0.34	79.08

Table A2 EMP analyses of SMIs of DQ-21 (in wt%)

Notes: Cuprite refers to analyses on the small crystals, SMI refers to measurements on glasses. A focused beam and a current of 15 nA were used for cuprite, a defocused bean with a size of 2 μ m and a current of 5 nA were used for glasses. * indicates analyses on the same inclusion but at different locations.

940

941 Figures

Figure 1 Schematic drawing of the experiment conducted in RH/RQ Ar-CSPV. (a) The design of capsule, which is modified after Derrey et al. (2017); (b) Thermal history of the experiment. The cooling rates were calculated based on the total time needed for the temperature dropping from 800°C to 300°C at the external thermocouple.

948

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7114

951 Laser Laser starts starts b-125 Hz, 35µm FI a-10 Hz, 9 µm FI 10 10 10 Background 10 Background 10 10 10 Intensity (cps) 10 Matrix (Qz 10 Matrix (Qz)10 10 Sample signal (FI) 10 10 Sample signal (FI) 10 10 3Cs -²⁸Si --65Cu Rb 80 100 120 140 160 180 200 0 20 40 60 0 20 40 60 80 100 120 140 160 180 200 Time (s) Time (s)

952

953 Fig.2 Typical LA-ICP-MS signals of small (a) and large (b) frozen FIs using a UV-fs-laser, heating-freezing cell and Element XR ICP-MS. (a) Small FI has been ablated by spot 954 ablation pattern. DQ21: Cu+SiO_{2(gel)}+1.49 m NaCl_{aq}. (b) Large FI has been ablated by 955 spiral ablation pattern. DQ36: Cu+1.49 m NaClaq. 956

957

958

959

Figure 3 Photomicrographs of typical quartz-hosted inclusions at 25°C. (a) Nantokite was
observed in FIs of the run with cuprite (Cu₂O) and NaCl solution (DQ-187); (b) Potential
nantokite was precipitated in FIs of the run with native Cu and HCl solution (DQ-43). (c,
d) Photos are taken from different area of the pref. Qz of DQ-21 in which FI (marked in
(c)) coexists with SMI (marked in (d)). Discernible cuprite crystals are observed in SMI in

- 966 despite of FI. (e, f) Both FI and SMI occur in the pref. Qz of DQ-183, no intermediate
- 967 quench was adopted. FI often contains cuprite aggregates.

973

974 Figure 4 A BSE image of a SMI in pref. Qz of DQ-21. The rounded bright dots were

20. µm BSE 15. kV

975 identified as cuprite using Raman spectroscopy (see Fig. 5a).

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7114

Figure 5 Raman spectra of different phases in inclusions after SQ (DQ-21) and RQ (DQ-183) runs. (a) Raman analyses of crystals trapped in FIs (DQ-183) and SMIs (DQ-21) in comparison with natural cuprite and quartz host. The vertical dashed lines are assigned to typical cuprite Raman bands (for more details in text). (b) Raman analyses of silicate melt phase in comparison to quartz and FI. Broad bands at 550-600 cm⁻¹ and 1000-1100 cm⁻¹ may be assigned to amorphous silica (see text). *SQ* and *RQ* refer to runs and, respectively.

987

988

989

Figure 6 Examples of Na contents in FIs based on the internal standard Rb (400 μ g g⁻¹). The gray bar represents Na_{eq} which is evaluated Na content from microthermometry measurement; Na_{initial} denotes the initial Na content estimated from the starting solution.

993

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7114

Figure 7 Average Cu, Rb and Cs concentrations of FIs (error bar is given by the standard deviation of the data). All runs were conducted with same material and same condition
using rapid quench technique. Intermediate quench was performed after 0 (DQ-183), 2
(DQ-154) and 4 (DQ-165) d.

1001

1003 Figure 8 Cu content versus Cs content in Na⁺ bearing and Na⁺ free runs using SQ technique.

1004

Figure 9 Cu concentrations as a function of initial chloride concentration in Cu \pm Cu₂O \pm CuCl \pm NaCl \pm HCl systems. All runs were performed in Cu capsules with cooling rate of 0.5 K s⁻¹, except for the run with Cu₂O+NaCl (Au capsule). Red symbols represent the runs with NaCl solution, whereas other symbols stand for the runs with Na-free solution. Solid line is a regression relation between the average Cu concentration derived from Cu+NaCl system and initial chloride concentration. Dashed line represents Cu/Cl ratio of 1:1.

1013

1005

e a SMI Cu,O Cu,O d f FI 'u.O 25µm 0.3 Cu content (mol kg⁻¹) 0.2 0.1 pref.Qz i.s.Qz 0.0 5 0 10 15 20 25

1017

1015 1016

Figure 10 Cu content of FIs as a function of cooling rate, and the presence of cuprite in FIs and SMIs with respect to cooling rate. All runs were conducted in Cu+1.49 m NaCl system. (a, b) DQ-21 was cooled with a rate of 0.5 K s⁻¹; (c, d) DQ-145 and 146 were adopted with moderate cooling rates (2-3 K s⁻¹); (e, f) DQ-154 was quenched rapidly (25 K s⁻¹).

Cooling rate (K s⁻¹)

1023

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7114

1026

Figure 11 Spectra are shown to discuss possible hydrogen-deuterium isotope exchange between external fluid and inclusions. The Raman spectra (a) clearly show no contamination of the inclusion by D_2O . The FTIR spectra (b) in most cases show bands of H₂O as well as of D_2O due to possible incorporation of poor quality inclusions, e.g., necking-down inclusions. Bands at 2800 - 3000 cm⁻¹ are due to hydrocarbon species formed along sample preparation.