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Introduction 9 

 The lithosphere asthenosphere boundary zone (LABZ) has been of great interest in recent 10 

decades, for the simple reason that understanding the LABZ - how it is defined, how it forms, how it 11 

evolves with time - is crucial to understanding mantle dynamics. In the framework of plate tectonics, 12 

the LABZ represents a boundary layer having a certain thickness (McKenzie and Bickle, 1988; see 13 

“thermal boundary layer in their Fig. 3), where heat, momentum, and materials are exchanged 14 

between conductive mantle (lithosphere) and underlying convective mantle (asthenosphere and 15 

below). Our knowledge about the composition and material properties of the LABZ is limited to 16 

areas overlain by continental cratons. Under thick continental cratons we can sample garnet 17 

lherzolite mantle xenoliths, and for such mineral assemblages, we have well-calibrated 18 

geothermometers and geobarometers (e.g., Boyd, 1973). The pressure-temperature conditions of the 19 

deep sub-continental mantle lithosphere can thus be obtained, and from such estimates, several 20 

petrologic models for the LABZ have been proposed (e.g., O’Reilly and Griffin, 2010; Agashev et al., 21 



2013). In contrast, the LABZ under oceanic plates, young continents and subduction zones has 22 

remained largely in question, due to the lack of proper geobarometry for mantle xenoliths that record 23 

spinel (rather than garnet) lherzolite facies equilibrium.  24 

 25 

Study on xenolith suites from Ichinomegata maar 26 

 Yuto Sato and Kazuhito Ozawa for the first time describe the petrologic features of the LABZ 27 

beneath a subduction zone, in their paper entitled “Reconstruction of the lithosphere-asthenosphere 28 

boundary zone beneath Ichinomegata maar, Northeast Japan, by geobarometry of spinel peridotite 29 

xenoliths” (Sato and Ozawa, this volume).  In this paper, Sato and Ozawa successfully estimated 30 

depths of equilibration for nine spinel lherzolite xenoliths, collected from the Ichinomegata maar, in 31 

Northeast Japan. According to their estimates, these xenoliths last equilibrated at depths of 28 to 55 32 

km, at temperatures of 829 to 1081C, prior to their transport to the surface via host andesite magma. 33 

They also show that these mantle xenoliths exhibit clear changes in texture (granular to 34 

porphyroclastic) and phase assemblage (hornblende bearing to hornblende absent but partially 35 

molten) that represent a transition from lithosphere, to a lithosphere-asthenosphere boundary zone 36 

(see their Fig. 8).    37 

The xenoliths from the Ichinomegata maar have received attention by many previous workers 38 

because they are rare samples derived from the crust and the upper mantle beneath an active 39 

subduction zone (e.g., Kuno 1967; Takahashi, 1980, 1986; Arai et al. 2004). In such prior studies, it 40 



has been revealed that the Ichinomegata xenoliths show complex thermal histories before final 41 

entrapment, and display evidence of hydration/dehydration and partial melting. However, the 42 

geologic implications of these petrologic features have not been entirely clear: due to a lack of proper 43 

geobarometry, their equilibration depths have been unknown. In this new study, not only do the 44 

authors estimate P-T equilibration conditions, but the authors make use of olivine and pyroxene 45 

grains (that show chemical zonings) in order to reconstruct episodes of cooling and heating on 46 

different time scales. Sato and Ozawa (this volume) carefully analyzed these zoning patterns and 47 

evaluated the equilibrium chemical composition of coexisting minerals just prior to the final xenolith 48 

transportation, using the thermo-barometry models of Nickel and Brey (1984).  49 

 50 

Reconstructed LABZ beneath a subduction zone 51 

A reconstructed LABZ beneath Ichinomegata is similar to those reported from the bottom of the 52 

subcratonic lithospheric mantle in various aspects, but the boundary layer beneath Ichinomegata is 53 

much shallower (40-60 km) and colder (~1050C). What is particularly compelling is the 54 

coincidence of the depth of the rheological transition (granular to porphyroclastic textures) and that 55 

of the hydrous melting of peridotite. This remarkable feature of the boundary zone beneath 56 

Ichinomegata indicates that a rheological boundary zone in subduction zone is governed by the wet 57 

mantle solidus and also that the underlying asthenosphere is partially molten. 58 

Sato and Ozawa (this volume) compared their results with seismological observation for 59 



Northeast Japan arc. The mean depth of LAB beneath the Japan Sea is estimated to be 60 km by 60 

shear-wave tomography studies (e.g., Yoshizawa et al.,2010), which tends to decrease towards the 61 

Northeast Japan arc. Under volcanic front, depth of LAB is estimated to be <40km and it coincides 62 

with that of MOHO (e.g., Nakajima and Hasegawa, 2001).  Ichinomegata maar is located about 63 

80km from the volcanic front on the back-arc side. According to Sato and Ozawa (this volume), 64 

upper boundary of the LABZ is estimated to be around 40km in depth and the lower boundary to be 65 

>55km in depth.  Combining this information with those by seismology, Sato and Ozawa (this 66 

volume) estimated a cross section of Northeast Japan Arc (see their Fig.10).    67 

Nature of the LAB has been discussed from various aspects and it has been attributed to 68 

changes in either temperature, chemical compositions, water contents, or partial melting (e.g., Hirth 69 

and Kohlstedt, 1996; O’Reilly and Griffin, 2006; Green et al., 2010; Hirschmann, 2010; Karato, 70 

2012). Paper by Sato and Ozawa (this volume) demonstrated that partial melting is the most crucial 71 

factor at least in the wet LABZ beneath subduction zones. Detailed petrologic information obtained 72 

by Sato and Ozawa (this volume) for LABZ beneath Northeast Japan arc should have great 73 

implications for understanding LABZ in other tectonic environments. Clearly, this paper is a 74 

breakthrough in mantle xenolith studies and it may have a profound influence on geodynamic studies 75 

of subduction zones.  76 
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